
Published in Transactions on Machine Learning Research (02/2024)

Are Population Graphs Really as Powerful as Believed?

Tamara T. Mueller1 Sophie Starck1 Kyriaki-Margarita Bintsi2

Alexander Ziller1 Rickmer Braren3 Georgios Kaissis1,3,4 Daniel Rueckert1,2

1AI in Medicine and Healthcare, Technical University of Munich, Germany
2BioMedIA, Imperial College London, UK
3Institute for Diagnostic and Interventional Radiology, Technical University of Munich, Germany
4Machine Learning in Biomedical Imaging, Helmholtz Munich, Germany
Contact: tamara.mueller@tum.de

Reviewed on OpenReview: https: // openreview. net/ forum? id= TTRDCVnbjI

Abstract

Population graphs and their use in combination with graph neural networks (GNNs) have
demonstrated promising results for multi-modal medical data integration and improving
disease diagnosis and prognosis. Several different methods for constructing these graphs
and advanced graph learning techniques have been established to maximise the predictive
power of GNNs on population graphs. However, in this work, we raise the question of
whether existing methods are really strong enough by showing that simple baseline methods
–such as random forests or linear regressions–, perform on par with advanced graph learning
models on several population graph datasets for a variety of different clinical applications.
We use the commonly used public population graph datasets TADPOLE and ABIDE, a
brain age estimation and a cardiac dataset from the UK Biobank, and a real-world in-house
COVID dataset. We (a) investigate the impact of different graph construction methods,
graph convolutions, and dataset size and complexity on GNN performance and (b) discuss
the utility of GNNs for multi-modal data integration in the context of population graphs.
Based on our results, we argue towards the need for “better” graph construction methods or
innovative applications for population graphs to render them beneficial1.

1 Introduction

Graphs can be used to model and represent various types of data. They allow for a suitable representation of
interconnected structures, such as social networks (Fan et al., 2019), molecules (Moreira-Filho et al., 2022),
or surface meshes (Mueller et al., 2023b). In order to perform deep learning on graph-like data structures,
graph neural networks (GNNs) have been introduced (Gori et al., 2005; Scarselli et al., 2008). GNNs follow a
message-passing scheme and collect information that is stored in nodes across a graph structure (Bronstein
et al., 2017) and have shown improved performance of various deep learning tasks (Parisot et al., 2017;
Ahmedt-Aristizabal et al., 2021; Bessadok et al., 2022; Pellegrini et al., 2022). Most of these tasks rely
on datasets that inherently provide a graph structure, such as social networks, or provide well-established
methods to construct the graph, such as point clouds (Wang et al., 2019).

In the medical domain, GNNs have been applied to improve disease diagnostics (Parisot et al., 2017; Cosmo
et al., 2020; Kazi et al., 2022), model biological structures (Chen et al., 2020), or temporal components of data
(Kim et al., 2021). They can be used to perform deep learning on surface meshes for fatty tissue quantification
(Mueller et al., 2023b), vessel structures (Paetzold et al., 2021) for vessel segmentation, or molecules for drug
discovery (Bonner et al., 2022). The respective datasets provide an inherent graph structure in the form
of a mesh, a vessel tree, or chemical bindings. In contrast to datasets that provide a clear graph structure,

1The source code for this work can be found at: https://github.com/tamaramueller/population_graphs

1

https://openreview.net/forum?id=TTRDCVnbjI
https://github.com/tamaramueller/population_graphs

Published in Transactions on Machine Learning Research (02/2024)

one research area in medicine studies so-called population graphs. A population graph refers to a network
of inter-connected subjects encoding the medical information of all subjects in graph form. Usually, the
subjects’ medical data, such as imaging or clinical features, is used as node features in the graph. The edges
are constructed so that similar subjects are connected. Figure 1 shows a schematic of a typical population
graph. Each subject (node) is represented by a data vector often extracted from medical images. Additionally,
non-imaging clinical data, such as demographics or lab results, can be used to define the edges between
subjects, where similar non-imaging features lead to a connection between two subjects.

Figure 1: Overview of a typical population graph construction. Subject-specific medical data is
represented as a feature vector and used as node features in the population graph. The most frequently used
setup uses imaging features as node features and non-imaging features for edge construction.

Several works have shown that population graphs for medical applications can improve downstream tasks
compared to graph-agnostic methods (Parisot et al., 2017; Kazi et al., 2019; Cosmo et al., 2020; Kazi et al.,
2022). Parisot et al. (2017) first introduced the concept of population graphs for the detection of Alzheimer’s
disease and autism. Later works (Kazi et al., 2019; Cosmo et al., 2020; Kazi et al., 2022; Bintsi et al., 2023a;b)
used the method of population graphs under different settings, developing new graph construction methods
and for different tasks, such as age prediction. The motivation for using population graphs is the hypothesis
that subjects that share similar phenotypes tend to have similar pathologies and, therefore, benefit from
sharing information. The goal is to facilitate personalised medicine by utilising the shared information across
similar subjects. However, population graphs come with a significant limitation: the graph structure needs to
be constructed from the dataset. This has led to different graph construction methods. Two branches of
graph construction have been established: static and dynamic graph construction. Static graph construction
refers to creating the graph structure prior to graph learning, while dynamic graph construction methods
adapt the graph structure during training (Cosmo et al., 2020). To date, both methods are used frequently.
For an overview of graph construction methods for GNNs in medicine, we refer to Mueller et al. (2024). What
makes the choice of graph construction method so crucial is the impact of the resulting graph structure on
the downstream performance of the GNN. It has been shown that a “poor” graph structure can lead to GNNs
under-performing graph-agnostic models (Luan et al., 2022; Zhu et al., 2020). Some methods have been
specifically designed to work on such challenging graph structures, one of them being neural sheaf diffusion
models (Hansen & Gebhart, 2020). We investigate their potential on population graph datasets, which tend
to have challenging graph structures.

So far, there are two commonly used arguments for using medical population graphs compared to graph-
agnostic models: (1) GNNs allow for meaningful multi-modal data integration, and (2) the message passing
across neighbourhoods improves model performance. In this work, we investigate how firm those claims are
and contradict them on several datasets. Our contributions can be summarised as follows:

2

Published in Transactions on Machine Learning Research (02/2024)

• We compare static and dynamic state-of-the-art graph construction methods with GNNs, as well as
the usage of neural sheaf diffusion models for population graphs and show how simple graph-agnostic
baselines perform on par with them on several population graph datasets.

• We show that GNNs can be superior to graph-agnostic models if the graph structure is provided with
the dataset but do not achieve performance boosts on any medical population graph dataset used
in this work. We hypothesise that in the latter case, the graph structure does not add additional
valuable information.

• We evaluate the impact of the graph structure on several different types of graph convolution using
two different graph assessment metrics: homophily and cross-class neighbourhood similarity (CCNS)
distance.

• We highlight that the graph construction methods for population graphs are not sufficient and discuss
potential future directions for population graph studies.

Our results lead us to conclude that we need a discussion about whether population graphs are beneficial over
graph-agnostic methods and that the currently available graph construction methods are the performance
bottleneck of GNNs on population graphs. We see a requirement for “better” graph construction methods if
we want to improve the performance of GNNs on population graphs.

2 Background

In this section, we discuss some background on graphs, graph neural networks, neural sheaf diffusion models,
and two graph assessment metrics, namely homophily and cross-class neighbourhood similarity.

2.1 Graph Structures

A graph G := (V, E) is defined as a set of n vertices/nodes V and a set of edges E, where eij = 1 and
eij ∈ E if there exists an edge from node i to node j. All edges can be summarised in an n × n adjacency
matrix A, where aij = 1 if eij ∈ E and 0 otherwise. In the context of graph deep learning, the graph’s nodes
usually hold node features of dimension r that can be summarised in the node feature matrix X ∈ Rn×r. A
neighbourhood of a node i, Ni is the set of all nodes j, for which an edge eji from j to i exists. Furthermore,
in the setting of node classification, each node i usually holds a label yi, and all labels can be summarised in
the label vector Y .

2.2 Graph Assessment Metrics

Several works have shown that the graph structure can have a significant impact on the performance of
GNNs (Luan et al., 2022; Zhu et al., 2020). In this line, different metrics have been introduced that assess
graph structures and have been shown to correlate with GNN performance. The metric most commonly
used is homophily. One can distinguish between three different types of homophily: class homophily (Lim
et al., 2021; Luan et al., 2021), edge homophily (Kim & Oh, 2022), and node homophily (Pei et al., 2020),
which all highlight slightly different aspects of the graph structure. They all evaluate the ratio between edges
that connect nodes with the same label and edges that connect nodes with different labels. The idea is that
since GNNs propagate node features across edges, the less similar the neighbours are, the less likely it is for
the GNN to learn representative node feature embeddings for this node, which can impact the network’s
performance. In the remaining parts of this work, we will use node homophily.

Definition 2.1 (Node homophily (Pei et al., 2020)) A graph G := (V , E) with node labels Y :=
{yu; u ∈ V } has the following node homophily:

hom(G, Y) := 1
|V |

∑
v∈V

|{u|u ∈ Nv, Yu = Yv}|
|Nv|

, (1)

where Nv is the set of neighbouring nodes of v and | · | the cardinality of a set.

3

Published in Transactions on Machine Learning Research (02/2024)

We speak of “high homophily” or a “homophilic” graph, when hom(G, Y) → 1 and of “low homophily” or a
“heterophilic” graph, when hom(G, Y) → 0. A graph’s homophily can also be defined for regression tasks by
taking the distance between node feature labels among neighbourhoods into account (Mueller et al., 2023a):

Definition 2.2 (Homophily for regression (Mueller et al., 2023a)) The node homophily of a graph
G with labels Y (defined as above) that indicate a regression task is defined as follows:

homreg(G, Y) := 1 −

(
1

|V |
∑
v∈V

(
1

|Nv|
∑

n∈Nv

∥yv − yn∥1

))
, (2)

where ∥·∥1 indicates the L1 norm.

Another metric that does not only focus on the ratio of edges connecting same-labelled or differently-labelled
nodes is cross-class neighbourhood similarity (CCNS) (Ma et al., 2021). Here, the overall similarity of
neighbourhoods of nodes with the same label is evaluated, irrespective of whether the neighbours share the
same label as the node of interest.

Definition 2.3 (Cross-class neighbourhood similarity (Ma et al., 2021)) Let G := (V, E), Y , and
Nv be defined as above. In addition, let C be the set of all possible classes of node labels, and Vc the set of
vertices of a specific class c. Then the CCNS of two classes cr and cs can be derived as follows:

CCNS(cr, cs) = 1
|Vcr

||Vcs
|
∑

u,v∈V

cossim(d(u), d(v)), (3)

where d(v) indicates the histogram of a node v’s neighbours’ labels and cossim(·, ·) the cosine similarity.

Mueller et al. (2023a) introduce a reduction of CCNS to a single-valued parameter, they call CCNS distance,
which defines the L1 distance between the CCNS matrix and the identity matrix:

Definition 2.4 (CCNS distance (Mueller et al., 2023a)) Let G := (V, E), C, and CCNS be defined as
above. Then the CCNS distance of the whole graph G is:

DCCNS := 1
n

∑
∥CCNS −I∥1, (4)

where ∥·∥1 is the L1 norm and I the identity matrix.

2.3 Graph Neural Networks

GNNs have been introduced with the aim of enabling deep learning on non-Euclidean spaces, such as graphs,
manifolds, or meshes (Bronstein et al., 2017). They all follow a so-called message-passing scheme, which
propagates the information that is stored in the node features of the graph (or mesh or manifold) to its
neighbouring nodes. The GNN then learns a node feature embedding based on the original node features
as well as the propagated node features of the neighbouring nodes. GNNs make use of graph convolutions,
which specify the concrete message-passing scheme that is applied during training and inference. There exist
several different types of graph convolution, all varying slightly in their methodology. Here, we summarise
the definitions of four commonly used graph convolutions.

Definition 2.5 (Graph Convolutional Networks (GCN) (Kipf & Welling, 2016)) Graph convolu-
tional networks (GCNs) were one of the first GNNs introduced by Kipf & Welling (2016). They were
originally defined in a spectral manner, using the graph Laplacian. The PyTorch Geometric implementation
follows the following definition:

x′
i = ΘT

∑
j∈Ni∪{i}

1√
d̂j d̂i

xj , (5)

where d̂i = 1 +
∑

j∈Ni
1, Θ learnable weights, and Ni the neighbourhood of node i.

4

Published in Transactions on Machine Learning Research (02/2024)

Definition 2.6 (Graph SAGE (Hamilton et al., 2017)) In 2017, Hamilton et al. (2017) introduced a
novel graph convolution that was originally designed for large graphs and inductive training, which is called
GraphSAGE. Here, the new feature representation of a node i is defined as follows:

x′
i = W1xi + W2 · Ej∈Ni

, (6)

where W1 and W2 denote learnable weights and Ej∈Ni the expectation over all node features in the neighbour-
hood of j.

Definition 2.7 (Higher-order Graph Neural Networks (GraphCONV) (Morris et al., 2019))
Morris et al. (2019) introduced so-called higher-order GNNs, where the node feature embedding x′

i of node i is
defined as follows:

x′
i = W1xi + W2

∑
j∈Ni

xj , (7)

where W1 and W2 are learable weights and Ni denotes the neighbourhood of node i.

Definition 2.8 (Graph Attention Networks (GAT) (Veličković et al., 2017)) Veličković et al.
(2017) introduced a graph neural network, that learns attention weights for edges in the graph. The new node
feature embedding of a node i is defined as:

x′
i = αiiΘxi +

∑
j∈Ni

αijΘxj , (8)

where Θ are learable parameters and αij is the attention coefficient between two nodes i and j and is defined
as follows:

αij =
exp

(
ϕ
(
aT (Θxi ∥ Θxj)

))∑
k∈Ni∪i exp (ϕ (aT (Θxi ∥ Θxk))) , (9)

where ϕ is commonly the LeakyReLU function and ∥ indicates a concatenation of the values.

2.4 Neural Sheaf Diffusion Models

With a rising discussion on how GNNs perform on low-homophily graph structures, different approaches to
graph learning have been established that target these more challenging settings for graph learning. One
of these methods is neural sheaf diffusion models, originally introduced by Hansen & Gebhart (2020) and
extended by Bodnar et al. (2022). They use the topological concept of cellular sheaves, which assign vector
spaces to all nodes and edges and linear mappings between them for all node-edge connections. Traditional
GNNs are designed in a way that they assume a graph structure with a trivial underlying sheaf. Hansen &
Gebhart (2020) and Bodnar et al. (2022) introduce an alternative approach to graph deep learning that is
based on the concept of cellular sheaves, where different sheaf representations are learned for nodes and edges
of the graph. They show that with this method, they can provide a graph learning technique that is less
impacted by heterophilic graphs and over-smoothing - two commonly known limitations of GNNs. Sheaf
neural networks (Hansen & Gebhart, 2020; Bodnar et al., 2022) are a generalisation of GCNs (Kipf & Welling,
2016) and leverage the sheaf Laplacian (Hansen & Ghrist, 2019), an extension of the graph Laplacian. This
allows for an expression of more complex relationships between nodes rather than “similarity”. Bodnar et al.
(2022) furthermore show how these sheaves can be learned from the data at hand, using neural networks.

Definition 2.9 (Sheaf Convolution) Let F be a sheaf on a graph G with feature matrix X ∈ Rnd×a and
sheaf Lapacian ∆F . A sheaf convolutional model is then defined as follows:

Y = σ ((Ind − ∆F) (In ⊗ W1) XW2) , (10)

where σ is a non-linearity, ⊗ denotes the Kronecker product, W1 ∈ Rd×d and W2 ∈ Ra×b are two weight
matrices, and a and b define the number of input and output channels, respectively.

The authors introduce different versions of neural sheaf networks, such as GeneralSheaf, BundleSheaf, and
DiagSheaf. For more details about sheaf networks, we refer to Hansen & Gebhart (2020) and Bodnar et al.
(2022). In this work, we utilise neural sheaf diffusion models on all classification datasets in order to investigate
their potential on potentially low-homophily graph structures of medical population graphs.

5

Published in Transactions on Machine Learning Research (02/2024)

3 Related Work

Medical population graphs have been used for several different downstream tasks, such as disease prediction
(Parisot et al., 2017; Kazi et al., 2019; 2022) or age prediction (Bintsi et al., 2023a;b). Given that the
construction of the graph itself is a major challenge when working with population graphs, several methods for
graph construction have been established, which we utilise and compare in this work. For example, dynamic
graph learning (Cosmo et al., 2020; Kazi et al., 2022) has been established to allow for end-to-end learning of
the graph structure, so the graph does not have to be defined manually. There is little work investigating the
impact of different graph construction methods and different graph learning schemes on the performance of
population graphs. Bintsi et al. (2023b), for instance, evaluate different static graph construction methods
on an age regression dataset but do not evaluate dynamic graph construction methods. To the best of our
knowledge, this is the first work specifically addressing the challenge of graph construction in population graph
studies in combination with different graph learning methods and with a detailed comparison to baseline
models.

In general GNN research, several works have investigated the impact of the graph structure on model
performance. Zhu et al. (2020) address the issue of the impact of the graph structure, measured by homophily
(see Section 2.2), on different graph convolutional networks on citation networks. Several metrics have been
established that allow for an assessment of the graph structure and show a correlation with the performance of
GNNs. Luan et al. (2022) introduce two metrics, normalised total variation and normalised smoothness value,
that measure the effect of edge bias. Xie et al. (2020) measure the graph structure with two metrics called
neighbourhood entropy and centre-neighbourhood similarity. Ma et al. (2021) utilise the above-mentioned
metric called cross-class neighbourhood similarity, which assesses how similar all neighbourhoods of all nodes
with the same label are and show their correlation with GNN performance. Most of these works assess their
metrics on benchmark datasets, such as citation networks, that come with a ground truth graph structure. In
this work, we want to take these experiments one step further and investigate the impact of graph construction
methods on population graph studies with GNNs and investigate the benefit of using GNNs over baseline
methods.

4 Methods and Training Setup

In this section, we provide an overview of the utilised methods in this work. We introduce the different static
and dynamic graph construction methods, summarise the utilised GNN models and the training setup, and
introduce the datasets that were used to perform the experiments. A summary of the different learning and
graph construction pipelines is visualised in Figure 2.

Figure 2: Overview of the conducted experiments. We tune different baselines and compare their
performance to GNNs on population graphs. We perform static and dynamic graph construction (GC) and
use four graph convolutions: GCN, GraphSAGE, GraphConv, and GAT, and Neural Sheaf Models. The
original edges are only used if available, and self-loops mimic a transductive learning setting (see appendix).

6

Published in Transactions on Machine Learning Research (02/2024)

4.1 Datasets

We perform our experiments on five medical population graph datasets, which are summarised in Table 1.
First, we use the commonly used subset of the TADPOLE dataset (Yu et al., 2020) that is, for example,
used in Kazi et al. (2022). The task of this dataset is to distinguish between patients with Alzheimer’s disease
(AD), ones with mild cognitive impairment (MCI), and healthy control groups (NC). The dataset consists
of 30 imaging features of 564 subjects. A second public and frequently used dataset for population graph
studies is the Autism Brain Imaging Data Exchange (ABIDE) dataset (Di Martino et al., 2014). It contains
brain imaging features and clinical features such as age of 871 subjects and has been used in the context of
population graphs in several works (Parisot et al., 2017; Kazi et al., 2019; 2022). The task of this dataset is a
binary classification task, discriminating between autism patients and healthy controls. Furthermore, we
use a small real-world medical dataset of COVID patients that has also been used before in population
graph settings (Keicher et al., 2021); however, in a slightly different version of the dataset. The task is a
binary classification of whether a subject is predicted to require intensive care or not. The dataset consists of
image-derived features and clinical features of 65 subjects. Additionally, we use a larger population graph
dataset from the UK Biobank (UKBB) (Sudlow et al., 2015) that consists of features extracted from brain
magnetic resonance (MR) images (UKBB brain age). To extract the features, we follow the approach
from Cole (2020), resulting in 68 imaging features and 20 non-imaging features for each subject. We use a
set of 6406 subjects and perform a regression task for age prediction on this dataset. The mean age of this
dataset is 62.86 years. We use this dataset to explore the difference in model performance when only using
the imaging features compared to using all features. If not specifically specified, we only use the 68 imaging
features. We extract another dataset from the UKBB (Sudlow et al., 2015) containing imaging features from
cardiac MRIs as well as clinical features, on which we perform a binary classification of whether a subject
suffers from cardiovascular diseases or not (UKBB cardiac). We extract 6 non-imaging features and 86
imaging features using the pipeline from Bai et al. (2020) and create a population graph with 2900 subjects.

Table 1: Overview of all utilised population graph datasets with the respective number of nodes,
number of samples/nodes in the train, test, and validation sets, the number of node features (Nr. features),
and the number of classes.

Dataset Nr. nodes Train samples Val. samples Test samples Nr. features Nr. classes
TADPOLE 564 468 48 57 30 3
ABIDE 871 609 41 221 6105 2
UKBB cardiac 2900 2320 58 522 89 2
COVID 65 45 4 16 29 2
UKBB brain age 6406 4811 1276 319 88 Regression

In order to evaluate the impact of the graph construction method and the resulting graph structure on the
performance of the GNN, we also utilise three benchmark citation datasets: CORA, CITESEER, and
PUBMED (Yang et al., 2016). These datasets come with a pre-defined graph structure, which we can use
as the ground truth graph and compare performance to our generated graph structures. In Section 5.4, we
also evaluate the impact of scale with a synthetically generated classification dataset with 4 classes and
between 5 000 and 30 000 nodes.

4.2 Graph Construction Methods

We use distinct graph construction methods for population graphs and compare their impact on the
performance of different GNNs. We note that the utilised methods are not extensive, but we picked
the most representative, most frequently used, and well-established methods for static and dynamic graph
construction. For more details on graph construction methods for GNNs in medicine, we refer to Mueller
et al. (2024).

7

Published in Transactions on Machine Learning Research (02/2024)

4.2.1 Static Graph Construction

Static graph construction methods refer to the construction of a graph structure that stays constant throughout
GNN training. There are several methods to construct a static population graph structure, while the most
common one utilises a k-nearest neighbour approach (Cunningham & Delany, 2021).

Self-loops Only To get an intuition about the impact of the graph structure on the GNN, we evaluate a
GNN on a graph that is not really a graph but only contains self-loops. The adjacency matrix of a graph that
only contains self-loops is equivalent to the identity matrix. In this setting, no message passing among nodes
is performed since there are no connections between nodes. We use this setting to simulate a transductive
learning setting without using a graph structure.

Random Graph Secondly, we construct a random graph structure by generating an Erdos-Rényi Graph
with an edge probability of 0.001. We choose to evaluate all methods applied to a graph with a random graph
structure in order to investigate the impact of the graph structure on model performance.

k-Nearest Neighbour Graph The most frequently used approach of graph construction for population
graphs is the k-Nearest Neighbour (k-NN) approach. Here, k is a hyperparameter and defines the number
of neighbours each node has. For this approach, different distance measures can be used, for example, the
Euclidean distance or the cosine similarity. We use the implementation of knn_graph from Pytorch Geometric
(Fey & Lenssen, 2019) and refer to the usage of the Euclidean distance as “k-NN Eucl.” and the usage of the
cosine similarity as “k-NN Cosine” in the tables below.

4.2.2 Dynamic Graph Construction

Dynamic graph construction refers to the learning of the graph structure in an end-to-end manner in parallel
to the model training. There exist a few dynamic graph construction methods; however, for population
graphs, mostly the approach from Kazi et al. (2022) is used. Here, we use the dDGM method, a differentiable
graph construction method that allows for end-to-end learning of the graph structure during GNN training.
In their work, Kazi et al. (2022) propose two differentiable graph learning modules: cDGM and dDGM.
We here only use the dDGM implementation since both in their work and in our preliminary results and
related works like (Mueller et al., 2023a), dDGM resulted in better performance. The dDGM module can be
applied to arbitrary initial graph structures. We evaluate the impact of the initial graph structure on the
model performance by using different graphs as a starting point. For the CORA dataset, we evaluate dDGM
starting with (a) no edges, (b) only self-loops, (c) a random graph structure, (d) a k-NN graph, and (e) the
original edges of the dataset, in Section 5.4.

4.3 Graph Assessment

In order to gain insights into the constructed graph structures and investigate their “quality”, we evaluate two
graph assessment metrics: node homophily (Pei et al., 2020) and cross-class neighbourhood similarity (CCNS)
(Ma et al., 2021). We follow the approach from Mueller et al. (2023a) and evaluate the CCNS distance, the
there-defined homophily for regression tasks, and split the evaluation of all metrics into train and test nodes.
The latter can be useful to investigate how differently the graph structure impacts training and test nodes.

4.4 Model Architectures and Training

We use two different model architectures in our experiments. For all dynamic graph construction experiments,
we use the architecture proposed by Kazi et al. (2022), which consists of two graph convolutional networks: a
graph embedding function f and a diffusion function g. Following the results from the original paper (Kazi
et al., 2022), we use the respective graph convolutions for both modules. For the static graph construction
experiments, we use a GNN with 1, 2, or 3 graph convolutional layers (e.g. GCN or GraphSAGE), followed
by an MLP. We use two sets of hyperparameters regarding the layers of these networks that can be found in
the Appendix. During preliminary experiments, we noticed that using the same architecture for static graph
construction results in strong over-fitting of the models to the training sets. We, therefore, use a different

8

Published in Transactions on Machine Learning Research (02/2024)

architecture for the static graph construction experiments than for the dynamic ones. More details about all
architectures can be found in the appendix. In all architectures, we utilise four different frequently used graph
convolutions, namely graph convolutional networks (GCNs) (Kipf & Welling, 2016), graph SAGE networks
(Hamilton et al., 2017), higher-order GNNs (GraphConv) (Morris et al., 2019), and graph attention networks
(GATs) (Veličković et al., 2017). They all differ in the methodology of how the message-passing scheme is
performed and their formal definitions can be found in Section 2.3. For the neural sheaf diffusion models, we
utilise the setup of the original work, varying between the following sheaf models: BundleSheaf, DiagSheaf,
and GeneralSheaf.

All models are trained in a transductive setting, where all nodes are available during training. We define
a fixed set of hyperparameters for all experiments and run a hyperparameter search for at least 200 runs
using sweeps from Weights and Biases (Biewald, 2020). We then pick the run with the best validation
accuracy/MAE, evaluate its performance over 5 random seeds, and report the mean test accuracy with
the standard deviation. All trainings are performed on an Nvidia Quadro RTX 8000 GPU, using Pytorch
lightning and Pytorch Geometric (Fey & Lenssen, 2019). The hyperparameters can be found in the
appendix.

5 Experiments and Results

In this section, we summarise our experiments with different graph construction methods, including static and
dynamic graph construction and Neural Sheaf Diffusion models. We (1) summarise the overall best-performing
GNNs for all datasets and compare them to three different baselines and discuss more detailed results on
two of the medical population graph datasets, (2) compare our results to different state-of-the-art (SOTA)
population graph studies, (3) evaluate the method of population graphs for multi-modal data integration,
and (4) evaluate the impact of the different components –such as graph structure, dataset complexity and
size– on the performance of GNNs for population graphs.

The most noteworthy finding of our work is possibly the fact that simple baseline methods outperform more
complex graph learning techniques on all tested population graph datasets.

5.1 Baselines Achieving Comparable Performance to GNNs

During an extensive evaluation of the performance of GNNs on medical population graphs, we found that when
optimally tuning baseline models (random forest, linear/logistic regression, and ridge classifier/regression)
they perform competitively on all datasets. We summarise these results, the best GNN as well as a Neural
Sheaf Diffusion model in Table 2, where the best model for each dataset is highlighted in bold.

Table 2: Summary of results of different baseline methods and the best GNNs and Neural Sheaf Models,
either from our training evaluated on 5 random seeds or from literature ([1]: Parisot et al. (2017)). For
classification datasets, we report the test accuracy; for regression tasks, the test MAE.

Method TADPOLE UKBB Brain Age UKBB Cardiac COVID ABIDE
Random forest 0.9474 ± 0.00 3.7913 ± 0.01 0.7061 ± 0.01 0.8250 ± 0.02 0.7046 ± 0.01
Ridge 0.7368 ± 0.00 3.4185 ± 0.00 0.6935 ± 0.00 0.8750 ± 0.00 0.7014 ± 0.00
Linear/Logistic 0.8421 ± 0.00 3.4287 ± 0.00 0.6858 ± 0.00 0.8125 ± 0.00 0.6290 ± 0.00

GNN k-NN 0.9404 ± 0.02 3.3524 ± 0.06 0.6970 ± 0.02 0.7875 ± 0.03 0.695 [1]

Neural Sheaf 0.9368 ± 0.02 - 0.6904 ± 0.01 0.8000 ± 0.03 0.5448 ± 0.01

It is noteworthy that for all population graph datasets apart from the UKBB brain age dataset, at least one
of the baseline methods outperforms the best GNN model. On the UKBB brain age dataset, the GNN slightly
outperforms the ridge regression (best baseline) by an MAE of 0.066. However, a two-sided t-test between
the results of the best GNN and the strongest baseline (ridge regression) did not show a significant difference
in performance with a p-value of 0.06. These results raise the main question of this work: “Are population
graphs really as powerful as believed?” Our results indicate the contrary, and we investigate the discrepancy
between our work and related works in the following sections, discussing potential reasons for this gap.

9

Published in Transactions on Machine Learning Research (02/2024)

GCN SAGE CONV GAT
Model

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

u
ra

cy
Self loops Random k-NN

(a) Static graph construction on TADPOLE

GCN SAGE CONV GAT
Model

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

u
ra

cy

Self loops Random k-NN No edges

(b) Dynamic graph construction on TADPOLE

GCN SAGE GraphConv GAT
Model

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Te
st

 M
A

E

Self loops Random k-NN

(c) Static graph construction on UKBB brain age

GCN SAGE GraphConv GAT
Model

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Te
st

 M
A

E

Self loops Random k-NN No edges

(d) Dynamic graph construction on UKBB brain age

Figure 3: Results on two datasets with static graph construction (left column) and dynamic graph
construction (right column). First row: TADPOLE reporting the test accuracy (higher better), second
row: UKBB brain age, reporting the test MAE (lower better). The mean performance of the baseline is
indicated by the dashed blue lines.

In the following, we evaluate the experiments summarised in Figure 2 on the two population graph datasets
TADPOLE and UKBB brain age in more detail. The results are visualised in Figure 3, where the first row
shows the TADPOLE dataset and the second row the UKBB brain age dataset. The results are also listed in
Tables 3 and 4, respectively. For the TADPOLE dataset, none of the GNNs outperform the best baseline
method, which in this case is a random forest. This is even the case in settings where the homophily of the
test set is very high, for example, for the static k-NN graph construction and the GAT convolution. We
observe similar results on the UKBB brain age dataset, where we perform age regression on the imaging
features only and report the MAE as model performances. We do not report the CCNS values for this dataset
since CCNS is not defined for regression tasks. GraphSAGE and GraphConv networks do not seem to be
influenced by the randomness of the graph structure and are still able to learn meaningful representations of
the node features and make accurate predictions. The homophily of the k-NN graphs generated for the UKBB
dataset is also quite high, similar to the TADPOLE dataset. The same holds for its low CCNS distance
score. Furthermore, we observe that GCN models tend to perform better at a lower number of neighbours.
Interestingly, the best-performing GNN on the TADPOLE dataset is trained on a random graph structure,
using GraphSAGE convolutions and dynamic graph construction. We also cannot see a clear benefit of using
dynamic graph construction methods on all datasets. While the best dynamic result outperforms the best
static result on the TADPOLE dataset, static methods achieve higher results on the UKBB brain age dataset.
We observe the same behaviours on all other datasets Their results can be found in the appendix.

10

Published in Transactions on Machine Learning Research (02/2024)

Table 3: Results of the experiments on the TADPOLE dataset. GC: graph construction, BL: baselines, k:
number of neighbours. The best performance for each method is bold.

Initial edges Model k Test acc ↑ Test homophily ↑ Test CCNS distance ↓

B
L

- Majority vote - 0.5674 ± 0.00 - -

- Random forest - 0.9474 ± 0.00 - -
- Logistic regression - 0.8597 ± 0.00 - -

S
ta

ti
c

G
C

Random GCN - 0.7965 ± 0.04 0.426 ± 0.49 0.348
SAGE - 0.8877 ± 0.01 0.426 ± 0.49 0.348
GraphConv - 0.8842 ± 0.01 0.426 ± 0.49 0.348
GAT - 0.7930 ± 0.04 0.426 ± 0.49 0.348

k-NN Euclidean GCN 5 0.7439 ± 0.03 0.775 ± 0.24 0.213
SAGE 5 0.8982 ± 0.03 0.775 ± 0.24 0.213
GraphConv 5 0.9088 ± 0.01 0.775 ± 0.24 0.213
GAT 2 0.7895 ± 0.04 0.904 ± 0.20 0.094

D
yn

am
ic

G
C

No edges GCN 20 0.9263 ± 0.03 0.919 ± 0.19 0.073
SAGE 20 0.9053 ± 0.02 0.806 ± 0.21 0.183
GraphConv 2 0.9228 ± 0.02 0.798 ± 0.34 0.190
GAT 20 0.9018 ± 0.06 0.908 ± 0.15 0.101

Random GCN 2 0.8421 ± 0.06 0.851 ± 0.27 0.177
SAGE 10 0.9228 ± 0.02 0.423 ± 0.22 0.616
GraphConv 5 0.8947 ± 0.03 0.411 ± 0.25 0.594
GAT 5 0.8632 ± 0.02 0.895 ± 0.20 0.119

k-NN Euclidean GCN 2 0.9333 ± 0.01 0.793 ± 0.28 0.204
SAGE 20 0.9368 ± 0.01 0.461 ± 0.63 0.632
GraphConv 10 0.8947 ± 0.02 0.777 ± 0.29 0.219
GAT 10 0.9123 ± 0.03 0.775 ± 0.29 0.206

Table 4: Results of the experiments on the UKBB brain age imaging dataset. BL: baselines, k: number of
neighbours, GC: graph construction. The best performance for static and dynamic graph construction and
the highest homophily is bold.

Initial edges Model k Test MAE ↓ Test homophily ↑

B
L

- Mean prediction - 6.4090 ± 0.00 -

- Random Forest - 4.1424 ± 0.01 -
- Linear Regression - 3.7545 ± 0.00 -

S
ta

ti
c

G
C

Random GCN - 6.2158 ± 0.07 0.742 ± 0.10
SAGE - 3.8764 ± 0.08 0.742 ± 0.10
GraphConv - 4.2029 ± 0.16 0.742 ± 0.10
GAT - 6.4034 ± 0.07 0.742 ± 0.10

k-NN Euclidean GCN 2 4.3351 ± 0.07 0.916 ± 0.07
SAGE 10 4.1780 ± 0.17 0.844 ± 0.06
GraphConv 2 4.1979 ± 0.04 0.916 ± 0.07
GAT 20 4.2888 ± 0.01 0.834 ± 0.06

D
yn

am
ic

G
C

No edges GCN 2 4.0257 ± 0.06 0.865 ± 0.10
SAGE 5 3.8882 ± 0.03 0.754 ± 0.10
GraphConv 5 3.9741 ± 0.05 0.840 ± 0.08
GAT 2 4.1071 ± 0.07 0.843 ± 0.11

Random GCN 2 5.1712 ± 0.20 0.834 ± 0.13
SAGE 10 3.8811 ± 0.04 0.780 ± 0.09
GraphConv 10 4.1248 ± 0.30 0.768 ± 0.09
GAT 2 5.7138 ± 0.10 0.831 ± 0.14

k-NN Euclidean GCN 2 4.1109 ± 0.07 0.849 ± 0.11
SAGE 20 3.9226 ± 0.13 0.842 ± 0.07
GraphConv 2 3.9560 ± 0.09 0.831 ± 0.11
GAT 2 4.1603 ± 0.04 0.837 ± 0.11

5.2 Comparison to Other Published Results

With these results, the question arises as to why population graphs have been believed to improve the
performance of medical downstream tasks. We compare our results to published results in the most closely
related works, investigating the different performances of baseline models and GNNs on different datasets. We

11

Published in Transactions on Machine Learning Research (02/2024)

compare all datasets that have been used in related works: TADPOLE, ABIDE, and UKBB brain age datasets.
The related works we pick for comparison are works introducing the concept of population graphs (Parisot
et al., 2017), as well as new graph learning techniques that have been applied to or designed for population
graph studies (Kazi et al., 2019; 2022; Bintsi et al., 2023a). The results are summarised in Table 5. All our
baselines outperform the published baselines in the related works, while our GNN implementations match the
performances reported in the respective works. This corroborates our hypothesis that our implementation is
on par with previously reported works, while these works seem to underestimate the baseline performance.

Table 5: Comparison of our results to results from related works: Parisot et al. (2017) [1], Kazi et al. (2022)
[2], Kazi et al. (2019) [3], and Bintsi et al. (2023a) [4]. The overall best result for each dataset is underlined.
The baseline for the UKBB brain age dataset is a ridge regression for our work and a linear regression for the
results from Bintsi et al. (2023a); for the TADPOLE dataset: Linear classifier for results from Kazi et al.
(2022), random forest for our results; for ABIDE: Ridge regression for results from Parisot et al. (2017),
random forest for our results. All our baselines outperform reported baselines in other works, while our GNN
implementations match performance.

Dataset Score Method Convolution Other reported results Our results

TADPOLE Accuracy ↑
Baseline - 0.7022 ± 0.06 [2] 0.9474 ± 0.00
dDGM [2] GCN 0.9414 ± 0.02 [2] 0.9333 ± 0.01
InceptionGCN [3] InceptionGCN 0.8435 ± 0.07 [3] -

UKBB Brain Age MAE ↓

Baseline - 3.82 [4] 3.5063 ± 0.00
dDGM [2] GCN 3.72 [4] 3.8287 ± 0.03
dDGM [2] SAGE - 3.5034 ± 0.06
adaptive [4] GCN 3.62 [4] -

ABIDE Accuracy ↑
Baseline - 0.668 [1] 0.7040 ± 0.01
Similarity Score [1] GCN 0.695 [1] -
InceptionGCN [3] InceptionGCN 0.6923 ± 0.07 [3] -

The discrepancy in baseline performance can partially be due to different models, different hyperparameters,
or the utilisation of only a subset of the features for the evaluation of the baselines. Some works, for example,
only use the node features of the GNN as input for the baseline, while using additional features for the edge
construction of the population graph. We deem this to be an unfair comparison and always use all features
that we use for graph construction and as node features as input for the baseline. For the evaluation of the
baseline methods on the benchmark citation network datasets, we use only the node features of the graphs
since the edges cannot be incorporated in the same feature vector in a straightforward way. Some works do
not specify on which features the baseline is evaluated (Parisot et al., 2017).

5.3 Population Graphs for Multi-Modal Data Integration

One highly emphasised advantage of population graphs is their utilisation for multi-modal data integration
(Parisot et al., 2017; Zheng et al., 2022; Keicher et al., 2021). In one of the first utilisations of population
graphs (Parisot et al., 2017), for instance, a graph construction method is introduced that uses clinical features
to generate the edges between subjects, while image-derived features are used as node features in the graph.
In later approaches, especially for dynamic graph construction, methods moved away from a clear separation
between clinical and image-derived features (Kazi et al., 2022). In this so far typical setting of population
graphs, we scrutinise this claimed advantage and argue that all available features can easily be appended and,
therefore, incorporated into the node features. However, we see exceptions when the information used for
edge construction cannot be used as node features. This is the case when high dimensional data is used as
node features –e.g. text, audio data or images. However, this setup comes with large memory requirements
and has not been studied in detail. We encourage a more critical assessment of the utilisation of GNNs
for multi-modal data integration in conventional configurations of population graphs and advocate a shift
towards more advanced settings and a more suitable usage of multi-modal data integration for cases where it
is indeed beneficial.

We perform several experiments investigating whether GNNs are useful for multi-modal data integration for
population graphs. We take the two UKBB datasets and evaluate the performance of GNNs with different
combinations of imaging and non-imaging features for graph construction and as node features. The results

12

Published in Transactions on Machine Learning Research (02/2024)

are summarised in Table 6. Given that the convolutions GraphSAGE and GraphConv performed best
in our previous experiments on population graphs, we limit these results to those two convolutions. The
best performing GNN is highlighted in bold, the second best in purple, and the third best in green. The
corresponding homophily values for each graph structure for both datasets are summarised in Table 7. For
these experiments with static graph construction, we experiment with a different model architecture consisting
of only one graph convolutional layer, followed by an MLP.

We observe that for the brain age dataset, the best GNN is the one that uses all available features as node
features and for edge construction. The second and third-best GNNs also use all features as node features.
For the cardiac dataset, the best and second-best models also use all features as node features. However,
the third-best model uses only the imaging features as node features and the non-imaging features for edge
construction. Furthermore, on the UKBB brain age dataset, some GNNs outperform the respective baseline
(which only uses the node features) by small margins. This is not the case for the cardiac dataset. Here none
of the GNNs outperform the respective baselines. Interestingly, on the UKBB brain age dataset, the static
graph construction results in better performance than dynamic graph construction, which is the opposite for
the cardiac dataset. We can also see that the node features slightly dominate the prediction, such that the
performance of the GNN somewhat matches the performance of the baseline that uses the node features only.
This is reasonable since the specific features used for edge construction are reduced into a simple “measure of
similarity”. However, overall, the baselines perform on par with the GNNs.

The graph metrics for the experiments are summarised in Tables 3 and 4. The homophily values of the graph
structures constructed from different combinations of image and non-image features for the UKBB brain age
and cardiac dataset are summarised in Table 7. We can see that for both datasets, all graph structures have
similar homophily values, which might be why the performance of all graph structures is very similar when
using all node features.

Table 6: Results of different combinations of image-derived and non-imaging features as node features and for
graph construction on the UKBB brain age and cardiac datasets. For the age prediction dataset, the baseline
is a ridge regression, and for the cardiac dataset, a random forest. GNN outperforms their corresponding
node-feature-baseline are underlined. Best GNN: bold, second best GNN: purple, third best GNN: green.
All scores are evaluated on the test set.

UKBB Brain Age UKBB Cardiac

B
as

el
in

e

Features Model Test MAE ↓ Test accuracy ↑
- Naive baseline 6.4090 0.5000

Non-imaging Best baseline 4.6509 ± 0.00 0.6678 ± 0.00
Imaging 3.5063 ± 0.00 0.6969 ± 0.01
All 3.4185 ± 0.00 0.7046 ± 0.01
Node Feat. (Initial) Edges Model dDGM MAE ↓ Static MAE ↓ dDGM acc. ↑ Static acc. ↑

G
ra

p
h

N
eu

ra
l

N
et

w
or

ks

All All GraphSAGE 3.5034 ± 0.06 3.4351 ± 0.00 0.6816 ± 0.01 0.6609 ± 0.02
GraphConv 3.5407 ± 0.04 3.3524 ± 0.06 0.6785 ± 0.01 0.6705 ± 0.01

All Imaging GraphSAGE 3.5471 ± 0.02 3.4249 ± 0.00 0.6839 ± 0.01 0.6739 ± 0.01
GraphConv 3.5221 ± 0.03 3.3758 ± 0.05 0.6690 ± 0.01 0.6743 ± 0.01

All Non-imaging GraphSAGE 3.5317 ± 0.04 3.4175 ± 0.00 0.6724 ± 0.01 0.6632 ± 0.01
GraphConv 3.6792 ± 0.25 3.4330 ± 0.01 0.6751 ± 0.01 0.6644 ± 0.02

Imaging Imaging GraphSAGE 3.9226 ± 0.13 3.7716 ± 0.04 0.6743 ± 0.01 0.6705 ± 0.00
GraphConv 3.9560 ± 0.09 3.8368 ± 0.00 0.6632 ± 0.01 0.6628 ± 0.01

Imaging Non-imaging GraphSAGE 3.9130 ± 0.05 3.6791 ± 0.01 0.6567 ± 0.01 0.6785 ± 0.00
GraphConv 3.9835 ± 0.01 3.7099 ± 0.04 0.6805 ± 0.01 0.6483 ± 0.01

Non-imaging Imaging GraphSAGE 4.6767 ± 0.06 4.9382 ± 0.00 0.6755 ± 0.01 0.6521 ± 0.01
GraphConv 4.0376 ± 0.12 5.0410 ± 0.02 0.6579 ± 0.01 0.6452 ± 0.01

5.4 Further Components of Impact on Model Performance

In this section, we investigate the impact of the graph structure on model performance from three further
viewpoints. (1) The experiments above have indicated that the graph structure has a different impact on
different graph convolutions, (2) the complexity of the dataset plays an important role in the performance of
GNNs on low-homophily graphs, and (3) if a meaningful graph structure is available, GNNs out-perform

13

Published in Transactions on Machine Learning Research (02/2024)

Table 7: Homophily values of the UKBB brain age and cardiac datasets with k = 5 and k-NN graph
construction, when using all features, only imaging, or only non-imaging features for graph construction.

Dataset Features Homophily

Brain Age
All 0.8571 ± 0.07
Imaging 0.8619 ± 0.07
Non-imaging 0.8237 ± 0.08

Cardiac
All 0.6404 ± 0.22
Imaging 0.6396 ± 0.22
Non-imaging 0.6649 ± 0.23

graph-agnostic models. Therefore, we perform additional experiments on synthetically generated graph
structures at different homophily values. Here, the graph is constructed statically and to specifically match
a certain homophily value by using the labels and connecting each node to a specific number of same
and differently labelled neighbours. The results for three datasets are visualised in Figure 4, and more
visualisations can be found in the appendix in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

u
ra

cy

Homophily

GCN SAGE GraphConv GAT Baseline

(a) CORA dataset

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

u
ra

cy

Homophily

GCN SAGE GraphConv GAT Baseline

(b) TADPOLE dataset

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

u
ra

cy

GCN SAGE GraphConv GAT Baseline

Homophily

(c) ABIDE dataset

Figure 4: Performance of different graph convolutions on synthetic graph structures with different homophily
values on (a) the CORA dataset, (b) the TADPOLE dataset, and (c) the ABIDE dataset. The dashed
blue line indicates the mean performance of the best baseline for each dataset.

Different Types of Graph Convolution Zhu et al. (2020) have shown interesting correlations between
homophily and different graph convolutions. They showed that the separate handling of node features of the
node of interest (xi) and its neighbouring nodes (Ni) improves the performance of GNNs on heterophilic graphs.
The same accounts for networks that evaluate the k-hop neighbourhoods separately. Graph convolutional
networks (GCNs) (Kipf & Welling, 2016) do not separate node features of i and Ni, but average the message
passing over both in one step (Equation 5). GraphSAGE and GraphConv, on the other hand, distinguish
between xi and xj , j ∈ Ni (Equations 6 and 7). GAT (Equation 8) learns different attention coefficients
for xi and xj , j ∈ Ni. However, the network weights are shared for both, which might negatively impact
performance on graphs with low homophily. Our experiments support these findings. We observe that the
graph structure strongly affects GCN and GAT, whereas GraphSAGE or GraphConv networks perform more
consistently across different graph structures.

Impact of Dataset Complexity The impact of the homophily on the model performance is not only
dependent on the graph convolution but also varies depending on the dataset, probably related to the number
of classes in the dataset as well as class imbalance. In order to investigate this, we perform experiments
with synthetic graph structures on the TADPOLE dataset (3 classes), the CORA dataset (7 classes), the
UKBB cardiac dataset (2 classes), and the ABIDE dataset (2 classes) at different synthetically generated
homophily values. Figure 4 shows the performance of different graph convolutions on 3-layer GNNs using
synthetically generated graphs for the different datasets. For the CORA dataset (Figure 4a), all models
perform worse than the baseline with homophily values lower than 0.8. While all graph convolutions are
impacted similarly and perform worse than the baseline for low-homophily graphs, SAGE and GraphConv
perform better than GAT and GCN. The low-homophily graphs do not allow the model to learn meaningful
node feature embeddings since, during the course of training, node features of differently labelled nodes are

14

Published in Transactions on Machine Learning Research (02/2024)

averaged and shared, interfering with the model’s goal to distinguish different classes. Interestingly, the
performance for the TADPOLE dataset (Figure 4b) looks different. We observe similar differences between
the graph convolutions. However, we also observe that only at very high and very low homophily values can
the GNN outperform the baseline. Everything in between either matches the performance of the baseline or
reaches a worse performance. When we now compare the homophily values of the generated graph structures
in our experiments on the TADPOLE dataset above, we can see that most of them have a homophily of
around 0.7 or 0.8. The ABIDE dataset requires a graph structure with lower homophily to outperform the
baseline. However, the same pattern holds that all population graphs constructed in our experiments reached
homophily values in the range where the GNNs under-perform or perform on par with the baselines. This
potentially explains why the population graphs do not outperform the graph-agnostic baseline models.

Furthermore, the high performance of the GNNs at low homophily values for the population graphs is highly
different from that on the CORA dataset. We attribute this to the capability of the GNNs to learn the opposite
labels from the majority of the neighbour labels, which we deem impossible for datasets with more classes. To
investigate this further, we evaluate the attention of GAT models trained on graphs with different homophily
values on the TADPOLE dataset and observe that low-homophily graphs (homophily=0.1) attribute high
attention from differently labelled nodes and low attention to same-labelled nodes. The opposite is the case
for high-homophily graphs. This allows the model to also perform well on low-homophily graphs on datasets
with only a few classes. More details about these experiments can be found in appendix, Section C.3.

Impact of Dataset Size We investigate the impact of the graph size on model performance with two
additional experiments: (a) We partition the largest population graph dataset –UKBB brain age– into smaller
subsets (25%, 50%, and 75% of the original dataset) and (b) generate a synthetic dataset at different sizes
and compare GNN performances to baselines. The results of the partitioned UKBB brain age dataset (a)
and the synthetic dataset (b) are summarised in Table 8. For the GNN, we use the DGM adaptive graph
construction with the k-NN initial graph structure and GraphSAGE convolutions. For the baseline, we use a
linear regression for the UKBB brain age dataset and a 4-layer MLP for the synthetic dataset. We do not
observe a tendency for the dataset size to have an impact on the difference in performance between the GNN
and the baseline on the partitioned UKBB dataset. The same holds for the synthetic dataset, even for very
large graphs with 30 000 nodes.

Dataset Nr. Nodes Score GNN Baseline Performance Difference
UKBB brain age 25% 1841 MAE 3.6804 ± 0.08 3.5577 ± 0.00 -0.1227
UKBB brain age 50% 3362 MAE 3.7658 ± 0.18 3.5363 ± 0.00 -0.2295
UKBB brain age 75% 4884 MAE 3.7022 ± 0.11 3.4651 ± 0.00 -0.2371

UKBB brain age 100% 6406 MAE 3.5034 ± 0.06 3.4185 ± 0.00 -0.0849

Synthetic 5 000 ACC 0.7980 ± 0.03 0.8164 ± 0.00 0.0184
Synthetic 10 000 ACC 0.8100 ± 0.04 0.8532 ± 0.00 0.0432
Synthetic 20 000 ACC 0.8895 ± 0.01 0.9072 ± 0.00 0.0177
Synthetic 30 000 ACC 0.9179 ± 0.01 0.9413 ± 0.00 0.0234

Table 8: Performance differences between the baseline and GNNs for different subsets of the original dataset
UKBB brain age (reported MAE) and a synthetically generated dataset (reported accuracy ACC). The
column Performance Difference indicates the performance of the baseline minus the performance of the GNN.

Ground Truth Graph Structures Based on these results, we argue that the graph construction methods
currently utilised for population graphs are insufficient. Only a meaningful graph structure that adds
additional information to the node features leads to better performance of GNNs compared to baseline
methods. To support this, we investigate commonly used graph construction methods for population graph
studies on the frequently used benchmark citation datasets CORA, CITESEER, and PUBMED (Yang et al.,
2016). They provide a “ground truth” graph structure, which we can evaluate in comparison to the graphs
resulting from graph construction methods used for population graph studies. This allows us to investigate
how the different graph construction methods perform compared to a given “ground-truth” adjacency matrix.
The results of the best-performing GNNs and baselines on all three datasets are summarised in Table 9. The
experiments on all benchmark citation network datasets have shown that GNNs can improve performance
compared to simple baseline methods. However, even for the CITESEER dataset, a ridge classifier outperforms

15

Published in Transactions on Machine Learning Research (02/2024)

all GNN methods and neural sheaf diffusion networks. The results for the CORA dataset are also visualised in
Figure 5. Only the usage of the original edges outperforms the baseline methods, while all static and dynamic
graph construction methods yield poor results. This supports the hypothesis that the graph construction
methods for population graphs do not add relevant information to the node features. More detailed results
can be found in the appendix.

Table 9: Summary of results on benchmark datasets of different baseline methods and the best GNNs
and Neural Sheaf Models.

Method CORA CITESEER PUBMED
Random forest 0.7788 ± 0.00 0.7480 ± 0.01 0.7286 ± 0.01
Ridge 0.7860 ± 0.00 0.7720 ± 0.00 0.7350 ± 0.00
Linear/Logistic 0.5750 ± 0.00 0.5600 ± 0.00 0.7310 ± 0.00

GNN k-NN 0.7692 ± 0.01 0.6908 ± 0.01 0.6908 ± 0.01
GNN orig. edges 0.8540 ± 0.01 0.7548 ± 0.01 0.8760 ± 0.01 [1]

Neural Sheaf 0.8730 ± 0.01 [3] 0.7714 ± 0.02 [3] 0.8949 ± 0.00 [3]

GCN SAGE GraphConv GAT
Model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

u
ra

cy

Self loops Random k-NN Orig. edges

(a) Static graph construction

GCN SAGE GraphConv GAT
Model

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

u
ra

cy

Self loops Random k-NN No edges Orig. edges

(b) Dynamic graph construction

Figure 5: Results on the CORA dataset with static (left) and dynamic (right) graph construction.

6 Discussion

In this work, we evaluate the performance of medical population graphs on five population graph datasets and
compare state-of-the-art graph learning techniques to well-tuned baseline models. We consistently observe
the following findings:

1. GCN and GAT are poorly suited for population graph studies. GNNs using GraphSAGE
and GraphConv convolutions consistently outperform GCN and GAT models, which leads to the
conclusion that the latter methods are unsuitable for GNNs in population graph studies. We attribute
this to the fact that GCN and GAT networks are highly affected by the graph structure, whereas
GraphSAGE and GraphConv networks are more robust in this regard. This also manifests in the
fact that GCN and GAT networks benefit more from dynamic graph construction than the other
two convolutions and that GraphSAGE and GraphConv models can perform equally well on random
graph structures.

2. The utilisation of population graphs with the goal of multi-modal data integration might
not be as promising as believed. The most frequently used method for the construction of
population graphs includes a separation of features into node features and ones utilised for edge
construction. We show that using all available features for edge construction and as node features
might lead to better results and argue that a concatenation of all features is easily doable –except

16

Published in Transactions on Machine Learning Research (02/2024)

when using images as node features. We see potential in using population graphs in different settings
where the connectivity information cannot easily be integrated with the node features.

3. None of the state-of-the-art GNN methods significantly outperform well-tuned baseline
methods (see Table 2). This raises the question of whether population graphs –in the way they
are currently used– have any benefit over graph-agnostic models. In Section 5.4, we investigate the
interplay of the graph structure and the performance of the GNNs on a population graph dataset and
conclude that only a nearly perfect graph structure leads to a better performance of GNNs compared
to baseline models, which has not been possible with the current graph construction methods.

4. Better graph construction methods are required. The experiments on the benchmark datasets
and the synthetically generated graph structures with different homophily values (see Figures 4 and
5) show that GNNs can improve downstream task performance if the graph structure is “meaningful”.
However, current graph construction methods do not lead to valuable graph structures, which makes
graph construction the performance bottleneck in these settings. The same is represented by the fact
that random graph structures often achieved comparable results to approaches like k-NN graphs.

We furthermore note that all baseline models are easy to implement using standard libraries such as
scikit-learn (Pedregosa et al., 2011), are significantly faster to fit than the training of GNNs, and do not
require extensive hyperparameter tuning.

7 Conclusion and Future Work

Medical population graphs were first introduced by Parisot et al. (2017) to allow for a population-wide
representation of a cohort of patients. The idea behind the utilisation of population graphs is that subjects
that share similar phenotypes (and are therefore neighbours in the population graph), also show similar
pathologies. Thus, the neighbouring nodes are hoped to improve model performance when using graph deep
learning methods. They have since then been combined with GNNs and used on multiple medical datasets.
Most works utilise population graphs as a method for multi-modal data integration (Parisot et al., 2017;
Kazi et al., 2019; Cosmo et al., 2020; Bintsi et al., 2023a). Here, a subset of the features are used as node
features (usually imaging features), while other features (usually non-imaging) are used to generate the graph
structure (the edges).

In this work, we perform an extensive study on how GNNs are used in the context of population graphs and
compare different graph-learning methods to graph-agnostic baseline models. We use five medical population
graph datasets, including all publicly available datasets used for population graph studies in related works.
We utilise state-of-the-art (a) static graph construction methods, (b) dynamic graph construction methods,
and (c) neural sheaf diffusion models. The latter have been designed to address two of the most dominant
problems of GNNs: over-smoothing and performance on low-homophily graphs. We investigate the usage of
neural sheaf diffusion models since the graph construction methods for population graphs seem to result in
unideal graph structures, which might benefit from the use of neural sheaf diffusion models.

Even though we reach comparable results to related works on population graphs with GNNs for all methods,
none of the GNNs significantly out-perform the strongest baseline method. This raises the question of how
powerful population graphs indeed are and whether they are a suitable data representation combined with
GNNs. We conclude that currently available graph construction methods are the performance bottleneck of
GNNs on population graphs compared to graph-agnostic methods. We see a need for either more advanced
methods to learn a graph structure that contains additional meaningful information to the node features or
novel ideas on how to build population graphs from additional information that cannot be represented as
node features. When using synthetically generated graph structures, we observe that only graphs with higher
homophily than possible to extract from the node features result in better performance of GNNs compared
to properly tuned graph-agnostic methods such as a random forest or linear regression (Figure 4). Even a
dynamic graph construction method, which optimises the graph structure during training, does not reach
a “good enough” graph structure. Also, models designed for “low-quality” graph structures (e.g. neural
sheaf diffusion models) do not improve performance on population graphs. The fact that our baseline models

17

Published in Transactions on Machine Learning Research (02/2024)

outperform the results reported in related works emphasises the importance of appropriate tuning of baseline
methods in general. It shows that the currently available graph construction methods for population graphs
are insufficient.

There are a few more graph construction methods that we did not evaluate in this work, such as Similarity
Scores. The first one was introduced by Parisot et al. (2017) and followed by several extensions and
modifications (Ghorbani et al., 2022; Vivar et al., 2021; Pellegrini et al., 2022; Peng et al., 2022; Lu et al.,
2022). In this work, we focus on using k-NN graphs since this method has been shown to achieve the best
results in related works (Bintsi et al., 2023b) and preliminary experiments. Furthermore, investigating other
graph convolutions or different GNN architectures in combination with specific population graph setups
might give more insights. One example would be higher-order GNNs for node-level predictions (Li et al.,
2021). We would see this as a fitting method for longitudinal studies. Finally, it could be interesting to
evaluate additional graph assessment metrics (Luan et al., 2021; Xie et al., 2020; Luan et al., 2022) and their
correlation with graph construction methods and model performance.

We generally see three future directions for population graph studies. Either (a) new and better graph
construction methods need to be developed for population graphs to bring benefits to medical downstream
tasks, (b) innovative applications of population graphs that truly benefit from the usage of connectivity
information need to be explored, or (c) the usage of population graphs in combination with GNNs does not
seem valuable for the performance of medical downstream tasks. It would be interesting to follow up with a
theoretical analysis. Our experiments showed that the graph construction is a major performance bottleneck
for population graphs. We believe this to be a good starting point for follow-up analyses. For better graph
construction methods, we see the requirement of increasing the information content of the graph structure
compared to the node features alone. This could potentially be achieved by encoding information in the graph
structure that cannot be trivially added to the node features, such as genetic similarity between subjects or
the risk groups in survival analysis. Other potentially interesting applications of population graphs, where the
edges add additional information to the node features, are geospatial graphs. This could include analysing
location-based health data, disease spreading, or tracing local differences in medication or care units. Also,
time-series data has not been explored in great detail in the context of population graphs, which might
add more valuable information to the graph structure. The concept of population graphs has, with a few
exceptions (Keicher et al., 2021), mostly focused on vector data instead of images. This is mostly because
image data is much larger and, therefore, more difficult to fit into memory in the context of population graphs.
This could be another interesting future direction to improve the predictive power of population graphs.

Acknowledgements

TM and SS were supported by the ERC (Deep4MI - 884622). This work has been conducted under
the UK Biobank applications 87802 and 18545. SS has furthermore been supported by BMBF and the
NextGenerationEU of the European Union. AZ and GK were supported by the German Ministry of
Education and Research (BMBF) under Grant Number 01ZZ2316C (PrivateAIM). The data collection and
sharing of the TADPOLE dataset was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number
W81XWH-12-2-0012).

References
David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars Petersson.

Graph-based deep learning for medical diagnosis and analysis: past, present and future. Sensors, 21(14):
4758, 2021.

Wenjia Bai, Hideaki Suzuki, Jian Huang, Catherine Francis, Shuo Wang, Giacomo Tarroni, Florian Guitton,
Nay Aung, Kenneth Fung, Steffen E Petersen, et al. A population-based phenome-wide association study
of cardiac and aortic structure and function. Nature medicine, 26(10):1654–1662, 2020.

Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Graph neural networks in network neuroscience.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

18

Published in Transactions on Machine Learning Research (02/2024)

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.com/. Software
available from wandb.com.

Kyriaki-Margarita Bintsi, Vasileios Baltatzis, Rolandos Alexandros Potamias, Alexander Hammers, and
Daniel Rueckert. Multimodal brain age estimation using interpretable adaptive population-graph learning.
arXiv preprint arXiv:2307.04639, 2023a.

Kyriaki-Margarita Bintsi, Tamara T. Mueller, Sophie Starck, Vasileios Baltatzis, Alexander Hammers, and
Daniel Rueckert. A comparative study of population-graph construction methods and graph neural networks
for brain age regression, 2023b.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Liò, and Michael Bronstein. Neural
sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns. Advances in Neural
Information Processing Systems, 35:18527–18541, 2022.

Stephen Bonner, Ian P Barrett, Cheng Ye, Rowan Swiers, Ola Engkvist, Andreas Bender, Charles Tapley
Hoyt, and William L Hamilton. A review of biomedical datasets relating to drug discovery: a knowledge
graph perspective. Briefings in Bioinformatics, 23(6), 2022.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Li Chen, Thomas Hatsukami, Jenq-Neng Hwang, and Chun Yuan. Automated intracranial artery labeling
using a graph neural network and hierarchical refinement. In Medical Image Computing and Computer
Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020,
Proceedings, Part VI 23, pp. 76–85. Springer, 2020.

James H Cole. Multimodality neuroimaging brain-age in uk biobank: relationship to biomedical, lifestyle,
and cognitive factors. Neurobiology of aging, 92:34–42, 2020.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Latent-graph learning
for disease prediction. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 643–653. Springer, 2020.

Padraig Cunningham and Sarah Jane Delany. k-nearest neighbour classifiers-a tutorial. ACM computing
surveys (CSUR), 54(6):1–25, 2021.

Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Francisco X Castellanos, Kaat Alaerts,
Jeffrey S Anderson, Michal Assaf, Susan Y Bookheimer, Mirella Dapretto, et al. The autism brain imaging
data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular
psychiatry, 19(6):659–667, 2014.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The world wide web conference, pp. 417–426, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Mahsa Ghorbani, Anees Kazi, Mahdieh Soleymani Baghshah, Hamid R Rabiee, and Nassir Navab. Ra-gcn:
Graph convolutional network for disease prediction problems with imbalanced data. Medical Image Analysis,
75:102272, 2022.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In
Proceedings. 2005 IEEE international joint conference on neural networks, volume 2, pp. 729–734, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks. arXiv preprint arXiv:2012.06333, 2020.

19

https://www.wandb.com/

Published in Transactions on Machine Learning Research (02/2024)

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied and
Computational Topology, 3:315–358, 2019.

Anees Kazi, Shayan Shekarforoush, S Arvind Krishna, Hendrik Burwinkel, Gerome Vivar, Karsten Kortüm,
Seyed-Ahmad Ahmadi, Shadi Albarqouni, and Nassir Navab. Inceptiongcn: receptive field aware graph
convolutional network for disease prediction. In Information Processing in Medical Imaging: 26th Interna-
tional Conference, IPMI 2019, Hong Kong, China, June 2–7, 2019, Proceedings 26, pp. 73–85. Springer,
2019.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Differentiable
graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):1606–1617, 2022.

Matthias Keicher, Hendrik Burwinkel, David Bani-Harouni, Magdalini Paschali, Tobias Czempiel, Egon
Burian, Marcus R Makowski, Rickmer Braren, Nassir Navab, and Thomas Wendler. U-gat: Multimodal
graph attention network for covid-19 outcome prediction. arXiv preprint arXiv:2108.00860, 2021.

Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation of brain
connectome with spatio-temporal attention. Advances in Neural Information Processing Systems, 34:
4314–4327, 2021.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with
self-supervision. arXiv preprint arXiv:2204.04879, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, S Yu Philip, and Lifang He. Higher-order
attribute-enhancing heterogeneous graph neural networks. IEEE Transactions on Knowledge and Data
Engineering, 35(1):560–574, 2021.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-homophilous
graphs. arXiv preprint arXiv:2104.01404, 2021.

Siyuan Lu, Ziquan Zhu, Juan Manuel Gorriz, Shui-Hua Wang, and Yu-Dong Zhang. Nagnn: classification of
covid-19 based on neighboring aware representation from deep graph neural network. International Journal
of Intelligent Systems, 37(2):1572–1598, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Is heterophily a real nightmare for graph neural networks to do node classification? arXiv
preprint arXiv:2109.05641, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, and Doina Precup. When do we need
gnn for node classification? arXiv preprint arXiv:2210.16979, 2022.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural networks?
arXiv preprint arXiv:2106.06134, 2021.

José Teófilo Moreira-Filho, Meryck Felipe Brito da Silva, Joyce Villa Verde Bastos Borba, Arlindo Rodrigues
Galvão Filho, Eugene Muratov, Carolina Horta Andrade, Rodolpho de Campos Braga, and Bruno Junior
Neves. Artificial intelligence systems for the design of magic shotgun drugs. Artificial Intelligence in the
Life Sciences, pp. 100055, 2022.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav Rattan,
and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Tamara T. Mueller, Sophie Starck, Leonhard F. Feiner, Kyriaki-Margarita Bintsi, Daniel Rueckert, and
Georgios Kaissis. Extended graph assessment metrics for graph neural networks, 2023a.

20

Published in Transactions on Machine Learning Research (02/2024)

Tamara T Mueller, Siyu Zhou, Sophie Starck, Friederike Jungmann, Alexander Ziller, Orhun Aksoy, Danylo
Movchan, Rickmer Braren, Georgios Kaissis, and Daniel Rueckert. Body fat estimation from surface
meshes using graph neural networks. In International Workshop on Shape in Medical Imaging, pp. 105–117.
Springer, 2023b.

Tamara T Mueller, Sophie Starck, Alina Dima, Stephan Wunderlich, Kyriaki-Margarita Bintsi, Kamilia
Zaripova, Rickmer Braren, Daniel Rueckert, Anees Kazi, and Georgios Kaissis. A survey on graph construc-
tion for geometric deep learning in medicine: Methods and recommendations. Accepted at Transactions on
Machine Learning Research, 2024. URL https://openreview.net/forum?id=sWlHhfijcS.

Johannes C Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov, Paul Büschl, Chinmay Prabhakar,
Mihail I Todorov, Anjany Sekuboyina, Georgios Kaissis, Ali Ertürk, et al. Whole brain vessel graphs: a
dataset and benchmark for graph learning and neuroscience (vesselgraph). arXiv preprint arXiv:2108.13233,
2021.

Sarah Parisot, Sofia Ira Ktena, Enzo Ferrante, Matthew Lee, Ricardo Guerrerro Moreno, Ben Glocker, and
Daniel Rueckert. Spectral graph convolutions for population-based disease prediction. In International
conference on medical image computing and computer-assisted intervention, pp. 177–185. Springer, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Chantal Pellegrini, Nassir Navab, and Anees Kazi. Unsupervised pre-training of graph transformers on patient
population graphs. arXiv preprint arXiv:2207.10603, 2022.

Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. Fedni: Federated graph learning
with network inpainting for population-based disease prediction. IEEE Transactions on Medical Imaging,
2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey, Paul
Elliott, Jane Green, Martin Landray, et al. Uk biobank: an open access resource for identifying the causes
of a wide range of complex diseases of middle and old age. PLoS medicine, 12:e1001779, 2015.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Gerome Vivar, Anees Kazi, Hendrik Burwinkel, Andreas Zwergal, Nassir Navab, Seyed-Ahmad Ahmadi,
et al. Simultaneous imputation and classification using multigraph geometric matrix completion (mgmc):
Application to neurodegenerative disease classification. Artificial Intelligence in Medicine, 117:102097,
2021.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. When do gnns work: Understanding
and improving neighborhood aggregation. In IJCAI’20: Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence,{IJCAI} 2020, 2020.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

21

https://openreview.net/forum?id=sWlHhfijcS

Published in Transactions on Machine Learning Research (02/2024)

Shuangzhi Yu, Shuqiang Wang, Xiaohua Xiao, Jiuwen Cao, Guanghui Yue, Dongdong Liu, Tianfu Wang,
Yanwu Xu, and Baiying Lei. Multi-scale enhanced graph convolutional network for early mild cognitive
impairment detection. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020:
23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part VII 23, pp. 228–237.
Springer, 2020.

Shuai Zheng, Zhenfeng Zhu, Zhizhe Liu, Zhenyu Guo, Yang Liu, Yuchen Yang, and Yao Zhao. Multi-modal
graph learning for disease prediction. IEEE Transactions on Medical Imaging, 41(9):2207–2216, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in Neural Information
Processing Systems, 33:7793–7804, 2020.

22

Published in Transactions on Machine Learning Research (02/2024)

A Additional Information on the Datasets

We here provide some additional information on some of the population graph datasets.

TADPOLE For the TADPOLE dataset, we follow the approach from Kazi et al. (2022) and use the same
features as in their work.

ABIDE For the ABIDE dataset, we follow the approach from Parisot et al. (2017) and use the following
non-imaging features: Sex and site. The imaging features are extracted in the same way as in their work.

UKBB cardiac We use the following non-imaging features from the UKBB: Age, sex, body fat percentage,
smoking status, body mass index, and the frequency of exercises in the last four weeks. The imaging features
are extracted from these subjects’ cardiac magnetic resonance images (MRIs) and contain information such as
end-diastolic, end-systolic volume, stroke volume, and ejection fraction for both ventricles and myocardial-wall
thickness. More information about the imaging features can be found in Bai et al. (2020).

COVID The COVID dataset is an in-house dataset, with the task of predicting whether a CoViD patient
will require an intensive care unit. The non-imaging features are demographics, blood values, and prior
diseases such as age, sex, fever, coughing, the loss of taste or smell, other symptoms, immunosuppressors,
duration of symptomatic, shortness of breath, GIT symptoms, neurological symptoms, acute, prior diseases,
temperature, oxygen saturation.

UKBB brain age For this dataset, we follow the approach from Bintsi et al. (2023a) for both imaging and
non-imaging features. We use the same non-imaging features as in the original work: Sex, weight, height,
body mass index, systolic blood pressure, diastolic blood pressure, college education, smoking status, alcohol
intake frequency, stroke, diabetes, walking per week, moderate exercising per week, vigorous exercising per
week, fluid intelligence, tower rearranging: number of puzzles correct, trail making task: duration to complete
numeric path trail 1, trail making task: duration to complete alphanumeric path trail 2, matrix pattern
completion: number of puzzles correctly solved, matrix pattern completion: duration spent answering each
puzzle.

Synthetic dataset We generate a synthetic dataset using sklearn with 4 classes and a varying number of
nodes to investigate the impact of the dataset size on the GNN performance. We use 50 node features, of
which 10 are informative.

B Hyperparameters and Model Architectures

We summarise the hyperparameter ranges used for the sweeps for our experiments in Table 10. We distinguish
between experiments using static graph construction, dynamic graph construction, and baseline tuning.

C Additional Results

We here summarise the results of additional experiments to the ones reported in the main text on the datasets
CORA (Table 11), TADPOLE (Table 12), UKBB brain age (Table 13), and UKBB cardiac (Table 14). For
example, the performance of the GNNs on an imitated graph structure that only contains self-loops simulates
transductive learning without a meaningful graph structure and a graph construction using k-NN with the
cosine distance. All here summarised experiments follow the same setup as introduced in Section 4.4. Figure
6 visualises more results following the same approach as in Section 5.4 with the additional dataset UKBB
cardiac and larger.

C.1 Benchmark Datasets

With the experiments on the CORA dataset (Table 11), we observe that only the GNNs that utilise the
“ground truth” edges out-perform our baseline methods, while the commonly used graph construction methods

23

Published in Transactions on Machine Learning Research (02/2024)

Parameter Range

A
ll

Learning rate [0.00001; 0.09]
Dropout [0.0,0.1,0.2,0.3,0.4]
k [2,5,10,20]
Convolutions [GAT, GCN, GraphConv, GraphSAGE]

S
t. Nr. layers [1,2,3]

Hidden channels 32

D
yn

. FC layers [[32,8,1], [8,8,3]]
DGM layers [[[32,16,4]], [[32,16,4],[],[]]]
Conv layers [[[32,32]], [[32,32],[32,16],[16,8]]]

N
eu

ra
l

S
h

ea
f

d [2,3,4]
Add lp [0,1]
Add hp [0,1]
Nr. layers [2,3,4,5,6]
Hidden channels [8,16,32]
Input dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Dropout [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
Learning rate [0.02, 0.01, 0.05, 0.05, 0.001]
Sheaf type [BundleSheaf, DiagSheaf, GeneralScheaf]

R
F Max depth [2;20]

Nr. estimators [500;2000]

R Alpha [0.001; 50]

Table 10: Hyperparameter ranges for static and dynamic graph construction experiments. All GNN: for
all GNN experiments, St.: parameters for static experiments only, Dyn.: for dynamic experiments only,
Neural Sheaf : experiments with neural sheaf diffusion models, RF: random forest experiments, R: ridge
classifier/regressor experiments.

for population graphs also do not benefit performance on the CORA dataset. We observed similar results for
the other benchmark datasets.

C.2 Population Graph Datasets

Tables 12, 13, and 14 show the results of additional experiments on the TADPOLE, UKBB brain age, and
UKBB cardiac datasets, respectively. We here also test the performance of GNNs on a graph that only
contains self-loops, which mimics a transductive learning setting without actually using a graph structure.
This rules out that a potential performance increase of GNNs stems from the fact that all node features are
seen during training, which is not the case for standard baseline models, such as random forests or linear
regressions. However, we here also do not observe an improved performance of GNNs compared to our
baseline models.

C.3 Attention Evaluation

In Section 5.4, we observed an impact of the dataset complexity on GNN performance at different homophily
values. While for the CORA dataset, which has 7 classes, low-homophily graphs always resulted in poor
performance, on the TADPOLE dataset, low-homophily graphs were also able to lead to good GNN
performance. Similar to Figure 4, we visualise an additional dataset in Figure 6. We attribute the relatively
good performance of all models at low homophily values on the TADPOLE dataset (Figure 6b) to the
learning of opposite labels for specific node features. If most of the neighbouring nodes share a different label
than the one the node of interest holds, but this is consistent across the graph –the graph has a low CCNS
distance–, then the network can still learn to make the correct predictions. We show this by evaluating the
attention values of GAT networks of four synthetic graph structures with different homophily values. All
values are summarised in the appendix in Table 15. We always report the normalised sum of all attention
heads of the GAT. At homophily 0.9 (where most neighbours share the same label as the node of interest),
the attention from the neighbours with the same label is the highest. On the other hand, at hom = 0.5, all
nodes receive the highest attention from neighbours with class label “MCI”. This makes it very difficult for
the network to distinguish between nodes of different labels, and therefore to make the correct predictions.
At very low homophily (hom = 0.1), the attention of the neighbours with the same label is 0, which again,

24

Published in Transactions on Machine Learning Research (02/2024)

Table 11: Results of the experiments on the CORA dataset. BL: baselines, k: number of neighbours,
Transd.: transductive learning with only self-loops. GNNs out-performing the BL are underlined, and the
best performances of static and dynamic graph constructions, the highest homophily and the lowest CCNS
distance are bold.

Initial edges Model k Test acc Homophily ↑ CCNS distance ↓
Train Test Train Test

B
L

- Random Forest - 0.7788 ± 0.00 - - - -
Ridge classifier - 0.7860 ± 0.00 - - - -
MLP - 0.6030 ± 0.00 - - - -

T
ra

n
sd

. Self-loops GCN - 0.6200 ± 0.02 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
SAGE - 0.6396 ± 0.03 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GraphConv - 0.6504 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GAT - 0.6848 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

S
ta

ti
c

gr
ap

h
co

n
st

ru
ct

io
n

Random GCN - 0.3068 ± 0.02 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356
SAGE - 0.6224 ± 0.02 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356
GraphConv - 0.5388 ± 0.03 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356
GAT - 0.3208 ± 0.02 0.171 ± 0.26 0.201 ± 0.29 0.373 0.356

k-NN Euclidean GCN 20 0.7336 ± 0.01 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396
SAGE 20 0.6836 ± 0.02 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396
GraphConv 20 0.7692 ± 0.01 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396
GAT 20 0.7288 ± 0.01 0.498 ± 0.23 0.495 ± 0.22 0.378 0.396

k-NN Cosine GCN 20 0.7332 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362
SAGE 20 0.6668 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362
GraphConv 20 0.7628 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362
GAT 20 0.7260 ± 0.01 0.537 ± 0.24 0.537 ± 0.23 0.344 0.362

Orig. edges GCN - 0.8332 ± 0.01 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084
SAGE - 0.8540 ± 0.01 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084
GraphConv - 0.8540 ± 0.01 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084
GAT - 0.8420 ± 0.00 0.830 ± 0.29 0.860 ± 0.29 0.101 0.084

D
yn

am
ic

gr
ap

h
co

n
st

ru
ct

io
n

No edges GCN 2 0.6900 ± 0.03 0.987 ± 0.10 0.749 ± 0.42 0.072 0.181
SAGE 2 0.7000 ± 0.02 0.589 ± 0.38 0.510 ± 0.37 0.232 0.267
GraphConv 2 0.6904 ± 0.01 0.880 ± 0.21 0.769 ± 0.25 0.085 0.144
GAT 2 0.6532 ± 0.03 0.921 ± 0.20 0.652 ± 0.43 0.050 0.208

Self-loops GCN 5 0.5932 ± 0.13 0.737 ± 0.31 0.612 ± 0.37 0.176 0.244
SAGE 20 0.6900 ± 0.01 0.857 ± 0.23 0.751 ± 0.25 0.092 0.160
GraphConv 2 0.7024 ± 0.01 0.696 ± 0.27 0.586 ± 0.32 0.185 0.273
GAT 5 0.6492 ± 0.01 0.796 ± 0.28 0.584 ± 0.39 0.139 0.259

Random GCN 2 0.3240 ± 0.02 0.663 ± 0.28 0.230 ± 0.38 0.201 0.351
SAGE 10 0.6960 ± 0.01 0.674 ± 0.25 0.534 ± 0.32 0.206 0.323
GraphConv 2 0.7052 ± 0.01 0.831 ± 0.24 0.719 ± 0.25 0.101 0.180
GAT 10 0.4252 ± 0.02 0.405 ± 0.23 0.252 ± 0.23 0.436 0.544

k-NN Euclidean GCN 5 0.7192 ± 0.01 0.581 ± 0.31 0.533 ± 0.30 0.314 0.363
SAGE 5 0.7264 ± 0.01 0.838 ± 0.23 0.676 ± 0.35 0.097 0.222
GraphConv 5 0.7284 ± 0.01 0.884 ± 0.21 0.801 ± 0.24 0.073 0.129
GAT 20 0.6388 ± 0.06 0.419 ± 0.27 0.415 ± 0.28 0.429 0.446

k-NN Cosine GCN 5 0.7424 ± 0.00 0.611 ± 0.33 0.570 ± 0.32 0.299 0.349
SAGE 5 0.7216 ± 0.01 0.774 ± 0.26 0.663 ± 0.35 0.153 0.234
GraphConv 5 0.7304 ± 0.01 0.890 ± 0.21 0.778 ± 0.25 0.070 0.143
GAT 20 0.6716 ± 0.01 0.662 ± 0.30 0.634 ± 0.37 0.216 0.236

Orig. edges GCN 20 0.8372 ± 0.01 0.861 ± 0.24 0.813 ± 0.31 0.086 0.133
SAGE 10 0.7832 ± 0.01 0.958 ± 0.10 0.780 ± 0.32 0.019 0.138
GraphConv 2 0.7576 ± 0.02 0.819 ± 0.25 0.780 ± 0.29 0.115 0.149
GAT 2 0.8388 ± 0.04 0.885 ± 0.21 0.807 ± 0.29 0.071 0.131

makes it possible for the network to distinguish nodes by their neighbourhood, enabling correct predictions.
Three examples of 2-hop neighbourhoods at the different homophily values are visualised in Figure 7. The
label is indicated by the node colour and the distance between two nodes indicates the attention value of
this edge. While at hom = 0.9, most neighbours share the same label, at a low homophily value of 0.1 (c),
most neighbours have a different label and the attention values are similar across them. At an in-between
homophily of 0.4, several nodes share the same label, while others do not.

25

Published in Transactions on Machine Learning Research (02/2024)

Table 12: Results of the experiments on the TADPOLE dataset. BL: baselines, k: number of neighbours,
Transd.: transductive learning with only self-loops. Overall, the best performance for static and dynamic
graph construction is underlined, the best performance for static and dynamic graph construction, highest
homophily and lowest DNNS distance are bold.

Initial edges Model k Test acc ↑ Homophily ↑ CCNS distance ↓
Train Test Train Test

B
L

- Majority vote - 0.5674 ± 0.00 - - - -

- Random forest - 0.9474 ± 0.00 - - - -
- Logistic regression - 0.8597 ± 0.00 - - - -

T
ra

n
sd

. Self-loops GCN - 0.9018 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
SAGE - 0.8772 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GraphConv - 0.8912 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GAT - 0.6386 ± 0.07 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

S
ta

ti
c

gr
ap

h
co

n
st

ru
ct

io
n Random GCN - 0.7965 ± 0.04 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348

SAGE - 0.8877 ± 0.01 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348
GraphConv - 0.8842 ± 0.01 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348
GAT - 0.7930 ± 0.04 0.457 ± 0.49 0.426 ± 0.49 0.350 0.348

k-NN Euclidean GCN 5 0.7439 ± 0.03 0.754 ± 0.23 0.775 ± 0.24 0.283 0.213
SAGE 5 0.8982 ± 0.03 0.754 ± 0.23 0.775 ± 0.24 0.283 0.213
GraphConv 5 0.9088 ± 0.01 0.754 ± 0.23 0.775 ± 0.24 0.283 0.213
GAT 2 0.7895 ± 0.04 0.857 ± 0.23 0.904 ± 0.20 0.184 0.094

k-NN Cosine GCN 5 0.7789 ± 0.02 0.760 ± 0.23 0.754 ± 0.25 0.276 0.221
SAGE 5 0.8877 ± 0.02 0.760 ± 0.23 0.754 ± 0.25 0.276 0.221
GraphConv 5 0.9333 ± 0.01 0.760 ± 0.23 0.754 ± 0.25 0.276 0.221
GAT 2 0.8105 ± 0.02 0.855 ± 0.23 0.895 ± 0.21 0.192 0.105

D
yn

am
ic

gr
ap

h
co

n
st

ru
ct

io
n

No edges GCN 20 0.9263 ± 0.03 0.899 ± 0.19 0.919 ± 0.19 0.143 0.073
SAGE 20 0.9053 ± 0.02 0.867 ± 0.20 0.806 ± 0.21 0.183 0.183
GraphConv 2 0.9228 ± 0.02 0.919 ± 0.18 0.798 ± 0.34 0.107 0.190
GAT 20 0.9018 ± 0.06 0.739 ± 0.24 0.908 ± 0.15 0.280 0.101

Self-loops GCN 10 0.9298 ± 0.02 0.891 ± 0.21 0.902 ± 0.16 0.150 0.085
SAGE 5 0.9088 ± 0.02 0.900 ± 0.19 0.614 ± 0.29 0.140 0.441
GraphConv 5 0.9228 ± 0.02 0.920 ± 0.18 0.937 ± 0.15 0.113 0.051
GAT 20 0.9123 ± 0.05 0.826 ± 0.24 0.784 ± 0.21 0.236 0.204

Random GCN 2 0.8421 ± 0.06 0.912 ± 0.20 0.851 ± 0.27 0.132 0.177
SAGE 10 0.9228 ± 0.02 0.834 ± 0.23 0.423 ± 0.22 0.205 0.616
GraphConv 5 0.8947 ± 0.03 0.775 ± 0.24 0.411 ± 0.25 0.273 0.594
GAT 5 0.8632 ± 0.02 0.903 ± 0.20 0.895 ± 0.20 0.145 0.119

k-NN Euclidean GCN 2 0.9333 ± 0.01 0.811 ± 0.25 0.793 ± 0.28 0.229 0.204
SAGE 20 0.9368 ± 0.01 0.896 ± 0.19 0.461 ± 0.63 0.138 0.632
GraphConv 10 0.8947 ± 0.02 0.736 ± 0.23 0.777 ± 0.29 0.302 0.219
GAT 10 0.9123 ± 0.03 0.826 ± 0.24 0.775 ± 0.29 0.223 0.206

k-NN Cosine GCN 2 0.8421 ± 0.02 0.833 ± 0.24 0.786 ± 0.30 0.210 0.199
SAGE 20 0.9404 ± 0.02 0.822 ± 0.23 0.899 ± 0.21 0.220 0.084
GraphConv 10 0.8982 ± 0.02 0.740 ± 0.25 0.761 ± 0.28 0.304 0.213
GAT 10 0.8316 ± 0.04 0.846 ± 0.23 0.828 ± 0.27 0.201 0.187

26

Published in Transactions on Machine Learning Research (02/2024)

Table 13: Results of the experiments on the UKBB Brain Age dataset. BL: baselines, k: number of
neighbours, Transd.: transductive training with only self-loops. The best performance and highest homophily
for static and dynamic graph construction are bold. For all methods, homophily is evaluated on the train
and test set.

Initial edges Model k Test MAE ↓ Homophily ↑
Train Test

B
L

- Mean prediction - 6.4090 ± 0.00 - -
- Random Forest - 4.1424 ± 0.01 - -
- Linear Regression - 3.7545 ± 0.00 - -

T
ra

n
sd

. Self-loops GCN - 4.0236 ± 0.12 1.000 ± 0.00 1.000 ± 0.00
SAGE - 4.0339 ± 0.05 1.000 ± 0.00 1.000 ± 0.00
GraphConv - 3.9750 ± 0.06 1.000 ± 0.00 1.000 ± 0.00
GAT 3.9477 ± 0.04 1.000 ± 0.00 1.000 ± 0.00

S
ta

ti
c

gr
ap

h
co

n
st

ru
ct

io
n Random GCN - 6.2158 ± 0.07 0.750 ± 0.10 0.742 ± 0.10

SAGE - 3.8764 ± 0.08 0.750 ± 0.10 0.742 ± 0.10
GraphConv - 4.2029 ± 0.16 0.750 ± 0.10 0.742 ± 0.10
GAT - 6.4034 ± 0.07 0.750 ± 0.10 0.742 ± 0.10

k-NN Euclidean GCN 2 4.3351 ± 0.07 0.915 ± 0.07 0.916 ± 0.07
SAGE 10 4.1780 ± 0.17 0.843 ± 0.06 0.844 ± 0.06
GraphConv 2 4.1979 ± 0.04 0.915 ± 0.07 0.916 ± 0.07
GAT 20 4.2888 ± 0.01 0.832 ± 0.06 0.834 ± 0.06

k-NN Cosine GCN 2 4.3808 ± 0.08 0.915 ± 0.07 0.919 ± 0.06
SAGE 10 4.2302 ± 0.21 0.843 ± 0.06 0.844 ± 0.06
GraphConv 2 4.2260 ± 0.06 0.915 ± 0.07 0.919 ± 0.06
GAT 20 4.3182 ± 0.03 0.833 ± 0.06 0.833 ± 0.06

D
yn

am
ic

gr
ap

h
co

n
st

ru
ct

io
n

No edges GCN 2 4.0257 ± 0.06 0.886 ± 0.09 0.865 ± 0.10
SAGE 5 3.8882 ± 0.03 0.752 ± 0.10 0.754 ± 0.10
GraphConv 5 3.9741 ± 0.05 0.845 ± 0.08 0.840 ± 0.08
GAT 2 4.1071 ± 0.07 0.840 ± 0.10 0.843 ± 0.11

Self-loops GCN 2 3.9869 ± 0.06 0.844 ± 0.10 0.841 ± 0.10
SAGE 20 3.9496 ± 0.16 0.781 ± 0.07 0.780 ± 0.08
GraphConv 20 3.9422 ± 0.13 0.849 ± 0.06 0.845 ± 0.07
GAT 2 4.0825 ± 0.07 0.844 ± 0.10 0.839 ± 0.10

Random GCN 2 5.1712 ± 0.20 0.837 ± 0.12 0.834 ± 0.13
SAGE 10 3.8811 ± 0.04 0.769 ± 0.08 0.780 ± 0.09
GraphConv 10 4.1248 ± 0.30 0.770 ± 0.08 0.768 ± 0.09
GAT 2 5.7138 ± 0.10 0.852 ± 0.11 0.831 ± 0.14

k-NN Euclidean GCN 2 4.1109 ± 0.07 0.835 ± 0.10 0.849 ± 0.11
SAGE 20 3.9226 ± 0.13 0.845 ± 0.06 0.842 ± 0.07
GraphConv 2 3.9560 ± 0.09 0.843 ± 0.11 0.831 ± 0.11
GAT 2 4.1603 ± 0.04 0.835 ± 0.10 0.837 ± 0.11

k-NN Cosine GCN 2 4.0975 ± 0.05 0.839 ± 0.10 0.844 ± 0.10
SAGE 20 3.9353 ± 0.12 0.837 ± 0.06 0.837 ± 0.07
GraphConv 2 4.0181 ± 0.13 0.848 ± 0.11 0.852 ± 0.10
GAT 2 4.1927 ± 0.04 0.833 ± 0.10 0.835 ± 0.10

27

Published in Transactions on Machine Learning Research (02/2024)

Table 14: Results of the experiments on the UKBB Cardiac dataset. BL: baselines, k: number of neighbours,
Transd.: transductive training with only self-loops, GC: graph construction. GNNs out-performing the
baselines are underlined, and the best performances of static and dynamic graph constructions are bold.

Initial edges Model k Test accuracy Homophily ↑ CCNS distance ↓
Train Test Train Test

B
L

- Majority vote - 0.5000 ± 0.00 - - - -

- Random Forest - 0.7027 ± 0.00 - - - -
- Linear Regression - 0.6916 ± 0.00 - - - -

T
ra

n
sd

. Self-loops GCN - 0.6816 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
SAGE - 0.5920 ± 0.08 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GraphConv - 0.6724 ± 0.02 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000
GAT - 0.6812 ± 0.01 1.000 ± 0.00 1.000 ± 0.00 0.000 0.000

S
ta

ti
c

G
C

Random GCN - 0.5019 ± 0.03 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499
SAGE - 0.6824 ± 0.02 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499
GraphConv - 0.5169 ± 0.03 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499
GAT - 0.5291 ± 0.02 0.504 ± 0.34 0.480 ± 0.34 0.500 0.499

k-NN Euclidean GCN 10 0.6632 ± 0.01 0.590 ± 0.19 0.605 ± 0.19 0.477 0.467
SAGE 2 0.6498 ± 0.01 0.778 ± 0.25 0.786 ± 0.25 0.345 0.335
GraphConv 5 0.6686 ± 0.01 0.640 ± 0.22 0.645 ± 0.23 0.449 0.447
GAT 20 0.6322 ± 0.03 0.563 ± 0.16 0.572 ± 0.15 0.488 0.483

k-NN Cosine GCN 20 0.6517 ± 0.00 0.564 ± 0.16 0.576 ± 0.15 0.487 0.482
SAGE 10 0.6510 ± 0.03 0.595 ± 0.19 0.601 ± 0.19 0.474 0.470
GraphConv 10 0.6563 ± 0.02 0.595 ± 0.19 0.601 ± 0.19 0.474 0.470

D
yn

am
ic

G
C

No edges GCN 2 0.6816 ± 0.01 0.644 ± 0.36 0.627 ± 0.37 0.458 0.468
SAGE 20 0.6379 ± 0.02 0.599 ± 0.18 0.572 ± 0.19 0.489 0.484
GraphConv 2 0.6215 ± 0.06 0.606 ± 0.37 0.636 ± 0.36 0.478 0.463
GAT 2 0.6839 ± 0.00 0.615 ± 0.38 0.616 ± 0.38 0.474 0.473

Self-loops GCN 2 0.6521 ± 0.03 0.622 ± 0.37 0.602 ± 0.36 0.470 0.479
SAGE 20 0.6444 ± 0.01 0.617 ± 0.20 0.606 ± 0.21 0.461 0.468
GraphConv 2 0.6659 ± 0.02 0.718 ± 0.33 0.652 ± 0.36 0.405 0.454
GAT 2 0.6812 ± 0.01 0.636 ± 0.37 0.634 ± 0.38 0.463 0.464

Random GCN 2 0.6360 ± 0.02 0.551 ± 0.37 0.538 ± 0.37 0.495 0.497
SAGE 10 0.6678 ± 0.01 0.508 ± 0.16 0.556 ± 0.19 0.500 0.490
GraphConv 2 0.6563 ± 0.02 0.542 ± 0.36 0.526 ± 0.36 0.496 0.499
GAT 10 0.6510 ± 0.04 0.520 ± 0.18 0.516 ± 0.16 0.499 0.499

k-NN Euclidean GCN 2 0.6781 ± 0.01 0.611 ± 0.37 0.612 ± 0.36 0.475 0.475
SAGE 10 0.6970 ± 0.02 0.499 ± 0.11 0.507 ± 0.12 0.500 0.500
GraphConv 2 0.6860 ± 0.02 0.678 ± 0.35 0.614 ± 0.38 0.436 0.474
GAT 5 0.6690 ± 0.03 0.541 ± 0.25 0.554 ± 0.25 0.495 0.493

k-NN Cosine GCN 2 0.6770 ± 0.00 0.607 ± 0.37 0.595 ± 0.37 0.477 0.482
SAGE 10 0.6659 ± 0.03 0.682 ± 0.24 0.677 ± 0.25 0.421 0.426
GraphConv 2 0.6862 ± 0.01 0.767 ± 0.25 0.714 ± 0.30 0.357 0.409
GAT 2 0.6736 ± 0.01 0.589 ± 0.37 0.588 ± 0.37 0.484 0.484

Table 15: Mean and standard deviation of normalised attention values from all neighbours with respective
labels of a graph structure with high and low homophily. The highest attention values for each node label
class are highlighted in bold. NC: normal control, MCI: mild cognitive impairment, AD: Alzheimer’s disease.

Homophily Node label Attention from NC Attention from MCI Attention from AD

0.9
NC 1.919 ± 1.08 0.532 ± 0.56 0.091 ± 0.21
MCI 0.198 ± 0.31 1.881 ± 1.06 0.083 ± 0.22
AD 0.158 ± 0.29 0.777 ± 0.66 1.961 ± 1.14

0.4
NC 0.978 ± 0.75 2.002 ± 1.05 0.255 ± 0.34
MCI 0.556 ± 0.59 0.972 ± 0.74 0.243 ± 0.36
AD 0.676 ± 0.68 1.743 ± 0.97 0.940 ± 0.71

0.1
NC 0.000 ± 0.00 3.106 ± 1.47 0.415 ± 0.48
MCI 0.985 ± 0.74 0.000 ± 0.00 0.461 ± 0.57
AD 1.038 ± 0.88 3.013 ± 1.35 0.000 ± 0.00

28

Published in Transactions on Machine Learning Research (02/2024)

0.0 0.2 0.4 0.6 0.8 1.0
Homophily

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

u
ra

cy

BaselineGraphConv GATGraphSAGEGCN

(a) CORA dataset

0.0 0.2 0.4 0.6 0.8 1.0
Homophily

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

u
ra

cy

BaselineGraphConv GATGraphSAGEGCN

(b) TADPOLE dataset

0.0 0.2 0.4 0.6 0.8 1.0
Homophily

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

u
ra

cy

BaselineGraphConv GATGraphSAGEGCN

(c) ABIDE dataset

0.0 0.2 0.4 0.6 0.8 1.0
Homophily

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 a

cc
u
ra

cy

BaselineGraphConv GATGraphSAGEGCN

(d) UKBB Cardiac dataset

Figure 6: Performance of different graph convolutions on synthetic graph structures with different homophily
values on (a) the CORA dataset, (b) the TADPOLE dataset, (c) the ABIDE dataset, and (d) the UKBB
cardiac dataset. The dashed blue line indicates the mean performance of the best baseline for each dataset.

(a) Homophily 0.9 (b) Homophily 0.4 (c) Homophily 0.1

Figure 7: Visualisation of attention-based neighbourhoods of a random node (centre node) from the
TADPOLE dataset with synthetically generated graph structures and its two-hop neighbourhood. The node
colours indicate node labels and the distance is proportional to the summed attention weight of the edges to
the respective neighbouring node.

29

	Introduction
	Background
	Graph Structures
	Graph Assessment Metrics
	Graph Neural Networks
	Neural Sheaf Diffusion Models

	Related Work
	Methods and Training Setup
	Datasets
	Graph Construction Methods
	Static Graph Construction
	Dynamic Graph Construction

	Graph Assessment
	Model Architectures and Training

	Experiments and Results
	Baselines Achieving Comparable Performance to GNNs
	Comparison to Other Published Results
	Population Graphs for Multi-Modal Data Integration
	Further Components of Impact on Model Performance

	Discussion
	Conclusion and Future Work
	Additional Information on the Datasets
	Hyperparameters and Model Architectures
	Additional Results
	Benchmark Datasets
	Population Graph Datasets
	Attention Evaluation

