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ABSTRACT

A prominent research direction within mechanistic interpretability involves learn-
ing sparse circuits to model causal relationships between LLM components,
thereby providing insights into model behavior. However, due to the polyseman-
tic nature of LLM components, learned circuits are often difficult to interpret.
While sparse autoencoder (SAE) features enhance interpretability, their high di-
mensionality presents a significant challenge for existing circuit learning methods
to scale. To address these limitations, we propose a scalable circuit learning ap-
proach, CircuitLasso, that leverages sparse linear regression. Our method
can efficiently uncover relationships among SAE features, showing how human-
interpretable semantic features propagate through the model and influence its pre-
dictions. We empirically evaluate our method against state-of-the-art baselines
on benchmark circuit learning tasks, demonstrating substantial improvements in
efficiency while accurately capturing circuits involving LLM components. Given
its efficiency, we then apply our method to SAE (high dimensional) features and
obtain human-interpretable circuits for a grammatical classification task that has
not been studied before in mechanistic interpretation. Finally, we validate the
utility of our learned circuits by leveraging their insights to improve downstream
performance in domain generalization.

1 INTRODUCTION

The fundamental challenge of mechanistic interpretability is to understand the “why” behind the
behaviors of large language models (LLMs). A key technique involves discovering causal circuits,
which are compact subgraphs connecting key components within the model (such as attention heads
and neurons) that drive a specific behavior or capability. However, existing methods for circuit learn-
ing often face a bottleneck. The raw components of an LLM, such as individual neurons, are known
to be polysemantic, meaning that a single neuron can be activated by and contribute to multiple,
seemingly unrelated concepts. This polysemanticity renders the learned circuits dense, noisy, and
challenging for humans to interpret, undermining the very goal of mechanistic interpretability.

The limitations of using raw, polysemantic neurons have motivated a shift toward a more promising
foundation for circuit analysis based on Sparse Autoencoders (SAEs) and related tools. SAEs are
neural networks trained to reconstruct the activations of an LLM’s raw components using a high-
dimensional but sparse set of “features”. Remarkably, these SAE features tend to be monosemantic,
i.e., each feature consistently activates for a single, human-interpretable concept, such as “related
to sports,” “a specific emotion,” or “a particular grammatical structure.” The monosemanticity of
SAE features has the potential not only to enhance interpretability in itself but also to yield sparser,
cleaner causal graphs, and perhaps more faithful representations of the model’s internal processing.

Our work is motivated by the above potential of SAE features to achieve greater interpretability
in LLM circuit analysis. However, existing circuit learning methods, many of which are designed
for the lower-dimensional space of raw neurons, struggle to scale to the high-dimensional feature
space of SAEs. The computational complexity and the risk of finding spurious correlations increase
dramatically. To address this, we introduce a novel approach to handle the high dimensionality. Our
method, CircuitLasso, utilizes the Lasso (i.e., ℓ1-penalized linear regression) to find a sparse
set of connections between features that explains the model’s behavior. Sparse linear regression is
well-suited for high-dimensional data, as it is computationally efficient and the sparsity translates to
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more interpretable circuits. An advantage of our approach is its use of observational data only. This
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Figure 1: An illustration of our model neuron activation and SAE feature collection procedure,
learned circuits, and potential downstream tasks.

broadens its applicability and eliminates the need for interventions used by existing methods, whose
cost scales with LLM size. We quantify the efficiency advantage of our regression-based method
through a theoretical analysis of its computational cost compared to state-of-the-art intervention-
based approaches, establishing conditions under which our method guarantees greater efficiency.

We empirically evaluate CircuitLasso against state-of-the-art baselines on a circuit learning
benchmark, demonstrating substantial improvements in efficiency while accurately capturing cir-
cuits involving LLM components. Leveraging its scalability, we then apply our method to SAE
features and obtain human-interpretable circuits for the CoLA dataset, which has not been used be-
fore in mechanistic interpretability studies. Finally, we validate the utility of our learned circuits by
leveraging them to improve performance in a downstream application of domain generalization.

Our primary contributions are as follows: 1) Inspired by causal graph discovery literature, we intro-
duce an efficient sparse circuit discovery method, CircuitLasso, and theoretically analyze its
computational cost compared to intervention-intensive approaches. 2) CircuitLasso facilitates
operating on monosemantic but high-dimensional SAE features, potentially offering clearer expla-
nations of how human-interpretable concepts propagate through LLMs. 3) Extensive experiments
across LLMs (up to 9B parameters), SAEs, and datasets demonstrate the efficiency and effectiveness
of CircuitLasso for circuit discovery and improving generalization performance.

2 RELATED WORKS

Mechanistic Interpretability. Much of the established work in mechanistic interpretability explains
behaviors in terms of raw or coarse-grained model components. Olsson et al. (2022) implicated in-
duction heads in in-context learning, while others (Meng et al., 2022; Geva et al., 2023; Nanda et al.,
2023) examined MLP modules for factual recall. However, due to the polysemantic nature of raw
neurons and coarse-grained components (Elhage et al., 2022), the resulting mechanistic insights are
often difficult to apply to downstream tasks. Some prior methods (Geiger et al., 2023; Zou et al.,
2023) attempt to address this issue by fitting model internals to pre-defined hypotheses using curated
data, but these approaches fail to generalize to scenarios where researchers lack expert knowledge or
cannot anticipate how models implement specific behaviors. Recent work (Bricken et al., 2023; Cun-
ningham et al., 2023) leverages advances in dictionary learning for interpretability and introduces
sparse autoencoders (SAEs) to identify sparse, disentangled features in high-dimensional spaces
that align with human-interpretable concepts. Building on this, a number of advanced strategies
for learning SAE features have been proposed (Rajamanoharan et al., 2024; Gao et al., 2024; Buss-
mann et al., 2024; Dunefsky et al., 2024). Despite this progress, existing mechanistic interpretability
methods continue to face challenges in scaling to the high-dimensional SAE feature space.
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Circuit Learning. Intervention-based circuit learning approaches, including causal mediation anal-
ysis (Vig et al., 2020; Geva et al., 2023; Hanna et al., 2024) and causal tracing (Meng et al., 2022),
rely on counterfactual intervention techniques such as activation patching (Nanda, 2023; Syed et al.,
2023) to quantify the influence of one component on another. However, these interventions are
computationally intensive, making it difficult to scale such methods to large sets of components, let
alone to the high-dimensional space of sparse autoencoder (SAE) features. To address this, Marks
et al. (2025) propose efficient approximations of intervention-based methods for SAE features, but
in high-dimensional settings they must resort to heuristic pre-processing steps such as clustering.
These limitations highlight the need for more efficient techniques to learn circuits in LLMs. For
example, Laptev et al. (2025a) propose a data-free approach that constructs circuit graphs using in-
formation from SAE decoder weights. While many prior works borrow causal concepts (Meng et al.,
2022), the broader causal discovery literature has been less explored in the context of circuit learn-
ing. Notably, Conmy et al. (2024) iteratively prune edges from the computation graph, reminiscent
of constraint-based causal discovery algorithms such as the PC algorithm (Pearl et al., 2000).

3 CIRCUIT LEARNING FRAMEWORK AND METHODOLOGY

3.1 CIRCUIT DISCOVERY FROM A CAUSAL PERSPECTIVE

In this work, we formulate circuit discovery as the task of learning a directed acyclic graph (DAG)
from data, analogous to approaches in causal discovery. State-of-the-art approaches quantify the im-
portance of hidden representations or computational graph edges by estimating their causal effects,
particularly indirect effects, using techniques such as causal mediation analysis (Vig et al., 2020),
causal tracing (Meng et al., 2022), attribution patching (Nanda, 2023; Syed et al., 2023), and related
variants (Kramár et al., 2024; Hanna et al., 2024). These approaches share some similarities with
constraint-based causal discovery, which assesses potential edges among variables via independence
tests and retains those with strong dependencies. However, constraint-based causal discovery meth-
ods are known to face scalability challenges, and circuit discovery methods share this limitation
since they must separately quantify the importance of every hidden representation and edge in the
computational graph, which can quickly become infeasible with larger models.

Inspired by the continuous causal discovery literature, we propose a (causal) circuit discovery ap-
proach, CircuitLasso. Assume we extract N components (which may be MLP neurons, at-
tention heads, or SAE features) from all the desired locations in the LLMs and concatenate their
activations to form a vector x = [x1, x2, · · · , xN ] ∈ RN . Our goal is to learn the DAG G with the
N components as its nodes. We leverage structural equation models (SEM) from continuous causal
discovery literature to model the causal relations between a component xi and its parents PaG(xi):
xi = fi(PaG(xi)) + εi, where fi(·) is the causal function and εi is the exogeneous noise. In this
work, we assume the causal relations between components are linear. Given M observations of the
N components, i.e., input matrix X ∈ RN×M , we can then obtain the linear SEM in its matrix
form:

X = A⊤X + ε, (1)
with continuous parameters A ∈ RN×N , a weighted adjacency matrix; ε ∈ RN×M is a matrix of
mutually independent exogeneous noises. A[i, j] ̸= 0 indicates the existence of the causal relation
xi → xj . We aim to learn A by minimizing the reconstruction error between X and ATX subject
to sparsity and acyclicity constraints:

Â = argmin
A

∥X −A⊤X∥2F + λ∥A∥1, subject to G(A) ∈ D (2)

where ∥·∥F denotes Frobenius norm; ∥A∥1 is the sparsity penalty with tuning coefficient λ; G(A) is
the circuit structure inferred from A; and D is the space of acyclic graphs with N nodes. We lever-
age the established identifiability conditions (Peters et al., 2014) by assuming causal sufficiency
and specific noise characteristics (non-Gaussian or equal-variance Gaussian) to ensure the learned
DAG is uniquely identifiable and thus interpretable as the underlying causal structure. Thus far,
in Eq. (2), we have not made assumptions about the causal ordering of the components in x, i.e.,
the orientations of potential edges between components. Thus, we require the acyclicity constraint
G(A) ∈ D to prevent self-loops and cycles, which are unsuitable for interpreting the transmission,
aggregation, and evolution of model components. However, the acyclicity constraint is the main
computational challenge in solving the circuit learning problem in Eq. (2). In this paper, we make
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simplifying assumptions that remove this constraint and reduce the optimization to sparse linear re-
gression problems (also known as Lasso), enabling a scalable solution. We discuss the formulations
for circuit discovery on model neurons and SAE features in Sections 4.1 and 3.3.2, respectively.

3.2 CIRCUIT DISCOVERY ON NEURONS

To better understand how models encode and process information, mechanistic interpretability re-
search (Conmy et al., 2023a; Cao et al., 2021; Syed et al.) has focused on identifying graphical
structures (circuits) connecting pre-trained language model neurons, including outputs from atten-
tion and MLP modules. To evaluate the effectiveness of our proposed method in Section 3.1, we
follow the same setting as these prior works and treat model neurons as the components of interest.
We first collect neuron activations [h1,h2, . . . ,hL] from L target locations, each with dimension d,
and for M LLM inputs (observations), resulting in H ∈ RL×d×M . Existing circuit discovery meth-
ods typically assume that circuit structures respect the model locations’ computation order, meaning
that neurons from layer i precede those from layer j if i < j, and within each layer, attention activa-
tions come before MLP activations. We adopt this assumption to simplify the acyclicity constraint
in Eq. (2). Accordingly, we reorder H according to the computational graph and reshape it to obtain
H̃ ∈ RN×M , whereby N = Ld. Substitute X in Eq. (2) with H̃ to estimate the weighted adjacency
matrix A as

Â = argmin
A

∥H̃ −A⊤H̃∥2F + λ∥A∥1, subject to A being block lower triangular. (3)

Specifically, each block A[i, j] is now a d × d square matrix, and A[i, j] = 0d×d whenever i ≤ j.
This block lower triangular structure ensures that each block of variables depends only on preceding
blocks, so later layers cannot influence earlier ones, thereby preserving the causal ordering without
requiring an explicit acyclicity constraint. This constraint exploits the known, human-engineered
computational order of the LLM. The underlying architectural insight provides a justifiable acyclic
constraint that aligns with the inherent feed-forward nature of the network (activations in later layers
are computed after, and depend on, those in earlier layers). Causal discovery with such a justified
acyclicity leads to more accurate identification of the underlying causal relationships, as demon-
strated by empirical results in Table 1. In practice, we enforce this constraint by initializing the
upper-triangular blocks to zero matrices and keeping them fixed throughout optimization. The re-
sulting circuit structure G is then inferred from Â.

We now provide complexity analysis of our proposed circuit discovery approach on model neurons
versus the existing intervention-based approaches. For our optimization problem in Eq. (3), we have:

Proposition 3.1. Complexity of CircuitLasso on Model Neurons. Suppose in Eq. (3), H̃ ∈
RN×M contains M samples of N -dimensional features, whereby N = Ld. Assume a first-order
optimization method is used to solve the problem up to convergence error ϵ, then the computational
complexity of solving Eq. (3) is O(ML(L−1)d2

2ϵ ).

Please refer to the detailed proof in Appendix A.1. We aim to theoretically compare the compu-
tational cost of our CircuitLasso with the state-of-the-art intervention-based circuit discovery
approach. Specifically, we consider the EAP-ig method, which computes IEs for L locations of
model components with dimension d. EAP-ig relies on the attribution patching technique, which
applies a linear approximation to IEs, enabling them to be computed in parallel. While the additional
cost of estimating IEs from this linear approximation scales linearly with L and considered to have
state-of-the-art efficiency, the primary computational burden arises from the two forward passes and
one backward pass required for each evaluation of the LLM. Hence, we first provide a computation
cost estimation for the EAP-ig with the same learning problem in Eq. (3) and provide conditions
when our CircuitLasso has guaranteed efficiency over EAP-ig.

Proposition 3.2. Suppose a transformer-based large language model with S blocks has model neu-
ron dimension of d. ntoken is the tokens sequence length, h is the number of attention heads, f being
the feedforward expansion factor, then the approximate computational cost of M observations for
EAP-ig is roughly O

(
16MSntokend

2(2 + f) + 16MSn2
tokend + MLd

)
, CircuitLasso with

computational complexity of O(ML(L−1)d2

2ϵ ) has guaranteed better efficiency compared to EAP-ig

4
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if one of the following conditions hold: 1)
√

L(L−1)
32S(2+f)ϵ < ntoken ≪ d. 2) ntoken >

√
L(L−1)d

32Sϵ and
ntoken ≫ d.

Please refer to the detailed proof in Appendix A.2. Intuitively, Proposition 3.2 provides a guide-
line for selecting the number of component locations of interest (L) and determining which circuit
discovery approach is more efficient.

3.3 CIRCUIT DISCOVERY ON SPARSE FEATURES

Although recent research has shown that learned circuits can carry semantically meaningful informa-
tion and shed light on how information flows through the model, the polysemantic nature of neurons
makes them difficult to interpret (Elhage et al., 2022). To address this, more recent work (Marks
et al., 2025; Laptev et al., 2025b) explores circuit discovery on sparse SAE features, but the scala-
bility challenge posed by their high dimensionality remains. To address this issue, we extend our
proposed formulation to operate on SAE features.

3.3.1 PRELIMINARIES ON SPARSE AUTOENCODER (SAE)

Given a model with d-dimensional latent space and neuron activations h ∈ Rd, an SAE can represent
h as a linear combination of sparse features z ∈ RD, D ≫ d:

z = σ(Wench+ benc), ĥ = Wdecz + bdec,

where Wenc, benc are encoder parameters and Wdec, bdec are decoder parameters ; σ(·) is a nonlinear
activation function. The SAEs are usually trained by minimizing the reconstruction error between
model activations h and reconstructed activations ĥ subject to a sparsity regularizer:

LSAE(h, z;Wenc, bdec,Wdec, bdec) := ∥h− ĥ∥22 + αLreg(z).

Recent work on sparse autoencoder (SAE) features explores various methods—ReLU with L1 reg-
ularization, thresholding, top-K selection, and Transcoders, to enforce sparsity and improve in-
terpretability. However, our focus is to uncover the causal relations among learned sparse SAE
features, rather than developing new SAE training methods. For this study, we employ the fol-
lowing pre-trained SAEs on small (GPT2-small, Pythia-70M), medium (Gemma-2-2b), and large
(Gemma-2-9b) LLMs. Please refer to Appendix C.1 for details of employed models and SAEs.

3.3.2 LAYER-WISE SPARSE FEATURE CIRCUIT DISCOVERY

In this work we assume that causal relations follow the computation order of the underlying model
neurons. To be specific, consider two model neurons with dimension of d and their activations at
locations i and j, denoted by hi,hj ∈ Rd, where computation at i precedes computation at j. We
obtain the corresponding SAE features zi, zj ∈ RD using trained SAEs:

zi = σ(Ŵenc,ihi + benc,i), zj = σ(Ŵenc,jhj + benc,j).

If a causal relationship exists between variables in zi and zj , we constrain its direction to be from i
to j. Given M observations of zi and zj , we obtain input data Zi ∈ RD×M and Zj ∈ RD×M . We
estimate these relations by solving:

Âi,j = argmin
Ai,j

∥Zj −A⊤
i,jZi∥2F + λ∥Ai,j∥1, Ai,j ∈ RD×D. (4)

This procedure is repeated for every pair (i, j) where i precedes j in the computation order. In partic-
ular, learning Ai,j for all transformer block outputs in consecutive layers provides insight into how
semantic concepts are transferred, propagated, and evolved across the model. The computational
cost of the learning problem in Eq. (4) is O(MD2

ϵ ).

We also incorporate the downstream prediction target into circuit discovery to enable explanation of
the model’s predictive behavior. We formulate the following optimization problem to learn a model
for predicting the downstream target y using sparse atuoencoder features zi, derived from model
neuron activations at location i:

Âi,y = argmin
Ai,y

Lpred(y, A
⊤
i,yZi) + λ∥Ai,y∥1, Ai,y ∈ RD, (5)

5
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where Lpred(·, ·) denotes the prediction loss, instantiated as mean squared error for regression tasks
and cross-entropy loss for classification tasks. Application-wise, with the learned Ai,y and inter-
pretable sparse features z, we can not only explain the model’s predictive behavior, but also rectify
the prediction model to mitigate spurious or biased behavior. The computational cost of the learning
problem in Eq. (5) is O(MD

ϵ ).

4 EXPERIMENTS

We evaluate CircuitLasso on both model neurons (Section 4.1) and sparse autoencoder fea-
tures (Section 4.2), demonstrating its effectiveness in accurately capturing relations among model
components with improved efficiency, providing interpretable insights into model behavior in gram-
maticality classification, and enhancing downstream performance on a domain generalization task.

4.1 CIRCUIT DISCOVERY ON MODEL NEURONS

Models and Baselines. We first evaluate our circuit discovery methods on the INTERPBENCH
benchmark datasets (Gupta et al., 2024). INTERPBENCH consists of semi-synthetic yet realistic
transformers with known circuits, designed for assessing circuit discovery approaches. The trans-
former models are trained to align their internal computation with a target high-level causal model
while constraining non-circuit nodes from influencing the output. We compare our method against
four state-of-the-art circuit discovery approaches: Automatic Circuit DisCovery (ACDC) (Conmy
et al., 2023b), Subnetwork Probing (SP) (Cao et al., 2021) on nodes and edges, Edge Attribution
Patching (EAP) (Syed et al., 2023), and EAP with integrated gradients (EAP-ig) (Marks et al.,
2025). While INTERPBENCH includes 86 semi-synthetic transformer models, we follow the proto-
col of Gupta et al. (2024) and evaluate on the 5 randomly selected cases, which have been empirically
verified to be sufficiently realistic for benchmarking circuit discovery techniques.

CircuitLasso on Neurons. We begin by collecting activations from the model neurons. To
ensure fairness, we use the same set of input prompts as the baselines. Given data, we aim to learn
a weighted adjacency matrix A that encodes the causal relations between neuron locations, and use
it to infer the causal circuit. Please refer to the detailed learning procedure in Appendix B.

Metrics and Implementation Details. We evaluate circuit discovery accuracy using the Structural
Hamming Distance (SHD) between the ground-truth and estimated circuits, and assess efficiency
by measuring runtime in seconds. All experiments were performed over three trials on an NVIDIA
A100 machine. We report the mean and standard deviation results in the Table 1.

Cases ACDC SP EAP EAP-ig CircuitLasso
SHD Runtime SHD Runtime SHD Runtime SHD Runtime SHD Runtime

3 7.6±0.06 78.9±2.81 9.0±0.18 112.5±4.89 12.2±0.25 25.1±3.18 5.2±0.13 42.2±4.03 4.9±0.14 10.6±0.03

4 13.7±3.50 118.8±8.45 15.3±3.91 92.4±6.82 19.8±4.76 58.1±7.69 11.1±2.25 61.9±9.16 9.4±2.88 18.34±5.30

8 9.8 ±2.16 121.5±9.81 11.0 ±1.88 204.9±17.92 20.9±4.92 54.8±2.83 7.2±1.29 87.2±7.19 7.4±0.96 50.2±6.43

11 5.5±0.86 89.1±11.97 8.7 ±1.47 117.6±9.81 11.7±2.91 68.7±5.08 4.3±0.89 72.1±6.34 3.9±0.22 21.3±3.08

101 14.2 ±5.11 90.7±7.21 19.5 ±5.14 118.5±18.16 20.9±4.92 48.9±6.01 10.9±4.58 51.7±5.48 9.3±2.91 20.8±2.50

Table 1: The circuit discovery performance in terms of efficiency (runtime in seconds) and accuracy
(SHD) on 5 cases from INTERPBENCH.

According the empirical result in Table 1, we can establish that CMINT is capable of identify-
ing causal relations between model components with accuracy on par with intervention-based ap-
proaches, while simultaneously offering markedly improved computational efficiency.

4.2 CIRCUIT DISCOVERY ON SPARSE AUTOENCODER FEATURES

We now turn to applying CircuitLasso to popular pre-trained LLMs and more realistic tasks,
having shown its efficiency advantages over intervention-based methods in Section 4.1. We adapt
CircuitLasso to learn causal circuits on sparse autoencoder features (as described in Sec-
tion 3.3.2), revealing model behaviors in terms of human-interpretable concepts (Section 4.2.1).
Following Marks et al. (2025), we also leverage insights from learned circuits to improve domain
generalization (Section 4.2.2).
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4.2.1 CASE STUDIES OF PROVIDING INTERPRETATION

Data and Model. We demonstrate our approach on the Corpus of Linguistic Acceptability (CoLA)
task (Warstadt et al., 2018) from the GLUE benchmark (Wang et al., 2018), aiming to reveal the
inner workings of gpt2-small (Nanda & Bloom, 2022) through interpretable features derived from
OpenAI’s pre-trained sparse autoencoders for gpt2-small. The CoLA dataset is (to our knowledge)
a new dataset for mechanistic interpretation studies. It contains 10,657 sentences from 23 linguistics
publications, annotated for grammaticality by the original authors. We conduct our interpretability
experiments on the 8,551 training sentences in the public release.

CircuitLasso on Sparse Autoencoder Features. We extract gpt2-small’s neuron activations on
the M training sentences and corresponding sparse autoencoder features. Please refer to the detailed
learning procedure in Appendix B.

Sparse Feature Interpretation within Learned Circuits. The following paragraphs describe our
method for interpreting the learned circuit and its constituent sparse features by tracing backward
from the prediction target y. Starting with AL,y , we select features in zL ∈ RD that are important
for predicting y. The measure of importance can be either the absolute coefficients |AL,y|, or if we
wish to focus on a particular prompt, the Hadamard product s = |AL,y| ⊙ |zL| ∈ RD between
the absolute coefficients and the absolute activations of zL for this prompt. Suppose the kth sparse
feature zL,k ∈ zL is chosen as an important feature. To uncover the semantic concept encoded by
zL,k, we apply two complementary, cross-validating procedures:

Multi-prompt approach. We identify multiple prompts and the tokens with them that strongly acti-
vate zL,k. By inspecting the collected tokens, we infer the semantic concept encoded by zL,k. For
example, words ending in “-self” consistently activate the sparse feature z12,20726, suggesting that
this feature captures the presence of such words. Examples are illustrated in Table 5, 6, and 7 in
Appendix C.4.

Single-prompt approach. To validate the plausibility of the identified semantic concept for zL,k,
we select a single prompt, systematically vary one or more of its tokens according to the concept,
and observe the resulting changes in zL,k. If altering the tokens causes zL,k to lose activation, the
inferred concept is considered reasonable. For example, in the prompt “He said that himself was
hungry,” the word “himself” (the fifth token) activates z12,20726 to a value of 1.3509. Replacing
“himself” with “him”, “he”, or other alternatives without the suffix “-self” reduces the activation of
z12,20726 to 0. An example is illustrated in Table 8 in Appendix C.4.

With the above multi-prompt and single-prompt approaches, we identify the semantics of impor-
tant sparse features in the final layer. For example, feature z12,20726 captures the concept of “-
self”, z12,3092 corresponds to “ending punctuation”, z12,776 to “thirst/hunger”, and z12,19322 to
“tired/weary”. For each important feature zL,k, we then trace its most influential parent vari-
ables in the previous layer L − 1 using the learned adjacency matrix AL−1,L. As with layer L,
we may choose to focus on the current prompt and define the importance measure as the product
s = | ∂zL,k

∂zL−1
| ⊙ |zL−1| ∈ RD. We then select the most important features (for example z11,6368,

z11,29778, z11,29041, and z11,21518), and interpret their semantics using the same multi-prompt and
single-prompt procedures. Repeating this process across all consecutive pairs of layers yields tree-
shaped circuit paths spanning the transformer blocks, offering intuition into how semantic concepts
are encoded, propagated, and ultimately contribute to task-specific predictions.

Figure 2 presents such a tree-shaped circuit, consisting of sparse features with human-interpretable
meanings across 5 layers. More examples are provided in Appendix C.5. From the circuits in Figure
2, we make the following observations:

Persistence. Certain semantic concepts persist along circuit paths across multiple layers, particu-
larly in the later layers. For example, the concept of “-self” is present in the 20726th feature of layer
12, the 6368th feature of layer 11, the 2985th feature of layer 10, the 9592th feature of layer 9, and
the 15186th feature of layer 8. We highlight circuit paths that capture persistence relations between
consecutive layer features in black.

Merging and Dropping. We also observe that sparse features in later layers can merge seman-
tic concepts from multiple parent features in the preceding layer, or disregard (i.e., drop) certain
concepts contributed by those parent features. For instance, the 10609th feature of layer 9 merges
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Layer 8

No. 20726

-self

No. 6368

himself/itself

No. 29778

-self

No. 29041

Hunger/Thirst

No. 21518

myself/himself

No. 18339

himself

No. 2985  

-self  

No. 26225

Himself/herself

No. 21777
Self/friends 

Mike/no itself

No. 16071

Hunger/thirst

No. 5574

ate/eat

No. 3919

Said that

No. 10609

-self/-self be

No. 9592

-self

No. 19514

.\?\!

No. 22314

Hunger/thirst

No. 10272

Said

No. 13052
Pregnant/hunger

/thirst

No. 23622

Gourmet/meals

No. 27170
Be(was/was 

going to)

No. 27134
Be(was/was 

going to)

No. 19514

.\!

No. 17941

Hunger/thirst

No. 1988
Eat/meals/go

urmet

No. 31180

Said

No. 15186

-self

Layer 9

Layer 10

Layer 11

Layer 12

Persistence.
Merging
Dropping
Causal
Spurious

Figure 2: The learned circuits over SAE features on GPT2-small model. Different colors represent
different types of edges in the computation graph.

concepts from both the 15186th and 27170th features of layer 8. In contrast, the 6368th feature of
layer 11 retains only the concept “himself” and disregards all other forms of “-self” from the 2985th

feature of layer 10. We highlight circuit paths representing propagation in blue and decomlocation
in orange.

Cause-Effects and Spurious Correlations. Our circuits can capture causal relations between fea-
tures that encode cause–effect semantic concepts. For example, the 22314th feature of layer 9 repre-
sents the concept of “hunger/thirst,” which can be considered a cause of the action “ate/eat,” encoded
in the 5574th feature of layer 10. However, our assumption that causal orientatations align with the
computation order results in some circuit paths appearing anti-causal. From a human perspective,
one typically feels hungry before taking actions such as “eat food/meals/gourmet,” yet our circuit
includes a path from the 1988th feature of layer 8 to the 22314th feature of layer 9, which implies
the reverse. Moreover, our circuits also capture spurious correlations. For example, the 29041th

feature of layer 12, which represents “-self,” is spuriously correlated with the “hunger/thirst” con-
cept encoded in the 29041th feature of layer 11. Such correlations are likely introduced by biases
in the training data, such as the frequent co-occurrence of these two semantic concepts within the
same sentence. By analyzing these circuit paths, we can infer the nature of dataset biases and poten-
tially mitigate them through targeted model editing. We next show how such insights from a learned
circuit can be leveraged to improve downstream domain generalization in Section 4.2.2.

Faithfulness and Completeness. To more comprehensively evaluate the quality of our learned cir-
cuits on SAE features, we further assess them on the CoLA dataset using the faithfulness and com-
pleteness metrics, following the standard protocol in Marks et al. (2025). In particular, we introduce
a new ablation strategy: rather than ablating features outside the circuit by replacing them with their
dataset-average values, we ablate edges by removing their direct contributions to the output. Let the
learned circuit be C, and define the model output m = p(Y = grammatically correct) − p(Y =
grammatically wrong). We first apply the standard feature ablation method of Marks et al. (2025)
and compare our results with the intervention-based circuit-learning method SHIFT. To ensure
fairness, we exclude SAE reconstruction errors and attention/MLP SAEs from SHIFT. For our
CircuitLasso approach, we focus only on SAE features within the learned circuit and still ab-
late features in the original LLM. The top two plots in Figure 3 show the node ablation results. Our
learned circuit achieves performance comparable to SHIFT, consistent with the findings in Marks
et al. (2025) that relatively small feature circuits can explain a substantial portion of a model’s be-
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Figure 3: Faithfulness and completeness scores for the learned circuits, evaluated on the CoLA
training dataset using both node ablation and novel-edge ablation. Ideal faithfulness is 1, and ideal
completeness is 0.

havior. We then perform edge ablation on our circuit. Because our sparse-regression framework ex-
plicitly learns edge coefficients, representing the direct influence of each SAE feature on the output,
we can ablate a specific edge by setting its coefficient to zero, thereby removing that dependence.1
The bottom two plots in Figure 3 report these results. The conclusions mirror those from node abla-
tion: a small subset of essential edges, together with their corresponding SAE features, governs the
model’s prediction behavior.

4.2.2 DOWNSTREAM TASK: DOMAIN GENERALIZATION

A common approach in domain generalization is to construct predictors that are robust across do-
mains by removing unintended, domain-variant features, which may be predictive in-distribution
but fail to generalize. Inspired the ability of CircuitLasso to identify and interpret important
features for predicting the downstream target, we investigate whether CircuitLasso can remove
spurious features.

Data, Models and Baselines. We evaluate CircuitLasso for domain generalization on the
same dataset as Marks et al. (2025), the Bias in Bios dataset (BiB) (De-Arteaga et al., 2019). This
dataset consists of professional biographies with the task of classifying an individual’s profession
from their biography. The BiB dataset encodes a spurious semantic concept, gender, based on
which two subsets are constructed: an ambiguous set, where profession and gender are strongly
correlated2, and a balanced set, where profession and gender are independent3. The goal is to
produce a profession classifier that performs accurately on the balanced set but is trained only on the
ambiguous set. While Marks et al. (2025) demonstrate their approach on small to moderate LLMs
(Pythia-70M (Biderman et al., 2023) and Gemma-2-2B (Team, 2024)), we extend their evaluation
to a larger LLM, Gemma-2-9B (Team, 2024). For all three models, we employ the pre-trained
SAEs provided by Lan et al. (2024). Following the evaluation protocol in Marks et al. (2025), we
compare against several baselines: a predictor trained on the ambiguous set (ORIGINAL); a predictor
trained on the balanced set (ORACLE); concept bottleneck probing (CBP, Yan et al., 2023); and
spurious human-interpretable feature trimming (SHIFT, Marks et al., 2025). For existing baseline
SHIFT, we adopt the variant that operates on SAE features with manual inspection and evaluation,
and exclude the versions trained on neurons or without human inspection due to their consistently
inferior performance. We report SHIFT results using both the original linear classifier and a retrained
classifier.

1We do not apply edge ablation to SHIFT, since it does not provide edge-level correlations between SAE
features and the output.

2For example, all professors are assumed to be male, while nurses are assumed to be female.
3The balanced set contains equal numbers of male professors, male nurses, female professors, and female

nurses.
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CircuitLasso for Domain Generalization. We select SAE features from a specific location
of a pre-trained LLM, such as the transformer output at layer 22 in Gemma-2-2B. We ablate spu-
rious features by setting their values to zero and directly feed the resulting SAE feature values into
our trained linear classifier. In addition, similar to SHIFT, we also investigate retraining the linear
classifier on the ablated SAE features. Please refer to Appendix B for more details.

Method Pythia-70M Gemma-2-2B Gemma-2-9B
Profession Gender Worst group Profession Gender Worst group Profession Gender Worst group

ORIGINAL 61.9 87.4 24.4 69.6 79.5 4.1 70.8 78.2 23.4
CBP 83.3 60.1 67.7 90.1 50.2 86.8 94.7 50.0 91.5
ORACLE 93.0 49.4 91.4 95.1 50.2 91.7 95.7 50.0 90.5
SHIFT 88.5 54.0 76.0 72.8 51.6 43.7 77.1 52.8 67.9
SHIFT-retrain 93.1 52.0 89.0 94.2 52.4 92.4 96.0 51.3 90.3

CircuitLasso 90.5 50.1 75.8 77.5 50.7 50.5 81.5 50.3 69.8
CircuitLasso-retrain 94.2 50.6 88.7 95.1 52.8 92.9 96.9 50.5 91.5

Table 2: Prediction accuracy with different LLMs and domain generalization methods.

Method Pythia-70M Gemma-2-2b Gemma-2-9b
# of features Runtime (s) ↓ # of features Runtime (s) ↓ # of features Runtime (s) ↓

SHIFT
49

257.6
65

371.2
71

908.4
SHIFT-retrain 356.3 476.8 1056.0

CircuitLasso
41

36.5
55

47.2
59

107.4
CircuitLasso-retrained 61.9 (17.37%) 72.5 (15.20%) 125.2 (11.98%)

Table 3: Runtime and numbers of selected features for SHIFT versus our CircuitLassomethod.
The runtime does not include manual interpretation time.

Results. Tables 2 and 3 present the accuracy and efficiency of our approach compared to base-
lines. Overall, CircuitLasso consistently achieves competitive or superior results, with clear
efficiency advantages that become more pronounced as model size increases. The prediction out-
comes in Table 2 demonstrate that CircuitLasso can reliably identify spurious correlations from
the learned circuit. Both CircuitLasso and CircuitLasso-retrain slightly outperform SHIFT,
which we attribute to our design choice of directly feeding SAE features into a linear classifier.
This enables prediction using disentangled semantic concepts, allowing more effective ablation of
spurious features and retraining. Efficiency results in Table 3 further underscore the strengths of
CircuitLasso, as it requires fewer features and substantially less runtime than SHIFT, partic-
ularly for large models. These findings confirm that CircuitLasso not only achieves stronger
generalization but also scales more efficiently without compromising interpretability.

5 CONCLUSION AND DISCUSSION

In this work, we presented a new circuit learning method, CircuitLasso, based on Lasso re-
gression. Our work offers a novel and effective solution to the challenges of polysemanticity and
high dimensionality in LLM circuit learning. By shifting the focus from polysemantic neurons to
the monosemantic features extracted by SAEs and applying a scalable sparse regression approach,
we are able to discover circuits that are both accurate and interpretable. Our method’s ability to
handle high-dimensional data, its reliance on observational data, and the sparsity of its learned cir-
cuits represent significant advantages over existing baselines. We believe this research offers new
insights on how LLMs work and can be impactful for various downstream applications, such as
domain generalization.
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Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023a.

Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. URL https://arxiv.
org/abs/2304.14997, 2, 2023b.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
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A THEORETICAL PROOFS

A.1 PROOF FOR PROPOSITION 3.1

Proof. Solving Eq. (3) is equivalent to solve N LASSO problems. The nth regression has most pn ≤
⌊n
d ⌋d predictors. Per iteration cost for a single regression is roughly O(pndM). For N regressions,

we have O
(
Md

∑N
n=1 pn

)
= O(ML(L−1)d2

2 ). For a smooth loss function, first-order methods
typically require O( 1ϵ ) iterations to reach an error tolerance ϵ. Hence the total computational cost

over all iterations is O(ML(L−1)d2

2ϵ ).

A.2 PROOF FOR PROPOSITION 3.2

Proof. Assume d to be model hidden dimension, ntoken to be the tokens sequence length, h to be the
number of attention heads, so head dimension being k = d

h , and f being the feedforward expansion
factor, for one transformer block:

• Q/K/V projections: ≈ 6ntokend
2

• QKT across all heads: ≈ 2n2
tokend.

• Attention-weighted V across heads: ≈ 2n2
tokend

• Output projection: ≈ 2ntokend
2

• Feed-forward network (two linear layers d → fd → d: ≈ 4fntokend
2

For the forward pass, the asymptotic complexity is approximately:

O(ntokend
2(8 + 4f) + 4n2

tokend)

For the backward pass, the asymptotic complexity is approximately 2 to 3 times forward passes, we
take the lower bound here and approximate it as:

O(ntokend
2(16 + 8f) + 8n2

tokend)

Hence, for 2 forward passes and one backward pass of M observations across S blocks, we have
computational cost:

O
(
16MSntokend

2(2 + f) + 16MSn2
tokend

)
The linear approximation regarding L locations: O(MLd), which is usually ignorable compared to
the computational cost of forward and backward passes. Hence for EAG-ig, the roughly computa-
tional cost is O

(
16MSntokend

2(2 + f) + 16MSn2
tokend+MLd

)
.

If ntoken ≫ d, then the dominant term is 16MSn2
tokend, to have efficiency advantage, we have to

achieve:

16MSn2
tokend >

ML(L− 1)d2

2ϵ

=⇒ n2
token >

L(L− 1)d

32Sϵ

=⇒ ntoken >

√
L(L− 1)d

32Sϵ

(6)
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Else if d ≫ ntoken, then the domain term is 16MSntokend
2(2 + f), to guarantee efficiency, we

must have:

16MSntokend
2(2 + f) >

ML(L− 1)d2

2ϵ

=⇒ n2
token >

L(L− 1)

32S(2 + f)ϵ

=⇒ ntoken >

√
L(L− 1)

32S(2 + f)ϵ

(7)

B EXPERIMENT DETAILS

CircuitLasso on Neurons. We begin by collecting activations from the model neurons. To
ensure fairness, we use the same set of input prompts as the baselines. For example, in each case,
ACDC employs two sets of data inputs: a clean run with M input prompts, each with ntoken tokens,
i.e., an M × ntoken array of tokens Tclean, and a corrupted run of the same dimensionality, an M ×
ntoken array Tcorrupted. Our approach combines these two runs into a single dataset, an array T =
(Tclean,Tcorrupted) of 2M ×ntoken tokens, which is then used to generate neuron activations at various
locations in the LLM. Given T and a pre-trained model, we obtain neuron activations at a location i
with shape d×2M×ntoken and average over tokens to produce activations Hi ∈ Rd×2M . Repeating
this process across all L locations and sorting them according to the computation order yields H̃ ∈
RLd×2M . Substituting H̃ , the collected data matrix with N = Ld dimensions and 2M observations
into Eq. (3), we aim to learn a weighted adjacency matrix A ∈ RN×N that encodes the causal
relations between neuron locations. Finally, we infer the causal circuit.

CircuitLasso on Sparse Autoencoder Features. We extract gpt2-small’s neuron activations
on the M training sentences. We select the final outputs from each transformer block (layer) as
our locations of interest. Given a prompt with ntoken tokens, we obtain transformer outputs at the
ith layer with shape d × ntoken and the corresponding sparse autoencoder features with shape D ×
ntoken. We then collect sparse autoencoder features for all M prompts and average across tokens to
produce sparse feature activations Zi ∈ RD×M . Repeating this across all L layers yields our dataset
{Z1,Z2, . . . ,ZL}. In our setting, L = 12, d = 768, D = 32,768, and M = 8,551. For the CoLA
task, the prediction target y indicates whether a sentence is linguistically acceptable. Substituting
{Zi}Li=1 and y into Eq. (4) and Eq. (5), we learn weighted adjacency matrices between consecutive
layers, {Ai,i+1}L−1

i=1 , and the weighted adjacency matrix between the final layer sparse autoencoder
features zL and the prediction target y, i.e., AL,y .

CircuitLasso for Domain Generalization. We select SAE features from a specific location of
a pre-trained LLM, such as the transformer output at layer 22 in Gemma-2-2B. For each prompt, we
average the D-dimensional SAE features at this location over tokens and collect them across all M
prompts in the training data, producing Zs ∈ RD×M . Substituting Zs and the target observations
y = (y1, y2, · · · , yM ) ∈ RM into Eq. (5), we estimate the weighted adjacency matrix As,y ∈ RD

and identify important features with large absolute coefficients. This process is equivalent to training
a sparse linear classifier on the SAE features, which we later exploit for profession prediction. From
As,y , we further interpret the semantics of the important features using our proposed multi-prompt
and single-prompt approaches (Section 4.2.1) and manually identify spurious features associated
with gender. Unlike the SHIFT method of Marks et al. (2025), which decodes SAE features into
neuron activations after ablation, we ablate spurious features by setting their values to zero and
directly feed the resulting SAE feature values into our trained linear classifier. In addition, similar
to SHIFT, we also investigate retraining the linear classifier on the ablated SAE features.
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C INTERPRETABILITY ON SPARSE FEATURES CIRCUITS

C.1 PRELIMINARY OF SPARSE AUTOENCODERS

Cunningham et al. (2023) uses a ReLU activation with L1 sparsity regularization. Subsequent work
explores alternative activation functions σ(·) to extract desired SAE features. Rajamanoharan et al.
(2024) introduces a threshold to determine the minimum pre-activation for feature activation, while
Gao et al. (2024) and Bussmann et al. (2024) enforce sparsity by selecting the top K features.
Dunefsky et al. (2024) proposes Transcoders, which are similar to SAEs, but focusing on training
interpretable approximations of MLPs. In this work, we employ the following pre-trained LLMs
and SAEs:

• The open-source GPT2-small SAEs for all sublayers of the open-weights GPT2-small
model. These SAEs use a ReLU-linear encoder with D = 32768 and L1 sparsity regu-
larization.

• The open-source Pythia-70M SAEs for all sublayers of the open-weight Pythia-70M. These
SAEs use a ReLU-linear encoder with D = 64× d and L1 sparsity regularization.

• The open-source Gemma Scope SAEs for all sublayers of the open-weights Gemma-2-2B,
Gemma-2-9B models. These SAEs use the JumpReLUlinear encoder and set D = 8× d.

C.2 ABLATION STUDY OF SPARSITY CONSTRAINT

Table 4 presents an ablation study on the sparsity coefficient λ for circuit discovery between the last
layer sparse features and prediction target. When λ = 0, the model achieves the highest training
accuracy (99.36%) but suffers severe overfitting, as reflected in a large performance drop on the test
set (71.10%). Introducing a small sparsity constraint (λ = 10−5) improves test accuracy to 72.77%,
the best among all settings, indicating enhanced generalization. Larger values of λ further enforce
sparsity but lead to higher training loss and a notable decline in both training and test accuracy,
suggesting that excessive sparsity harms the model’s capacity to capture meaningful circuit structure.
We therefore select λ = 10−5 as the optimal setting, as it achieves the best test accuracy and
generalization ability while preserving a sparse, interpretable circuit structure.

λ
Training Set Test Set

Prediction Loss L1 Loss Prediction Accuracy (%) Prediction Loss Prediction Accuracy (%)

0 0.0612 - 99.36 0.9977 71.10
10−5 0.1741 9257.6 95.70 0.6684 72.77

5 × 10−5 0.3498 1898.7 85.44 0.5566 72.48
5 × 10−4 0.5535 45.3 72.14 0.5566 70.28
10−4 0.6143 0.5 70.44 0.6283 69.14

Table 4: Ablation study of sparsity constraint coefficient λ for circuit discovery between last layer
zL and prediction target y.

C.3 STATISTICS OF LEARNED CIRCUIT WEIGHTED ADJACENCY MATRICES

Figure 5 examines the coefficient distribution |AL,y| under the best setting (λ = 10−5). We observe
that most coefficient values are extremely small, with 82.2% below 0.01, 83.3% below 0.10, 86%
below 0.41, suggesting that only a small subset of features contribute substantially to the prediction.
The top 5 essential features clearly dominate the distribution, highlighting the effectiveness of the
sparsity constraint in filtering out irrelevant features and isolating semantically interpretable ones.

C.4 SEMANTIC CONCEPTS ENCODED IN SPARSE FEATURES

C.5 SPARSE FEATURES CIRCUITS
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Absolute CoefficientsIndices
12.313820726
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Figure 4: The distribution of |AL,y| and the selected top 5 essential features.

Prompts Values of z12,20726 Values of z12,20726 for each token

Kiss himself . 0.3051 (0, 0, 0, 1.5254 , 0)
This movie just watches itself . 0.1861 (0, 0, 0, 0, 0, 1.3027 , 0)
This window just opens itself . 0.1759 (0, 0, 0, 0, 0, 1.2311 , 0)
This list includes my name on itself . 0.1697 (0, 0, 0, 0, 0, 0, 0, 1.5277 , 0)
This silver polishes itself . 0.1692 (0, 0, 0, 0, 0, 1.1844 , 0)
He said that himself was hungry 0.1689 (0, 0, 0, 0, 1.3509 , 0, 0, 0)
Every picture of itself arrived. 0.1665 (0, 0, 0, 0, 1.1652 , 0, 0)
Bill understands Mary and himself . 0.1638 (0, 0, 0, 0, 0, 1.1467 , 0)
Myself saw me 0.1602 (0, 0, 0.8009 , 0, 0)

Table 5: Multi-prompt approach for identifying semantic concepts for sparse features z12,20726.

Prompts Values of z12,776 for each token

Hun ger fainted Sharon. (0, 0.9980 , 3.3986 , 0, 0, 0, 0)
Many people were dying of thirst . (0, 0, 0, 0, 0, 0, 2.0910 , 0)
One people was dying of thirst . (0, 0, 0, 0, 0, 0, 1.8140 , 0)
John whined that he was hungry . (0, 0, 0, 0, 0, 0, 0, 0, 1.9004 , 0)
Many soldiers have claimed bottled water satisfies thirst best. (0, 0, 0, 0, 0, 0, 0, 0, 1.9243 , 0, 0)

Table 6: Multi-prompt approach for identifying semantic concepts for sparse features z12,776.

Prompts Values of z12,19322 for each token

The teacher became tired of the students. (0, 0, 0, 0, 2.7252 , 1.0383 , 0, 0, 0)
The president looked weary . (0, 0, 0, 0, 2.1888 , 0)
Genie intoned that she was tired . (0, 0, 0, 0, 0, 0, 0, 0, 2.6658 )
John placed him busy . (0, 0, 0, 0, 1.5510 , 0)
Visiting relatives can be boring . (0, 0, 0, 0, 0, 0, 1.8287 , 0)

Table 7: Multi-prompt approach for identifying semantic concepts for sparse features z12,19322.
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Prompts Values of z12,3092 for each token

He said that himself was hungry . (0, 0, 0, 0, 0, 0, 0, 6.0688 )
He said that himself was hungry yet (0, 0, 0, 0, 0, 0, 0, 0 )
He said that himself was hungry , (0, 0, 0, 0, 0, 0, 0, 0 )
He said that himself was hungry ? (0, 0, 0, 0, 0, 0, 0, 3.4722 )
He said that himself was hungry ! (0, 0, 0, 0, 0, 0, 0, 3.7391 )

Table 8: Single-prompt approach for identifying semantic concepts for sparse features z12,3092.

Layer 8
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./!/?

No. 29070

./!

No. 4212

./!/?

No. 27814
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,/!/? & 

/endoftext/
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./!/?

No. 2985  

-self  

No. 11753

./!/?
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Said that
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No. 9592
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.\?\!

No. 10314
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No. 19514

.\!
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./!/?

No. 1988
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Figure 5: The learned circuit over SAE features on GPT2-small model. Starting with feature
No.3072 in layer 12.
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