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Abstract

It has long been challenging to recover the under-
lying dynamic 3D scene representations from a
monocular RGB video. Existing works formulate
this problem into finding a single most plausible
solution by adding various constraints such as
depth priors and strong geometry constraints, ig-
noring the fact that there could be infinitely many
3D scene representations corresponding to a sin-
gle dynamic video. In this paper, we aim to learn
all plausible 3D scene configurations that match
the input video, instead of just inferring a specific
one. To achieve this ambitious goal, we introduce
a new framework, called OSN. The key to our
approach is a simple yet innovative object scale
network together with a joint optimization module
to learn an accurate scale range for every dynamic
3D object. This allows us to sample as many faith-
ful 3D scene configurations as possible. Extensive
experiments show that our method surpasses all
baselines and achieves superior accuracy in dy-
namic novel view synthesis on multiple synthetic
and real-world datasets. Most notably, our method
demonstrates a clear advantage in learning fine-
grained 3D scene geometry. Our code and data are
available at https://github.com/vLAR-group/OSN

1. Introduction

Our 3D world is primarily a collection of many movable
objects, often rigid with dynamics over time, e.g., balloons
flying in the air and balls bouncing back and forth. It has
long been desired to recover object structures of such dy-
namic 3D scenes just from casually captured monocular
videos (Costeira & Kanade, 1995; Fitzgibbon & Zisserman,
2000). However, this problem is highly ill-posed, as there
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Figure 1. An illustration of multiple correct 3D scene configura-
tions that match the same dynamic monocular video.

could be infinitely many geometric explanations that match
an input dynamic video.

To tackle the challenge of modelling a dynamic 3D scene
from a single video, existing methods formulate this prob-
lem into finding a singular, most plausible solution by
adding various additional constraints, such as monocular
depths (Cai et al., 2022; Song et al., 2023; Zhao et al., 2024),
camera poses (Li et al., 2021; Du et al., 2021; Stier et al.,
2023), shape templates (Weng et al., 2022), consistency
(Gao et al., 2021; Li et al., 2023c¢; Guo et al., 2023; Yang
et al., 2024), physical restrictions (Yang et al., 2023a), diffu-
sion priors (Tu et al., 2023; Wang et al., 2024), etc.. Thanks
to the powerful SDF (Park et al., 2019), NeRF (Mildenhall
et al., 2020), and Gaussian Splatting (Kerbl et al., 2023)
as backbones, these methods demonstrate excellent per-
formance in modelling dynamic 3D scenes including dy-
namic novel view rendering and 3D shape reconstruction.
However, such a formulation oversimplifies the problem of
monocular-based dynamic 3D modelling.

As illustrated in Figure 1, regarding a dynamic monocu-
lar video with a moving object inside (shown in the top
row), clearly, there are numerous 3D scene configurations
matched with the video. For example, both Scene#1 with
a large object (the middle row) and Scene#2 with a small
object (the bottom row) are true solutions. This means that
the problem of monocular-based dynamic 3D modelling
inherently needs to be resolved by inferring all correct solu-
tions, instead of just estimating a specific one as has been
done in all existing works.
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Figure 2. An illustration of our framework. Given a dynamic video as input, our Object Scale-invariant Representation module (the blue
block) and the Object Scale Network (the orange block) aim to represent all faithful 3D scene representations, allowing infinitely sampling
of different 3D scenes (the rightmost block) after they are jointly optimized. Circles highlight the differences between the two scenes.

With this motivation, we aim to address dynamic 3D mod-
elling by learning all faithful 3D scene representations just
from a monocular RGB video without depth scans and cam-
era poses. However, this relaxed and ambitious problem is
particularly challenging, as it is so far unclear how to learn
or even represent infinite correct 3D scene configurations.

Upon closer investigation, we find that the core difficulty
of this new problem lies in how to infer an accurate scale
range for each dynamic object to perfectly match the input
video. After that, all faithful 3D scene configurations can be
simply obtained by combining different scaled 3D objects.
However, object scales are tightly compounded with object-
camera joint motions as already illustrated in Figure 1. More
importantly, the relative scales between multiple objects are
also coupled to each other due to mutual visual occlusions
captured in the input video. These make the object scale
learning extremely hard.

In this paper, we focus on modelling dynamic 3D scenes
with rigid objects, leaving deformable dynamic reconstruc-
tion for future exploration. In particular, given a monocular
video capturing complex dynamics of multiple rigid objects
by a moving camera, our task is to learn the scale ranges of
all dynamic objects along with recovering per-object shape
and appearance. Ultimately, all 3D scene configurations that
match the input video can be comprehensively recovered,
allowing dynamic novel view synthesis at any timestamp on
any specific 3D scene configuration.

As shown in Figure 2, we introduce a new framework with
three major components: 1) an object scale-invariant repre-
sentation module (blue block), 2) an object scale network
(orange block), and 3) a joint optimization module. For the
first component, it is flexible to adopt an existing 3D ob-
ject representation network such as SDF (Park et al., 2019),
NeRF (Mildenhall et al., 2020), or the recent Gaussian Splat-
ting (Kerbl et al., 2023). This module only aims to learn
per-object shape and appearance representations within the
same 3D unit volume, i.e., scale-invariant.

The object scale network is the core of our framework, aim-
ing at learning relative scale ranges of all dynamic 3D ob-
jects, whereas the third module involves carefully designed

scaled composite rendering and soft Z-buffer rendering al-
gorithms, driving both object scale-invariant representations
and object scale ranges to be accurately learned. Once the
per-object shape, appearance, and scale ranges are well
learned, our framework allows infinitely sampling of faith-
ful and valid 3D scene configurations, as illustrated in the
rightmost block of Figure 2. Our framework is named OSN
and our contributions are:

* We introduce the first framework to represent dynamic
3D scenes in infinitely many ways that match an input
monocular video, while existing methods only learn a
single solution with additional priors.

* We design an object scale network with scaled compos-
ite rendering and soft Z-buffer rendering techniques to
jointly learn scale ranges of all dynamic objects, allowing
dynamic 3D scenes to be comprehensively represented.

* We demonstrate superior results in dynamic novel view
synthesis on multiple 3D datasets. In addition, our method
shows great authenticity in 3D scene sampling.

2. Related Works

Static 3D Representations: Static 3D objects and scenes
can be represented by voxels (Choy et al., 2016), point
clouds (Fan et al., 2017), octrees (Tatarchenko et al., 2017),
meshes (Kato et al., 2018), and primitives (Zou et al., 2017).
However, these representations are usually limited by the
spatial resolution and high memory cost. Recent implicit
representations demonstrate excellent performance in novel
view rendering and shape reconstruction, including occu-
pancy fields (OF) (Mescheder et al., 2019; Chen & Zhang,
2019), (un)signed distance fields (U/SDF) (Park et al., 2019;
Chibane et al., 2020), and radiance fields (NeRF) (Milden-
hall et al., 2020). Since these implicit representations take
3D points as input, it is usually time-consuming to render
novel views or explicitly regress 3D surfaces. To overcome
this limitation, the very recent 3D Gaussian Splatting (Kerbl
et al., 2023) and RayDF (Liu et al., 2023b) directly learn to
represent 3D surfaces, achieving real-time rendering speed.
In our framework, the first object scale-invariant module is
amenable to existing 3D representations or their variants.
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Figure 3. The yellow block shows that the input video will first be preprocessed into per-object information. After that, the shape and
appearance of each dynamic object will be separately represented by a scale-invariant TensoRF model as shown by the light blue block.

Dynamic 3D Representations: Recent advances in dy-
namic 3D representations mostly extend existing static 3D
representations such as SDF, NeRF, and Gaussian Splatting
by adding the time dimension ¢ as an additional input. They
either disentangle the dynamic scenes into a canonical tem-
plate and a time-dependent motion field (Pumarola et al.,
2021; Barron et al., 2021; Park et al., 2021; Tretschk et al.,
2021; Cai et al., 2022; Fang et al., 2022), or directly model a
space-time radiance field (Xian et al., 2021; Li et al., 2022;
Park et al., 2023), or adopt a combination of both (Li et al.,
2021; Gao et al., 2021; Du et al., 2021; Liu et al., 2023a).
These methods are mostly designed for dynamic 3D scenes
with deformable objects/scenes or specific categories.

For dynamic scenes with rigid moving objects, existing
works usually disentangle each dynamic object into a canon-
ical space with a time-dependent S E(3) pose (Yuan et al.,
2021; Kundu et al., 2022; Song et al., 2023; Xie et al., 2023).
Thanks to the simplicity, our first object scale-invariant mod-
ule also follows this strategy.

Constrained vs Unconstrained 3D Modelling: Recover-
ing 3D shapes and appearances just from 2D images is
usually an ill-posed problem due to the lack of sufficient
geometry constraints (Hartley & Zisserman, 2004). For the
particular challenging case of monocular-based dynamic 3D
modelling, existing works turn it into a tightly constrained
problem by adding additional priors or restrictions, includ-
ing the availability of monocular depths (Yoon et al., 2020;
Du et al,, 2021; Cai et al., 2022; Song et al., 2023; Zhao
et al., 2024), accurate camera poses (Li et al., 2021; Stier
et al., 2023; Wang et al., 2023b; Park & Kim, 2024), shape
templates (Weng et al., 2022), temporal consistency (Gao
et al., 2021; Barron et al., 2021; Guo et al., 2023; Tian
et al., 2023; Choe et al., 2023; Wang et al., 2023a; Liu et al.,
2023a; Li et al., 2023c), physical restrictions (Yang et al.,
2023a), diffusion priors (Tu et al., 2023; Wang et al., 2024),
etc.. By doing so, these methods achieve remarkable per-
formance in estimating just a single and most plausible 3D
representation. However, in this paper, we tackle a relaxed
and unconstrained problem, aiming at learning all faithful
3D scene representations from a single video.

Difference from 3D Generative Models: 3D generative
models aim to learn the distributions of observed 3D datasets

by generating conditional or unconditional new 3D objects
or scenes. Thanks to the sophisticated deep generative mod-
els such as VAEs (Kingma & Welling, 2014), GANs (Good-
fellow et al., 2014), diffusion models (Ho et al., 2020), and
the recent large language models (LLMs) (Brown et al.,
2020; Radford et al., 2021; Zhao et al., 2023), 3D generative
models show remarkable progress as comprehensively dis-
cussed in recent surveys (Shi et al., 2022; Li et al., 2023a). In
this paper, our method can recover infinitely many 3D scene
configurations by learning the valid ranges of all dynamic
objects. Nevertheless, all the learned 3D scene represen-
tations are just derived from a single data point (the input
monocular video), instead of large 3D datasets.

3. OSN

3.1. Preliminary

Given a monocular RGB video with IV frames (timestamps)
{I1,....,In}, there are K rigid objects inside moving in
different directions. Note that, the actual entire static back-
ground is simply regarded as one of the K dynamic objects,
as all objects are moving regarding the mobile camera.

As shown in Figure 3, our framework consists of a data
preprocessing stage followed by other components. In the
preprocessing stage, we firstly segment all K objects in
the frames by a pretrained SAM (Kirillov et al., 2023), fol-
lowed by per-object tracking and per-pixel optical flow es-
timation using pretrained TAM (Yang et al., 2023b) and
RAFT (Teed & Deng, 2020), obtaining pixel-level associ-
ated T masks for any k' object, i.e., {O%,...,O%}. And
then, for the k' object, we simply use SfM (Schonberger
& Frahm, 2016) to estimate the camera-to-kth-object rela-
tive poses at each frame (denoted as {7}, ..., T%}), as well
as the k*"-object-to-camera relative depth values at corre-
sponding pixels obtained by SfM triangulation (denoted as
{D%, ..., DX }). Here are three points to be clarified:

* Both the poses and depth values can only be estimated for
each object, and the scales cannot be shared across multi-
ple objects in the same scene, fundamentally because the
motion and scale of each object are visually compounded
with the unknown camera motion.

* In the preprocessing stage, our framework is also flexible
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to many simple and classic alternatives such as key pixel
matching by SIFT (Lowe, 2004) followed by motion clus-
tering (Elhamifar & Vidal, 2013) and SfM. We opt for
pretrained models thanks to their excellent performance.

* Such a preprocessing stage itself cannot alleviate the diffi-
culty of our unconstrained problem, as it lacks additional
geometry priors to restrict the infinitely many solutions.

Having the preprocessed per-object information (RGB, ob-
ject masks, relative camera poses, relative depths), we sim-
ply regard each object as static by treating its total [V times-
tamp RGB frames as multi-view images, and then use a
single network to represent each object respectively. In par-
ticular, we adopt an existing TensoRF (Chen et al., 2022)
to represent each object, though other variants can also be
used. The total K TensoRF models form our object scale-
invariant representation module, as illustrated by the light
blue block of Figure 3. More implementation details are in
Appendix. This module together with our core object scale
network will be trained by the joint optimization module.
Detailed designs are discussed in Sections 3.2&3.3.

3.2. Object Scale Network

Since there is no existing work to learn valid scale ranges of
dynamic objects just from a monocular video, a naive idea
is to directly feed the N images into a network to regress
2K parameters, representing the lower and upper bounds
of K object scales. However, such a network can hardly
be optimized, essentially due to the lack of ground truth
object scale ranges as supervision signals. When we design
a network, two key factors need to be considered:

* The scales of multiple dynamic objects are always relative
and intertwined with each other. This means that we can
randomly pick up an object as an anchor and set its scale
to be 1, while only estimating the valid scale ranges of the
remaining /' — 1 objects in the scene.

* Learning multi-object scale ranges is actually a binary
classification problem from a monocular video. We can
only verify whether the learned or sampled object scales
are valid by comparing them with the input video.

To this end, we design a conceptually simple object scale
network, which only consists of MLPs. It takes a sampled
multi-object scale combination as input and predicts a valid-
ity score between 0 ~ 1, where 1 represents the input scale
combination valid and O otherwise.

1= 5.1
[0,1) ~ |Sk| — — p € (0,1)
[0,1) ~ Lsy

Figure 4. An illustration of our object scale network.

As shown in Figure 4, for the total K objects in a 3D scene,
we select one object (usually the largest object such as the

background for simplicity) and set its scale as 1, i.e., 51 = 1,
and the remaining K — 1 object scales {sa, -+ , sk} are
uniformly sampled from a predefined normalized range
[0,1). Note that, an unbounded/unnormalized range sam-
pling would pose difficulties to optimize in practice. To
map these normalized object ranges back to the 3D scene
volume, we simply apply the following linear operation:

scene scene

= near far
Sk = (1 —sp) + Sk (H
Dfmar D?ar

where D and D}}M are the near/far distances of the k*"

object in its own 3D object volume along z axis. The D; ¢
and Dy are predefined near/far distances of the 3D scene
volume along z axis. Naturally, we choose D;""¢ to be

near
smaller than all DF while D¢ to be larger than all

near» far

D’;M. For simplicity, here we just use the camera center of
the first video frame as both the 3D scene coordinate and
the k' 3D object coordinate. Both D}, and D}, can be

easily chosen for the k" object based on its sparse point
cloud obtained by SfM in the data preprocessing stage in
Section 3.1. More implementation details of the network
are in Appendix.

To sum up, our object scale network basically learns the
validity score p for every (sampled) normalized K scales as:
P = fmip([s1, -+, SK]). Subsequently, the denormalized
K object scales [51, - - - , k] can be calculated. Now, the
key issue is how to effectively optimize the network (Section
3.3), so that given any multi-object scale samples during
testing, it can predict correct scores, and ultimately we can
recover all valid scale ranges of K objects.

3.3. Joint Optimization

After the data preprocessing stage (Section 3.1), for any k*"
object, we have its object masks {OF, - -+, O% }, masked
images {I; O}, -+ , Iy * O%;}, the corresponding camera-
to-k*"-object poses {TF,--- , Tk}, and the k'"-object-to-
camera relative depths {D¥,--- | DX} as all training sig-
nals. Now we need to optimize the K object scale-invariant
representation networks and the object scale network.

As to any k'" object scale-invariant representation network,
i.e., a TensoRF model denoted as ¢g*(p, #, ¢) where p/0/¢
are any query point and angle, it can be easily optimized
independently based on standard volume rendering using
an RGB loss £}, optionally with a depth loss £}, ,,,, (Deng
et al., 2022) as shown below, where both are /5 losses.

optimize .
gk ? (el':gb + Egepth) (2)

Nevertheless, such a separate training scheme tends to be
inferior, as it fails to take into account the mutual visual
occlusions caused by other objects. Most importantly, the
object scale network f,,;, has yet to be optimized, and it
can only be optimized by composing all scaled K objects.
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In this regard, we propose the following two techniques:
scaled composite rendering and soft Z-buffer rendering.

Scaled Composite Rendering: Having the K object scale-
invariant representations, i.e., {g*,--- , g%}, and a sampled
multi-object scale combination [y, -, 5k], our scaled
composite rendering aims to render images by combining
the shape, color, and scale information of all K objects, so
to minimize the discrepancy with all input video frames.

In particular, for any specific ray (pixel) selected from the
nth image (I,,) of the input video, we can easily identify
which object this pixel belongs to, according to our prepro-
cessed data. Assuming it belongs to the k*" object, we
then sample M points [p¥,--- ,p%,] along that ray, de-
noted as r* with viewing angle [0%, ¢*] calculated from
the camera-to-k*"-object poses. Clearly, we can first obtain
the corresponding colors and densities from the k' object

representation gk:

k k k k k(K k1 gk 4k

{[clv"' »Ckl}v[o—lv"' 7JM]} g ([plv"' apJ\A’g 7¢ )
(3)
Next, we need to obtain the colors and densities of these M
points after transforming them to another object representa-
tion space such as the k' object space. Here, we need to
take into account the camera poses {1/; T*} at the current
n'" image for both objects, and their object scales {5; 5 }.
Specifically, the M points are scaled and then transformed
from the k*" object space to the k*" object space as follows:

N N = k
ph, = TH(T}) 1o (Pm)

“

Sk
Note that, for the object scales {5; 5; } used in Equation 4,
their corresponding sampled scales [s1, - - - , sk| should be

deemed as valid, meaning that the estimated validity score
P = fmip([$1,--- ,sKk]) should be larger than a threshold,
e.g., 0.95 in our implementation. Otherwise, we need to re-
sample until the estimated score is above 0.95, even though
the network f,,,;;, is not fully optimized in the early stage.

Similarly, the viewing angle is also transformed from the
K" object space to the k" object space as follows:

(0%, 6% = TE(TE) ™ o 0%, 0] ®)
Naturally, we can obtain thez colors and densities of the
transformed M points at the k*" object space as follows:

70-56\/1]} < gk([pllcv e ’pljchgk’ ¢k)

(6)
In this way, for this ray r* and the sampled M points
[P]f7 Ty pﬂfw] along it, we can obtain their colors and den-
sities in all /' object spaces as shown below:

[C},”- ’C}\/IL[U%V" 70-%/[]

{[cllcf” 7CIJ€\/I}7[O—}1€W"

15¢ object g':
e (7)
K™ object g%:  [cK, ... K] (0K, oK]

Lastly, we combine colors and densities from all K object
spaces using an existing composite volume rendering in

Total-Recon (Song et al., 2023), generating the final color
c(r"), depth value d(r*), and object segmentation o(r*) (a
soft one-hot vector) for the selected ray r*.

The whole object scale-invariant representation module can
be optimized by the following composite scene-level RGB
loss, optionally with the depth loss and object segmentation
loss (cross-entropy). Note that, the ground truth depth value
d(r*) (retrieved from DF of the k*" object) needs to be
scaled because the predicted depth is a composite of scaled
3D points. The ground truth object segmentation &(r*) per
ray is also retrieved from our preprocessed data OF.

Yo =D ller®) — ()| ®)
depin = Y Nld*) = sp ()| ©)
teene = 3" CB(o(%),5(x)) (10)

Nevertheless, the above three losses are unable to optimize
our object scale network f,,;,, as the scales used in Equation
4 are essentially sampled values, not estimated by f,p.

Soft Z-buffer Rendering: To optimize our object scale
network fp,i,, we need to obtain supervision signals, i.e.,
ground truth validity scores, for a sufficient number of sam-
pled object scales, covering both valid and invalid scale
combinations. A naive strategy is to extensively use our
scaled composite rendering.

For example, for the selected ray r*, we randomly sample as
many as H different combinations of scales {S!,--- , SH}:

{8" =lsb sk ST = s s} an

Then, we use our scaled composite rendering to obtain all
corresponding candidate object segmentation results:

{o'h), -+ 0 (")}

By comparing with the ground truth segmentation &(r*),
we can easily obtain a pseudo ground validity score p* for
each sampled scale combination S”. In particular,

7= (lo" @) +5(h)) - 0/1

where |o" (r*)| means we use argmax to convert the soft
one-hot vector into a hard one. In this way, we can assign
0/1 labels for all sampled H scale combinations:

assign labels _ _
{Sla"' 78H}<L{pla"' 7pH} (14)

So far, we can use these labels to optimize our object scale
network fy,,;, by the binary cross-entropy loss:

Fotp € e = 3 (D BCE@"5") - (15)
h

rk

,8}(],"

12)

13)

Ultimately, this loss function drives the object scale network
fmip to predict correct validity scores for every sampled
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scale combination, such that all (scaled) 3D objects will
satisfy the mutual visual occlusions at all training images.

However, recall that, for every selected ray r*, we need to
sample a large number of H scale combinations, followed
by H times of scaled composite rendering to obtain object
segmentation. This is extremely time-consuming. To tackle
this, we introduce a fast soft Z-buffer rendering strategy to
obtain object segmentation.

In particular, for the selected ray r” at the nt" image (I,,) of
the input video, we first transform its viewing angle [0%, ¢*]
to all other object spaces using Equation 5, getting:

{ (6%, 6F], - - ,[GK,¢K}} (16)

Then, in each object space, we uniformly sample M points
at fixed positions along the transformed ray, e.g., [0¥, ¢*] of
the kth object space, followed by depth rendering, same as a
regular and independent NeRF model does. In this way, we
get K depth values (up-to-scale) along the K transformed
rays (Equation 16) in the total K object spaces, respectively:

{..’ 0%, 6", -, [gK,gg,K]} independent, {..’dk(rk% ..,dK(rk)}

rendering

a7
Inspired by the Z-buffer algorithm in rasterization-based
rendering, for the selected ray r¥, we determine the object
segmentation of each sampled scale combination S" (Equa-
tion 11) according to the order of scaled depth values of
the total K objects. In particular, for the sampled scale
Sh = [sh, ... s"], and the independently rendered depths
in Equation 17, the corresponding object segmentation is

computed as:

e (si"*dk(rk))

o(rFy=|..., e (18)
S, e CEe)

Lastly, we use the same Equation 13 to create validity labels,
and Equation 15 to optimize the object scale network.

Overall, to get object segmentation results of H sampled
scale combinations for a specific ray r”, the scaled com-
posite rendering needs to query all K object scale-invariant
networks H times, while the soft Z-buffer rendering only
needs to query once followed by H times of a simple opera-
tion in Equation 18, being nearly H times faster overall.

Note that, the soft Z-buffer rendering can also be used for
computing scene-level losses in Equations 8/9/10. Neverthe-
less, to optimize object scale-invariant networks, for each
selected ray r”, we just need a single (valid) sample of
scale combination S, thus the time cost of scaled composite
rendering and soft Z-buffer rendering is the same.

Joint Training Procedure: From our design, we can see
that optimizing the object scale network relies on relatively
reasonable depth results from the object scale-invariant rep-
resentations. Otherwise, the computed pseudo ground truth

validity is unreliable. In return, a reasonably good object
scale network can also benefit the optimization of object
scale-invariant representations. To this end, we follow an
intuitively simple two-stage training procedure.

» Stage 1 - Boostrapping Per-object Representations: In
the very beginning, we apply independent volume ren-
dering for each object, separately optimizing per-object
TensoRF model by the RGB/depth losses in Equation 2.

* Stage 2 - Alternative Optimization: We alternatively
optimize, 1) the object scale network by:

optimize

Fmip 4 Loce (19)
2) all object scale-invariant representation networks by:

optimize
{g - g} S (ene - g5Eene + 0555m¢) (20)
After R rounds of alternation, the object scale-invariant

networks and the object scale network can be effectively
trained. More implementation details are in Appendix.

4. Experiments

Datasets: Our method is primarily evaluated on three public
datasets: 1) an adapted version of the synthetic Dynamic
Indoor Scene Dataset (Li et al., 2023b) with 4 scenes and
each scene has 3~4 objects with different rigid motions
captured, 2) the real-world Oxford Multimotion Dataset
(Judd & Gammell, 2019) with 4 scenes selected and each
scene contains 2~4 rigid dynamic objects, and 3) the pop-
ular but relatively simple real-world NVIDIA Dynamic
Scene Dataset (Yoon et al., 2020) with 3 scenes selected
(deformable scenes excluded) as each scene has only one
moving object. More details of datasets are in Appendix.

Baselines: Since there is no prior work estimating dynamic
object scales and recovering infinitely many 3D scene rep-
resentations, we turn to choose the recent single solution
based methods as baselines including: 1) NSFF (Li et al.,
2021) and 2) DynNeRF (Gao et al., 2021) designed for
monocular videos, 3) TiNeuVox (Fang et al., 2022) and
4) Hexplane (Cao & Johnson, 2023) designed for general
dynamic scene modelling with powerful tri-plane architec-
ture, and 5) Total-Recon (Song et al., 2023) designed for
dynamic scenes with rigid objects.

Metrics: The standard PSNR, SSIM, and LPIPS scores are
reported for novel-view RGB synthesis. On the synthetic
Dynamic Indoor Scene Dataset, we also report the Scale-
and Shift-Invariant Mean Absolute Error (SSIMAE) (Ranftl
et al., 2022) for novel-view depth synthesis, where a linear
transformation is applied to align rendered depth and ground
truth before error calculation. For our method, the object
segmentation of novel views is also evaluated by Panoptic
Quality (PQ) and mean Intersection over Union (mIoU). As
pointed out by DyCheck (Gao et al., 2022), some regions in
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Figure 5. Qualitative results of dynamic novel view RGB/depth synthesis on the Dynamic Indoor Scene and Oxford Multimotion Datasets.

test views may not be observed in the monocular video. We
therefore mask out these regions for a fair comparison.

Settings: Thanks to our new formulation of dynamic 3D
modelling, our OSN framework allows us to sample as in-
finitely many scale combinations as possible to render novel
views, to greedily match the single solution provided in
datasets. We report our best scores from 1000 samples,
though more can be sampled given computation. Unfortu-
nately, all other baselines can only recover one solution of a
dynamic 3D scene to calculate their metrics.

For a fair and extensive comparison, baselines are trained
with three different settings of depth supervision:

* 1) without depth supervision;

* 2) with depth supervision (scales inherently aligned across
multi-view) from a pretrained monocular depth estimator
MiDaS (Ranftl et al., 2022);

* 3) with depth supervision from per-object SfM (scales not
aligned) which is the same as ours.

Note that, during training, NSFF (Li et al., 2021), DynNeRF
(Gao et al., 2021), and Total-Recon (Song et al., 2023) make
use of the same preprocessed multi-object segmentation
results as our method, and the third group experiments are
the fairest comparison. For Total-Recon(Song et al., 2023),
we leverage the estimated scene depths from MiDasS to align
the scale of objects after per-object SfM. Therefore, Total-
recon is trained with depth supervision from both MiDaS
and per-object STM.
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Table 1. Quantitative results of all methods for dynamic novel view synthesis on three datasets. The methods are trained with different
depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

Dynamic Indoor Scene Dataset Oxford Multimotion Dataset NVIDIA Dynamic Scene Dataset
Depth Sup.  Method PSNRT  SSIM? LPIPS, SSIMAE| | PSNRT SSIM{ LPIPS| | PSNRT SSIM{  LPIPS|

NSFF(Li et al., 2021) 21.428 0.720 0.313 0.378 16.687 0.616 0.249 21.766 0.669 0.229

1 DynNeRF(Gao et al., 2021) 21.479 0.752 0.277 0.417 16.858 0.627 0.244 25.705 0.827 0.117
TiNeuVox(Fang et al., 2022) 21.705 0.655 0.306 0.484 16.433 0.613 0.325 22.922 0.618 0.262
HexPlane(Cao & Johnson, 2023) | 18.637 0.581 0.480 0.962 17.084 0.631 0.221 20.169 0.555 0.286

NSFF(Li et al., 2021) 20.900 0.698 0.349 0.494 17.094 0.623 0.244 27.459 0.861 0.075

2 DynNeRF(Gao et al., 2021) 22272 0.767 0.257 0.309 16.521 0.622 0.259 29.452 0.895 0.054
TiNeuVox(Fang et al., 2022) 23.288 0.698 0.269 0.329 18.508 0.668 0.197 23.029 0.621 0.193
HexPlane(Cao & Johnson, 2023) 17.968 0.528 0.535 1.395 15.843 0.576 0.338 19.312 0.471 0.334

NSFF(Li et al., 2021) 21.280 0.684 0.347 0.467 17.093 0.616 0.245 23.733 0.733 0.194
DynNeRF(Gao et al., 2021) 21.421 0.742 0.296 0.509 16.786 0.624 0.281 24.498 0.771 0.176

3) TiNeuVox(Fang et al., 2022) 22.197 0.685 0.285 0.368 18.043 0.670 0.208 22.691 0.591 0.215
HexPlane(Cao & Johnson, 2023) | 20.217 0.623 0.373 0.458 17.137 0.631 0.203 23.220 0.720 0.150
OSN(Ours) 25.984 0.861 0.115 0.094 19.671 0.695 0.155 29.588 0.892 0.053

2)+3) Total-Recon(Song et al., 2023) 24.695 0.841 0.128 0.137 18.331 0.655 0.173 27.822 0.880 0.059

Table 2. Quantitative results of all methods for dynamic novel view synthesis on synthetic “Gnome House” scene with 50 different ground
truth scale combinations. The average performance along with standard deviations on 50 groups of ground truths are reported. The
methods are trained with different depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

50 Ground Truth Scenes of Gnome House
Depth Sup. Method PSNRT SSIM 1 LPIPS| SSIMAE]

NSFF(Li et al., 2021) 19.088+1.514 0.63610.026 0.385+0.029 0.559+0.183

1 DynNeRF(Gao et al., 2021) 18.84641.227 0.645+0.023 0.380+0.027 0.54010.156
TiNeuVox(Fang et al., 2022) 18.361+1.159 0.539+0.026 0.41440.033 0.600+0.140
HexPlane(Cao & Johnson, 2023) 16.76240.130 0.420+0.002 0.708+0.005 1.68840.098

NSFF(Li et al., 2021) 18.99341.485 0.59240.024 0.465+0.027 0.582+0.180

2) DynNeRF(Gao et al., 2021) 18.75941.398 0.639+0.029 0.378+0.032 0.579+0.194
TiNeuVox(Fang et al., 2022) 18.978+1.249 0.560+0.028 0.394+0.035 0.619+0.159
HexPlane(Cao & Johnson, 2023) 17.32540.605 0.43440.015 0.626+0.019 1.993+0.119

NSFF(Li et al., 2021) 18.21440.948 0.4924-0.016 0.536+0.020 0.776+0.137
DynNeRF(Gao et al., 2021) 18.767+1.270 0.63940.026 0.382+0.029 0.55440.160

3) TiNeuVox(Fang et al., 2022) 18.776+1.155 0.556+0.027 0.39640.033 0.5531+0.154
HexPlane(Cao & Johnson, 2023) 18.46440.767 0.492+0.019 0.480+0.025 0.660+0.130

OSN(Ours) 22.940+1.004 0.784+0.022 0.160+0.021 0.125+0.078

2)+3) Total-Recon(Song et al., 2023) 18.768+1.535 0.666+0.032 0.2954+0.046 0.612+0.212

4.1. Evaluation of Dynamic Novel View Synthesis

We evaluate dynamic novel view synthesis of our OSN and
5 baselines on 3 datasets in 3 settings, with (4x3+1+1)x11
= 154 models trained in a scene-specific fashion.

Analysis: Table 1 and Figure 5 show the quantitative and
qualitative results. We can see that: 1) Our OSN clearly
surpasses all baselines in dynamic novel view RGB synthe-
sis on all datasets, including the extremely strong baselines
with pretrained depth priors to learn the most plausible 3D
scene representations. In fact, adding pretrained depth pri-
ors may incur unreliable geometry constraints and temporal
inconsistency. 2) Total-recon outperforms most of the other
baselines, as its representation fully leverages the object
rigidity priors. However, it still lags behind our method
due to the sub-optimal solution of object scales determined
by MiDaS. 3) Most notably, our method achieves superior
accuracy in novel view depth estimation with the lowest SSI-
MAE score of 0.094 on the Dynamic Indoor Scene Dataset,
demonstrating a clear advantage in learning truly faithful
3D geometry thanks to our object scale network which gives
explicit but flexible geometry information.

4.2. Evaluation with Multiple Ground Truths

Essentially, our framework aims to estimate many correct
solutions, and an ideal evaluation benchmark dataset should
also have many groups of ground truth images, because
there are many ground truth geometric explanations corre-
sponding to the monocular video. In this regard, we aim to
truly evaluate dynamic monocular reconstruction as a multi-
solution problem. In particular, we take a specific scene
“Gnome House” of the Dynamic Indoor Scene Dataset and
create 50 groups of ground truth testing views in Blender.
Each group has 210 novel views, and corresponds to a mean-
ingful but different 3D scene configuration where 3D mesh
models are applied with different scales, but these 50 scene
configurations all correspond to the same set of training
views (the input monocular video).

When calculating metric scores for our method and all base-
lines, we treat the 50 groups of ground truths independently.
The most similar predictions out of our 1000 samples will be
matched to each group of ground truths, while the baselines
always provide the same prediction for all ground truths.

Analysis: As shown in Table 2, our OSN significantly out-
performs all baselines regarding both the average perfor-
mance and variance, since our method can easily produce an
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Figure 6. Qualitative results of dynamic novel view synthesis for three ground truth 3D scene configurations.
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Figure 7. An illustration of the learned object scale ranges. We sample 4 scales for Sofa, two invalid shown by blue dots and two valid by
orange dots. The synthesized novel views demonstrate the learned scales are accurate and visual occlusions well preserved.

approximate solution (out of 1000 samples) for any group
of ground truths, while baselines always provide the same
solution regardless of different ground truth 3D scene config-
urations behind the monocular video. Figure 6 qualitatively
demonstrates our OSN produces different solutions for dif-
ferent ground truths.

4.3. Analysis of Validity Scores

To further analyze the object scale ranges learned by our
OSN, we take “Gnome House” as an example. As shown in
the left plot of Figure 7, we visualize the learned valid scales
of Sofa while leaving the other two object scales fixed. By
sampling 4 different scales for Sofa (two invalid represented
by blue dots, two valid by orange dots), we render 4 novel
views for the 4 sampled 3D scenes as shown in Figure 7.
We can see that the Sofa appears out of the floor and then
disappears, correctly occluded by the front two objects at
the two valid samples. This means that our object scale
network indeed learns the visual relationships and captures
authentic scale ranges.

4.4. Ablation Study

Since our object scale network only consists of simple 4-
layer MLPs, we mainly ablate our joint optimization module
on the Dynamic Indoor Scene Dataset.

(1) Removing Bootstrapping: This is to evaluate how the
early independent per-object representation learning would
help the latter overall optimization of our framework.

(2) Different Rounds of Alternative Optimization: In
default, the alternation round is set as 5, i.e., R = 5.

Table 3. Ablation study on the joint optimization module.
PSNRT SSIMT LPIPS] SSIMAE] PQT mloUT
24467 0831 0.135 0.174  89.139 89.258

w/o bootstrapping

R=1 23.123  0.810  0.165 0.266 75.558 78.896
R = 5 (0OSN) 25984 0.861  0.115 0.094 92.211 92451
R =10 25.065 0.836  0.127 0.108 90.610 90.610

Table 3 shows the ablation results. It can be seen that: 1)

Optimizing only one round is not sufficient for the object
scale network and the object scale-invariant networks to
benefit each other. 2) The early independent per-object
optimization is indeed helpful, but our framework would
not collapse without it. 3) Excessively training many rounds
may not be necessary, as incorrect scale combinations may
slip in and lead to inferior object representations over time.

5. Conclusion

In this paper, we demonstrate for the first time that dynamic
3D scenes should be and can be represented in infinitely
many ways from a monocular RGB video. This is achieved
by a novel object scale network together with a joint op-
timization module to truly learn a valid scale range for
each dynamic object. Extensive experiments validate the
effectiveness of our approach on synthetic and real-world
datasets with multiple dynamic objects of complex dynam-
ics. We hope that our new formulation of the challenging
monocular-based dynamic 3D scene modelling could open
up new opportunities for the field of study. Our future work
will focus on more challenging deformable 3D scenes.
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The appendix includes:

* Discussion on Application Scenarios.

* Details of Network.

* Details of the Joint Optimization.

* Details of Datasets.

 Evaluation of Scale Estimation.
 Evaluation of Invariance to Object Orders.

* Analysis on Number of Possible Ground Truths and Sam-
pled Solutions.

 Evaluation on Large and Variable Number of Objects
 Evaluation on Self-Driving Scenes.

* Evaluation on Daily Scenes.

¢ More Quantitative & Qualitative Results.

A. Discussion on Application Scenarios

The problem of monocular-based dynamic 3D scene recon-
struction can be generally divided into two situations:

* Situation #1: Alongside the monocular frames, additional
sensors (e.g., depth scanner) or prior knowledge (e.g.,
object-ground contact) are also available for the algorithm.
Common examples include autonomous driving, robot
manipulation, pedestrian walking, etc..

* Situation #2: In many other daily scenarios where videos
are casually captured by a single camera on a mobile
phone, and the captured dynamic objects may not always
touch the ground. Common examples include basket-
balls bouncing in the air, balloons flying, paragliding,
motocross jumping, scenes of Oxford Multimotion dataset,
efc..

In Situation #1, the relative scales of multiple dynamic ob-
jects can be determined by finding a singular, most plausible
solution, which has been extensively studied in literature.
However, in Situation #2, due to the lack of additional con-
straints, there could be many geometric explanations for the
input dynamic monocular video. For example, an object
could be interpreted as a small object near the camera or a
large one far away, given the same up-to-scale relative mo-
tions between objects and the camera. Our OSN is primarily
designed for Situation #2, though it can be easily adapted for
Situation #1 where we just need to sample a specific scale
combination (given or estimated from addition constraints).

B. Details of Networks
B.1. Object Scale-Invariant Representation Module

We adopt VM decomposition in TensoRF (Chen et al., 2022)
to parametrize the volumetric radiance field of each rigid
object. The appearance feature and the density are defined
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as follows:
A(xy) = Bi(fi(zx, yx) © g1(21))
+ Ba(fa (2, 2x) © g2(yk)) (2D
+ Bs(f3(yw, 2) © g3(zr))
and o(xx) =17 (hy(zg, yr) © ki(z1))
+ 17 (hao(zk, 2) © ko (yx)) (22)

+ 17 (hs(yg, zx) © ks(z)),

where o(x},) is the predicted sigma for point x, A (xi) is
the predicted appearance feature. As shown in VM decom-
position, f; and h; are vector-valued matrix with output
dimension M indexed by spatial coordinates, and g; and
k; are vector-valued functions with output dimension M
indexed by spatial coordinates. The final RGB color c is
regressed from a tiny MLP with appearance feature and
view direction as inputs. With points’ density o and colors
c, images can be rendered via our composite volumetric
rendering equation. We refer readers to TensoRF (Chen
et al., 2022) for more details.

For each object scale-invariant representation, the resolu-
tion of the volumetric radiance field varies from 160% to
6403, regarding the number of objects in the whole scene
and GPU memory limit. We use 16 and 48 components
to represent density and appearance features respectively.
Following TensoRF, we optimize this representation in a
coarse-to-fine manner, by starting with a 0.43 x smaller vol-
ume resolution and progressively upsampling the resolution
along the training.

B.2. Object Scale Network
The network is defined as follows:

p:fmlp(sla---asK) (23)

where the MLP is implemented as 4 hidden layers with 64
nodes. The scale of the 15¢ object (the static background is
chosen in our implementation) is fixed and therefore aban-
doned from the network input. The last MLP layer is fol-
lowed by a Sigmoid function.

C. Details of the Joint Optimization

Loss Weights: In Stage 1 - Boostrapping Per-object Rep-
resentation, for each object, the RGB loss E’f b and depth

loss Ezepth are weighted by {1.0,1.0}. In Stage 2 - Alter-
native Optimization, the RGB loss £2¢¢™¢, the depth loss

rgb
e;g;’g;;, and the segmentation loss £3¢°™¢ are weighted by

seg

{1.0,1.0,0.01} in the whole training process.

Training Schedule: We adopt the Adam optimizer with a
learning rate of 0.001 for both object scale-invariant repre-
sentation module and the object scale network. We optimize
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Table 4. The Mean Squared Error (MSE) between the object scales estimated by all methods and the ground truth on Dynamic Indoor
Scene dataset (lower is better). The methods are trained with different depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/

per-object SfM depth.
Depth Sup.  Method Gnome House  Dining Table ~ Chessboard ~ Factory | Average

NSFF(Li et al., 2021) 0.113 0.359 0.467 0.129 0.267

1 DynNeRF(Gao et al., 2021) 0.281 0.309 0.678 0.217 0.371
TiNeuVox(Fang et al., 2022) 0.308 0.364 0.406 0.203 0.320

HexPlane(Cao & Johnson, 2023) 1.156 0.361 0.264 0.653 0.609

NSFF(Li et al., 2021) 0.088 0.333 0.427 0.117 0.241

2) DynNeRF(Gao et al., 2021) 0.110 0.284 0.330 0.155 0.220
TiNeuVox(Fang et al., 2022) 0.211 0.116 0.173 0.152 0.163

HexPlane(Cao & Johnson, 2023) 3.871 0.933 1.797 1.685 2.072

NSFF(Li et al., 2021) 0.536 0416 0.491 0.178 0.405
DynNeRF(Gao et al., 2021) 0.188 0.348 0.663 0.188 0.347

3) TiNeuVox(Fang et al., 2022) 0.224 0.358 0.761 0.378 0.430
HexPlane(Cao & Johnson, 2023) 0.456 0.326 0.464 0.647 0.473

OSN(Ours) 0.026 0.152 0.043 0.036 0.064

2)+3) Total-Recon(Song et al., 2023) 0.105 0.121 0.113 0.115 0.114

the former for a total of 30K/ 30K/ 80K/ iterations on the
Dynamic Indoor Scene/ Oxford Multimotion/ Nvidia Dy-
namic Scene datasets. To train on each scene, we take the
first 1K iterations as the Stage 1 (Boostrapping). Then, we
take 1K iterations for optimizing object scale-invariant rep-
resentation networks, followed by 1K iterations for training
the object scale network.

D. Details of Datasets

Dynamic Indoor Scene Dataset: We directly adopt the 4
scenes used by NVFi (Li et al., 2023b): “Gnome House”,
“Dining Table”, “Chessboard” and “Factory”. Since some
objects in the original dataset are hardly visible in a monocu-
lar video, we re-compose the objects and their motions after
requesting the original 3D mesh models from the authors.
For each scene, we collect RGB images at 15 viewpoints
over 1 second, where each viewpoint has 15 frames cap-
tured. We simulate a moving monocular camera by extract-
ing frames from each viewpoint at different time instances,
i.e., 15 frames for the training split, while leaving the 210
frames at held-out viewpoints and time instances for the
testing split.

Oxford Multimotion Dataset: Among several sequences in
the dataset, we select 4 scenes: “swinging_4_translational”,
“swinging_4_unconstrained”, “occlusion_2_translational”,
and “occlusion_2_unconstrained”. The first two scenes have
4 cubes hanged from the ceiling, swinging and flipping
along different directions. The last two scenes have a large
block tower and a small block moving left to right, with the
latter occasionally being occluded by the former. For each
scene, we extract a 15-frame clip over 2 seconds, taking
15 frames from the left camera for training and leaving 15
frames from the right camera for testing.

NVIDIA Dynamic Scene Dataset: Among 8 scenes in the
original dataset, we select 3 scenes “Balloon2”, “Skating”,
and “Truck”, where motions of balloon, skateboarder, and
truck are all rigid or approximately rigid. Each scene is
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captured by 12 synchronized cameras, and we follow the
evaluation protocol in DynamicNeRF (Gao et al., 2021) to
train on 12 frames sampled from each camera viewpoint
at different time instances, and test on 12 frames sampled
from the first camera viewpoint at different time instances.

E. Evaluation of Scale Estimation

For a more in-depth analysis of our superior performance,
we compare the object scales estimated by different meth-
ods with the ground truth on the synthetic Dynamic Indoor
Scene dataset, measured by Mean Squared Error (MSE). For
baselines modeling deformable objects, the estimated scales
are computed from the corresponding object regions in ren-
dered depths. As shown in Table 4, our object scale network
is crucial to recover realistic 3D scenes, as demonstrated by
the superior estimated object scales over baselines.

F. Evaluation of Invariance to Object Orders

Our whole framework is designed in a scene-specific opti-
mization fashion akin to NeRF. Before training our OSN,
the input scales {s; - - - s, - - - sk } are flexible to be associ-
ated with any objects thanks to the inherent symmetry of
MLP architecture. The subsequent rendering algorithms are
also invariant to permutations of objects. This means that
our framework does not rely on a specific object order.

We further evaluate such ability of our framework on the
“Gnome House” scene. Particularly, we separately train
6 scale networks on 6 different permutations of the 3 ob-
jects. We then sample 100K scale combinations and feed
them into the trained 6 scale networks, obtaining 6 averaged
scores for all permutations. Such 6 scores show a standard
deviation of 0.0042 over the 6 permutations on the overall
100K samples, which is mainly caused by random initializa-
tion of 6 networks, and therefore negligible. This validates
that our scale network does not rely on a specific order of
objects.
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Best performance of sampled solutions
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Figure 8. Left: Overall performance of 1000 sampled solutions w.r.t different number of possible ground truths. Right: Best and overall
performance of different number of solutions w.r.t a single ground truth.

Table 5. Quantitative results of our OSN with different object orders on the “Gnome House” scene.

permutations PSNRT SSIM T LPIPS| SSIMAE] PQ?T mloU7T
{1,2,3} 27917 0.833 0.106 0.079 95.889 95.889
{1,3,2} 28.045 0.834 0.108 0.081 95.856 95.856
{2,1,3} 27.954 0.834 0.108 0.081 95.896 95.896
{2,3,1} 27.899 0.833 0.107 0.078 95.863 95.863
{3,1,2} 27.976 0.834 0.109 0.085 95.827 95.827
{3,2,1} 27.893 0.833 0.107 0.081 95.869 95.869
Average 27.94740.058  0.834+0.001  0.108+0.001  0.0814+0.002  95.86740.025  95.867+0.025

We further feed a specific scale combination to the trained
object scale-invariant representations for rendering. Table 5
shows that all 6 permutations have nearly the same results,
validating that the object scale-invariant representations and
rendering algorithms doesn’t rely on the object order as
well.

G. Analysis on Number of Possible Ground
Truths and Sampled Solutions

We evaluate the overall performance of all 1000 samples
w.r.t different number of possible ground truths on “Gnome
House” scene of the Dynamic Indoor Scene Dataset. As
shown in the error bar statistics in Figure 8 (left), when
there is only a single ground truth, the performance of 1000
samples shows large variance since most of them represent
totally different scenes. When the number of ground truths
increases to 5, 10, 20, and 50, more and more samples can
match proper ground truth 3D scenes.

We also evaluate the best and overall (averaged) perfor-
mance of sampled solutions given various number of sam-
ples, w.r.t a single ground truth. As shown in Figure 8
(right), we can see that: a) For the best performance, the
PSNR score gradually increases since a singular ground
truth is more likely to be better approached by more sam-
ples. b) For the overall (averaged) performance, it is actually
not meaningful w.r.f to a single ground truth, since sampled
solutions are free to represent any possible meaningful 3D
scene behind the same monocular video. In the plot, both
its average and standard deviation show little changes given
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various number of samples, because the majority of these
solutions could deviate from the singular ground truth.

H. Evaluation on Large and Variable Number
of Objects

By design, our object scale network is not restricted to the
number of dynamic objects. Given more objects, we may
just need more MLP layers to enhance its ability. We further
evaluate our current object scale network (4 MLP layers)
on more objects. Particularly, we build another synthetic
scene “Chessboard++" containing 8 moving objects (twice
the maximum number of moving objects in previous scenes).
During capturing the video, some objects get in or out of the
view, resulting in an extremely challenging monocular video
with large and dynamic (variable) number of objects. Table
6 shows quantitative results of all methods. Our method
achieves the best performance, demonstrating the capability
of tackling large and variable number of objects. Qualitative
results are in Figure 9.

I. Evaluation on Self-Driving Scenes

We extract a 15-frame clip from the Sequence 0007 of KITTI
dataset for evaluation. As shown in Table 7 and Figure 10,
our method can tackle the challenging real outdoor scenes
and achieves competing performance. Nevertheless, our
method is not primarily designed for autonomous driving
scenarios as we have discussed in Section A. In fact, while
examining scenes in KITTI dataset, we find that the com-
mon forward-moving camera motions can easily result in
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Table 6. Quantitative results for novel view synthesis on the “Chessboard++” scene. The methods are trained with different depth
supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object StM depth.

Chessboard++
Depth Sup. ~ Method PSNRT  SSIMfT  LPIPS]  SSIMAE|

NSFF(Li et al., 2021) 18.918 0.671 0.365 0.921

1 DynNeRF(Gao et al., 2021) 20.521 0.752 0.290 0.595
TiNeuVox(Fang et al., 2022) 20.135 0.627 0.452 0.703
HexPlane(Cao & Johnson, 2023) 16.862 0.524 0.628 2.056

NSFF(Li et al., 2021) 18.766 0.620 0.414 0.805

2) DynNeRF(Gao et al., 2021) 20.292 0.742 0.299 0.613
TiNeuVox(Fang et al., 2022) 20.159 0.625 0.468 0.589
HexPlane(Cao & Johnson, 2023) 16.919 0.547 0.424 1.159

NSFF(Li et al., 2021) 19.581 0.733 0.308 0.733
DynNeRF(Gao et al., 2021) 20.773 0.757 0.284 0.538

3) TiNeuVox(Fang et al., 2022) 20.233 0.645 0.445 0.738
HexPlane(Cao & Johnson, 2023) 19.998 0.618 0.446 0.562
OSN(Ours) 21.900 0.807 0.241 0.337

2)+3) Total-Recon(Song et al., 2023) 20.908 0.765 0.253 0.444

Table 7. Quantitative results of all methods on real-world Sequence 0007 of KITTI dataset. The methods are trained with different depth
supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

KITTTI - Sequence 0007
Depth Sup.  Method SNRT  SSIMtT  LPIPS|

NSFF(Li et al., 2021) 16.668 0.612 0.349

D DynNeRF(Gao et al., 2021) 17.437 0.635 0.376
TiNeuVox(Fang et al., 2022) 14.874 0.536 0.431
HexPlane(Cao & Johnson, 2023) 15.935 0.597 0.435

NSFF(Li et al., 2021) 16.649 0.607 0.359

2) DynNeRF(Gao et al., 2021) 17.121 0.611 0.405
TiNeuVox(Fang et al., 2022) 16.539 0.580 0.401
HexPlane(Cao & Johnson, 2023) 15.189 0.551 0.472

NSFF(Li et al., 2021) 17.602 0.648 0.360
DynNeRF(Gao et al., 2021) 16.955 0.620 0.390

3) TiNeuVox(Fang et al., 2022) 16.290 0.580 0.399
HexPlane(Cao & Johnson, 2023) 16.738 0.635 0.394
OSN(Ours) 18.492 0.684 0.262

2)+3) Total-Recon(Song et al., 2023) 18.508 0.689 0.258

failures in SfM or object tracking, making the preliminar-
ily processed data (Section 3.1) less satisfactory for our
method.

J. Evaluation on Daily Scenes

We additionally capture two daily scenes, “Bouncing Basket-
balls” and “Flying Dragon-Balloons”, using the monocular
camera on a mobile phone and show qualitative results in
Figure 11, demonstrating real-world applications of our
method.
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Figure 9. Qualitative results of dynamic novel view RGB/depth synthesis on the synthetic “Chessboard++” scene.
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Figure 10. Qualitative results of dynamic novel view RGB/depth synthesis on a selected scene from Sequence 0007 of KITTI dataset.
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Video

S2  Observed ‘

Observed

Observed
Figure 11. Qualitative results on two daily scenes captured by a mobile phone. For each scene we show the captured monocular video,
and the rendering results from observed and novel views under 3 sampled scale combinations at a specific time step.
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K. More Quantitative and Qualitative Results

We report the quantitative results of novel view synthesis for individual scenes in the three datasets. As shown in Tables
8/9/10 and Figures 12/13/14/15/16/17/18/19/20/21/22, our method achieves excellent performance, especially in learning
fine-grained 3D geometry which can be seen from our high-qualty depth estimation.

Table 8. Per-scene quantitative results for novel view synthesis on the Dynamic Indoor Scene Dataset. The methods are trained with
different depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

Gnome House Chessboard
Depth Sup. ~ Method PSNRT  SSIMt  LPIPS| SSIMAE| | PSNR{T  SSIMt  LPIPS| SSIMAE]

NSFF(Li et al., 2021) 24.695 0.717 0.304 0.164 18.285 0.701 0.360 0.735

1 DynNeRF(Gao et al., 2021) 21.904 0.674 0.337 0.389 18.259 0.718 0.344 0.757
TiNeuVox(Fang et al., 2022) 22.193 0.602 0.334 0.358 19.760 0.622 0.377 0.768
HexPlane(Cao & Johnson, 2023) 16.993 0.431 0.693 1.545 18.977 0.624 0.368 0.904

NSFF(Li et al., 2021) 24.482 0.667 0.389 0.201 18.322 0.716 0.340 1.118

2) DynNeRF(Gao et al., 2021) 23.304 0.714 0.300 0.214 18.894 0.728 0.322 0.550
TiNeuVox(Fang et al., 2022) 23.753 0.644 0.299 0.315 20.640 0.689 0.327 0.481
HexPlane(Cao & Johnson, 2023) 19.149 0.473 0.574 1.784 17.018 0.541 0.529 1.342

NSFF(Li et al., 2021) 21.142 0.537 0.487 0.480 18.494 0.712 0.353 0.671
DynNeRF(Gao et al., 2021) 22.178 0.684 0.327 0.287 17.952 0.681 0.414 1.209

3) TiNeuVox(Fang et al., 2022) 22.396 0.621 0.320 0.277 19.608 0.666 0.344 0.703
HexPlane(Cao & Johnson, 2023) 20.344 0.528 0.430 0.436 19.279 0.642 0.358 0.612
OSN(Ours) 27.917 0.833 0.106 0.079 25.205 0.872 0.120 0.087

2)+3) Total-Recon(Song et al., 2023) 25.077 0.802 0.142 0.181 25.606 0.883 0.111 0.133

Dining Table Factory
Depth Sup. ~ Method PSNRT  SSIMt  LPIPS| SSIMAE| | PSNR{  SSIMtT  LPIPS| SSIMAE]

NSFF(Li et al., 2021) 20.158 0.784 0.245 0.362 22.573 0.677 0.344 0.252

1 DynNeRF(Gao et al., 2021) 20.106 0.768 0.256 0.318 25.647 0.846 0.172 0.205
TiNeuVox(Fang et al., 2022) 20.632 0.692 0.247 0.423 24.506 0.702 0.266 0.397
HexPlane(Cao & Johnson, 2023) 20.819 0.725 0.241 0.335 17.760 0.545 0.619 1.063

NSFF(Li et al., 2021) 20.247 0.783 0.246 0.365 20.550 0.624 0.419 0.290

2) DynNeRF(Gao et al., 2021) 21.717 0.776 0.240 0.304 25.717 0.850 0.165 0.168
TiNeuVox(Fang et al., 2022) 22.627 0.711 0.229 0.255 26.132 0.747 0.221 0.263
HexPlane(Cao & Johnson, 2023) 15.885 0.525 0.542 1.197 19.819 0.574 0.495 1.257

NSFF(Li et al., 2021) 20.651 0.735 0.266 0.379 24.833 0.750 0.280 0.336
DynNeRF(Gao et al., 2021) 20.026 0.760 0.264 0.342 25.529 0.842 0.178 0.199

3) TiNeuVox(Fang et al., 2022) 21.480 0.710 0.241 0.260 25.302 0.743 0.234 0.233
HexPlane(Cao & Johnson, 2023) 21.123 0.709 0.247 0.258 20.120 0.612 0.458 0.527
OSN(Ours) 22.851 0.838 0.141 0.168 27.961 0.899 0.091 0.043

2)+3) Total-Recon(Song et al., 2023) 22.268 0.810 0.145 0.097 25.830 0.867 0.113 0.135
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Table 9. Per-scene quantitative results for novel view synthesis on the Oxford Multimotion Dataset. The methods are trained with different
depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

swinging_4_translational occlusion_2_translational
Depth Sup.  Method PSNRT  SSIM{  LPIPS| | PSNRT SSIM{  LPIPS|

NSFF(Li et al., 2021) 15.460 0.523 0.301 17.159 0.640 0.259

1 DynNeRF(Gao et al., 2021) 15.506 0.534 0.310 17.736 0.657 0.236
TiNeuVox(Fang et al., 2022) 16.625 0.588 0.272 15.656 0.592 0.379
HexPlane(Cao & Johnson, 2023) 16.595 0.580 0.208 16.759 0.637 0.253

NSFF(Li et al., 2021) 15.628 0.529 0.270 16.777 0.627 0.322

2) DynNeRF(Gao et al., 2021) 15.909 0.543 0.251 17.232 0.634 0.283
TiNeuVox(Fang et al., 2022) 17.320 0.613 0.200 18.503 0.645 0.220
HexPlane(Cao & Johnson, 2023) 15.898 0.547 0.280 15.972 0.597 0.358

NSFF(Li et al., 2021) 16.590 0.566 0.307 17.373 0.628 0.254
DynNeRF(Gao et al., 2021) 15.596 0.541 0.289 18.230 0.673 0.216

3) TiNeuVox(Fang et al., 2022) 17.321 0.631 0.195 17.618 0.633 0.256
HexPlane(Cao & Johnson, 2023) 16.263 0.558 0.209 17.078 0.643 0.219
OSN(Ours) 18.248 0.619 0.160 19.551 0.686 0.169

2)+3) Total-Recon(Song et al., 2023) 16.029 0.546 0.184 19.597 0.682 0.194

swinging_4_unconstrained occlusion_2_unconstrained
Depth Sup.  Method PSNRT  SSIMT  LPIPS| | PSNRT  SSIMtT  LPIPS]

NSFF(Li et al., 2021) 16.140 0.578 0.221 17.987 0.723 0.215

1 DynNeRF(Gao et al., 2021) 16.668 0.600 0.191 17.521 0.717 0.238
TiNeuVox(Fang et al., 2022) 17.047 0.620 0.278 16.402 0.651 0.372
HexPlane(Cao & Johnson, 2023) 16.883 0.607 0.189 18.097 0.701 0.235

NSFF(Li et al., 2021) 17.715 0.620 0.161 18.257 0.716 0.221

2) DynNeRF(Gao et al., 2021) 15.688 0.559 0.303 17.256 0.751 0.197
TiNeuVox(Fang et al., 2022) 17.889 0.661 0.192 20.320 0.753 0.177
HexPlane(Cao & Johnson, 2023) 15.703 0.538 0.319 15.797 0.620 0.396

NSFF(Li et al., 2021) 17.521 0.627 0.177 16.887 0.644 0.241
DynNeRF(Gao et al., 2021) 15.830 0.565 0.312 17.487 0.715 0.308

3) TiNeuVox(Fang et al., 2022) 17.843 0.676 0.179 19.389 0.740 0.200
HexPlane(Cao & Johnson, 2023) 16.346 0.582 0.207 18.861 0.742 0.176
OSN(Ours) 19.010 0.663 0.154 21.874 0.813 0.138

2)+3) Total-Recon(Song et al., 2023) 16.555 0.595 0.182 21.142 0.795 0.132

Table 10. Per-scene quantitative results for novel view synthesis on the NVIDIA Dynamic Scene Dataset. The methods are trained with
different depth supervision: 1) w/o depth, 2) w/ MiDaS depth, and 3) w/ per-object SfM depth.

Balloon2 Skating Truck
Depth Sup.  Method PSNRT SSIMf LPIPS| | PSNRY SSIM{ LPIPS| | PSNRt SSIM{ LPIPS|

NSFF(Li et al., 2021) 22.111 0.731 0.141 24.115 0.799 0.191 19.073 0.476 0.356

1 DynNeRF(Gao et al., 2021) 24.391 0.783 0.114 26.973 0.920 0.073 25.750 0.779 0.164
TiNeuVox(Fang et al., 2022) 21.702 0.522 0.263 23.371 0.700 0.275 23.693 0.633 0.249
HexPlane(Cao & Johnson, 2023) 20.192 0.536 0.214 21.316 0.661 0.302 18.998 0.469 0.342

NSFF(Li et al., 2021) 25.887 0.838 0.072 29.457 0.927 0.057 27.034 0.817 0.097

2) DynNeRF(Gao et al., 2021) 27.059 0.860 0.049 32.550 0.952 0.033 28.748 0.873 0.079
TiNeuVox(Fang et al., 2022) 20.580 0.430 0.246 24.812 0.757 0.148 23.694 0.625 0.186
HexPlane(Cao & Johnson, 2023) 17.538 0.317 0.328 21.459 0.621 0.287 18.938 0.474 0.386

NSFF(Li et al., 2021) 24.288 0.767 0.137 25.469 0.812 0.199 21.501 0.621 0.245
DynNeRF(Gao et al., 2021) 21.969 0.658 0.202 26.552 0.880 0.163 24.973 0.775 0.164

3) TiNeuVox(Fang et al., 2022) 19.837 0.427 0.275 24.467 0.705 0.160 23.770 0.642 0.210
HexPlane(Cao & Johnson, 2023) 20.391 0.627 0.179 24.213 0.804 0.146 25.057 0.728 0.126
OSN(Ours) 26.764 0.848 0.050 33.461 0.951 0.036 28.538 0.877 0.073

2)+3) Total-Recon(Song et al., 2023) 25.413 0.828 0.062 29.426 0.936 0.039 28.626 0.876 0.075
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Figure 12. Qualitative results of dynamic novel view RGB/depth synthesis on the “Chessboard” of Dynamic Indoor Scene Dataset.
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Figure 13. Qualitative results of dynamic novel view RGB/depth synthesis on the “Gnome House” of Dynamic Indoor Scene Dataset.
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Figure 14. Qualitative results of dynamic novel view RGB/depth synthesis on the “Dining Table” of Dynamic Indoor Scene Dataset.
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Figure 15. Qualitative results of dynamic novel view RGB/depth synthesis on the “Factory” of Dynamic Indoor Scene Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
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Figure 16. Qualitative results of dynamic novel view RGB/depth synthesis on the “occlusion_2_translational” of Oxford Multimotion
Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
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Figure 17. Qualitative results of dynamic novel view RGB/depth synthesis on the “swinging_4_translational” of Oxford Multimotion
Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos

= 1 0]
) : o
° : £
B I
I
& : 5
B i S
g | Z
= I =)
£ !
. | 3
z | :
n . °
! =
NSFF DynNeRF TiNeuVox HexPlane :
I
|
2 |
) . =
2 I @)
E |
i
£ | L
E : | <
< .
a I z
= : o
= ! g
32 ' :
2 ! &
n I &
NSFF DynNeRF TiNeuVox HexPlane

Figure 18. Qualitative results of dynamic novel view RGB/depth synthesis on the “occlusion_2_unconstrained” of Oxford Multimotion
Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
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Figure 19. Qualitative results of dynamic novel view RGB/depth synthesis on the “swinging_4_unconstrained” of Oxford Multimotion
Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
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Figure 20. Qualitative results of dynamic novel view RGB/depth synthesis on the “Balloon2” of NVIDIA Dynamic Scene Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
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Figure 21. Qualitative results of dynamic novel view RGB/depth synthesis on the “Skating” of NVIDIA Dynamic Scene Dataset.
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OSN: Infinite Representations of Dynamic 3D Scenes from Monocular Videos
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Figure 22. Qualitative results of dynamic novel view RGB/depth synthesis on the “Truck” of NVIDIA Dynamic Scene Dataset.
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