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Abstract
An emergency responder management (ERM) sys-
tem dispatches responders, such as ambulances,
when it receives requests for medical aid. ERM
systems can also proactively reposition respon-
ders between predesignated waiting locations to
cover any gaps that arise due to the prior dispatch
of responders or significant changes in the dis-
tribution of anticipated requests. Optimal repo-
sitioning is computationally challenging due to
the exponential number of ways to allocate re-
sponders between locations and the uncertainty
in future requests. The state-of-the-art approach
in proactive repositioning is a hierarchical ap-
proach based on spatial decomposition and on-
line Monte Carlo tree search, which may require
minutes of computation for each decision in a
domain where seconds can save lives. We ad-
dress the issue of long decision times by intro-
ducing a novel reinforcement learning (RL) ap-
proach, based on the same hierarchical decompo-
sition, but replacing online search with learning.
To address the computational challenges posed
by large, variable-dimensional, and discrete state
and action spaces, we propose: (1) actor-critic
based agents that incorporate transformers to han-
dle variable-dimensional states and actions, (2)
projections to fixed-dimensional observations to
handle complex states, and (3) combinatorial tech-
niques to map continuous actions to discrete al-
locations. We evaluate our approach using real-
world data from two U.S. cities, Nashville, TN
and Seattle, WA. Our experiments show that com-
pared to the state of the art, our approach reduces
computation time per decision by three orders of
magnitude, while also slightly reducing average
ambulance response time by 5 seconds.
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1. Introduction
Dynamically repositioning resources under uncertainty is
an important problem in societal-scale cyber-physical sys-
tems (Pettet et al., 2022), such as bike repositioning (Li
et al., 2018), ride-hailing and public transit (Jin et al., 2019;
Xi et al., 2021; Talusan et al., 2024), and emergency re-
sponse management (ERM) (Mukhopadhyay et al., 2020).
In such problems, a decision-maker must sequentially op-
timize the allocation of resources in space and time to re-
spond to uncertain demand (e.g., calls for service). We
focus specifically on ERM, a critical problem faced by ur-
ban communities across the globe. Indeed, 240 million
emergency medical service calls are made in the U.S. alone
each year (Mukhopadhyay et al., 2020). Whenever a re-
quest for medical aid is reported to an ERM, a responder is
dispatched to the scene of the incident. Responders admin-
ister critical services on the scene (e.g., basic life support),
transfer the patient to the nearest hospital, and head back to
their assigned waiting locations (called depots) to wait until
their next dispatch. Due to the critical nature of emergency
medical aid, dispatching decisions are typically constrained
to greedy policies that send the nearest available respon-
der (Mukhopadhyay et al., 2020). However, it is possible
to proactively optimize the waiting locations of the respon-
ders so that expected response times for future incidents are
minimized (Pettet et al., 2022; 2020).

The problem of proactive repositioning is computationally
challenging due to the uncertainty in future demand and the
combinatorial state-action space of the problem—the num-
ber of possible responder assignments grows exponentially
with the number of responders. For example, in one of our
experimental settings, Nashville, TN, the number of possi-
ble allocations at each decision epoch is on the order of 1033.
Prior works use centralized, decentralized, and hierarchical
approaches to solve the ERM reallocation problem. (Ji et al.,
2019) propose a learning-based approach for centralized re-
allocation, which can reallocate a responder each time it
finishes serving a request. Unfortunately, such centralized
solutions with a monolithic state-action space (Mukhopad-
hyay et al., 2018; Ji et al., 2019) do not scale to large ERM
systems. Decentralized approaches (Pettet et al., 2020), on
the other hand, split the state-action space such that each
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responder makes its own decisions, sacrificing coordination
between the responders to achieve scalability, which can
lead to sub-optimal decisions.

The state-of-the-art approach (Pettet et al., 2022) applies
hierarchical planning to the responder allocation problem,
which in principle lies midway between the centralized and
decentralized approaches. This approach first partitions
the spatial area under consideration into smaller and more
manageable areas called regions. A low-level planner uses
Monte-Carlo tree search (MCTS), an online technique, to
solve each region-specific problem independently. A high-
level planner allocates responders between the regions based
on expected demand. (Pettet et al., 2022)’s hierarchical ap-
proach alleviates scalability concerns while maintaining co-
ordination between nearby responders, and comprehensively
outperforms other methods in this domain. However, the
framework’s use of MCTS for low-level planning requires
running extensive simulations at decision time, which need
significant computation time for decision-making (between
2–4 minutes). This is infeasible in practice since delays
in reallocation during a coverage gap (when an area does
not have any available responders) could be catastrophic in
ERM. This raises an interesting research problem: How can
we reduce decision time to avoid delays in making realloca-
tion decisions without sacrificing solution quality compared
to the current state of the art?

We address this problem by introducing a novel learning-
based approach that can make reallocation decisions in a
fraction of a second. However, applying a learning-based
approach directly to the problem formulation of (Pettet et al.,
2022) is challenging since: (1) even with the spatial decom-
position, both state and action spaces are high-dimensional
and discrete; (2) low-level planners must be able to handle
variable-dimensional state and action spaces as the num-
ber of responders in a region may vary over time; and (3)
rewards are very noisy, especially for the high-level plan-
ner, since response times can vary widely depending on the
locations and times of incidents. We tackle these challenges
systematically in this paper.

Specifically, we make the following contributions. (1) We
introduce a multi-agent reinforcement-learning with hierar-
chial coordination for responder repositioning by replacing
the high- and low-level planners of (Pettet et al., 2022)’s
framework with actor-critic based agents that can handle
complex, high-dimensional action spaces. (2) To handle
complex, high-dimensional states, we introduce projections
from states to low-dimensional features, which capture rel-
evant state information. (3) We incorporate transformers
into low-level agents to handle variable-dimensional states
and actions. (4) To facilitate gradient-based actor train-
ing, we introduce efficient combinatorial optimizations that
take continuous actions from an actor and map them to

discrete allocations. (5) To reduce noise in the high-level
agent’s rewards, we estimate its rewards using the low-level
agents’ critics. (6) We evaluate our approach using real-
world data from Nashville and Seattle, two cities in the U.S.,
and show that our approach not only reduces the computa-
tional time per decision by multiple orders of magnitude but
also slightly reduces ambulance response times compared
to the state of the art.

2. Problem Formulation
We begin by introducing the assumptions of the ERM re-
allocation problem and modeling it as a continuous-time
Markov decision process. Then, in Section 2.2, we describe
the hierarchical decision-making framework that enables
tractable decision-making. This problem formulation and
hierarchical framework are based on state-of-the-art prior
work (Pettet et al., 2022; Mukhopadhyay et al., 2020). We
introduce our novel learning-based framework in Section 3.

2.1. Model

An ERM system manages a set of resonders to serve re-
quests1 for medical aid that are distributed over space and
time and are unknown in advance. The ERM’s spatial area
of operation is divided into a grid of equally sized square
cells (C). Requests for medical aid follow a spatio-temporal
probability distribution that can be modeled using indepen-
dent Poisson distributions for each cell. For a specific cell
c ∈ C, we denote the expected rate of incident occurrence
at time t for some duration (e.g., over the next hour) by λc

t .

The ERM system consists of the following components:
a set of responders (V) to serve requests, a fixed set of
spatially-located depots (D) where responders idle between
serving requests, and a fixed set of hospitals (H) where pa-
tients are taken after being picked up at a request’s location.
When a request is reported, the ERM system assigns the
nearest available responder to service it (this is governed
by the practical constraints that ERM operators face). If no
responder is available, the incident enters a waiting queue.
Once a responder arrives at the request’s location, it treats
the patient on-scene for a fixed time (tserve), after which it
transports the patient to the nearest hospital. The movement
of responders between cells follows a time-varying travel
model (M): the time taken to move from cell ci ∈ C to cell
cj ∈ C at time t is given byM(ci, cj , t). After servicing a
request, the responder is either immediately dispatched to
the request at the top of the waiting queue or returns to an
empty depot to wait if the queue is empty.

We model the ERM’s stochastic decision-making problem
of dynamically reallocating responders (V) to depots (D) in
anticipation of future incidents as a continuous-time Markov

1We use requests and incidents synonymously.

2



Multi-Agent Reinforcement Learning with Hierarchical Coordination for Emergency Responder Stationing

The area is divided into square grid
cells, which are clustered into regions

based on historical incident rates.

High Level Planner: redistribute
responders among regions when

anticipating a change in the
distribution of incident arrivals.

Low-Level Planner: reposition responders
within the region to address the coverage

gap caused by a dispatch or by a HLP
redistribution.

At the beginning, responders are
distributed among the regions to

ensure coverage.

When an incident arrives, the nearest
responder is dispatched to serve the

incident.

Figure 1: High-level overview of state-of-the-art hierarchical framework (Pettet et al., 2022), described in Section 2.2.

decision process (MDP). The objective of the MDP is to
reduce the system’s expected incident response time (i.e.,
cumulative time taken to reach the scene of each incident
after it is reported). We describe the MDP below.

State At time t, the system state is denoted by st and
consists of the set of incidents waiting for service It, the
incident rates λc

t ,∀c ∈ C of the cells, and the state Pt of the
responders. For each responder v ∈ V , the state pv

t ∈ Pt

is a tuple ⟨dv, iv, hv, cv, tvavail⟩, where dv ∈ C is the depot
where responder v is assigned to wait when it is not serving
an incident; iv ∈ C is the location of the incident to which
responder v is currently assigned; hv ∈ C is the location
of the hospital to which responder v is currently taking
a patient; cv ∈ C is responder v’s current location; and
tvavail ∈ R+ is the point in time at which responder v will
become available, i.e., when it will drop off the patient at
the assigned hospital. Variables iv, hv, and tvavail are empty
if responder v is not assigned to an incident at time t.

Transition The environment has two types of events: inci-
dent occurrences and incident rate changes. We define two
types of decision epochs based on these events: (1) when a
responder is dispatched to serve an incident and (2) when
changes in incident rates are detected. Between two deci-
sion epochs, the state of the system evolves as responders
serve their incidents and move to their assigned depots ac-
cording to the travel modelM. We assume the assignment
of responders to depots does not change between consec-
utive decision epochs since no new information becomes
available.

Action An action is the reallocation of some responders
v ∈ V from their currently assigned depot dvt to a different
depot dvt+1 (dvt ̸= dvt+1) at decision epoch t.

Reward If the next decision epoch is due to the arrival of
an incident, then the reward for the last action is the response
time for the incident. On the other hand, if the next decision
epoch is due to a change in the incident rates, in which

case there is no incident to serve, the reward is 0. Note that
in the ERM setting, the goal is to find an allocation that
minimizes the expected incident response times. Therefore,
despite using the standard term “reward,” the objective is to
minimize the expected discounted rewards.

2.2. Hierarchical Decision Framework

A key challenge to solving the MDP defined in Section 2.1
is the combinatorial nature of the state and action spaces.
We address this scalability challenge by using the hierarchi-
cal decision-making framework introduced by (Pettet et al.,
2022). We assume that the ERM’s spatial area has been di-
vided into a set of smaller, more manageable regions G based
on the historical incident rates (using the same approach as
(Pettet et al., 2022)), with Cg denoting the cells assigned to
region g ∈ G. Decision-making for these regions is decom-
posed into two stages: high-level and low-level decision
making. First, the high-level decision agent distributes the
available responders between the regions. We denote the
region to which responder v is assigned as gv ∈ G. Then,
low-level agents optimize the responder assignments inde-
pendently within each region. This significantly reduces
the complexity of each region’s assignment subproblem, as
the low-level agents need to consider only the interactions
between responders and depots within a single region.

In this hierarchical decision-making framework, the follow-
ing general procedure is followed each time an incident is
reported: (1) The nearest available responder is dispatched.
(2) The high-level planner decides if the allocation of re-
sponders to regions is unbalanced, and if so, actuates an
appropriate redistribution of responders among the regions.
(3) The low-level planner is invoked for every region if
the high-level planner changed the region distribution; oth-
erwise, it is invoked only for the region from which the
responder was dispatched (in the first step) to address any
coverage gaps that arose due to the dispatch. Figure 1 shows
a high-level overview of the hierarchical framework.
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3. Solution Approach
Now, we introduce our novel learning-based approach for
proactive repositioning in ERM. We utilize the hierarchical
framework from the state-of-the-art approach (Pettet et al.,
2022), but we replace both the high-level planner (HLP)
and the low-level planners (LLPs) with deep reinforcement
learning agents to overcome the long decision-making time
of online search. Due to the critical nature of ERM, any addi-
tional time spent on planning can have a negative impact on
serving future incidents (Jaldell et al., 2014). However, the
application of reinforcement learning faces several computa-
tional obstacles. Even after the hierarchical decomposition,
action spaces remain vast, which poses challenges for find-
ing optimal actions. We propose actor-critic-based agents
for both the HLP and the LLPs, specifically, the DDPG
algorithm (Lillicrap et al., 2015), since a trained actor can
choose an action at a very low computational cost. In Ap-
pendix G, we explain the rationale behind our choice of
applying DDPG in more detail. However, this leads to an-
other challenge since such agents are ill-suited for discrete
action spaces; we address this by letting actors choose con-
tinuous actions, which we map to discrete allocations using
efficient combinatorial optimization: minimum-cost flow
for HLP and maximum-weight matching for LLPs.

Similarly, state spaces remain vast even after decomposition;
hence, we map states to low-dimensional feature vectors,
which capture relevant information, for both LLPs and the
HLP. LLPs also face the challenge of variable-dimensional
state and action spaces due to the varying number of respon-
ders in a region; we tackle this by incorporating transformers
into the actors. Finally, the HLP faces the challenge of noisy
rewards that are weakly correlated to its actions since each
response time depends on only one of many regions (i.e.,
the region where the incident occurred); we address this by
estimating HLP rewards using LLP critics.

3.1. Low-Level Decision Agent: Reallocating
Responders within a Region

We first introduce an MDP formulation of the problem of
repositioning responders within a region by a low-level plan-
ner. Then, we explain how we build on the DDPG algo-
rithm (Lillicrap et al., 2015) to train an agent. Figure 2 pro-
vides an overview of the architecture of our low-level agent.

We formulate each region’s reallocation problem as an MDP
as follows: State: The state sg

t of region g consists of the
incident rates of the cells in region g (λc

t ,∀c ∈ Cg) and the
states of responders currently assigned to g (Pg

t = {pvt |
pvt ∈ Pt ∧ v ∈ Vg}). Transition: We consider two deci-
sion epochs: (1) when a responder assigned to region g is
dispatched to a request, and (2) when the set of responders
assigned to g is changed by the high-level agent (described
in detail in Section 3.2). Action: An action A[g] is a reposi-

tioning of responders between depots in the region g. Re-
ward: We consider the same reward as the original MDP,
i.e., response time, but calculated only for incidents served
by the responders in region g.

Actor Input To implement low-level planning, we apply
actor-critic based RL to the MDP above. To tackle the
challenge of high-dimensional state space, we transform the
region state sg

t into the following two sets of features:

• Arrival time ϕt[d, v]: total time that each responder
v ∈ Vg would take to reach each depot d ∈ Dg if
responder v ∈ Vg were assigned to idle at depot d
after completing its current task. We let ϕt[d, v] =
0 if responder v is currently at depot d. Intuitively,
ϕt[d, v] captures how soon responder v would be ready
to serve incidents nearby depot d. Arrival time ϕt[d, v]
is computed as:

ϕt[d, v] =

{
M(cv, d, t) if tvavail < t

tvavail − t+M(hv, d, tvavail) otherwise.

• Nearby incident rate λd
t : sum of the incident rates λc

t
at time t for cells c ∈ Cg that are near de-
pot d. Specifically, λd

t =
∑

c ∈ NearCells(d,t) λ
c
t ,

where NearCells(d, t) is the set of cells for which
d is the closest depot, and is computed as {c|c ∈
C, argmind̂∈DM(c, d̂, t) = d}. Intuitively, λd

t esti-
mates the future demand for which depot d is likely to
be “responsible.”

Actor Network We describe the key elements of the
actor network here; see Appendix B.1 for a more de-
tailed description. We feed a sequence of feature vectors
⟨ϕt[d, v], λd

t | ∀d ∈ Dg⟩, one feature vector for each respon-
der v ∈ Vg, into the actor network to obtain a sequence of
likelihood vectors ag

t [v], one likelihood vector for each re-
sponder v ∈ Vg. The actor network is based on Transformer-
XL (Dai et al., 2019), consisting of N sequential TrXL lay-
ers, which enable “coordination” between responders based
on their input features. We apply softmax activation after
the TrXL layers to output likelihood values ag

t [v], where
ag

t [v] ·1 = 1, ag
t [v] ≥ 0, which assign responder v to depots

in the region. We combine the likelihood vectors of all the
responders in the region to obtain the continuous action ag

t .

Discrete Action Since the output ag
t of the actor network

is continuous, it is necessary to discretize actions for actual
allocation. We compute a discrete assignment of responders
to depots (A[g]) by finding a maximum weight matching
(Duan & Pettie, 2014; Kuhn, 1955) for matrix ag

t , which
maximizes the linear sum of likelihood values for respon-
ders and their assigned depots (see Appendix B.2 for more
details). This enables us to efficiently compute a discrete as-
signment that is most similar to the continuous actor output.
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Figure 2: Overview of the low-level RL agent training process using DDPG for a region g ∈ G. First, we map the complex,
variable-dimensional state (sg

t ) to a sequence of feature vectors, which we feed to the actor to obtain a continuous action
(ag

t ). Next, we discretize the continuous action using maximum weight matching to allocate responders within the region g.
Finally, we use the critic to judge the performance of the actor by feeding the state and action as fixed-sized vectors to the
critic and perform learning against response time to serve the incident.

Critic To handle complex state and action spaces, the
critic relies on the following three sets of features, which
are computed from st and ag

t for each depot d ∈ Dg:

• Depot occupancy η[d]: overall likelihood of some re-
sponder being assigned to depot d. Occupancy η[d] is
computed by summing the corresponding likelihood
values in ag

t and truncating the sum to be between 0
and 1, i.e., η[d] = Clip(

∑Vg

v ag
t [d, v], 0, 1). Intuitively,

η[d] is the heuristic chance that at least one responder
is assigned to depot d ∈ Dg.

• Likely available time β[d]: weighted sum of the arrival
times of responders to depot d. Available time β[d] is
computed as: β[d] =

∑Vg

v ϕt[d, v] · ag
t [d, v]∀d ∈ Dg.

Intuitively, in combination with η[d], time β[d] indi-
cates how soon a responder is expected to arrive at the
depot.

• Nearby incident rate λd
t : same as λd

t in actor input.

We feed these feature vectors into the critic network, which
is a multi-layer perceptron, to obtain the estimated average
response time Qg

t(s
g
t , a

g
t) for action ag

t in state sg
t :

Qg
t(s

g
t , a

g
t) = MLP(⟨η[d], β[d], λd

t | ∀d ∈ Dg⟩)

3.2. High-Level Decision Agent: Reallocating
Responders between Regions

We first introduce an MDP formulation of the problem of
reallocating responders among regions by a high-level plan-
ner. Then, we explain how we apply DDPG, mapping states
to feature vectors, discretizing actions, and estimating HLP
rewards from LLP critics. Figure 3 provides an overview of
the architecture of the high-level agent.

We formulate the high-level redistribution problem as an
MDP as follows: State: We consider the same state repre-
sentation as the original MDP (st), which consists of the

incident rates of all cells (λc
t ,∀c ∈ C) and the state of all

responders (Pt). Transition: Transitions occur whenever
incident rates change. During a transition, responders are re-
distributed among the regions based on the actions described
below. Action: An action specifies which responders to
move from one region to another.

To find optimal actions given the MDP for the high-level
planner, we use a similar approach as the low-level plan-
ner. First, we leverage an abstraction of input features that
represent the complex state space. Then, we use DDPG to
train the high-level using our novel reward estimation. We
discuss the reward estimation in detail later in this section.

Actor We overcome the complexity of the state space by
mapping the state to the following features for each region
g ∈ G:

• Region incident rates λg
t : sum of incident rates for all

cells in region g ∈ G at time t (λg
t =

∑Cg

c λc
t ).

• Allocation At−1[g]: number of responder currently as-
signed to the region g ∈ G.

Actor Network We feed the input feature vectors into the
actor network, which is a multi-layer perceptron, to obtain
the action ah

t , which is a non-negative continuous vector of
dimension |G| − 1:

ah
t = MLP(⟨λg

t ,At−1[g] | ∀g ∈ G⟩)

We let the actor network compute values for first |G| − 1
regions that provides the ratio of responders with respect
to the last region. We obtain the distribution of responders
to regions (aH

t ) by appending a constant value of 1 to the

vector ah
t and perform normalization aH

t =
ah

t ⌢1

|ah
t ⌢1| .

Discrete Action Based on the normalized action aH
t , we

finally compute the number of responders At assigned to
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Figure 3: Overview of the training process of the high-level RL agent using DDPG. First, we map the state to a fixed-size
feature vector and feed it into the MLP-based actor to generate the continuous action (ah

t ). Next, we discretize the continuous
action and feed it into the minimum-cost flow problem to generate the assignment of responders to depots (A). After that,
we trigger those LLPs whose regions were affected by the high-level reallocation. Finally, we use the critic to judge the
performance of the actor by training the critic with rewards estimated by the LLP critics.

each region g, where At = argmin |At − aH
t |, satisfying the

following constraints: number of responders assigned to
any region g ∈ G should not exceeds the number of depots
available in the region (At[g] ≤ |Dg|, ∀g ∈ G), and all the
responders must be assigned to one region (

∑G
g At[g] =

|V|). Since this computation is trivial, we provide a detailed
description in the technical appendix (see Appendix C.1).

Assignment of Responders to Depots Once we discretize
the action and obtain the number of responders allocated
to each region, we must choose the specific responders to
reallocate and which depots they should be assigned to in
their new regions. We tackle this problem by transform-
ing it into a standard minimum-cost flow problem (MCFP)
(Ahuja et al., 1993), and solve it by minimizing the total
expected travel time for the responders to reach their newly
assigned depots (for details, see Appendix C.2). Thereby,
we obtain the assignment A, which allocates responders
Vleaves to depots Dunoccupied.

Reward Estimation It is non-trivial to estimate the re-
wards for the high-level planner – the redistribution of re-
sponders is rewarded only when responders are dispatched
to incidents efficiently, which in turn, depends on the allo-
cation chosen by the low level planner. Hence, the rewards
from the regions are noisy. Further, events happen in regions
without synchronization, and each LLP transitions indepen-
dently. To tackle these issues, we introduce a novel reward
estimation technique for the high-level RL agent: we use the
low-level RL agents’ critics to estimate the value of each re-
gion’s allocation. We hypothesize that these low-level critic
values estimate how well a specific distribution of respon-
ders across regions helps reduce response times. In addition,
since incident rates can vary across decision-making epochs,
we also incorporate each region’s incident rate to prioritize
regions based on forecasted demand. Accordingly, we esti-
mate the reward for the high-level RL agent as a weighted
sum of critic values (

∑G
g λg

t ·Q∗
g(s

g
t , ag

t |θQ
∗
g )) from the low-

level agents corresponding to each region g ∈ G.

Critic We feed the feature vectors for the critic network
(i.e., the feature vectors for the actor network to represent
the state + action) and compute the value (Qt(st, ah

t )) of
performing the action ah

t at the state st as follows:

Qt(st, ah
t ) = MLP(⟨λg

t ,At−1[g] | ∀g ∈ G, ah
t ⟩)

4. Numerical Results
4.1. Dataset and Experiment Setup

We evaluate our approach using real-world data from two
U.S. cities. First, we apply our approach to emergency re-
sponse data from Nashville, TN, which was published by
(Pettet et al., 2022). This data includes processed incident
chains, incident rates, depot locations, hospital locations, op-
erational data provided by the Nashville fire department, and
dynamic travel times (i.e., travel times that vary by time of
the day and by day of the week) generated using contraction
hierarchies (Geisberger et al., 2008) and OSRM (Huber &
Rust, 2016). A one-by-one mile square grid is applied to the
city, which aligns with the configurations followed by local
authorities. The city has 36 depots, 9 general hospitals, and
26 responders to assist emergency response management.
Further, the data contains 60 incident chains sampled from
the historical incident data distribution and corresponding
rate data. Each chain spans 11 days and contains between
1818 and 2025 incidents, averaging 1907 incidents per chain.
The data also includes several region segmentations G of
the city’s cells, obtained by applying the k-means clustering
algorithm based on historical incident rates in cells C and
geographic proximity. We also evaluate our algorithm us-
ing publicly available data from another U.S. city, Seattle,
WA (City of Seattle, 2022). Due to limited space, we present
the Seattle results in Appendix D.3. Our implementation
and data are available as part of the supplementary material.

We assume that depots can accommodate at most one re-
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Figure 4: Distribution of average response times (lower is better) with our approach (■), MCTS (■), p-median with α = 1.0
(■), greedy policy (■), and static policy, i.e., no proactive repositioning (■) for 10 different sample incident chains with (a)
24 responders, (b) 26 responders, and (c) 28 responders. (d) distribution of average response times using MCTS (■) and
various architectures as the actor for the low-level agent (TrXL (■), GTrXL (■), and LSTM (■)), trained and evaluated
with the HLP from prior work (Pettet et al., 2022) for 10 different sample incident chains with 26 responders (Nashville).

sponder at a time (i.e., DC(d) = 1,∀d ∈ D), same as (Pet-
tet et al., 2022). In practice, we could create extra single-
capacity depots to represent depots that can accommodate
more than one responder, and apply the same solution ap-
proach. We assume that the time taken to serve an incident
(tserve) is constant 20 minutes (same as (Pettet et al., 2022)).

4.2. Baselines

We compare our approach against the state-of-the-art MCTS
approach (Pettet et al., 2022) and three other baselines. For
the other baselines, we leverage the high-level planner from
(Pettet et al., 2022). We set the initial state of the envi-
ronment by distributing the responders among the region
based on the high-level planner of (Pettet et al., 2022), and
sequentially assign responders to depots in each region.
Specifically, we use the following baselines in addition to
(Pettet et al., 2022): (1) p-median-based policy: we use a
modified p-median formulation suggested by (Vazirizade
et al., 2021), which incorporates a balancing term to account
for account for responders becoming unavailable when at-
tending incidents; (2) greedy policy: we make reallocation
decisions based on the expected incident rates and expected
travel times to reach the depots; and (3) static policy: a base-
line where the allocation is never changed from the initial
one. Note that the static policy closely resembles real-world
strategies followed by first-responders in practice (Pettet
et al., 2022). We describe the baselines in the technical
appendix (Appendix D.1).

For the baseline experiments, we trigger both the high- and
low-level agents each time an incident occurs or when there
have been no incidents in the last 60 minutes, same as sug-
gested in the original work by (Pettet et al., 2022). However,
when evaluating our approach, we trigger the high-level
agent each time the predicted incident rates change, with
at least a 60-minute interval after the previous trigger; and

trigger the low-level agent for a region whenever responders
enter or leave the region, or serve an incident. For MCTS
baseline, we use the same hyperparameters as (Pettet et al.,
2022): iteration limit is 1000, discount factor is 0.99995,
UCT trade-off parameter is 1.44, and number of generated
samples is 50.

4.3. Training

We train both the high- and low-level agents using 50 sam-
pled incident chains and evaluate the trained models us-
ing the remaining 10 chains. We use the Adam optimizer
(Kingma & Ba, 2014) and a learning rate of 10−3. We set
the reward decay rate (γ) for low-level agents to 0.5. We run
all algorithms on an Intel Xeon E5-2680 28-core CPU with
128GB of RAM. We detail the agent-specific training below.

Low-Level RL Agent We train a low-level agent for each
region g individually using our approach and using the
DRLSN baseline (Ji et al., 2019). We vary the number
of responders assigned to the region during training ran-
domly based on a binomial distribution with values ranging
from 1 to |Dg| and with probability |V|

|D| . After the arrival of
an incident (from the sampled incident chain) or after 1 hour
without any incidents, we select a reallocation action using
the RL policy based on the current state of the environment
(one specific region). We apply the reallocation action to the
environment and capture the response time of serving the
next incident as a negative reward for the reallocation action.
We use a fixed-size experience-replay buffer, where the ex-
periences are stored based on a First-In-First-Out (FIFO)
policy. Accordingly, we add the experience tuple (i.e., state,
action, reward, next state) for each transition to the buffer.
During the learning process, we randomly sample a fixed-
size batch of experiences from the buffer, and we train the
actor and critic networks using the DDPG algorithm. After
each transition step, we update the actor and critic networks
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until they converge to the optimal RL policy.

We perform an architecture search based on the experiences
gathered from online RL to obtain the best hyper-parameters
for our approach’s TrXL-based actor network (described
in detail in Appendix D.4). For our critic network, we
use a feed-forward network with one hidden layer with 64
neurons and ReLU activation, followed by a dropout layer
with a dropout rate of 0.1 and an output layer with one
neuron and linear activation. For our baseline DRLSN, we
consider an MLP with three hidden layers containing 256,
128, and 64 neurons respectively and use ReLU activation
in all the layers.

High-Level RL Agent The high-level agent is trained
after completing the low-level agent training. At the be-
ginning of each episode, we provide an initial allocation
of responders to regions that is proportional to the region-
level incident rates (i.e., sum of the incident arrival rates
of all cells in the region), and the low-level agent of each
region is invoked to perform an initial allocation of respon-
ders to depots within its region. Whenever the distribution
of incident rates changes at the regional level, we select a
high-level redistribution action using the RL policy. We
apply the redistribution action to the environment, invoke
low-level agents as needed, and capture the weighted sum of
the low-level critics as a reward for the redistribution action.
We use a fixed-size replay buffer with a FIFO policy to store
experiences (i.e., tuples of state, action, reward, and next
state). During the learning process, we randomly sample
batches of experience from the replay buffer, and we train
the actor and critic networks using DDPG. After each tran-
sition step, we update the actor and critic networks until
convergence. We vary the number of responders between
26± 3 in each episode during training.

For the actor, we use a feed-forward network with two
hidden layers of 256 and 64 neurons, respectively, with
ReLU activation, followed by a dropout layer with a dropout
rate of 0.1 and an output layer with one neuron and linear
activation. For the critic, we use a feed-forward network
with one hidden layer of 64 neurons with ReLU activation,
followed by a dropout layer with a dropout rate of 0.1 and
an output layer with one neuron and linear activation.

Training Time Our low-level agent using TrXL takes
around 1 day (≈ 100 episodes) to converge to an optimal
policy for regions with 8 or less depots. For regions with
9 or more depots, it takes up to 14 days after obtaining the
best architecture. Our high-level RL agent takes around 2
days (≈ 40 episodes) to converge.

4.4. Evaluation

Computation Times On average, our DDPG-based ap-
proach takes around 0.22 seconds to make a single deci-
sion, considerably less than the MCTS baseline (Pettet et al.,
2022), which takes 3 minutes. While a 3-minute delay might
not necessarily seem significant, it is actually substantial in
the context of this problem setting: the average travel time
between depots is around 15 minutes in Nashville, and the
average response time is around 4.8 minutes. In a domain
where seconds can save lives, an additional 3-minute delay
is very significant. While other baselines may take less time
(DRLSN: 0.045 seconds; p-median: 0.20 seconds; greedy:
0.10 seconds), we point out that a latency of 0.22 seconds is
negligible in practice for ERM.

Response Times Figures 4a to 4c show average response
times for our DDPG-based approach compared against base-
line approaches (MCTS, p-median-based policy, greedy pol-
icy, and static policy) using 10 sampled incident chains. On
average, we outperform the state-of-the-art MCTS baseline
by 5 seconds in 5-region segmentation and by 13 seconds
in 7-region segmentation, which are significant savings in
the ERM domain (Pettet et al., 2022; Mayer, 1979). We
observe that p-median, greedy, and static policy always per-
form poorly compared to the state-of-the-art approach. We
include a comparison with the DRLSN baseline in the tech-
nical appendix as both MCTS and the proposed approach
outperform it by a significant margin (see Appendix D.2).
In addition, we also train our LLP agent considering the
entire city to be a single region, and evaluate it using the
same incident chains. We find that this centralized variant
performs 66 seconds worse than our hierarchical approach.

Ablation Study: Low-Level Agents with Different Ar-
chitectures Figure 4d shows the distribution of average
response times using different low-level actor architectures—
TrXL, Gated TrXL (GTrXL) (Parisotto et al., 2020; Parisotto
& Salakhutdinov, 2021), and LSTM—trained and evaluated
with the HLP from prior work (Pettet et al., 2022), alongside
the MCTS baseline. We observe that TrXL-based low-level
agents perform better than other architectures. TrXL-based
low-level agents reduce time to serve an incident by 5 sec-
onds on average compared to GTrXL and by 18 seconds
on average compared to LSTM. Accordingly, we train the
high-level RL agent with TrXL-based low-level agents.

5. Related Work
We provide a brief discussion of the most closely related
prior work here; for a broader discussion, please see Ap-
pendix F.

Zhang et al. (2021) classify Multi-Agent Reinforcement
Learning (MARL) based on the type of agents (i.e., homo-
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geneous or heterogeneous), objective (i.e., cooperative, com-
petitive, or combination of both cooperative and competitive
(Lowe et al., 2017)), control mechanism (i.e., centralized
or decentralized), and learning paradigm (i.e., singular or
hierarchical). In our approach, we consider cooperative
heterogeneous agents with hierarchical coordination and
the shared goal of minimizing response times for future
incidents. Most cooperative MARLs maximize a shared re-
ward when a centralized controller controls it or maximize
an average reward in a decentralized setting (Oroojlooy &
Hajinezhad, 2023; Zhang et al., 2018; Kar et al., 2012). In
our approach, we train the low-level agents to maximize
rewards independently (Eghtesad et al., 2024). Then, we
introduce a reward-estimation mechanism for the high-level
agent (i.e., convex combination of low-level critic values) to
coordinate the independent execution of low-level agents.

In the domain of resource reallocation, Jin et al. (2019)
apply a Multi-Agent Hierarchical Reinforcement Learning
(MA-HRL) approach, based on Feudal RL (Dayan & Hin-
ton, 1992; Vezhnevets et al., 2017). To make each agent
aware of other agents at the same hierarchy level, Jin et al.
(2019) introduce attention between the agents; whereas in
our approach, we let the low-level agents act independently
of each other; instead, we utilize the high-level agent for
coordination.

6. Conclusion
We introduce a novel multi-agent RL-based approach by
replacing the high- and low-level planners of Pettet et al.’s
framework with deep reinforcement learning, addressing the
computational challenges faced by learning. We show us-
ing real-world data that our approach reduces computation
time per decision by three orders of magnitude compared
to the state of the art. We also confirm the general advan-
tage of hierarchical approaches over centralized ones as a
centralized variant of our learning-based approach performs
poorly in comparison. Finally, we demonstrate that redis-
tributing responders when incident rates change is better
than redistributing after every incident.

Software and Data
Software code and data are available online
(Sivagnanam et al., 2024). Within the ZIP file
MARL-HC-ERS-ICML24.zip, we provide our complete
code base as well as implementations for all baselines, i.e.,
DRLSN baseline (Ji et al., 2019), MCTS baseline (Pettet
et al., 2022), p-median baseline (Vazirizade et al., 2021),
greedy policy, and static policy. For instructions on training
and evaluation, please see README.txt (available in the
root folder of the extracted ZIP file).
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Table 1: List of Symbols

Symbol Description

Constants

G Regions
D Depots
H Hospitals
C Cells
M Travel model
Dg Depots in region g ∈ G
V Responders

Variables

Vg Responders assigned to region g ∈ G
ah

t High-level RL agent action
ag

t Low-level RL agent action
At Redistribution of responders to regions

At[g] Number of responders assigned to region g ∈ G
A Assignment of responders to depots
A[g] Assignment of responders to depots in region

g ∈ G
λc

t Incident rate in cell c ∈ C at time t

It Incidents waiting for service at time t

Pt State of responders at time t

gv Region assigned to responder v
dv Depot assigned to responder v
iv Incident assigned to responder v
hv Hospital assigned to responder v
cv Current position of responder v
tvavail Time at which responder v will be available

ϕt[d, v] Total time responder v takes to reach depot d
after completing its current task at time t

A. Notation
Table 1 provides a summary of the most important notation
used throughout our paper.

B. Low-Level Decision Agent
B.1. Architecture of TrXL-based Actor

We build our actor network with TrXL layers (Dai et al.,
2019) as its fundamental units. A TrXL layer consists of
two main components: multi-head attention (MHA) and
multilayer perceptron (MLP). After each main component
is a normalization layer (Norm-MHA and Norm-MLP). Our
actor-network contains N layers of TrXL followed by a Soft-
max layer at the end. We use InputLX to denote the input of

component X ∈ {MHA, Norm-MHA, MLP, Norm-MLP}
at layer L ∈ {1, 2, 3, . . . , N}, and OutputLX to denote the
output of component X at layer L. The first layer takes as
input a sequence of feature vectors ⟨ϕt[d, v], λd

t ⟩d∈Dg corre-
sponding to each responder v ∈ Vg. After the first layer, the
input of each subsequent layer is the output of the preced-
ing layer. Accordingly, we can express InputLMHA formally
as follows:

InputLMHA ={⟨ϕt[d, v], λd
t | ∀d ∈ Dg⟩ | ∀v ∈ Vg} if L = 1

OutputL−1
Norm-MLP otherwise.

We feed these values as inputs to MHA (i.e., query, key,
value):

OutputLMHA = MHA(InputLMHA) (1)

where MHA is a multi-head attention layer, same as
(Vaswani et al., 2017), where we set the dimension of key
|key| = |Dg| (i.e., number of depots in the region g ∈ G).

Then, we add the output OutputLMHA of the MHA with its
input InputLMHA and apply the normalization layer from (Ba
et al., 2016):

OutputLNorm-MHA = Norm(Add(InputLMHA,OutputLMHA))
(2)

Next, we feed the output of the normalization into an multi-
layer perceptron (MLP):

OutputLMLP = MLP(OutputLNorm-MHA) (3)

Then, the output OutputLMLP of the MLP is added with the
output OutputLNorm-MHA of the normalization after MHA, fol-
lowed by another normalization layer (Ba et al., 2016):

OutputLNorm-MLP = Norm(Add(OutputLNorm-MHA,OutputLMLP))
(4)

The steps indicated by Equations (1) to (4) are repeated N
times sequentially, and then we feed the output of the N th

layer into a softmax layer. We apply softmax separately
to each responder v ∈ Vg (i.e., we apply it separately to
each element of the sequence of vectors, consisting of one
vector for each responder v ∈ Vg) to obtain the likelihood of
assigning responder v to each depot in the region. Accord-
ingly, we obtain ag

t [v] as the output after applying softmax
for each responder v:

ag
t [v] = Softmax(OutputNNorm-MLP[v])

ensuring that ag
t [v] · 1 = 1 and ag

t [v] ≥ 0 for each v ∈ Vg.

B.2. Discretizing the Continuous Action

We use maximum weight matching (MWM) in a weighted
bipartite graph to efficiently compute a discrete assignment
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of responders to depotsA[g] that is similar to the continuous
actor output ag

t . There is a set of graph nodes representing
responders Vg and a set of nodes representing depots Dg;
each responder v ∈ Vg is connected to each depot d ∈
Dg by an edge of weight ag

t [v][d] (the low-level agent’s
preference for assigning v to d). Maximizing with respect
to the weights provides a discrete assignment close to the
continuous action.

We formally define the maximum weight matching to dis-
cretize a continuous action as follows.

First, we define the binary decision variable xv,d ∈ {0, 1}
for ∀v ∈ Vg and ∀d ∈ Dg, where

xv,d =

1 if responder v is assigned to depot d

0 otherwise.

Next, a matching in the graph assigns each responder to at
most one depot. a maximum matching assigns each respon-
der to exactly one depot. We can matching using following
two constraints:

First, each responder v ∈ Vg in the region needs to be as-
signed to one depot within the region:

Dg∑
d

xv,d = 1

Second, at most one responder can be assigned to each depot
d ∈ Dg in the region:

Vg∑
v

xv,d ≤ 1

Finally, we formulate the discrete assignment problem with
the objective of finding feasible ⟨xv,d⟩ that assign vehicles
to depots with high ag

t [v][d] (i.e., assign each vehicle v to a
depot d for which the actor output a high likelihood ag

t [v][d]
of assignment). Formally, the discrete assignment problem
maximizes the following objective:

ObjectiveMWM =

Dg∑
d

Vg∑
v

xv,d · ag
t [v][d]

where ag
t [v][d] is the likelihood output by the actor for as-

signing responder v ∈ Vg to depot d ∈ Dg.

The above problem is a maximum weight matching problem,
which is computationally trivial to solve using standard
approaches (e.g., Edmonds’ algorithm).

C. High-Level Decision Agent
C.1. Discretizing the Continuous Action

Algorithm 1 GreedyAlgorithm
Input: aH

t ,G,D,V
Output: At

1: Vavail ← |V|
2: for g ∈ G do
3: At[g]← 0
4: end for
5: while

∑G
g At[g] < Vavail do

6: for g ∈ G do

7: At[g]←
⌊

aH
t [g]∑G

ĝ aH
t [ĝ]
· Vavail

⌋
8: end for
9: Vremain ← Vavail −

∑G
g At[g]

10: while Vremain > 0 do
11: ĝ← argmaxg∈G(aH

t [g] · Vavail − At[g])
12: At[ĝ]← At[ĝ] + 1
13: Vremain ← Vremain − 1
14: end while
15: for g ∈ G do
16: if At[g] > |Dg| then
17: At[g]← |Dg|
18: G ← G \ {g}
19: Vavail ← Vavail − |Dg|
20: end if
21: end for
22: end while

In Section 3.2, we provide a brief description of generating
the discrete number of responders allocated to each region
At, where At = argmin |At − aH

t |, from a normalized con-
tinuous action aH

t . Here, we explain the greedy algorithm
(see Algorithm 1) that we use to compute a feasible discrete
allocation At that is similar to the continuous allocation aH

t .
Please note that this algorithm is trivial (finding a vector
of integer values subject to upper bounds, minimizing the
difference to a vector of desired continuous values); we
provide a description for the sake of completeness.

We initialize the greedy algorithm with no vehicles allocated
to any region. Then, we follow an iterative process, which
includes three steps. First, we determine the allocation for
every region based on the available responders Vavail and the
ratio between the action value ah

t [g] corresponding to the
region and the sum of all the action values

∑G
ĝ ah

t [ĝ]. Then,
we compute the set of remaining responders (Vremain) as the
difference between all available responders Vavail and the
responders allocated in previous steps

∑G
g At[g]. If there are

any responders left awaiting allocation, we follow another
iterative process. In each iteration, we choose the region
with the highest difference between expected and allocated
responders using the previous step (i.e., aH

t [g]·Vavail−At[g]).
Then, we add one more responder to the chosen region.
Finally, we check if the allocation to any region exceeds the
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number of depots in the region; in case of such a situation,
the allocation is fixed at the number of depots (to avoid
allocating more responders than what is feasible), and the
region is removed from future iterations.

C.2. Assignment of Responders to Depots

Next, we discuss how the high-level agent decides which
responders should leave each region (for regions whose
allocations have been reduced) and to which depots these
responders should be assigned in their new regions (which
are regions whose allocations have been increased). To
minimize the gap in coverage while responders drive to their
new regions, we formulate this assignment as a minimum
cost flow problem (MCFP) that minimizes the total travel
time of all the reallocated responders.

Formulation of Minimum Cost Flow Problem To for-
mulate the assignment problem as an MCFP, we define a
graph G(Y, E) with nodes Y and edges E . Each node y ∈ Y
represents one of the following:

1.) abstract source Ysource and sink Ysink nodes for the flow

2.) regions Gleaves from which responders will leave:
Gleaves = {g | g ∈ G,At−1[g] > At[g]}

3.) regions Garrive where responders will arrive: Garrive =
{g | g ∈ G,At−1[g] < At[g]}

4.) all the responders Vleaves in regions g ∈ Gleaves from
which responders will leave: Vleaves =

⋃Gleaves
g Vg

5.) unoccupied depots Dunoccupied in regions g ∈ Garrive

where responders will arrive: Dunoccupied =
⋃Garrive

g {d |
d ∈ Dg ∧ d /∈ {dv | v ∈ Vg}}

A pair of two nodes y1, y2 ∈ Y are connected by a directed
edge (y1, y2) ∈ E if and only if one of the following condi-
tions met:

1.) y1 = Ysource∧y2 ∈ Gleaves: the source node is connected
to all nodes representing the regions from which re-
sponders will leave;

2.) y1 = gy2 ∧ y2 ∈ Vleaves: each node representing a
region from which responders will leave is connected
to all nodes that represent the responders in that region;

3.) y1 ∈ Vleaves ∧ y2 ∈ Dunoccupied: each node representing
a responder from a region from which responders will
leave is connected to all nodes representing unoccupied
depots in regions where responders will arrive;

4.) y1 ∈ Dunoccupied ∧ y2 ∈ Gleaves ∧ y1 ∈ Dy2 : each node
that represents an unoccupied depot in a region where
responders will arrive is connected to the node repre-
senting the region of the depot;

5.) y1 ∈ Gleaves∧y2 = Ysink: all nodes representing regions
where responders will arrive are connected to the sink
node (see Figure 3 for an illustration).

Each edge (y1, y2) ∈ E has a cost Cost(y1, y2) and a capac-
ity c(y1, y2). We let the cost between nodes representing
v ∈ Vleaves and d ∈ Dunoccupied be the total time ϕt[d, v] that it
would take responder v to move to depot d; and for all other
edges, we let the cost be zero. We let the capacity c(y1, y2)
of directed edges (y1, y2) ∈ E be the following:

c(y1, y2) =


At−1[g]− At[g] if y1 ∈ Ysource ∧ y2 ∈ Gleaves

At[g]− At−1[g] if y1 ∈ Garrives ∧ y2 ∈ Ysink

1 otherwise.

Finally, we require the total amount of flow from source
Ysource to sink Ysink to be

∑Gleaves
g (At−1[g]− At[g]).

Minimum Cost Flow as a Responder Assignment The
integer solution of the above minimum cost flow problem
is an assignment that minimizes the total travel time of
the reallocated responders. First, for each responder v, an
integer solution of the above problem assigns a positive
flow for at most one depot d. This assignment is feasible:
for each region from which responders will leave, the right
number of responders will have a positive flow; and for each
region where responders will arrive, the right number of
depots will have a positive flow. If each responder v drives
to the assigned depot d, then their total travel time will be
minimal. Finding an integer solution to a minimum cost
flow problem is computationally easy.

Standard Capacity and Conservation Constraints The
above formulation is subject to the standard constraints of
flow conservation and edge capacity, and its objective is
standard minimization of flow cost. For the sake of com-
pleteness, we provide a formal specification of these con-
straints and the objective. Let integer variable x(y1, y2)
indicate whether there is flow from node y1 ∈ Y to node
y2 ∈ Y (i.e., if x(y1, y2) = 0 then there is no flow, meaning
possible responder movement, otherwise there is flow). In
addition, the formulation needs to ensure the following flow
constraints. First, the net flow in all nodes, except the source
and sink nodes, must be equal to zero:∑
j∈Y

x(j, i)−
∑
k∈Y

x(i, k) = 0 ∀i ∈ Y \ {Ysource,Ysink}

Second, responders that leave their current region must
arrive at a new region:

∑
i∈Y

x(Ysource, i) =
∑
j∈Y

x(j,Ysink) =

Gleaves∑
g

(At−1[g]− At[g])
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Third, each edge (y1, y2) ∈ E can only accommodate
responders up to the capacity of the edge x(y1, y2) ≤
c(y1, y2). Since the cost is zero for edges that do not con-
nect a responder at one end with a depot at the other end
(i.e., Cost(y1, y2) = 0, if y1 /∈ Vleaves ∨ y2 /∈ Dunoccupied),
we express the objective of the formulation based on the
following expression:

ObjectiveMCFP = min

Vleaves∑
v

Dunoccupied∑
d

ϕt[d, v] · x(v, d)

D. Additional Numerical Results
D.1. Description of Baselines

Due to limited space, we described some baselines briefly
in the main text. Here, we provide detailed descriptions.

p-Median-Based Policy For each region, the low-level
responder reallocation problem is mapped to a p-median
problem, which assigns the responders to depots in the re-
gion so that the average demand-weighted distance between
cells and the nearest depots is minimized. However, the p-
median formulation does not account for responders being
unavailable while serving incidents. (Vazirizade et al., 2021)
modify the standard formulation by including a balancing
term α in the objective, which penalizes responders that
cover areas with disproportionately more incidents com-
pared to other responders. If α = 0, then the problem
is the standard p-median problem; and α > 0 penalizes
responders that cover areas with disproportionally higher
incident rates.

Greedy Policy The greedy policy is a simple heuristic
approach that reallocates responders in a region to depots
based the incident rates and the expected travel times to the
depots, similar to the features that we use in our learning-
based approach. Comparison to this heuristic approach
as a baseline demonstrates the need for a more complex,
learning-based approach instead of simple heuristics based
on basic features, such as incident rates around depots and
expected travel times. At each decision epoch, the greedy
algorithm first chooses the |Vg| depots in region g that have
the highest nearby incident rates (λd

t ). Then, the greedy
algorithm reallocates the responders to these depots using
minimum-weight perfect matching based on the expected
travel time between depot locations and the current positions
of the responders as weights (i.e., minimizing total travel
times for reallocation).

D.2. Additional Numerical Results for Nashville

For the DRLSN baseline (Ji et al., 2019), we adapt the cen-
tralized approach to a hierarchical one similar to (Pettet

et al., 2022) and use the same high-level planner as (Pettet
et al., 2022) (same approach that we follow for the other
baselines, such as p-median based policy, greedy policy, and
static policy). The rationale behind this extension is to pro-
vide all approaches with the benefit of hierarchical planning;
otherwise, DRLSN would inherently be at a disadvantage.
For our experiments with DRLSN, we consider triggering
both the high-level planner and the low-level planners ev-
ery time an incident arrives or when there have been no
incidents in the past 60 minutes, same as in (Pettet et al.,
2022).

Figure 5 shows the average response times for our approach,
MCTS, and DRLSN based on the same sample chains that
we used in the response-time analysis in the numerical re-
sults of the main text (see Section 4.4). We observe that
in all cases, DRLSN suffers from response times higher
than around 450, which is 50% worse than our approach.
Note that we use the same data here as in Figures 4a to
4c (in the main text); the difference in the scaling of the
vertical axis between the two sets of figures is due to the
inclusion of DRSLN as a baseline (which performs signif-
icantly worse than MCTS and the proposed DDPG-based
approach, thereby changing the scale of the vertical axis).

Learning Curves Figures 6a to 6c show the evolution of
the low-level policy µg for regions 1, 6 and 7 of the 7-region
decomposition in Nashville. The vertical axis indicates the
average response times, and the horizontal axis indicates
the number of training episodes. The light green area (■)
represents the 10th to 90th percentiles of average response
times when evaluated over 5 different sample chains using
10 policies. The light gray area (■) represents the 10th to
90th percentiles of average response times over 15 different
random policies. We observe that the trained policy per-
forms considerably better than a random policy, even after a
relatively low number of episodes.

Figure 7 shows the performance of the policy µh for the
high-level decision agent of the 7-region decomposition in
Nashville. The vertical axis indicates the average response
times, and the horizontal axis indicates the number of train-
ing episodes. The light green area represents the 10th to
90th percentiles of the average response times obtained at
each training episode for 5 different policies. Based on the
results, our high-level policy training helps to reduce the
response time compared to the state-of-the-art approach.

Noisy Observations We perform experiments to verify
whether our policies are resilient to noisy observations dur-
ing evaluation, which can model uncertainty in predicting
incident rates and travel times. As the observation values
are non-negative by definition, we employ a multiplicative
noise drawn from a log-normal distribution with zero mean
and standard deviation ranging from 0.1 to 0.3 (note these
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Figure 5: Distribution of average response times (lower is better) with our approach (■), MCTS (■), and DRLSN (■) for
10 different sample incident chains (Nashville). In this figure, we plot the same data for our approach and MCTS as in
Figures 4a to 4c; the only difference is the inclusion of DRLSN, which changes the scaling of the vertical axis.
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Figure 6: Evolution of the performance of the low-level policy µg throughout the training process for regions 1, 6, 7 of the
7-region decomposition in Nashville, measured as the average response time. The dark green line (■) indicates the average
of 10 different policies (trained on the given number of episodes), which are evaluated on 5 different sample chains with the
number of responders ranging from 1 to |Dg|. The light green area (■) indicates the 10th to 90th percentiles of average
response times over 10 different policies. The dark gray line (■) indicates the mean of average response time over the same
set of samples when using a random policy, and the light gray area (■) indicates the 10th to 90th percentiles of average
response times over 15 different random policies.

are the mean and std. dev. values for the normal distri-
bution). These standard deviations roughly correspond to
noise levels ranging from ±7% to ±20%.

We add noise to both low-level agent observations (Arrival
time and Nearby incident rate) and high-level agent obser-
vations (Region incident rates, i.e., sum of incident rates for
all the cells in each region).

In Figure 8, each square shows the average response time
for 10 sample chains (same as the ones used in the experi-
mental section of our paper) for three different responder
values (24, 26, and 28) with 7-region decomposition. The
horizontal and vertical axes show the standard deviations of
the long-normal noise for travel times and for incident rates,
respectively.

We observe that the increase in average response times is not

significant even with ±20% noise added to both observed
incident rates and travel times, demonstrating that our poli-
cies are robust to uncertain predictions of incident rates and
travel times.

D.3. Numerical Results for Seattle

We also evaluate our algorithm using publicly available
data from the U.S. city of Seattle, WA (City of Seattle,
2022). We apply the same one-by-one mile square grid to
the city to ensure the same experimental setup for the two
geographical areas that we consider (i.e., for Nashville and
Seattle). The city has 34 depots and 14 general hospitals
to assist emergency response management. Figure 9 shows
the region segmentation for Seattle data (similar figures for
Nashville data can be found in (Pettet et al., 2022)). We
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Figure 7: Evolution of the performance of the policy µh

throughout the training process for the high-level decision
agent of the 7-region decomposition in Nashville, measured
as the average response time. The dark green line (■) in-
dicates the average of 5 different policies (trained on the
given number of episodes), which are evaluated on 5 dif-
ferent sample chains with the number of responders in the
entire city ranging from 24 to 28. The light green area (■)
indicates the 10th to 90th percentiles of average response
times over 5 different policies. The red line (■) indicates
the average response times obtained when using the state-of-
the-art MCTS approach on the same 5 sample chains with
the number of responders in the entire city ranging from 24
to 28.

use 60 incident chains sampled from historical incident data
distribution. Each chain is sampled over 9 days and contains
between 238 and 274 incidents, averaging 240 incidents per
chain. As there is no public information about how many
responders are operating in Seattle, we choose the typical
number of responders to be 25 (roughly consistent with the
ratio of responders to depots from Nashville) and perform
experiments with 23, 25, and 27 responders. Finally, we
train the high-level RL agent with 25 ± 3 responders.

Response Times Figure 10 shows the average response
times for our DDPG-based approach compared against base-
line approaches (MCTS, p-median-based policy, greedy
policy, and static policy), based on 10 incident chains used
as the evaluation set. On average, the proposed approach
outperforms MCTS by 10 seconds in all cases. We observe
that p-median, greedy, and static policy always perform
poorly compared to our DDPG-based approach, and they
perform mostly poorly compared to the state-of-the-art ap-
proach (except for 3 out of 9 scenarios based on the number
of regions and number of responders). Figure 11 shows
the average response times for our approach, MCTS, and
DRLSN based on the sample chains used in the previous
analysis (again, we show results with DRLSN separately
as both other approaches outperform it by a large margin,
thereby making the difference between DDPG and MCTS

Figure 8: Caption

difficult to observe when shown together). We observe that
DRLSN always has response times higher than 150-200
seconds, which is at least 50% worse than our approach.

Learning Curves Figures 12a to 12c show the perfor-
mance of the low-level policy µg for regions 1, 2, and 3
of the 7-region decomposition in Seattle. The vertical axis
indicates the average response times, and the horizontal axis
indicates the number of training episodes. The light green
area (■) represents the 10th to 90th percentiles of average
response times over 10 different policies. The light gray
area (■) represents the 10th to 90th percentiles of the aver-
age response times over 15 different random policies. We
observe that our trained policy is significantly better than
the random policy and learns fast.

Figure 13 shows the performance of the policy µh through-
out the training process for the high-level decision agent
of the 7-region decomposition in Seattle, measured as the
average response time. The light green area represents the
10th to 90th percentiles of the average response times over
10 different policies. The red line indicates the average
response times obtained using the state-of-the-art MCTS
approach on the same 5 sample chains with the number
of responders ranging from 23 to 27. We observe that our
high-level policy training helps to reduce the response time
compared to the state-of-the-art approach.

D.4. Architecture Search for Low-Level RL Agent

We experiment with architectures such as LSTM, TrXL
(Vaswani et al., 2017; Dai et al., 2019; Parisotto et al., 2020),
and Gated Transformer-XL (GTrXL) (Parisotto et al., 2020;
Parisotto & Salakhutdinov, 2021) as neural-network archi-
tecture choices for the actor in the low-level agent. We
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(a) 5 Regions (b) 6 Regions (c) 7 Regions

Figure 9: Segmentation of Seattle into 5, 6, and 7 regions. Dots on the map indicate depots where responders can wait.
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Figure 10: Distribution of average response times (lower is better) with our approach (■), MCTS (■), p-median with α =
1.0 (■), greedy policy (■), and static policy, i.e., no proactive repositioning (■) for 10 different sample incident chains
(Seattle).
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Figure 11: Distribution of average response times (lower is better) with our approach (■), MCTS (■), and DRLSN (■)
for 10 different sample incident chains (Seattle). In this figure, we plot the same data for our approach and MCTS as in
Figure 10; the only difference is the inclusion of DRLSN, which changes the scaling of the vertical axis.
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Figure 12: Evolution of the performance of the low-level policy µg throughout the training process for regions 1, 2, and 3 of
the 7-region decomposition in Seattle, measured as the average response time. The dark green line (■) indicates the average
of 10 different policies (trained on the given number of episodes), which are evaluated on 5 different sample chains with the
number of responders ranging from 1 to |Dg|. The light green area (■) indicates the 10th to 90th percentiles of average
response times over 10 different policies. The dark gray line (■) indicates the mean of average response time over the same
set of samples when using a random policy, and the light gray area (■) indicates the 10th to 90th percentiles of average
response times over 15 different random policies.

perform a random architecture search to obtain the best
hyperparameters for each architecture (i.e., LSTM, TrXL,
GTrXL). Accordingly, we tune the following hyperparame-
ters in the actor-network using TrXL:

• Hidden layers in MLP: 1 / 2 / 3 layers
• Number of neurons per hidden layers in MLP: 32 / 64

/ 128 / 256 neurons per layer
• Dropout rate in MLP (after every hidden layer): 0.0 /

0.0125 / 0.025 / 0.05 / 0.1
• Number of attention heads: 1 / 2 / 3 / 4 / 5 heads
• Number of layers (N ): 1 / 2 / 3 layers

We perform the architecture search for each region in the
segmentations (i.e., 5, 6, and 7 regions). We terminate the
architecture search after obtaining an actor-network that can
outperform the competitive baseline using MCTS. Tables 2
and 3 show the best hyperparameters for the TrXL based
low-level agent for each region (with 5, 6, and 7 region
segmentations) for Nashville and Seattle data, respectively.

E. Statistical Tests of Significance
In this section, we present the results of statistical tests on
the significance of our numerical results. Specifically, we
present paired two-sample permutation tests comparing the
average response times of our proposed approach to the
average response times of each baseline approach based on
a sample of 10 incident chains in each case. We perform
these tests for various numbers of regions (5, 6, and 7) and
various numbers of responders for both Nashville and Seat-
tle. Since our goal is to compare the average response times,
we establish the following null and alternative hypotheses:

• Null Hypothesis (H0): mean of the response times
obtained using our DDPG-based approach is the same
as the mean of the response times obtained using the
baseline (i.e., MCTS, p-median-based policy, greedy
policy, static policy, or DRLSN);

• Alternate Hypothesis (H1): mean of the response times
obtained using our DDPG-based approach is signifi-
cantly different from the mean of the response times
obtained using the baseline (i.e., MCTS, p-median-
based policy, greedy policy, static policy, or DRLSN).

We use the difference between the means as our test statistic.

Tables 4 and 5 shows the p-values to reject the null hypoth-
esis based on samples of 10 incidents chains for Nashville
and Seattle, respectively. We observe that for Nashville, the
average response times obtained using our DDPG-based
approach are significantly better than those of the baselines
(considering the significance threshold for the p-value to be
5%), except in two cases: 6 region decomposition with 24
and 26 responders with the state-of-the-art MCTS approach.
Note that even in these cases, the p-value is low, suggesting
that the null hypothesis is likely false, and the key advan-
tage of our approach over MCTS is not in lowering response
time but in lowering running time by several orders of mag-
nitude. Similarly, for Seattle, we observe that the average
response times obtained using our DDPG-based approach
are significantly better than those of the baselines in most
cases, except for a few scenarios. Again, we observe that
MCTS is close in two cases, but the main advantage of our
approach is significantly lowering running time in all cases.
We also observe similarity in a few other cases. Note that
we performed the tests with relatively small samples (10
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Table 2: Best Hyperparameters for Low-Level Agent Actor using TrXL (Nashville)

Number of regions 5
Region identifier 0 1 2 3 4

Number of layers (N ) 1 3 3 2 3
Number of heads in MHA 5 3 3 1 5

MLP 256, 128 128, 64 128, 64 256, 128 64
Dropout rate 0.1 0.1 0.1 0.0 0.05

Number of regions 6
Region identifier 0 1 2 3 4 5

Number of layers (N ) 2 3 3 3 1 2
Number of heads in MHA 1 2 5 5 2 4

MLP 256, 128 64 32 64 128, 64 256, 128
Dropout rate 0.05 0.0 0.1 0.1 0.0 0.0

Number of regions 7
Region identifier 0 1 2 3 4 5 6

Number of layers (N ) 2 3 1 1 2 2 1
Number of heads in MHA 3 1 3 5 4 3 5

MLP 256, 128, 64 256, 128, 64 128, 64 64 32 256, 128 64
Dropout rate 0.1 0.1 0.1 0.05 0.0 0.05 0.0

Table 3: Best Hyperparameters for Low-Level Agent Actor using TrXL (Seattle)

Number of regions 5
Region identifier 0 1 2 3 4

Number of layers (N ) 3 3 1 3 2
Number of heads in MHA 1 3 3 1 5

MLP 256 256 32 256 32
Dropout rate 0.0125 0.0 0.1 0.0125 0.0125

Number of regions 6
Region identifier 0 1 2 3 4 5

Number of layers (N ) 1 1 1 1 2 1
Number of heads in MHA 5 3 5 5 4 5

MLP 128 128, 64 256 128, 64 256 128
Dropout rate 0.1 0.0125 0.1 0.025 0.0125 0.1

Number of regions 7
Region identifier 0 1 2 3 4 5 6

Number of layers (N ) 1 3 1 2 2 2 2
Number of heads in MHA 1 1 2 5 4 3 2

MLP 64 256 64 256, 128, 64 64 128, 64 256, 128, 64
Dropout rate 0.025 0.1 0.05 0.0 0.0 0.05 0.0125
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Table 4: p-Values to Reject the Null Hypothesis (Nashville)

Number of regions 5 6 7
Number of responders 24 26 28 24 26 28 24 26 28

MCTS 0.01 0.01 0.02 0.14 0.20 0.02 0.00 0.00 0.00
p-median-based policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

greedy policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
static policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DRLSN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: p-Values to Reject the Null Hypothesis (Seattle)

Number of regions 5 6 7
Number of responders 23 25 27 23 25 27 23 25 27

MCTS 0.04 0.01 0.00 0.37 0.36 0.04 0.00 0.00 0.00
p-median-based policy 0.03 0.02 0.02 0.07 0.07 0.16 0.00 0.00 0.00

greedy policy 0.05 0.09 0.02 0.00 0.55 0.19 0.00 0.00 0.00
static policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DRLSN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

chains, i.e., 10 values); more extensive experiments could
lead to lower p-values.

F. Extended Related Work
In Section 5, we provided a concise summary of the most
relevant prior work due to the limited space. In this section,
we provide a broader discussion of related work.

F.1. Emergency Response Management

Prior works use centralized (Schjølberg et al., 2023; Ji et al.,
2019), decentralized (Pettet et al., 2020), and hierarchi-
cal (Pettet et al., 2022) approaches to solve the ERM real-
location problem. Schjølberg et al. (2023) use a genetic
algorithm-based solution to the responder redistribution
problem. However, Schjølberg et al. (2023) reposition re-
sponders only at shift changes (e.g., from day shift to night
shift) throughout the day. In contrast, our approach performs
proactive reallocation whenever a new incident arrives or
when the arrival rates of incidents change. Ji et al. (2019)
reallocate each responder once it finishes serving its current
incident assignment. In contrast, in our approach, we allow
complete reallocation at each incident arrival and at each
change in the rate of future incidents. In Ji et al. (2019)’s ap-
proach, during each reallocation step, the trained RL agent
outputs a score for all available depots (based on features
such as nearby incident rates for the depot and the expected
time for the nearest-k responders to reach the depot) and
chooses to assign the responder to the depot with the highest
score. In our approach, we consider similar features when
performing the reallocation: we consider features such as
nearby incident rates for each depot and the expected time

for a responder to reach a depot.

F.2. Dispatching Problem

There are two key differences between order-dispatching
approaches, such as the works (Zhou et al., 2019; Li et al.,
2019) and proactive allocation for emergency response.
First, order-dispatching approaches focus on responding
to requests by optimizing the dispatch of vehicles when
new requests arrive. In emergency-response management
(ERM), dispatch decisions cannot be optimized as ERM sys-
tems are typically mandated to always dispatch the nearest
responder (Pettet et al., 2022; Ji et al., 2019; Mukhopadhyay
et al., 2020). Therefore, similar to prior work, we focus on
optimizing the allocation of responders in anticipation of the
arrival of future requests. Second, more importantly, both
works (Zhou et al., 2019; Li et al., 2019) assume high-level
states and actions, defined in terms of numbers of vehicles
in given areas. In contrast, we consider fine-grained states
and actions, defined in terms of allocating specific vehicles
to specific locations (depots). High-level states and actions
are appropriate for managing large-scale ride-sharing ser-
vices with hundreds (or thousands) of vehicles (Zhou et al.,
2019; Li et al., 2019); however, emergency response re-
quires fine-grained management of individual responders
as every second counts. Our work focuses on the computa-
tional challenges that arise from the combinatorial nature of
these fine-grained states and actions.

F.3. Transformers

Dai et al. (2019) introduce a transformer variant that can
work with variable-length inputs. Parisotto et al. (2020)
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Figure 13: Evolution of the performance of the policy µh

throughout the training process for the high-level decision
agent of the 7-region decomposition in Seattle, measured
as the average response time. The dark green line (■) in-
dicates the average of 10 different policies (trained on the
given number of episodes), which are evaluated on 5 dif-
ferent sample chains with the number of responders in the
entire city ranging from 23 to 27. The light green area (■)
indicates the 10th to 90th percentiles of average response
times over 5 different policies. The red line (■) indicates
the average response times obtained when using the state-of-
the-art MCTS approach on the same 5 sample chains with
the number of responders in the entire city ranging from 23
to 27.

introduce stabilization over TrXL, via performing normal-
ization before MHA and MLP; further, they concatenate the
residual connections using a Gated Layer, and the complete
architecture is often called Gated TrXL (GTrXL). To train
our low-level RL agents, we try both TrXL and GTrXL vari-
ants. However, in contrast to the results of Parisotto et al.
(2020), we find that TrXL can perform better than GTrXL
in our problem setting. Accordingly, we use TrXL as our
neural network architecture for low-level RL agents.

F.4. Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) solves com-
plex tasks by training agents to make decisions over mul-
tiple levels of temporal abstraction (Pateria et al., 2021;
Hutsebaut-Buysse et al., 2022; Xu et al., 2023). Pateria et al.
(2021) categorize HRL based on the number of agents in
the system (i.e., single agent or multi-agent), nature of the
tasks (i.e., heterogeneous or homogeneous) and whether
or not the policy has to discover the sub-tasks. Xu et al.
(2023); Jin et al. (2019) apply HRL in MARL that operates
cooperatively. In contrast to HRL, in our work, we consider
a MARL system with heterogeneous agents (i.e., a set of
low-level agents with the task of repositioning responders
within their designated regions and a high-level agent with
the task of redistributing responders among regions) that
acts cooperatively to achieve the goal of minimizing the

response time for serving incidents.

G. Rationale behind Application of DDPG
Our approach uses the well-known DDPG algorithm to
train both low-level and high-level agents. However, the
DDPG actor outputs a continuous action. In contrast, our
environment expects a discrete action that represents the
assignment of responders to depots or the redistribution of
responders to regions. To discretize the continuous actor
action, we use combinatorial optimization techniques.

One seemingly trivial solution to the problem above is us-
ing an RL algorithm that works well with discrete action
spaces, such as Deep Q-Learning Network (DQN) (Mnih
et al., 2015) or Soft-Actor Critic (SAC) (Haarnoja et al.,
2018). While these RL algorithms are often straightforward
in terms of computing the state-action value, they run into
scalability issues when the space of possible actions grows
prohibitively large. For example, consider a region with 10
depots and 10 responders. There are 10! ≈ 3× 106 possible
ways to reposition responders between depots. Even if we
can infer the value of a single repositioning action at the
speed of 0.01 seconds, we still require 104 seconds (around
3 hours) to compute the values of all possible allocations.
In contrast, using DDPG can make a single decision in a
fraction of a second (0.22 seconds).

Another way to tackle the discretization problem is to apply
an RL approach that assumes a parametric distribution over
the action space, whose parameters are to be estimated by
the actor (e.g., Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), SAC (Haarnoja et al., 2018), Q-functionals
(Lobel et al., 2023)). In this case, the actor output would be
similar to that of our DDPG actor (i.e., compact marginal of
a larger distribution), losing the advantages of these RL algo-
rithms while having to deal with additional challenges, such
as sampling from a combinatorial discrete action space.
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