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ABSTRACT

We introduce X-PlugVid, a unified framework designed to seamlessly adapt pre-
trained image-based plug-and-play modules for video diffusion models, facilitat-
ing controllable video generation without the need for retraining. This framework
leverages a spatial-temporal adapter to effectively bridge the gap between image
and video diffusion models. Specifically, we adopt a frozen copy of a large-scale
pretrained image diffusion model (e.g. Stable Diffusion v1.5) as spatial prior.
Then we train a spatial-temporal adapter to convert the prior into temporally con-
sistent guidance for video diffusion models (e.g. SVD). To further enhance the
effectiveness of image plugins in guiding video models, we introduce a timestep
remapping strategy. Recognizing that denoising is an entropic reduction process,
this strategy selects priors from later timesteps of the image model, which contain
richer information, to be injected into the video models, optimizing the quality and
consistency of the generated videos. Comprehensive experimental evaluations of
X-PlugVid demonstrate its broad compatibility with diverse operational condi-
tions and different plugins, confirming that leveraging priors from a pretrained
diffusion model can minimize redundant training and enable versatile, control-
lable video generation.

1 INTRODUCTION

Recent diffusion models have made significant advancements in generating high-quality im-
ages (Podell et al., 2023; StabilityAI; Midjourney; Li et al., 2024) and videos (Blattmann et al.,
2023a; Zhang et al., 2023d;b; Wang et al., 2023b) from text descriptions. Despite these successes,
controlling the structure and details of generated images using only text remains challenging. There-
fore, many studies (Zhang et al., 2023c; Mou et al., 2023) have focused on controlling the image
generation process by incorporating additional conditioning inputs such as bounding boxes (Li et al.,
2023b), reference object images (Ruiz et al., 2023; Li et al., 2023a), and segmentation maps (Xie
et al., 2023; Avrahami et al., 2023). These methods typically involve training a plug-and-play mod-
ule, often referred to as plugins, on the basis of a large-scale pretrained image diffusion model to
achieve conditioning. Inspired by these approaches, several studies (Zhang et al., 2023e; Chen et al.,
2023b; Lin et al., 2024) attempt to replicate this success in video generation.

Similar to image generation, ControlVideo (Zhang et al., 2023e) proposes a training-free method to
use image plugins for video generation, while Control-A-Video (Chen et al., 2023b) achieves the
same goal by introducing an additional training-based temporal module. However, these methods
have some issues: 1) they lack flexibility and cannot be easily transferred to different pretrained
models. For instance, a plugin module developed for Control-A-Video cannot be readily transferred
to other video models like SVD. 2) These approaches require extensive training data. To train each
plugin, it’s necessary to label specific video conditions such as video depth, sketches, and bound-
ing boxes, which is more costly and time-consuming than that for images. In contrast, the image
diffusion models already benefit from numerous effective plugins facilitating controlled image gen-
eration. This raises a question: can these plugins designed for images be effectively adapted for
video generation models?. Thus, in this work, we explore the application of image-based plugins
to video models for video generation. Notably, we only focus on image plugins whose function is
spatial control (e.g. ControlNet (Zhang et al., 2023c), T2I-Adapter (Mou et al., 2023)) in this work.
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Recent research (Ran et al., 2024) has demonstrated that the domain gap between two different
versions of image models can be bridged effectively with a well-designed adapter. This allows
the upgraded model to be universally compatible with all plugins of the base model without the
need for retraining. However, when extending this approach to bridge image and video models, we
must also consider the modality gap. Compared to image data, videos represent higher-dimensional
and more complex data distributions than images. Furthermore, by analyzing the principles of X-
Adapter (Ran et al., 2024) and ControlNet (Zhang et al., 2023c), we found that the injection of
high-frequency additional features at every timestep is essential for guidance while previous works
overlook this point.

In this work, we propose X-PlugVid to equip the video diffusion model with pretrained image plu-
gins for high-quality and consistent controllable video generation without the need for retraining.
X-PlugVid universally allows all spatial-control plugins to function with video diffusion models
by training a generic adapter. Unlike prior work (Ran et al., 2024), we extend the spatial adapter
to a spatial-temporal adapter, enabling it to simultaneously possess domain adaptation and tempo-
ral modeling capabilities. Additionally, by analyzing the spectral characteristics of the adapter, we
found that it tends to learn low-frequency components to generate smooth background and camera
movements but lacks high-frequency features, often resulting in the loss of the subject’s appearance.
To address this issue, high-frequency pass filtering is applied to the adapter’s input.

To enable better guidance, we further analyze the conditioning principles of ControlNet (Zhang
et al., 2023c). Based on our findings, we propose a novel timestep remapping method. Specifically,
we found that the features of the image diffusion model in the early steps contain insufficient in-
formation for effective guidance, though early timesteps are crucial for determining low-frequency
components like layout. To improve guidance at these critical early timesteps, we have moved away
from synchronously mapping the timesteps of the image and video model backbones. Instead, we
strategically map the later timesteps of the image model, which contain richer information, to the
earlier timesteps of the video model. This adjustment allows us to inject more useful information
early in the video generation process, improving the overall quality and coherence of generated
videos.

In our experiments, we first demonstrate that our method shows good generalizability across various
types of video models, i.e., text-to-video models like Hotshot-XL (Mullan et al., 2023) and image-
to-video models like (Zhang et al., 2023d). Next, we demonstrate that our approach shows strong
compatibility with various types of image plugins and surpasses previous methods for controllable
video generation. Lastly, we provide comprehensive ablations for the design choices of X-PlugVid
and qualitative examples.

In summary, the contribution of this paper can be summarized as:

• We target a new task in the large-scale generative model era where we efficiently reuse
pretrained image plugin for controllable video generation.

• We analyze the mechanism of utilizing pretrained diffusion models as spatial prior. Based
on our findings, we design a spatial-temporal adapter for guidance and introduce a novel
timestep remapping strategy to enhance the adapter’s guidance ability.

• Experiments show the proposed method demonstrates compatibility with various condi-
tions and plugins and surpasses previous methods in terms of performance.

2 RELATED WORKS

Text-to-video and Image-to-video models. The field of video generation has witnessed significant
progress recently due to the advancement of diffusion models (Sohl-Dickstein et al., 2015; Dhari-
wal & Nichol, 2021) and large-scale text-video dataset (Chen et al., 2024b). These models generate
videos from text descriptions or images. Imagen Video (Ho et al., 2022a) utilizes a cascading struc-
ture for high-resolution text-to-video generation while Video Diffusion Model (Ho et al., 2022b)
expands the standard image architecture to accommodate video data and trains on both image and
video together. Other methods develop video models based on powerful text-to-image models like
Stable Diffusion (Rombach et al., 2021), adding extra layers to capture cross-frame motion and en-
sure consistency. Among these, Tune-A-Video (Wu et al., 2023) employs a causal attention module
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and limits the training module to reduce computational costs. Align-Your-Latents (Blattmann et al.,
2023b) efficiently transforms T2I models into video generators by aligning independently sampled
noise maps. AnimateDiff (Guo et al., 2024) utilizes a plug-and-play temporal module to enable
video generation on personalized image models (StabilityAI). Other text-to-video works include
marrying latent and pixel space (Zhang et al., 2023b) and cascaded genration (Wang et al., 2023b).
To address high-quality video generation tasks, several works (Zhang et al., 2023d; Chen et al.,
2023a; 2024a) develop image-to-video models and all of them achieve remarkable pixel quality.

Controllable video generation. Since text prompts often provide unclear guidance regarding the
motions and spatial structure of videos, making such control mechanisms is essential in video gen-
eration. For high-level control over video motion, some work proposes to use motion trajecto-
ries (Yin et al., 2023), pose sequences (Ma et al., 2024) while some work uses Low-Rank Adapta-
tions(LoRA) (Hu et al., 2021) to learn specific motion patterns (Zhao et al., 2023b). For fine-grained
spatial structure control, Gen-1 (Esser et al., 2023) first introduces the use of depth sequences as
guidance. VideoComposer (Wang et al., 2023a) incorporate several conditions during training while
other methods (Chen et al., 2023b; Zhang et al., 2023e) adopt pretrained image ControlNet (Zhang
et al., 2023c) for video generation. Though these methods achieve fine-grained controllability, they
often require a substantial amount of computational resources for training. We aim to reduce the
required computational resources by efficiently reusing pretrained image plugins.

Parameter-Efficient Transfer Learning. Our task is related to parameter-efficient transfer learning
as well since our goal is to eliminate the domain and modality gap between image and video dif-
fusion models. The emergence of large-scale pre-trained models like CLIP (Radford et al., 2021),
Stable Diffuions (Rombach et al., 2021) has underscored the significance of effectively transfer-
ring these foundational models to downstream tasks. Parameter-efficient Transfer Learning (PETL)
methods (Houlsby et al., 2019; Zhang et al., 2023a; Zhao et al., 2023a) introduce additional pa-
rameters to the original model to bridge the domain gaps between the pre-trained dataset and target
tasks. X-Adapter (Ran et al., 2024) propose a spatial adapter to bridge diffusion models of different
versions and enable plugins pretrained on old version (e.g. SD1.5 (StabilityAI)) to be directly ap-
plied to upgraded version(e.g. SDXL (Podell et al., 2023)). Similar to X-Adapter, our objective is
to effectively reuse pretrained image plugin on video diffusion model.

3 METHOD

3.1 TASK DEFINITION

Frozen
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Video
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Model

Canny

ControlNet

(a) Our task

...

(b) Retraining every plugin

Depth
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Adapter
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Adapter

Depth

ControlNet

Image 

Model
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Figure 1: Task Definition. Different
from previous works, we train a single
adapter to enable all spatial-control im-
age plugins work with video models

We aim to design a universally compatible adapter so
that pretrained image plugins whose function is spa-
tial control can be directly used in video diffusion
model without plugin-specific retraining, as illustrated
in Fig. 1(a). Typically, adapting image plugins to video
models might involve retraining each plugin separately,
as shown in Fig. 1(b). For instance, considering the Con-
trolNet (Zhang et al., 2023c) family, which comprises
over twenty distinctive plugins, such retraining would de-
mand excessive and repetitive training efforts to maintain
the original functionalities of each plugin. In contrast,
our method only requires training a single backbone-to-
backbone adapter. This allows for the seamless integra-
tion of all pretrained spatial-control plugins from the im-
age model, significantly enhancing efficiency and reduc-
ing the resources required for adaptation.

3.2 PRELIMINARY

Denoising Diffusion Probabilistic Models (Ho et al., 2020) DDPMs are designed to capture
the underlying data distribution by leveraging two mechanisms: diffusion and denoising. Starting
with an input data sample z ∼ p(z), the diffusion process incrementally introduces noise into z
following formula zt = αtz + σtϵ, where ϵ ∼ N (0, I). This process is a Markov chain consisting
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of T steps, with the Signal-to-noise(SNR) ratio σ2
t /α

2
t decreasing over time. Ideally, zT will follow

pure Gaussian noise. In the denoising stage, a denoiser ϵθ is employed to predict added noise ϵ.
Formally, ϵθ is trained using the following objective:

min
θ

Ez,ϵ∼N(0,I),t∼ Uniform (1,T ) ∥ϵ− ϵθ (zt, t)∥22 , (1)

Latent diffusion models (Rombach et al., 2021) LDM extends DDPMs by operating in the latent
space. It leverages a pretrained VAE to compress the RGB image z to latent space using VAE’s
encoder ε. After adding noise to the latent, ϵθ will denoise it iteratively. Formally, ϵθ is trained using
following formula:

min
θ

Ez,ϵ∼N(0,I),t∼ Uniform (1,T ) ∥ϵ− ϵθ (ε(zt), t)∥22 , (2)

3.3 X-PLUGVID

We introduce a novel framework termed X-PlugVid, which effectively reuses image plugins for
video controllable generation. The core of our method is based on two crucial insights on con-
trollable generation and universal adaptation. By analyzing the mechanisms of ControlNet (Zhang
et al., 2023c) and X-Adapter (Ran et al., 2024), we found that: 1) The key to controllable generation
is the injection of high-frequency control patterns at every desnoising step. 2) Pretrained image dif-
fusion models can serve as priors for spatial control since their feature maps contain the necessary
patterns. These patterns can be manipulated by plugins and transferred by adapters, which is the
reason for X-Adapter (Ran et al., 2024)’s universal adaptation. Based on our findings, we propose
a spatial-temporal adapter to bridge the image and video models. Additionally, a high-pass filter is
applied to the adapter’s input to ensure high-frequency components are adapted seamlessly. Finally,
we propose a novel timestep remapping strategy to provide better guidance at early timesteps.

3.3.1 HOW DO CONTROLNET AND X-ADAPTER WORK?

Condition

ControlNet

SD + 

ControlNet

t=1000 t=500 t=1

Figure 2: Visualization of feature maps of
ControlNet and Stable Diffusion. The diffu-
sion model’s feature maps and ControlNet’s
outputs exhibit high similarity.
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Figure 3: Frequency Characteristics of Stable Dif-
fusion w. and w.o. ControlNet. Compared to the
diffusion model, the high-frequency components
dominate the output of ControlNet

We first investigate the mechanisms behind the success of ControlNet (Zhang et al., 2023c) and
X-Adapter (Ran et al., 2024)

How Does ControlNet work? ControlNet copies the encoder of the backbone, which is always a
UNet (Ronneberger et al., 2015), takes the condition as input and adds its output to the backbone’s
decoder. To visualize ControlNet’s output feature map, we first compute the average feature map
along the channel dimension and normalize it to [0, 1]. As depicted in Fig. 2, ControlNet generates
the condition pattern at every timestep and injects them into the backbone as guidance. Moreover,
by analyzing the frequency characteristics of ControlNet’s outputs as shown in Fig. 3, we find that
ControlNet mainly produces high-frequency patterns. Based on these findings, we conclude that
ControlNet’s primary mechanism is injecting high-frequency condition patterns into the backbone
at every timestep.

How Does X-Adapter work? X-Adapter (Ran et al., 2024) discovers that after applying ControlNet
to a diffusion model, the model’s feature maps and ControlNet’s outputs exhibit similarity, as shown
in Fig. 2. Based on this finding, X-Adapter takes diffusion models’s feature maps as prior and
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Figure 4: Method Overview. In training, different noises are added to image and video model in
the latent domain. After sampling timestep t for video model, we get corresponding image model
timestep using remapping function Fremap. Note that no plugin is involved during training. In
inference, the denoising process is divided into two stages. In the first stage, only image model runs
until it reaches timestep T

n . In the second stage, two backbones inference together under remapped
timesteps.

transfers them from the base backbone’s space to the upgraded backbone’s space while preserving
their original patterns. Since these adapted features already contain the necessary condition patterns,
they can serve as guidance for the upgraded backbone. Additionally, plugins like ControlNet or T2I-
Adapter (Mou et al., 2023) can also control the generation process through the base model. This
method demonstrates that pretrained backbones can be utilized as spatial prior, enabling universal
adaptation.

However, one important aspect X-Adapter overlooks is that, unlike ControlNet, the feature map
patterns of the backbone contain redundant low-quality components and are subtle at early timesteps
as shown in Fig. 2 and Fig. 3. Applying spatial priors to video models also remains unexplored.
Therefore, our work mainly focuses on how to better utilize the spatial priors of pretrained diffusion
models.

3.3.2 SPATIAL-TEMPORAL ADAPTER

Based on our analysis in Sec. 3.3.1, though the image diffusion model can be used as spatial prior,
it lacks temporal modeling, which makes it challenging to be directly applied to video diffusion
models. To overcome this domain gap, we add a temporal module to our adapter. In detail, X-
PlugVid is built upon Stable Diffusion v1.5 (StabilityAI) to ensure compatibility with the plugins’
connectors. Within certain decoder layers, extra mapping networks are added and trained. These
mapping layers are referred to as the adapter in this paper. The adapter’s function is to map features
from the space of the image model to the video model (e.g., SVD (Blattmann et al., 2023a)) for
guidance. Since the features from the image model are temporally inconsistent, directly utilizing
these adapted features as guidance would result in the degradation of video quality and consistency.
Therefore, we introduce a temporal attention (Vaswani et al., 2017) module to ensure temporal
coherence.

Additionally, we discovered that the feature maps of the image model contain abundant low-
frequency information. According to our analysis in Sec. 3.3.1, ControlNet’s outputs maintain at
high frequency across all timesteps, whereas diffusion spatial prior i.e. feature maps, does not meet
this condition. Moreover, our experiments found that these components often adversely affect the
adapter’s guidance since they always contain low-quality parts as shown in Sec. 4.4. Thus, we apply
high-pass filtering to the image features before feeding them to the adapter to filter these compo-
nents. Formally, suppose we have N adapters and Mn(·) denotes the nth trained mapper, given
multi-scale feature maps Fimg = {F 1

img,F
2
img, ...,F

N
img} from image model, the guidance feature

fusion can be defined as the following formulation:

F n
video = F n

video +Mn(H(F n
img)), n ∈ {1, 2, ..., N} (3)
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where H() is a high-pass filter, F n
video denotes video model’s nth decoder layer to fuse guidance

feature.

3.3.3 TIMESTEP REMAPPING

(a) Synchronization

(b) Remapping

Timestep 
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Figure 5: Timestep Remapping. (a) X-
Adapter adopts synchronous timesteps. (b)
We map later timesteps from the image
model to earlier steps of the video model to
provide sufficient guidance in the early steps.
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Figure 6: Denoising Trajectory of video model
under various settings. With timestep remapping,
the adapter provides sufficient guidance during
the early timesteps, allowing its trajectory to de-
viate from the original I2Vgen-XL trajectory and
achieve better results

Our temporal adapter now possesses the capability to convert the priors of diffusion models into
guidance. According to our analysis, it is also necessary to output stable patterns at each timestep.
However, the priors from the image diffusion model do not contain sufficient information in the early
timesteps. Directly applying it would result in lack of guidance in early timesteps. To confirm this
issue, we visualize the denoising trajectories of the video model with and without the involvement
of the adapter. By performing Principal Component Analysis (PCA) on denoising results at each
step and taking the first two components, we plot the denoising trajectory as shown in Fig. 6. It is
obvious that the adapter’s guidance is too subtle in the early stages, leading to suboptimal results
shown in Fig. 8. To address this issue, we propose a novel method denoted as timestep remapping.

Generally, the backward progress of two backbones are synchronized throughout the entire denois-
ing process (Ran et al., 2024). It means that the timesteps of two backbones are always synchronized
and put in a one-to-one correspondence during training and inference. In our method, the timesteps
are no longer synchronized; later timesteps from the image model are mapped to earlier steps of the
video model as shown in Fig. 5. The motivation is that later timesteps of the image model contain
more useful information. Injecting this information into the early timesteps of video model can
enhance the guiding capability of the adapter. Formally, given timestep tvid of video model, its
corresponding image model timestep timg is computed using following formulation:

timg = Fremap(tvid, n) (4)

Fremap(tvid, n) =

⌈
tvid
n

⌉
, n ∈ {1, 2, 3..., T} (5)

where n is the hyperparameter for timestep remapping, T is the total number of timesteps, Fremap is
the remapping function. When n = 1, timestep remapping is equivalent to timestep synchronization.
We observe that n = 2 is suitable in most cases. We give detailed ablations on timestep remapping
strategy in the experiments Sec. 4.4.

3.3.4 TRAINING AND INFERENCE

As shown in Fig. 4, given a video diffusion model, X-PlugVid is trained in a plugin-free manner
for video generation. Similar to X-Adapter (Ran et al., 2024), to ensure that image plugins can
be seamlessly inserted, we fix two backbones’ parameters and only update the temporal-spatial
adapter from scratch. We use the same training objective in standard LDMs (Rombach et al., 2021).
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Formally, given input video frames V , we first embed it to the latent spaces z0 and z0 via image
and video autoencoder, respectively. Then, we randomly sample a timestep tvid of video model, and
adopt timestep remapping as introduced in Sec. 3.3.3 to get image model’s timestep timg . After that,
we add noise to the latent space, and produce two noisy latent zt and zt for denoising. X-PlugVid is
trained with the video diffusion network ϵθ to predict the added noise ϵ by:

Ez0,ϵ,tvid
∥ϵ− ϵθ (zt, tvid, zt, timg)∥22 . (6)

After training, the plugins of image models can naturally be added for their abilities.

During inference, to align with the remapping strategy in training, the inference process is divided
into two stages. In the first stage, the image model runs independently until timestep T

n , where n is
the remapping hyperparameter. In the second stage, both backbones perform inference simultane-
ously and we ensure that at each step timg and tvid, the timesteps of two backbones, always satisfy
timg = Fremap(tvid, n).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We implement X-PlugVid using Stable Diffusion v1.5 (StabilityAI) as the image model, I2VGen-
XL (Zhang et al., 2023d) and Hotshot-XL (Mullan et al., 2023) as the main video model. Notice
that we also train our method for SVD (Blattmann et al., 2023a), which shows promising results as
shown in the appendix. The adapter of X-PlugVid is placed at the image model’s middle block and
the first three decoder blocks, containing four mapping layers. For training, we randomly sample a
subset of Panda70M (Chen et al., 2024b) training set containing 100k text-video pairs for training.
We utilize the AdamW optimizer with a learning rate of 1e−5 and a batch size of 8. The model is
trained for 5 epochs using 4 NVIDIA A100 GPUs.

4.2 QUALITATIVE RESULT

As depicted in Fig. 7, we show the qualitative results of our method on both I2VGen-XL (Zhang
et al., 2023d) and Hotshot-XL (Mullan et al., 2023) using different conditions, which demonstrates
compatibility across various conditions. Additionally, our method is also compatible with other
plugins besides ControlNet, such as T2I adapter (Mou et al., 2023). We also provide video results
in the appendix.

4.3 COMPARISONS

Table 1: Comparison of various methods on depth map and canny edge.

Method Depth Map Canny Edge
FID (↓) Optical Flow Error (↓) FID (↓) Optical Flow Error (↓)

ControlVideo (Zhang et al., 2023e) 39.16 6.27 39.78 6.21
Control-A-Video (Chen et al., 2023b) 35.14 5.02 36.01 4.81
VideoComposer(Wang et al., 2023a) 33.24 5.72 - -
Hotshot-XL + X-PlugVid (Ours) 30.62 3.49 30.84 3.12
I2VGen-XL + X-PlugVid (Ours) 29.21 3.31 29.63 3.02
Performance of original video model
I2VGen-XL(Zhang et al., 2023d) 29.09 - 29.09 -
Hotshot-XL(Mullan et al., 2023) 30.51 - 30.51 -

Experiment setting. We conduct experiments using X-PlugVid on text-to-video generation back-
bone Hotshot-XL (Mullan et al., 2023) as well as image-to-video generation backbones I2VGen-
XL (Zhang et al., 2023d). We choose two representative spatial-control plugins, canny and depth
controlnet (Zhang et al., 2023c) to evaluate the performance of the proposed method. These two
kinds of controlnet represent dense and sparse conditions seperately, which covers most cases in
controllable generation. We utilize the Panda70M (Chen et al., 2024b) validation set, which contains
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Lineart Map

I2VGen-XL Hotshot-XL

“A car driving on a street”

“There is a black cat watching the camera”

“A man is skiing”

“A Triceratops is running”

“A cute cat raises its head”

“A dark street at night”

“A paper rabbit”“A brown bear walking on some rocks”

ControlNet:

Depth Map

Figure 7: Qualitative Result. Our X-PlugVid successfully adapts image plugins (ControlNet (Zhang
et al., 2023c) and T2I-Adapter (Mou et al., 2023)) to video models (I2VGen-XL (Zhang et al.,
2023d) and Hotshot-XL (Mullan et al., 2023)) and exhibits compatibility with different conditions
and plugins.

2000 text-video pairs, to evaluate each method. We compare our method with previous controllable
video generation models, Control-A-Video (Chen et al., 2023b), ControlVideo (Zhang et al., 2023e),
and VideoComposer (Wang et al., 2023a). Notably, we also compare our method with original back-
bones, i.e. Hotshot-XL and I2VGen-XL to demonstrate that our method does not harm their native
generation capabilities.

As for evaluation metrics, we use Frechet Inception Distance (FID) to measure the distribution
distance between videos generated by our method and the original videos, which indicates video
quality. Following VideoControlNet (Hu & Xu, 2023), we also calculate the L2 distance between
the optical flow (Ranjan & Black, 2016) of the input video and the generated video, namely opti-
cal flow error. Compare to other methods. Table. 1 demonstrates that, under both depth map
and canny edge conditions, X-PlugVid on I2VGen-XL and Hotshot-XL surpass all previous video
control methods in terms of visual quality (FID) and spatial control (optical flow error) metrics.
Meanwhile, our method achieves FID scores comparable to original I2VGen-XL and Hotshot-XL.
This indicates that our method not only extends the functionality of the original model but also
retains its generative capabilities flawlessly.
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4.4 ABLATIVE STUDY

Table 2: Ablation Study

Depth Map Canny Edge
FID (↓) Optical Flow Error (↓) FID (↓) Optical Flow Error (↓)

Ablation on High-pass Filter and Timestep Remapping
w.o. High-pass Filter & Timestep Remapping 36.22 7.25 36.16 7.01
w.o. Timestep remapping 32.64 6.09 32.88 5.92
w.o. High-pass Filter 30.64 4.71 30.76 4.33
Full Method 29.21 3.31 29.63 3.02
Ablation on Mapping Layer Insertation
Encoder 31.06 4.56 31.23 4.32
Decoder 29.21 3.31 29.63 3.02
Ablation on n in Timestep Remapping
n = 1 32.64 6.09 32.88 5.92
n = 2 29.21 3.31 29.63 3.02
n = 4 33.21 3.42 33.54 3.09
n = 1000 34.14 3.92 34.38 3.76

Condition:

n=2(best)

w.o. Timestep 

Remapping 

(n=1)

n=4

n=1000

SD1.5:

Figure 8: Ablation on the effect of n in timestep
remapping.

Our ablation study is based on I2VGen-XL. We
mainly focus on three questions:

Where to insert the mapping layers? We
study the effect of inserting mapping layers into
different modules: (1) Encoder; (2) Decoder.
Table. 2 indicates that inserting mapping layers
to decoder shows strongest guidance capability
since it retains the feature space of encoder.

How important are the high-pass filter and
timestep remapping? To demonstrate the
effectiveness of high-pass filter and timestep
remapping, we conduct a comparison with the
following variants: i) No high-pass filter and
timestep remapping ii) high-pass filter only iii)
timestep remapping only iv) our full method.
Note that, all the above experiments are based
on temporal adapter. The quantitative results
are shown in Table. 2. The result indicates
that timestep remapping significantly enhances
adapter’s guidance capability, making the gen-
erated results more align with the conditions.
The complement of the high-pass filter further
eliminates unnecessary information from the
diffusion prior i.e. Stable Diffusion v1.5 (Sta-
bilityAI), preventing low-quality priors affect-
ing the original video model’s generative abil-
ity, thus improving image quality and consis-
tency.

What is the effect of n in timestep remapping? We conduct experiments with four different
values of n: 1, 2, 4, and 1000. When n = 1, timestep remapping strategy is equivalent to timestep
synchronization. When n = 1000, which is the maximum value it can reach, we map the feature
of the image model’s last timestep to all timesteps of the video model. As depicted in Table. 2 and
Fig. 8, the results show that when n = 1, the guidance is too weak to align the generated results
with the conditions. We visualize the output of the adapter with and without timestep remapping as
shown in Fig. 9. It shows that without timestep remapping, the adapter’s output becomes blurry, and
the inconsistency between different frames increases, leading to flickers. This is because the features
at early timesteps contain less semantic information, have greater uncertainty, and are more difficult
for the adapter to learn temporal consistency. When n = 2, the result significantly improves, but
as we continue to increase its value, the video quality largely degrades. Our generated results, in
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terms of overall color tone and details like clothing, become increasingly similar to SD1.5 with the
increase of n as shown in Fig. 8. This is because the guidance gets stronger as n increases, and low-
quality components of the prior i.e. stable diffusion 1.5 (StabilityAI) are transferred by the adapter
and degrade the final generation quality. It reveals that if the value of n is too high, we cannot
completely eliminate all low-quality parts even with our adapter and high-pass filter. In conclusion,
we achieve the best results only when the guidance strength is appropriate, specifically at n = 2.

5 DISCUSSION

5.1 GENERALIZATION

Frame 1 Frame 4 Frame 8

Condition

w.o. Timestep 

Remapping

w. Timestep 

Remapping

Figure 9: Visualization of adapter’s output w. and
w.o. Timestep Remapping.

Although we mainly discuss how to use diffu-
sion prior in controllable video generation, the
strategies we propose: applying high-pass filter
and timestep remapping, are not task-specific.
To verify the generality of our method, we ap-
ply them to image model upgrade, which is the
same as X-Adapter (Ran et al., 2024)’s task.
Specifically, we implement timestep remap-
ping and high-pass filter upon X-Adapter and
achieve better results. Please refer to our ap-
pendix for qualitative and quantitative results.

In addition to controllable video generation, our
method is also applicable to video editing as
shown in Fig. 10. By using spatial conditions
extracted from the original video along with the
target prompt, our method can generate a high-
quality video that aligns with the target text
while preserving the spatial layout and dynamics of the input video.

5.2 LIMITATIONS

Original

Ours

Original

Ours

“A bear looks around”

“A woman is running, Van Goh Style”

Figure 10: Qualitative results on video editing.

In this work, we focus on how to better utilize
the spatial information in the diffusion prior,
enabling us to reuse spatial-control image plu-
gins in the video diffusion model. However,
the diffusion prior also contains other infor-
mation, such as identity and style. If we can
better leverage this information, plugins like
LoRA (Hu et al., 2021) and IP-Adapter (Ye
et al., 2023) can be applied to the video model
as well. We leave these capabilities as future
work.

6 CONCLUSION

In this paper, we target a new task of reusing
image plugins for controllable video genera-
tion. To this end, we analyze how to adopt pre-
trained diffusion model as spatial prior. Based
on our findings, we design a spatial-temporal
adapter for guidance and apply high-pass filter
to the input of adapter to filter low-quality com-
ponents. To enhance adapter’s guidance ability, we design a novel timestep remapping strategy to
insert fine-grained information to video diffuson model. We conduct comprehensive experiments to
demonstrate the advantages of the proposed methods.
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A DETAILED NERWORK STRUCTURE

Latent of 
SD1.5

Encoder

Mid
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Up2

Up3

Up4

Latent

Encoder

Mid

Up1

Up2

Up3

Adapter

Adapter

Adapter

SD1.5 Hotshot-
XL/SDXL

Figure 1: The location adapter insert when
train adapter on Hotshot-XL and SDXL.
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Up2

Up3

Up4

Latent
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Mid

Up1

Up2

Up3

Up4

Adapter

Adapter

Adapter

Adapter

Adapter structure:

Conv2D

Conv3D

Spatial-
Attention

Temporal-
Attention

SD1.5 I2VGen-XL/
SVD

Figure 2: Network structure of adapter and the
location adapter insert when train with I2VGen-
XL and SVD.

The network architecture of adapter when we train adapter with I2VGen-XL (Zhang et al., 2023d),
SVD (Blattmann et al., 2023a), Hotshot-XL (Mullan et al., 2023) and SDXL (Podell et al., 2023)
are shown in Fig. 2 and Fig. 1.

B QUALITATIVE VIDEO RESULTS

As depicted in Table. 2, we show the qualitative results of our method on SVD using different
conditions, which demonstrates compatibility across various conditions.

C QUALITATIVE AND QUANTITATIVE RESULTS ON IMAGE MODEL

Table 1: Quantitative evaluation against X-Adapter.

Plugin: ControlNet FID ↓ CLIP-score ↑ Cond. Recon. ↑
X-Adapter 30.95 0.2632 0.27 ± 0.13
X-Adapter + X-PlugVid 30.89 0.2643 0.32 ± 0.11

To demonstrate the generalization of our method, we apply high-pass filter and implement timestep
remapping based upon X-Adapter (Ran et al., 2024). For training, we randomly sample a subset of
f Laion-high-resolution containing 300k text-image pairs for training to align with training setting
of X-Adapter. We utilize the AdamW optimizer with a learning rate of 1e−5 and a batch size of 8.
The model is trained for 2 epochs using 4 NVIDIA A100 GPUs. The evaluation setting follows X-
Adapter(Ran et al., 2024). The qualitative and quantitative results are shown in Fig. 3 and Table. 1.
The results shows that with the help of our method, X-Adapter achieves better condition fidelity,
demonstrating the generality of our approach in better leveraging the spatial priors of diffusion
models.
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Table 2: Qualitative video results (Best viewed with a PDF reader that supports GIF display and
click to play videos).

Some ducks are playing in the pond. A man with a black hat is smiling.

A snail is crawling slowly. An old woman with silver hair and glasses.

Close up of an astronaut’s face. A teddy bearsurrounded by children’s toys.

A burning candle. A cute cat outside the window.

Target prompt: A bear is looking around. Target prompt: A woman is running, Van
Gogh style.
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“A warm bedroom” “A ship on the sea” 

“There is a chair near the swimming pool” “Several bottles on the table” 

Condition X-Adapter
X-Adapter + 

X-PlugVid
Condition X-Adapter

X-Adapter + 

X-PlugVid

Figure 3: Qualitative Result. Compare to X-Adapter, our method improves its condition fidelity and
image quality.
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