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ABSTRACT

Diffusion Transformers (DiTs) have demonstrated exceptional performance in
high-fidelity image and video generation tasks. However, their iterative denois-
ing process introduces substantial computational redundancy within Transformer
modules, resulting in prohibitively high computational costs and slow inference
speeds. Through comprehensive experimental analysis of existing DiTs, we re-
veal two key observations: (1) outputs of different Transformer blocks exhibit
significant similarity during the denoising process, and (2) block-level redun-
dancy varies dynamically across denoising timesteps. Based on these insights,
we propose Mixture of Blocks (MoB), the first framework to introduce block-
level dynamic routing for DiT acceleration. The core innovation of MoB lies in
a lightweight routing network that dynamically evaluates the importance of each
Transformer block based on input prompts. At each denoising step, we propose
the Ada-Top-k mechanism which selects relevant blocks by using the k-th largest
score as an adaptive threshold, avoiding the winner-take-all problem of traditional
soft selection while eliminating 10-20% of redundant computations. To compen-
sate for information loss from skipped blocks, we design a Block Cache mecha-
nism that maintains generation quality by reusing intermediate feature differences
from previous timesteps. Furthermore, MoB integrates adaptive timestep skip-
ping and employs knowledge distillation to train the routing network, achieving
enhanced inference efficiency and training stability. In addition, we evaluate its
generalization ability on image generation tasks using Flux.1. Extensive exper-
iments demonstrate that MoB achieves significant inference acceleration while
preserving generation fidelity in both video and image generation tasks, consis-
tently outperforming existing baseline methods in both efficiency and quality.

1 INTRODUCTION

Video generation models based on the Diffusion Transformer (DiT) architecture remain computa-
tionally expensive (He et al., 2024; Yuan et al., 2024a; Fei et al., 2025; Zhang et al., 2025). These
models typically start from a random noise initialization and iteratively denoise over multiple steps.
While effective in producing high-fidelity results, this multi-step sampling trajectory incurs substan-
tial computational overhead and poses challenges for real-time or interactive applications. Conse-
quently, accelerating inference in DiT-based models has become a critical research problem.

Early acceleration methods primarily targeted the diffusion sampling process itself, such as
DDIM (Song et al., 2022) and DPM-Solver (Lu et al., 2022). Although these approaches reduce
the number of sampling steps, they still require multiple iterations and cannot fundamentally elim-
inate structural redundancy. Distillation-based methods (Zhai et al., 2024) compress hundreds of
sampling steps into only a few via a teacher–student framework, but the distillation process remains
computationally demanding. Hardware-aware optimizations, such as FlashAttention (Dao et al.,
2022), offer composable low-level speedups but provide limited cross-hardware portability and only
constrained algorithmic improvements.

Beyond these, architecture-levelstrategies, such as pruning (Wu et al., 2024), low-rank decomposi-
tion (Hu et al., 2025), and dynamic routing (Sun et al., 2025; Shi et al., 2025; Xi et al., 2025)—di-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

999 19Timestep

M
S
E

Block Index

Information-Rich
Blocks

Figure 1: Block output analysis in CogVideoX-5B. Left: MSE between outputs obtained by skip-
ping adjacent blocks. The blue solid line indicates the average MSE across all prompts, while the
yellow dashed lines denote the maximum and minimum values. Blocks with higher MSE values
are regarded as more informative, whereas those with lower MSE values can potentially be skipped
without incurring significant performance degradation. Right: Cosine similarity between block
outputs across timesteps. In the heatmap, both axes represent block indices, with brighter colors
indicating higher similarity. The results highlight the presence of block-level redundancy and moti-
vate the use of dynamic routing in MoB.

rectly optimize the generative model at the algorithmic level. Among structural optimization tech-
niques, dynamic routing has typically been applied within Transformer blocks to specific compo-
nents (e.g., attention (Jin et al., 2025a) in Figure 2(a) or MLP (Fei et al., 2024) in Figure 2(b)),
motivated by its similarity to Mixture-of-Experts architectures. In contrast, block-level optimiza-
tions have largely relied on pruning or low-rank decomposition. However, these methods neglect
the input sensitivity of entire Transformer blocks, thereby limiting the model’s ability to adaptively
control depth during inference.

Following the approach of Daniel Verdú (2024), which prunes blocks with small input–output mean
squared error (MSE) values to reduce model size from 12B to 8B parameters, we conduct analogous
experiments on CogVideoX-5B (Yang et al., 2025) using a randomly selected batch of prompts
from the Lin et al. (2014). Specifically, n prompts (e.g., 200) are input into CogVideoX-5B, and the
generation process is manually terminated after specific Transformer blocks. As shown in Figure 1,
for each case, we compute the MSE between the outputs of adjacent blocks. The averaged results,
together with their upper and lower bounds across 200 measurements. To further assess the effect of
timesteps on block outputs, we also record the outputs of all blocks at multiple timesteps and plot
cosine similarity maps across blocks over different denoising stage.

Our findings reveal that, although the contribution of a given Transformer block varies across inputs,
there consistently exist block pairs whose output differences remain minimal and, in some cases,
negligible. Similar observations are reported in Daniel Verdú (2024), which shows that blocks with
small input–output differences exert limited influence on the final generation quality. These results
indicate that DiT-based video generation models exhibit substantial computational redundancy at
the block level. Moreover, block similarity is relatively low in the early stages of denoising but
becomes more pronounced in later stages. This suggests that block-level redundancy increases as
denoising progresses, consistent with prior findings on block-level pruning (Zhao et al., 2025; Chen
et al., 2024).

Motivated by these insights, we propose the Mixture of Block Transformer (MoB), a DiT-based
text-to-video generation framework that employs block-level dynamic routing. As illustrated in
Figure 2(c), MoB explicitly selects and activates only the most relevant blocks, thereby reducing
inference cost while preserving high-quality generation performance.

MoB introduces a dynamic routing network that computes block-wise relevance scores from in-
put text features. These scores are processed through our Ada-Top-k mechanism, which uses the
k-th largest score as an adaptive threshold rather than traditional competitive normalization. This
rank-based selection strategy activates blocks whose scores exceed the threshold, effectively prun-
ing redundant computations while avoiding the winner-take-all collapse inherent in softmax-based
approaches. Concretely, MoB processes input text embeddings to generate relevance scores for each
DiT block, then applies Ada-Top-k to determine which blocks should be executed at each iteration
of the denoising trajectory.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Router

Input

Attention

FeedForward

DiT Block

DiT Block

…

(a) Routing over Attention Heads (b) Routing over MLP (c) Our MoB

Input Router

1

0

DiT Block

DiT Block

DiT Block

…

DiT Block

Router

Input

Attention

FeedForward

DiT Block

DiT Block

…

Figure 2: Utilization of three types of dynamic routing within the DiT framework.

To compensate for potential information loss from skipped blocks, we incorporate a block cache
module that aggregates intermediate representations into a unified output. Furthermore, MoB adopts
knowledge distillation and load balancing strategies, which improve training efficiency and enable
effective fine-tuning on small-scale datasets, thereby enhancing the framework’s practicality and
deployability.

2 METHODOLOGY

We propose the Mixture of Block Transformer (MoB), an optimization framework built upon the
CogVideoX-5B architecture. MoB employs a routing network to dynamically select Transformer
blocks, complemented by fine-grained design choices to address challenges in practical deployment.

Prior to the denoising process, the text embedding is passed through the routing network, where
global pooling followed by a linear projection produces a vector of routing scores, each correspond-
ing to a Transformer block. During inference, Ada-Top-k strategy is proposed to select the indices
of the k most relevant blocks, which are then activated.

By integrating information across blocks, MoB effectively leverages the representational capacity
of all Transformer blocks, thereby accelerating the video generation process without compromising
output quality. Furthermore, MoB incorporates a knowledge distillation mechanism to reduce the
reliance on large-scale training data, enabling practical adaptation through fine-tuning on smaller
datasets.

In terms of the training objective, MoB introduces load balancing strategies into its loss formulation
to ensure stable and efficient optimization. These collective design choices empower MoB to pro-
duce high-quality outputs with reduced computational overhead. The detailed architecture of MoB
is shown in Figure 3. During training, the Ada-Top-k mechanism is used to approximate the skip-
ping of block computations. The output of each block is formulated as the sum of its input and the
weighted contribution of the block transformation. Since no block is skipped during training, the
Block Cache module (Section 2.2) records only the output differences rather than performing full
computations, thereby ensuring sufficient training of the routing network.

2.1 ROUTING NETWORK

In MoB, the dynamic routing network is placed before the denoising network and takes as input the
text embeddings ztext ∈ RB×T×C from the text encoder, where B is the batch size, T is the token
sequence length, and C is the embedding dimension. The routing network first applies average
pooling along the T -dimension to compress token-level representations into a global representation
zcond ∈ RB×C .

3
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Figure 3: Training Pipeline of MoB. We train only the dynamic routing network while keeping all
Transformer block parameters frozen. The routing network employs Ada-Top-k to generate soft
selection weights for each block during training, enabling gradient propagation through all blocks.
The training objective combines knowledge distillation loss from the teacher model with a time-
aware reward term that encourages sparse block activation.

zcond =
1

T

T∑
t=1

ztext[:, t, :] (1)

Subsequently, a fully connected layer projects zcond into a space of dimension equal to the number
of Transformer blocks N , yielding block-wise importance scores s ∈ RB×N , as shown in Equation
2, where W and b are learnable parameters.

s = Wzcond + b (2)

Ada-Top-k. In MoB, dynamic routing is per-
formed at the Transformer block level, where each
block is executed sequentially. Consequently,
the conventional MoE approach—normalizing ex-
pert scores s into weights via a softmax opera-
tion—is not directly applicable. Such normaliza-
tion would assign extremely small weights to indi-
vidual blocks, thereby impeding convergence dur-
ing training. Conversely, directly applying Top-k
or Top-p strategies is problematic, as these oper-
ations are non-differentiable and lead to unstable
gradient flow during optimization.
The standard Soft-Top-k approximates Top-k se-
lection via softmax with temperature scaling
Ttemp. However, lowering the temperature sharp-
ens the Soft-Top-k toward a one-hot distribution,
conflicting with the intended k-hot outcome

Algorithm 1 Dynamic Block Routing

Require: Text embeddings ztext; Trans-
former with N blocks {f1, . . . , fN};
Router g; budget k; init h0

Ensure: Output h′

1: r ← g(ztext)
2: h← h0

3: for n = 1 to N do
4: if rn ≈ 1 then
5: h← fn(h)
6: else
7: continue
8: end if
9: end for

10: h′ ← h
11: return h′

To address this, we propose the Ada-Top-k (Adaptive Top-k), a modified soft top-k mechanism.
Ada-Top-k computes the k-th largest block importance score s(k), re-centers all block scores relative
to this adaptive threshold, and applies a sigmoid activation function:

ri =
1

1 + exp(−(si − s(k))/T )
, ri ∈ [0, 1] (3)

where T is the temperature parameter controlling the sharpness of selection. Unlike softmax-based
soft top-k which suffers from competitive normalization, Ada-Top-k employs a rank-based formu-
lation that enables independent block activation—blocks with scores above s(k) are activated while
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those below are suppressed, naturally selecting approximately k blocks without winner-take-all col-
lapse.

In summary, the dynamic routing network in MoB generates block importance scores conditioned
on input prompts, then employs Ada-Top-k to determine block execution. The parameter k controls
the target number of active blocks, enabling flexible trade-offs between computational efficiency
and generation quality. Algorithm 1 outlines the integration of this routing mechanism into the DiT
framework, where fn denotes the n-th Transformer block, g represents the routing network, and
h0 ∈ RB×T×C is the initial noise input.

2.2 BLOCK CACHE

Block 1

Block i

Block i-1

Block 1

Block i

Block i-1

Block i-2 Block i-2
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Figure 4: Workflow of the
Block Cache Module.

During inference with the routing network, some blocks are in-
evitably skipped to accelerate computation, which results in the
omission of certain block-level information. To address this and
preserve inference quality, MoB introduces a block cache mod-
ule.

As illustrated in Figure 1(b), although different timesteps influ-
ence the overall trend of block-level output similarity, the outputs
of certain adjacent blocks remain highly consistent. Exploiting
this property, we cache the output difference δ of each block at
every timestep. When a block at position i is skipped in the next
timestep, the cached δ from block i − 1 at the previous timestep
is used to correct its output, as shown in Figure 4.

Formally, this procedure is defined in Equations 4, where h
(t)
i

denotes the output of the i-th block at timestep t. Through
this caching mechanism, MoB reduces computational cost while
maintaining generation performance.

h
(t)
i ≈ h

(t)
i−1 +

(
h
(t−1)
i−1 − h

(t−1)
i−2

)
(4)

2.3 OTHER OPTIMIZATIONS

Figure 5: Generation Results
of the Original CogVideoX
and Three Timestep Skipping
Strategies.

Timestep Skipping. In our experiments, we observe that Trans-
former computations at certain mid-denoising timesteps exhibit
substantial redundancy. Removing all computations at these
timesteps has little effect on the final generation quality, a finding
consistent with prior work that accelerates inference by skipping
timesteps (Zhu et al., 2025).

Further analysis shows that, during the mid-denoising stage, the
model can maintain stable generation quality provided that mul-
tiple skips do not occur consecutively across several timesteps,
as illustrated in Figure 5. In the figure, the first row shows
the generation results of the original CogVideoX, while the sec-
ond row corresponds to continuous timestep skipping. The third
row applies skipping during the early denoising stages, and the
fourth row applies intermittent skipping during the mid-denoising
stages. Across all settings, the number of skipped timesteps is kept constant. The results show that
intermittent skipping in the mid-denoising stages yields the best generation quality.

Motivated by this observation, we introduce an additional timestep skipping strategy to further re-
duce computational cost. Specifically, we define a fixed interval between skipped timesteps and con-
strain skipping to occur only within a predefined minimum and maximum timestep range, thereby
restricting it to the mid-denoising stages.

Distillation. The objective of MoB is to accelerate video generation by skipping redundant computa-
tions while preserving output quality. Accordingly, the training objective is to align the performance
of the MoB-augmented model with that of the original model. To reduce training data requirements

5
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and improve training efficiency, MoB incorporates a knowledge distillation strategy based on the
teacher–student paradigm.

In this framework, the original text-to-video model serves as the teacher, providing soft supervisory
signals to guide the learning of the student model equipped with MoB. Specifically, the student is op-
timized with a distillation loss that encourages it to mimic either the final outputs or the intermediate
feature representations of the teacher.

Ldistill =
1

B

B∑
b=1

∥fstudent(xb)− fteacher(xb)∥22 (5)

where B is the batch size, xb denotes the b-th input sample, and fstudent(·) and fteacher(·) represent
the output logits from the student and teacher models, respectively.

Total Loss. In this study, MoB employs a distillation loss in place of the original task-specific
objective. Since the Transformer backbone is kept frozen, the load balancing loss is not required. To
further ensure that MoB achieves sufficient acceleration, we introduce a computation-aware reward
term, denoted as Lcost.

Lcost = λ · 1
Z

N∑
i=1

pi · ci (6)

where λ is a hyperparameter controlling the strength of the reward, pi denotes the activation proba-
bility of the i-th block, and ci represents the computational cost of that block. The term Z =

∑N
i=1 ci

serves as a normalization factor.

Specifically, the overall loss function is defined as follows:

Ltotal = Ldistill + Lcost (7)

where Ldistill measures the discrepancy between the outputs of the student and teacher models, and
Lcost represents the computation-aware cost reward.

3 EXPERIMENT

3.1 SETUP

Model. We evaluate the performance of MoB on the text-to-video task using three state-of-the-
art models: CogVideoX-5B, HunyuanVideo (Kong et al., 2024), and Wan2.1 (Wang et al., 2025).
For comparison, we adopt MagCache (Ma et al., 2025), Sparse VideoGen (Xi et al., 2025), and
FasterCache (Lv et al., 2024) as baselines. In addition, we evaluated the performance of MoB on
the text-to-image task using Flux.1 (Labs, 2024).

Metrics. Following prior work (Wu et al., 2023), we evaluate both generation quality and inference
efficiency using the following metrics. For video quality, we adopt two measures: Frame Consis-
tency, computed by extracting CLIP embeddings for each frame and reporting the average cosine
similarity across all frame pairs, and Textual Faithfulness, quantified by the average ImageReward
score(Xu et al., 2023) between each generated frame and its corresponding text prompt. In addition,
we also evaluate generation quality using PSNR and SSIM. For image quality, we adopt Textual
Faithfulness, PSNR and SSIM.

For efficiency, we measure inference latency and report the speedup relative to the baseline model.

Datasets. In this study, for evaluation, we randomly sample 1,000 prompts from Lin et al. (2014).

Training Details. Our MoB model is trained over 20,000 epochs using 8 NVIDIA A800-SXM4-
80GB GPUs, with all Transformer modules kept freezed except for the routing network. During
training, the weight of the computation-aware reward λ is set to 1e-2. The weight decay is set to
1e-4 , gradient clipping is applied with a threshold of 1.0, and the learning rate is initialized to 2e-5,
with a cosine learning rate scheduler applied for gradual decay.

Unlike in inference, the routing network does not discretize gating weights during training. In-
stead, continuous gating weights are applied to all Transformer block outputs, and their weighted
aggregation is used as the final output.
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Table 1: Comparison of different acceleration methods on CogVideoX, HunyuanVideo and Wan.

Method Efficiency Visual Quality
Latency (s)↓ Speedup↑ Smooth↑ Text↑ PSNR ↑ SSIM ↑

CogVideoX-5B (49 frames, 480P)
CogVideoX-5B (T = 50) 227.8 1× 0.9453 0.2971 - -
FasterCache 144.1 1.58× 0.9430 0.2939 13.91 0.572
SVG 134.5 1.69× 0.9272 0.2992 17.73 0.778
Ours 154.9 1.47× 0.9450 0.2972 16.01 0.734

HunyuanVideo (81 frames, 720P)
HunyuanVideo (T = 50) 1784.2 1× 0.9686 0.3020 - -
MagCache 706.5 2.52× 0.9681 0.3017 17.81 0.614
SVG 1055.8 1.69× 0.9655 0.2749 18.05 0.671
Ours 1427.2 1.25× 0.9672 0.2953 16.78 0.607

Wan 2.1 1.3B (81 frames, 480P)
Wan 2.1 (T = 50) 103.6 1× 0.9747 0.3005 - -
MagCache 54.8 1.89× 0.9743 0.3002 20.21 0.742
SVG 79.2 1.31× 0.9622 0.2976 18.63 0.711
Ours 71.8 1.44× 0.9702 0.2994 18.54 0.716

Baselines. As for video generation, we benchmark MoB against representative baselines, including
the vanilla model, the cache-based methods MagCache and FasterCache, and the dynamic sparsity-
aware model Sparse VideoGen. As for image generation, we benchmark against Flux.1-dev.

Parameters. For all baseline methods, we use their publicly released configurations to ensure fair
comparison. Since different models contain varying numbers of Transformer blocks, we set 10%
of the total blocks as the baseline for MoB’s block-skipping strategy and fix the skip interval to 5.
These settings balance inference acceleration with generation quality. All inference tasks on the
same backbone are performed under a fixed random seed.

3.2 EVALUATION

We assess video generation quality by comparing MoB against all baseline methods. The results are
presented in Table 1.

Block_0 Block_1

Block_4 Block_23

Block_27 Origin

Motion
Smoothness

Background
Consistency

Foreground
Consistency

Color Clarity

Figure 6: User study on the
role of Transformer blocks in
CogVideoX-5B.

MoB demonstrates strong performance in preserving generation
quality. On the CogVideoX-5B-T2V model, it achieves a Frame
Consistency score of 0.9450 and a Textual Faithfulness score
of 0.2969, indicating that generation quality is effectively main-
tained under accelerated conditions. Representative visualiza-
tions are provided in the supplementary figures.

To assess practical applicability, we conduct an end-to-end perfor-
mance evaluation on an NVIDIA L20X GPU with CUDA 12.4,
comparing MoB against all baselines in terms of latency and
speedup. Results show that MoB achieves a 1.2×–1.4× accelera-
tion over the baselines with negligible quality degradation.

For image generation quality, we report comparative results in the
appendix. Quantitative results are summarized in Table F.1, and representative samples are shown
in Figure F.1. MoB achieves superior generation quality — outperforming all baselines with a Text
Faithfulness score of 0.3102, a PSNR of 17.64, and an SSIM of 0.7319.

Importantly, the acceleration mechanism of MoB is orthogonal to existing techniques such as atten-
tion sparsification. This suggests that MoB can serve as an independent acceleration strategy and
can be further combined with methods such as Yuan et al. (2024b) or Jiang et al. (2024) to yield
additional efficiency gains in video generation.
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Figure 7: Comparison of Generation Results between MoB and Other Baselines on CogVideoX-5B.

3.3 USER STUDY

As discussed in previous sections, we observe that different blocks have varying impacts on the
output, as measured by MSE. To further qualitatively analyze the role of each block in CogVideoX-
5B and to guide the routing network for targeted dynamic routing, we conducted a user study with
100 prompts from Lin et al. (2014).

Participants evaluated videos generated by skipping individual blocks across five aspects: back-
ground quality, foreground quality, clarity, color fidelity, and motion smoothness. The results, shown
in Figure 6, indicate that different blocks exhibit distinct influences on model performance, while
some blocks contribute relatively little to overall generation quality.

3.4 ABLATION STUDY

Table 2: Effect of Top-k in routing network

Top-k Latency (s)↓ Speedup↑ Smooth↑ Text↑
Origin 230.1 1× 0.9453 0.2958
40 211.3 1.08× 0.9454 0.2973
38 194.1 1.18× 0.9431 0.2967
36 179.8 1.27× 0.9329 0.2817

Effect of Top-k in routing network. To examine the performance limits of MoB’s inference ac-
celeration, we conduct an ablation study, with results summarized in Table 2. The Top-k parameter
specifies the number of Transformer blocks selected to participate in the denoising process during
inference, as defined in the corresponding equation.

As shown in Table 2, the Top-k setting strongly affects both inference speed and generation quality.
While preserving satisfactory visual quality, MoB achieves up to 1.3× speedup. To further illustrate
the qualitative impact of varying Top-k values, we present representative visual examples in the
accompanying figure, which demonstrate perceptual variations across different configurations.

Table 3: Effect of the Interval Between Two Skips

Interval Latency (s)↓ Speedup↑ Smooth↑ Text↑
Origin 230.1 1× 0.9453 0.2958
2 175.1 1.34× 0.9301 0.2714
3 195.8 1.17× 0.9316 0.2958
4 202.5 1.13× 0.9363 0.2957
5 210.3 1.09× 0.9410 0.2958
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Figure 8: Effect of Top-k in routing network.
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Figure 9: Effect of the Interval Between Two Skips.

Effect of the Number of Skipped Timesteps. To analyze the effect of the timestep-skipping strat-
egy on efficiency and its impact on generation quality, we conduct an ablation study on the number
of skipped timesteps. As discussed previously, when skipping occurs in the mid-denoising stage and
is applied in a non-consecutive manner, the degradation in video quality is relatively small.

We define the total number of inference steps as T . In this experiment, the mid-denoising stage is
empirically set to the interval [ 3

10T,
8
10T ]. The number of skipped timesteps is controlled by varying

the interval between two skips. Experiments are conducted on CogVideoX-5B with T = 50, and
the results are summarized in Table 3.

Dynamic Top-k Setting across Timestep. We evaluate three dynamic Top-k scheduling strategies,
including the original scheme, as shown in Figure G.1, to validate the effectiveness of our proposed
method.

4 CONCLUSION

We propose MoB, a DiT-based acceleration framework for video generation. By exploiting com-
putational redundancy across Transformer blocks, MoB performs block-level dynamic routing to
eliminate unnecessary computations. This reduces computational cost while preserving generation
capability, and the framework can also be integrated with other acceleration methods.

Limitations. MoB trains the routing network based on block-level redundancy. For models with
fewer Transformer blocks and stronger computational coupling, training effectiveness may be lim-
ited, and block skipping could have a larger negative impact on the final results.
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A ADA-TOP-k ROUTING STRATEGY

As shown in Figure A.1, the weight distributions of three routing strategies are visualized across the
42 Transformer blocks of CogVideoX-5B under the same input. The results show that, while main-
taining differentiability, the Ada-Top-k strategy enables better adaptation of the routing network for
acceleration. From a mathematical perspective, the Ada-Top-k, Soft-Top-k, and Top-k routing strate-
gies differ primarily in their treatment of normalization and scaling factors. However, Ada-Top-k is
the only strategy among the three that is both differentiable and stably yields a k-hot output. Dur-
ing training, given the specific requirements of our block-skipping routing network—particularly its
distinction from conventional Mixture-of-Experts (MoE) architectures—we impose two key criteria
on the routing mechanism: (1) the routing computation must be differentiable to enable end-to-end
training; and (2) the routing output must be k-hot to closely approximate the inference-time scenario
in which only a subset of blocks is activated. Given these constraints, we deliberately excluded Top-
k (which is non-differentiable) and Soft-Top-k (which yields soft, often near-one-hot distributions
rather than exact k-hot selections). Ada-Top-k uniquely satisfies both conditions, making it the most
suitable choice for our framework.

0

1

1 42

Ada_Top_K Soft_Top_K Top_K

Layer

R
ou

te
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W
ei
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t

Figure A.1: Output Weight Distributions of Ada-Top-k vs. Other Routing Strategies.

B INFERENCE LATENCY AND MEMORY FOOTPRINT OF MOB

In terms of time overhead, using CogVideoX-5B with 42 Transformer blocks as an example, the
additional time overhead of the routing network accounts for less than 3% of the original model’s
inference time. Furthermore, each block skipped by the routing network results in an approximate
2% acceleration.

As for space overhead, the MoB routing network is designed to be lightweight, introducing a negli-
gible number of parameters relative to the original model. During inference, the model caches only
the intermediate outputs from the previous timestep, discarding earlier ones to mitigate excessive
memory consumption. Consequently, in terms of inference memory overhead, the MoB strategy in-
creases GPU memory consumption by approximately 1%. This efficient resource utilization ensures
that the benefits of improved routing are achieved without imposing significant additional memory
overhead.
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Figure B.1: Time budget allocation across the full inference pipeline with MoB.

Mean of Routing Decisions

Prompt:Alpine skier in red coat on snow covered ski slope.

Prompt:A man hitting a tennis ball with a tennis racquet.
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Figure C.1: Visualization of routing decisions.

C VISUALIZATION OF ROUTING DECISIONS

D GENERATING LONG-DURATION VIDEOS USING COGVIDEOX-5B W/O
MOB

E STATISTICAL ANALYSIS OF BLOCK-WISE CONTRIBUTIONS IN
COGVIDEOX-5B

To analyze the functional contribution of each block, we manually skip individual blocks in
CogVideoX when generating videos. Representative cases are shown in Figure E.1.

F TRANSFER OF MOB TO TEXT-TO-IMAGE GENERATION ON FLUX.1-DEV

We conducted the experiment shown in the Figure F.1 on Flux.1-dev, where the baseline Flux uses
10 denoising steps and contains 19 Transformer blocks. In the MoB-augmented variant, we con-
figure the router to skip 2 blocks, resulting in only 17 active blocks during inference. We further
conducted a quantitative evaluation of MoB on Flux.1-dev, comparing its performance with several
representative baselines, as shown in Table F.1.
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Prompt:A baby elephant that is standing underneath an adult elephant

Prompt:A dog that is lying down on the sidewalk

Prompt:A man and child pose for a picture together

Origin

Ours

Origin

Ours

Origin

Ours

Figure D.1: Generating long-duration videos using CogVideoX-5B w/o MoB.

Table F.1: Evaluation of MoB and Baseline Methods on Flux.1-dev for T2I Acceleration.

Method Efficiency Visual Quality
Latency (ms)↓ Speedup↑ Text↑ PSNR ↑ SSIM ↑

Flux.1-dev (1024P)
Flux.1-dev (T = 28) 582 1× 0.3108 - -
MagCache 277 2.10× 0.3087 17.39 0.6952
TaylorSeer(Liu et al., 2025) 362 1.61× 0.2831 13.98 0.6179
Ours 362 1.65× 0.3102 17.64 0.7319

G DYNAMIC TOP-K SETTING ACROSS TIMESTEPS

In this section, we investigate whether dynamically varying the Top-k parameter across timesteps
can improve generation quality. Figure G.1 compares three routing strategies.

Random-k refers to performing dynamic routing at each timestep by feeding slightly perturbed
inputs into the routing network to induce variation in its outputs. This experiment uses a fixed
setting of k = 40, as lower Top-k values substantially degrade temporal consistency, making it
difficult to assess the effectiveness of the strategy.

Two-stage-k denotes a strategy in which different Top-k settings are applied across timesteps: dur-
ing the first half of the denoising process, only 50% of the target number of blocks are skipped,
whereas in the second half the full skip ratio is applied. This setup allows us to examine whether
delaying aggressive skipping yields better results.
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Prompt: A girl
riding a bike.

0 5

36 41

0 5

36 41

Prompt: A man with
black hair and a
beard, wearing a

sweater and a
yellow tie.

Origin

Origin

Figure E.1: Visualization of Transformer block outputs across different timesteps.

Ours corresponds to the full-pipeline skipping strategy proposed in the main paper, using a fixed
k = 38 across all timesteps. For a fair comparison, both Two-stage-k and Ours share the same target
Top-k configuration.

The results show that skipping different blocks across timesteps leads to noticeable degradation in
video consistency. Although the Two-stage-k strategy does not yield significantly worse results,
it reduces the total number of block-skipping operations by approximately one quarter, thereby
weakening its acceleration effect. As a result, we do not adopt this strategy in our final design.
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Figure F.1: Comparison of MoB and Baseline Methods on Flux.1-dev.

H EVALUATION OF MOB ON HUNYUANVIDEO AND WAN2.1

I RELATED WORK

I.1 DIFFUSION MODELS FOR VIDEO GENERATION

Compared to earlier approaches such as Generative Adversarial Networks (GANs), diffusion mod-
els have exhibited superior capabilities in high-quality video generation tasks. Early video diffusion
models enhanced pre-trained image diffusion models by incorporating temporal convolution layers
and temporal attention mechanisms to improve interframe consistency. For instance, Singer et al.
(2022) extended image diffusion models by introducing temporal modeling, leveraging learned co-
herence along the time axis to adapt text-to-image generation into text-to-video synthesis. Chen et al.
(2023) further advanced the field by scaling up the dataset used for video diffusion models, enabling
video generation conditioned on various inputs, including text, images, and motion-adaptive signals.
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Prompt: Two women sitting on a ledge deep in thought.

Prompt: A small child laying in bed drinking a bottle of milk.

Ours

Ours

Random k

Random k

Two-stage k

Two-stage k

Figure G.1: Comparison of Different Top-k Router Policies.

However, these methods remain constrained by the scalability limitations of the U-Net framework,
which makes them less effective in generating longer-duration videos.

In contrast, Diffusion Transformer (DiT)-based models, such as Yu et al. (2023) and Feng et al.
(2025), are better suited for capturing complex spatio-temporal dependencies and can generate
videos lasting ten seconds or longer. Brooks et al. (2024) further extended DiT for joint spatio-
temporal modeling and leveraged large-scale pre-training, achieving the generation of high-quality
videos exceeding one minute in length. These advances highlight the advantages of DiT-based mod-
els over traditional U-Net-based architectures, particularly in terms of video length and quality.

I.2 MIXTURE OF EXPERT

In recent years, Transformer-based large language models (LLMs) have exhibited remarkable capa-
bilities, largely driven by their extensive scale, vast training datasets, and substantial computational
resources. However, the significant time and financial costs associated with training such models
have motivated researchers to explore more efficient strategies to ensure their sustainable develop-
ment.

The Mixture of Experts (MoE) paradigm was initially introduced in Jacobs et al. (1991) and Jordan
& Jacobs (1994). The advent of sparsely gated MoE and its integration into large Transformer-
based LLMs have demonstrated its effectiveness in reducing both computational time and memory
consumption.

Building upon this idea, Jin et al. (2025b) incorporate this mechanism into the attention module,
where each attention head was treated as an expert, and a routing mechanism was employed to
dynamically select the Top-k heads for computing weighted attention outputs. Inspired by this, we
observe that different DiT blocks contribute unequally to the final generation process. Based on this
observation, we propose treating each DiT block as an expert and introducing a routing network
that dynamically selects the Top-k blocks for participation in generation, thereby optimizing both
training and inference efficiency.
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Prompt: A group of boys wearing black and red uniforms and black boots carries black umbrellas.

Prompt: A person in the air on a snowboard.
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Prompt: Cows graze peacefully in a field with a dormant volcano in the distance.

Figure H.1: Results of MoB and Other Acceleration Methods on HunyuanVideo.
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Prompt: The desert is made and ready to be eaten.

Prompt: Two cats sleeping with a remote control near each of them.
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Figure H.2: Results of MoB and Other Acceleration Methods on Wan2.1.
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