

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MoB: MIXTURE OF BLOCK TRANSFORMER FOR AC- CELERATING VIDEO GENERATION WITH DYNAMIC ROUTING

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion Transformers (DiTs) have demonstrated exceptional performance in high-fidelity image and video generation tasks. However, their iterative denoising process introduces substantial computational redundancy within Transformer modules, resulting in prohibitively high computational costs and slow inference speeds. Through comprehensive experimental analysis of existing DiTs, we reveal two key observations: (1) outputs of different Transformer blocks exhibit significant similarity during the denoising process, and (2) block-level redundancy varies dynamically across denoising timesteps. Based on these insights, we propose **Mixture of Blocks (MoB)**, the first framework to introduce block-level dynamic routing for DiT acceleration. The core innovation of MoB lies in a lightweight routing network that dynamically evaluates the importance of each Transformer block based on input prompts. At each denoising step, we propose the Ada-Top- k mechanism which selects relevant blocks by using the k -th largest score as an adaptive threshold, avoiding the winner-take-all problem of traditional soft selection while eliminating 10-20% of redundant computations. To compensate for information loss from skipped blocks, we design a Block Cache mechanism that maintains generation quality by reusing intermediate feature differences from previous timesteps. Furthermore, MoB integrates adaptive timestep skipping and employs knowledge distillation to train the routing network, achieving enhanced inference efficiency and training stability. **In addition, we evaluate its generalization ability on image generation tasks using Flux.1. Extensive experiments demonstrate that MoB achieves significant inference acceleration while preserving generation fidelity in both video and image generation tasks, consistently outperforming existing baseline methods in both efficiency and quality.**

1 INTRODUCTION

Video generation models based on the Diffusion Transformer (DiT) architecture remain computationally expensive (He et al., 2024; Yuan et al., 2024a; Fei et al., 2025; Zhang et al., 2025). These models typically start from a random noise initialization and iteratively denoise over multiple steps. While effective in producing high-fidelity results, this multi-step sampling trajectory incurs substantial computational overhead and poses challenges for real-time or interactive applications. Consequently, accelerating inference in DiT-based models has become a critical research problem.

Early acceleration methods primarily targeted the diffusion sampling process itself, such as DDIM (Song et al., 2022) and DPM-Solver (Lu et al., 2022). Although these approaches reduce the number of sampling steps, they still require multiple iterations and cannot fundamentally eliminate structural redundancy. Distillation-based methods (Zhai et al., 2024) compress hundreds of sampling steps into only a few via a teacher–student framework, but the distillation process remains computationally demanding. Hardware-aware optimizations, such as FlashAttention (Dao et al., 2022), offer composable low-level speedups but provide limited cross-hardware portability and only constrained algorithmic improvements.

Beyond these, architecture-level strategies, such as pruning (Wu et al., 2024), low-rank decomposition (Hu et al., 2025), and dynamic routing (Sun et al., 2025; Shi et al., 2025; Xi et al., 2025)—di-

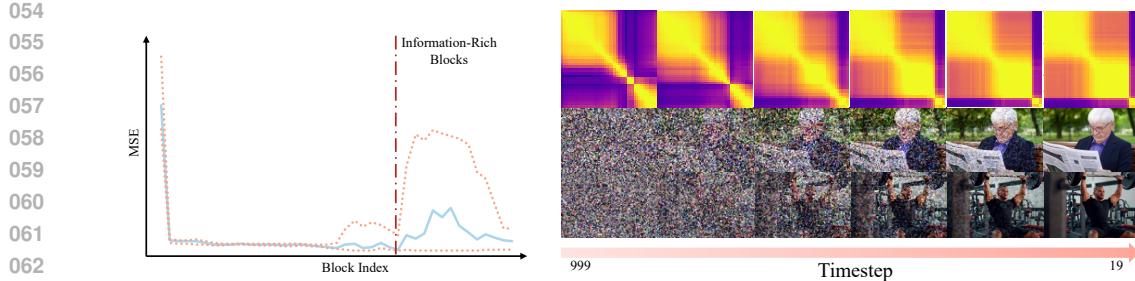


Figure 1: Block output analysis in CogVideoX-5B. **Left:** MSE between outputs obtained by skipping adjacent blocks. The blue solid line indicates the average MSE across all prompts, while the yellow dashed lines denote the maximum and minimum values. Blocks with higher MSE values are regarded as more informative, whereas those with lower MSE values can potentially be skipped without incurring significant performance degradation. **Right:** Cosine similarity between block outputs across timesteps. In the heatmap, both axes represent block indices, with brighter colors indicating higher similarity. The results highlight the presence of block-level redundancy and motivate the use of dynamic routing in MoB.

rectly optimize the generative model at the algorithmic level. Among structural optimization techniques, dynamic routing has typically been applied within Transformer blocks to specific components (e.g., attention (Jin et al., 2025a) in Figure 2(a) or MLP (Fei et al., 2024) in Figure 2(b)), motivated by its similarity to Mixture-of-Experts architectures. In contrast, block-level optimizations have largely relied on pruning or low-rank decomposition. However, these methods neglect the input sensitivity of entire Transformer blocks, thereby limiting the model’s ability to adaptively control depth during inference.

Following the approach of Daniel Verdú (2024), which prunes blocks with small input–output mean squared error (MSE) values to reduce model size from 12B to 8B parameters, we conduct analogous experiments on CogVideoX-5B (Yang et al., 2025) using a randomly selected batch of prompts from the Lin et al. (2014). Specifically, n prompts (e.g., 200) are input into CogVideoX-5B, and the generation process is manually terminated after specific Transformer blocks. As shown in Figure 1, for each case, we compute the MSE between the outputs of adjacent blocks. The averaged results, together with their upper and lower bounds across 200 measurements. To further assess the effect of timesteps on block outputs, we also record the outputs of all blocks at multiple timesteps and plot cosine similarity maps across blocks over different denoising stage.

Our findings reveal that, although the contribution of a given Transformer block varies across inputs, there consistently exist block pairs whose output differences remain minimal and, in some cases, negligible. Similar observations are reported in Daniel Verdú (2024), which shows that blocks with small input–output differences exert limited influence on the final generation quality. These results indicate that DiT-based video generation models exhibit substantial computational redundancy at the block level. Moreover, block similarity is relatively low in the early stages of denoising but becomes more pronounced in later stages. This suggests that block-level redundancy increases as denoising progresses, consistent with prior findings on block-level pruning (Zhao et al., 2025; Chen et al., 2024).

Motivated by these insights, we propose the **Mixture of Block Transformer (MoB)**, a DiT-based text-to-video generation framework that employs block-level dynamic routing. As illustrated in Figure 2(c), MoB explicitly selects and activates only the most relevant blocks, thereby reducing inference cost while preserving high-quality generation performance.

MoB introduces a dynamic routing network that computes block-wise relevance scores from input text features. These scores are processed through our **Ada-Top- k** mechanism, which uses the k -th largest score as an adaptive threshold rather than traditional competitive normalization. This rank-based selection strategy activates blocks whose scores exceed the threshold, effectively pruning redundant computations while avoiding the winner-take-all collapse inherent in softmax-based approaches. Concretely, MoB processes input text embeddings to generate relevance scores for each DiT block, then applies Ada-Top- k to determine which blocks should be executed at each iteration of the denoising trajectory.

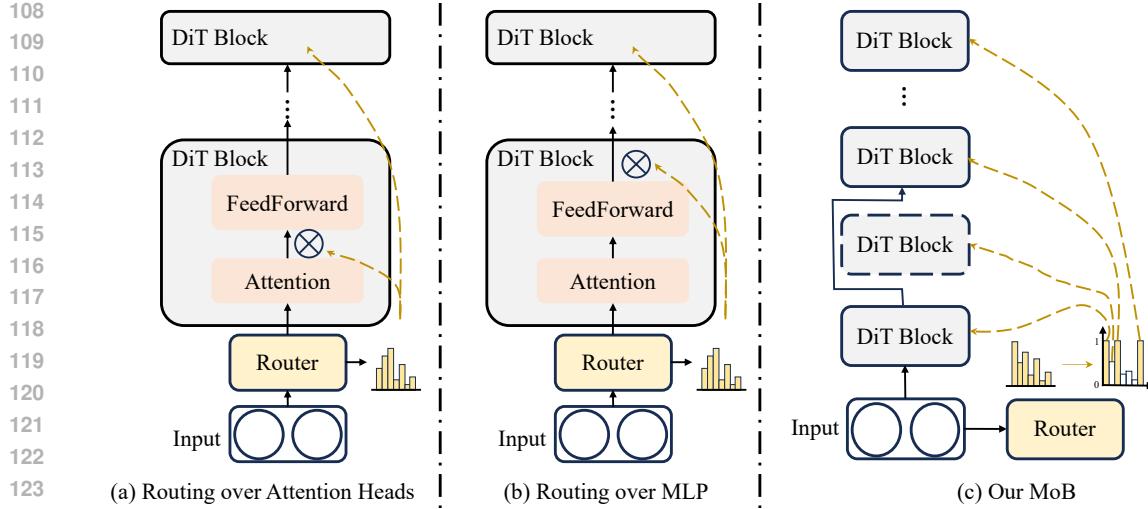


Figure 2: Utilization of three types of dynamic routing within the DiT framework.

To compensate for potential information loss from skipped blocks, we incorporate a **block cache module** that aggregates intermediate representations into a unified output. Furthermore, MoB adopts **knowledge distillation** and **load balancing** strategies, which improve training efficiency and enable effective fine-tuning on small-scale datasets, thereby enhancing the framework’s practicality and deployability.

2 METHODOLOGY

We propose the **Mixture of Block Transformer (MoB)**, an optimization framework built upon the CogVideoX-5B architecture. MoB employs a routing network to dynamically select Transformer blocks, complemented by fine-grained design choices to address challenges in practical deployment.

Prior to the denoising process, the text embedding is passed through the routing network, where global pooling followed by a linear projection produces a vector of routing scores, each corresponding to a Transformer block. During inference, Ada-Top- k strategy is proposed to select the indices of the k most relevant blocks, which are then activated.

By integrating information across blocks, MoB effectively leverages the representational capacity of all Transformer blocks, thereby accelerating the video generation process without compromising output quality. Furthermore, MoB incorporates a knowledge distillation mechanism to reduce the reliance on large-scale training data, enabling practical adaptation through fine-tuning on smaller datasets.

In terms of the training objective, MoB introduces load balancing strategies into its loss formulation to ensure stable and efficient optimization. These collective design choices empower MoB to produce high-quality outputs with reduced computational overhead. The detailed architecture of **MoB** is shown in Figure 3. During training, the Ada-Top- k mechanism is used to approximate the skipping of block computations. The output of each block is formulated as the sum of its input and the weighted contribution of the block transformation. Since no block is skipped during training, the Block Cache module (Section 2.2) records only the output differences rather than performing full computations, thereby ensuring sufficient training of the routing network.

2.1 ROUTING NETWORK

In MoB, the dynamic routing network is placed before the denoising network and takes as input the text embeddings $z_{\text{text}} \in \mathbb{R}^{B \times T \times C}$ from the text encoder, where B is the batch size, T is the token sequence length, and C is the embedding dimension. The routing network first applies average pooling along the T -dimension to compress token-level representations into a global representation $z_{\text{cond}} \in \mathbb{R}^{B \times C}$.

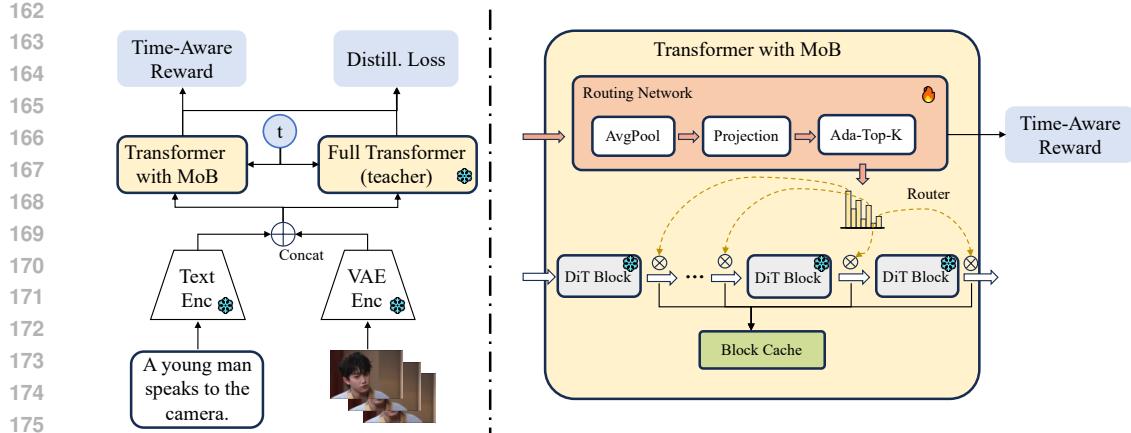


Figure 3: Training Pipeline of MoB. We train only the dynamic routing network while keeping all Transformer block parameters frozen. The routing network employs Ada-Top- k to generate soft selection weights for each block during training, enabling gradient propagation through all blocks. The training objective combines knowledge distillation loss from the teacher model with a time-aware reward term that encourages sparse block activation.

$$z_{\text{cond}} = \frac{1}{T} \sum_{t=1}^T z_{\text{text}}[:, t, :] \quad (1)$$

Subsequently, a fully connected layer projects z_{cond} into a space of dimension equal to the number of Transformer blocks N , yielding block-wise importance scores $s \in \mathbb{R}^{B \times N}$, as shown in Equation 2, where W and b are learnable parameters.

$$s = W z_{\text{cond}} + b \quad (2)$$

Ada-Top- k . In MoB, dynamic routing is performed at the Transformer block level, where each block is executed sequentially. Consequently, the conventional MoE approach—normalizing expert scores s into weights via a softmax operation—is not directly applicable. Such normalization would assign extremely small weights to individual blocks, thereby impeding convergence during training. Conversely, directly applying Top- k or Top- p strategies is problematic, as these operations are non-differentiable and lead to unstable gradient flow during optimization.

The standard Soft-Top- k approximates Top- k selection via softmax with temperature scaling T_{temp} . However, lowering the temperature sharpens the Soft-Top- k toward a one-hot distribution, conflicting with the intended k -hot outcome

Algorithm 1 Dynamic Block Routing

Require: Text embeddings z_{text} ; Transformer with N blocks $\{f_1, \dots, f_N\}$; Router g ; budget k ; init h_0

Ensure: Output h'

```

1:  $r \leftarrow g(z_{\text{text}})$ 
2:  $h \leftarrow h_0$ 
3: for  $n = 1$  to  $N$  do
4:   if  $r_n \approx 1$  then
5:      $h \leftarrow f_n(h)$ 
6:   else
7:     continue
8:   end if
9: end for
10:  $h' \leftarrow h$ 
11: return  $h'$ 
```

To address this, we propose the **Ada-Top- k** (Adaptive Top- k), a modified soft top- k mechanism. Ada-Top- k computes the k -th largest block importance score $s_{(k)}$, re-centers all block scores relative to this adaptive threshold, and applies a sigmoid activation function:

$$r_i = \frac{1}{1 + \exp(-(s_i - s_{(k)})/T)}, \quad r_i \in [0, 1] \quad (3)$$

where T is the temperature parameter controlling the sharpness of selection. Unlike softmax-based soft top- k which suffers from competitive normalization, Ada-Top- k employs a rank-based formulation that enables independent block activation—blocks with scores above $s_{(k)}$ are activated while

216 those below are suppressed, naturally selecting approximately k blocks without winner-take-all col-
217 lapsed.
218

219 In summary, the dynamic routing network in MoB generates block importance scores conditioned
220 on input prompts, then employs Ada-Top- k to determine block execution. The parameter k controls
221 the target number of active blocks, enabling flexible trade-offs between computational efficiency
222 and generation quality. Algorithm 1 outlines the integration of this routing mechanism into the DiT
223 framework, where f_n denotes the n -th Transformer block, g represents the routing network, and
224 $h_0 \in \mathbb{R}^{B \times T \times C}$ is the initial noise input.
225

226 2.2 BLOCK CACHE

227 During inference with the routing network, some blocks are in-
228 evitably skipped to accelerate computation, which results in the
229 omission of certain block-level information. To address this and
230 preserve inference quality, MoB introduces a **block cache mod-
231 ule**.

232 As illustrated in Figure 1(b), although different timesteps influ-
233 ence the overall trend of block-level output similarity, the outputs
234 of certain adjacent blocks remain highly consistent. Exploiting
235 this property, we cache the output difference δ of each block at
236 every timestep. When a block at position i is skipped in the next
237 timestep, the cached δ from block $i - 1$ at the previous timestep
238 is used to correct its output, as shown in Figure 4.

239 Formally, this procedure is defined in Equations 4, where $h_i^{(t)}$
240 denotes the output of the i -th block at timestep t . Through
241 this caching mechanism, MoB reduces computational cost while
242 maintaining generation performance.

$$244 h_i^{(t)} \approx h_{i-1}^{(t)} + (h_{i-1}^{(t-1)} - h_{i-2}^{(t-1)}) \quad (4)$$

246 2.3 OTHER OPTIMIZATIONS

248 **Timestep Skipping.** In our experiments, we observe that Trans-
249 former computations at certain mid-denoising timesteps exhibit
250 substantial redundancy. Removing all computations at these
251 timesteps has little effect on the final generation quality, a finding
252 consistent with prior work that accelerates inference by skipping
253 timesteps (Zhu et al., 2025).

254 Further analysis shows that, during the mid-denoising stage, the
255 model can maintain stable generation quality provided that mul-
256 tiple skips do not occur consecutively across several timesteps,
257 as illustrated in Figure 5. In the figure, the first row shows
258 the generation results of the original CogVideoX, while the sec-
259 ond row corresponds to continuous timestep skipping. The third
260 row applies skipping during the early denoising stages, and the
261 fourth row applies intermittent skipping during the mid-denoising
262 stages. Across all settings, the number of skipped timesteps is kept constant. The results show that
263 intermittent skipping in the mid-denoising stages yields the best generation quality.

264 Motivated by this observation, we introduce an additional **timestep skipping strategy** to further re-
265 duce computational cost. Specifically, we define a fixed interval between skipped timesteps and con-
266 strain skipping to occur only within a predefined minimum and maximum timestep range, thereby
267 restricting it to the mid-denoising stages.

268 **Distillation.** The objective of MoB is to accelerate video generation by skipping redundant computa-
269 tions while preserving output quality. Accordingly, the training objective is to align the performance
of the MoB-augmented model with that of the original model. To reduce training data requirements

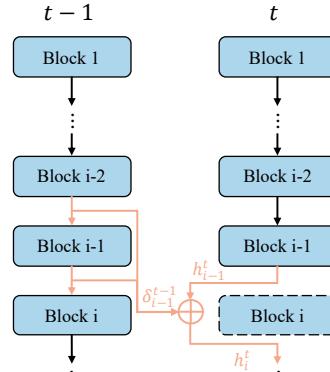


Figure 4: Workflow of the Block Cache Module.

Figure 5: Generation Results of the Original CogVideoX and Three Timestep Skipping Strategies.

270 and improve training efficiency, MoB incorporates a knowledge distillation strategy based on the
271 teacher–student paradigm.

272 In this framework, the original text-to-video model serves as the teacher, providing soft supervisory
273 signals to guide the learning of the student model equipped with MoB. Specifically, the student is op-
274 timized with a distillation loss that encourages it to mimic either the final outputs or the intermediate
275 feature representations of the teacher.

$$277 \quad \mathcal{L}_{\text{distill}} = \frac{1}{B} \sum_{b=1}^B \|f_{\text{student}}(\mathbf{x}_b) - f_{\text{teacher}}(\mathbf{x}_b)\|_2^2 \quad (5)$$

280 where B is the batch size, \mathbf{x}_b denotes the b -th input sample, and $f_{\text{student}}(\cdot)$ and $f_{\text{teacher}}(\cdot)$ represent
281 the output logits from the student and teacher models, respectively.

282 **Total Loss.** In this study, MoB employs a distillation loss in place of the original task-specific
283 objective. Since the Transformer backbone is kept frozen, the load balancing loss is not required. To
284 further ensure that MoB achieves sufficient acceleration, we introduce a computation-aware reward
285 term, denoted as $\mathcal{L}_{\text{cost}}$.

$$286 \quad \mathcal{L}_{\text{cost}} = \lambda \cdot \frac{1}{Z} \sum_{i=1}^N p_i \cdot c_i \quad (6)$$

289 where λ is a hyperparameter controlling the strength of the reward, p_i denotes the activation proba-
290 bility of the i -th block, and c_i represents the computational cost of that block. The term $Z = \sum_{i=1}^N c_i$
291 serves as a normalization factor.

292 Specifically, the overall loss function is defined as follows:

$$293 \quad \mathcal{L}_{\text{total}} = \mathcal{L}_{\text{distill}} + \mathcal{L}_{\text{cost}} \quad (7)$$

295 where $\mathcal{L}_{\text{distill}}$ measures the discrepancy between the outputs of the student and teacher models, and
296 $\mathcal{L}_{\text{cost}}$ represents the computation-aware cost reward.

298 3 EXPERIMENT

300 3.1 SETUP

302 **Model.** We evaluate the performance of MoB on the text-to-video task using three state-of-the-
303 art models: CogVideoX-5B, HunyuanVideo (Kong et al., 2024), and Wan2.1 (Wang et al., 2025).
304 For comparison, we adopt MagCache (Ma et al., 2025), Sparse VideoGen (Xi et al., 2025), and
305 FasterCache (Lv et al., 2024) as baselines. **In addition, we evaluated the performance of MoB on
306 the text-to-image task using Flux.1 (Labs, 2024).**

307 **Metrics.** Following prior work (Wu et al., 2023), we evaluate both generation quality and inference
308 efficiency using the following metrics. For video quality, we adopt two measures: *Frame Consis-
309 tency*, computed by extracting CLIP embeddings for each frame and reporting the average cosine
310 similarity across all frame pairs, and *Textual Faithfulness*, quantified by the average ImageReward
311 score (Xu et al., 2023) between each generated frame and its corresponding text prompt. In addition,
312 we also evaluate generation quality using PSNR and SSIM. **For image quality, we adopt *Textual
313 Faithfulness*, PSNR and SSIM.**

314 For efficiency, we measure inference latency and report the speedup relative to the baseline model.

315 **Datasets.** In this study, for evaluation, we randomly sample 1,000 prompts from Lin et al. (2014).

317 **Training Details.** Our MoB model is trained over 20,000 epochs using 8 NVIDIA A800-SXM4-
318 80GB GPUs, with all Transformer modules kept freezed except for the routing network. During
319 training, the weight of the computation-aware reward λ is set to 1e-2. The weight decay is set to
320 1e-4, gradient clipping is applied with a threshold of 1.0, and the learning rate is initialized to 2e-5,
321 with a cosine learning rate scheduler applied for gradual decay.

322 Unlike in inference, the routing network does not discretize gating weights during training. In-
323 stead, continuous gating weights are applied to all Transformer block outputs, and their weighted
aggregation is used as the final output.

324 Table 1: Comparison of different acceleration methods on CogVideoX, HunyuanVideo and Wan.
325

326 327 328 329 Method	330 Efficiency		331 Visual Quality			
	332 Latency (s)↓	333 Speedup↑	Smooth↑	Text↑	PSNR ↑	SSIM ↑
334 CogVideoX-5B (49 frames, 480P)						
335 CogVideoX-5B ($T = 50$)	227.8	1×	0.9453	0.2971	-	-
336 FasterCache	144.1	1.58×	0.9430	0.2939	13.91	0.572
337 SVG	134.5	1.69×	0.9272	0.2992	17.73	0.778
338 Ours	154.9	1.47×	0.9450	0.2972	16.01	0.734
339 HunyuanVideo (81 frames, 720P)						
340 HunyuanVideo ($T = 50$)	1784.2	1×	0.9686	0.3020	-	-
341 MagCache	706.5	2.52×	0.9681	0.3017	17.81	0.614
342 SVG	1055.8	1.69×	0.9655	0.2749	18.05	0.671
343 Ours	1427.2	1.25×	0.9672	0.2953	16.78	0.607
344 Wan 2.1 1.3B (81 frames, 480P)						
345 Wan 2.1 ($T = 50$)	103.6	1×	0.9747	0.3005	-	-
346 MagCache	54.8	1.89×	0.9743	0.3002	20.21	0.742
347 SVG	79.2	1.31×	0.9622	0.2976	18.63	0.711
348 Ours	71.8	1.44×	0.9702	0.2994	18.54	0.716

349 **Baselines.** As for video generation, we benchmark MoB against representative baselines, including
350 the vanilla model, the cache-based methods MagCache and FasterCache, and the dynamic sparsity-
351 aware model Sparse VideoGen. As for image generation, we benchmark against Flux.1-dev.

352 **Parameters.** For all baseline methods, we use their publicly released configurations to ensure fair
353 comparison. Since different models contain varying numbers of Transformer blocks, we set 10%
354 of the total blocks as the baseline for MoB’s block-skipping strategy and fix the skip interval to 5.
355 These settings balance inference acceleration with generation quality. All inference tasks on the
356 same backbone are performed under a fixed random seed.

357 3.2 EVALUATION

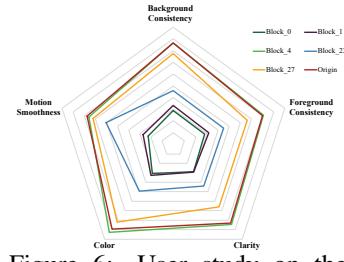
358 We assess video generation quality by comparing MoB against all baseline methods. The results are
359 presented in Table 1.

360 MoB demonstrates strong performance in preserving generation
361 quality. On the CogVideoX-5B-T2V model, it achieves a Frame
362 Consistency score of 0.9450 and a Textual Faithfulness score
363 of 0.2969, indicating that generation quality is effectively main-
364 tained under accelerated conditions. Representative visualiza-
365 tions are provided in the supplementary figures.

366 To assess practical applicability, we conduct an end-to-end per-
367 formance evaluation on an NVIDIA L20X GPU with CUDA 12.4,
368 comparing MoB against all baselines in terms of latency and
369 speedup. Results show that MoB achieves a 1.2x–1.4x accelera-
370 tion over the baselines with negligible quality degradation.

371 For image generation quality, we report comparative results in the
372 appendix. Quantitative results are summarized in Table F.1, and representative samples are shown
373 in Figure F.1. MoB achieves superior generation quality — outperforming all baselines with a Text
374 Faithfulness score of 0.3102, a PSNR of 17.64, and an SSIM of 0.7319.

375 Importantly, the acceleration mechanism of MoB is orthogonal to existing techniques such as atten-
376 tion sparsification. This suggests that MoB can serve as an independent acceleration strategy and
377 can be further combined with methods such as Yuan et al. (2024b) or Jiang et al. (2024) to yield
378 additional efficiency gains in video generation.



379 Figure 6: User study on the
380 role of Transformer blocks in
381 CogVideoX-5B.

390
391 Figure 7: Comparison of Generation Results between MoB and Other Baselines on CogVideoX-5B.
392
393

3.3 USER STUDY

394
395 As discussed in previous sections, we observe that different blocks have varying impacts on the
396 output, as measured by MSE. To further qualitatively analyze the role of each block in CogVideoX-
397 5B and to guide the routing network for targeted dynamic routing, we conducted a user study with
398 100 prompts from Lin et al. (2014).399 Participants evaluated videos generated by skipping individual blocks across five aspects: back-
400 ground quality, foreground quality, clarity, color fidelity, and motion smoothness. The results, shown
401 in Figure 6, indicate that different blocks exhibit distinct influences on model performance, while
402 some blocks contribute relatively little to overall generation quality.403
404 3.4 ABLATION STUDY
405406 Table 2: Effect of Top- k in routing network
407

Top- k	Latency (s)↓	Speedup↑	Smooth↑	Text↑
Origin	230.1	1×	0.9453	0.2958
40	211.3	1.08×	0.9454	0.2973
38	194.1	1.18×	0.9431	0.2967
36	179.8	1.27×	0.9329	0.2817

414
415 **Effect of Top- k in routing network.** To examine the performance limits of MoB’s inference ac-
416 celeration, we conduct an ablation study, with results summarized in Table 2. The Top- k parameter
417 specifies the number of Transformer blocks selected to participate in the denoising process during
418 inference, as defined in the corresponding equation.419 As shown in Table 2, the Top- k setting strongly affects both inference speed and generation quality.
420 While preserving satisfactory visual quality, MoB achieves up to 1.3× speedup. To further illustrate
421 the qualitative impact of varying Top- k values, we present representative visual examples in the
422 accompanying figure, which demonstrate perceptual variations across different configurations.
423424 Table 3: Effect of the Interval Between Two Skips
425

Interval	Latency (s)↓	Speedup↑	Smooth↑	Text↑
Origin	230.1	1×	0.9453	0.2958
2	175.1	1.34×	0.9301	0.2714
3	195.8	1.17×	0.9316	0.2958
4	202.5	1.13×	0.9363	0.2957
5	210.3	1.09×	0.9410	0.2958

Figure 8: Effect of Top- k in routing network.

Figure 9: Effect of the Interval Between Two Skips.

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Effect of the Number of Skipped Timesteps. To analyze the effect of the timestep-skipping strategy on efficiency and its impact on generation quality, we conduct an ablation study on the number of skipped timesteps. As discussed previously, when skipping occurs in the mid-denoising stage and is applied in a non-consecutive manner, the degradation in video quality is relatively small.

We define the total number of inference steps as T . In this experiment, the mid-denoising stage is empirically set to the interval $[\frac{3}{10}T, \frac{8}{10}T]$. The number of skipped timesteps is controlled by varying the interval between two skips. Experiments are conducted on CogVideoX-5B with $T = 50$, and the results are summarized in Table 3.

Dynamic Top- k Setting across Timestep. We evaluate three dynamic Top- k scheduling strategies, including the original scheme, as shown in Figure G.1, to validate the effectiveness of our proposed method.

4 CONCLUSION

We propose MoB, a DiT-based acceleration framework for video generation. By exploiting computational redundancy across Transformer blocks, MoB performs block-level dynamic routing to eliminate unnecessary computations. This reduces computational cost while preserving generation capability, and the framework can also be integrated with other acceleration methods.

Limitations. MoB trains the routing network based on block-level redundancy. For models with fewer Transformer blocks and stronger computational coupling, training effectiveness may be limited, and block skipping could have a larger negative impact on the final results.

486 ACKNOWLEDGMENTS
487488 Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
489 those to funding agencies, go at the end of the paper.

490

491 REFERENCES
492493 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
494 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
495 generation models as world simulators. 2024. URL <https://openai.com/research/video-generation-models-as-world-simulators>.

496

497 Guanjie Chen, Xinyu Zhao, Yucheng Zhou, Tianlong Chen, and Yu Cheng. Accelerating vision
498 diffusion transformers with skip branches. *CoRR*, abs/2411.17616, 2024. URL <https://doi.org/10.48550/arXiv.2411.17616>.

499

500 Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
501 Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for high-
502 quality video generation. *arXiv preprint arXiv:2310.19512*, 2023.

503

504 Javier Martín Daniel Verdú. Flux.1 lite: Distilling flux1.dev for efficient text-to-image generation.
505 2024.

506

507 Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
508 memory-efficient exact attention with io-awareness, 2022. URL <https://arxiv.org/abs/2205.14135>.

509

510 Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li, and Junshi Huang. Scaling diffusion
511 transformers to 16 billion parameters, 2024. URL <https://arxiv.org/abs/2407.11633>.

512

513 Zhengcong Fei, Debang Li, Di Qiu, Changqian Yu, and Mingyuan Fan. Ingredients: Blending
514 custom photos with video diffusion transformers. *arXiv preprint arXiv:2501.01790*, 2025.

515

516 Ruoyu Feng, Tiankai Hang, Tianyu He, Kai Qiu, Qi Dai, Jianmin Bao, Zhibo Chen, and Chong Luo.
517 Videodit: Bridging image diffusion transformers for streamlined video generation, 2025. URL
518 <https://openreview.net/forum?id=lvgsPjRtLM>.

519

520 Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, Man Zhou, and
521 Jie Zhang. Id-animator: Zero-shot identity-preserving human video generation. *arXiv preprint*
522 *arXiv:2404.15275*, 2024.

523

524 Teng Hu, Jiangning Zhang, Ran Yi, Hongrui Huang, Yabiao Wang, and Lizhuang Ma. SaRA:
525 High-efficient diffusion model fine-tuning with progressive sparse low-rank adaptation. In
526 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wGVOxplEbf>.

527

528 Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
529 of local experts. *Neural Computation*, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

530

531 Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
532 Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Minference
533 1.0: Accelerating pre-filling for long-context llms via dynamic sparse attention, 2024. URL
534 <https://arxiv.org/abs/2407.02490>.

535

536 Peng Jin, Bo Zhu, Li Yuan, and Shuicheng YAN. Moh: Multi-head attention as mixture-of-head
537 attention, 2025a. URL <https://openreview.net/forum?id=VOVFvaxgD0>.

538

539 Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moh: Multi-head attention as mixture-of-head
540 attention, 2025b. URL <https://arxiv.org/abs/2410.11842>.541 Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em algorithm.
542 *Neural Computation*, 6(2):181–214, 1994. doi: 10.1162/neco.1994.6.2.181.

540 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 541 Bo Wu, Jianwei Zhang, Katrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, An-
 542 dong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song,
 543 Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai
 544 Li, Weiyang Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-
 545 tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao
 546 Liu, Daquan Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar
 547 Zhong. Hunyuuanvideo: A systematic framework for large video generative models. *CoRR*,
 548 abs/2412.03603, 2024. URL <https://doi.org/10.48550/arXiv.2412.03603>.

549 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.
 550

551 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 552 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In David Fleet,
 553 Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), *Computer Vision – ECCV 2014*, pp.
 554 740–755, Cham, 2014. Springer International Publishing. ISBN 978-3-319-10602-1.

555 Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
 556 casting: Accelerating diffusion models with taylorseers, 2025. URL <https://arxiv.org/abs/2503.06923>.
 557

558 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 559 ode solver for diffusion probabilistic model sampling in around 10 steps, 2022. URL <https://arxiv.org/abs/2206.00927>.
 560

561 Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K.
 562 Wong. Fastercache: Training-free video diffusion model acceleration with high quality. *CoRR*,
 563 abs/2410.19355, 2024. URL <https://doi.org/10.48550/arXiv.2410.19355>.
 564

565 Zehong Ma, Longhui Wei, Feng Wang, Shiliang Zhang, and Qi Tian. Magcache: Fast video gener-
 566 ation with magnitude-aware cache, 2025. URL <https://arxiv.org/abs/2506.09045>.
 567

568 Minglei Shi, Ziyang Yuan, Haotian Yang, Xintao Wang, Mingwu Zheng, Xin Tao, Wenliang Zhao,
 569 Wenzhao Zheng, Jie Zhou, Jiwen Lu, Pengfei Wan, Di Zhang, and Kun Gai. Diffmoe: Dynamic
 570 token selection for scalable diffusion transformers, 2025. URL <https://arxiv.org/abs/2503.14487>.
 571

572 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 573 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
 574 Text-to-video generation without text-video data, 2022. URL <https://arxiv.org/abs/2209.14792>.
 575

576 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
 577 <https://arxiv.org/abs/2010.02502>.
 578

579 Wenhao Sun, Rong-Cheng Tu, Yifu Ding, Zhao Jin, Jingyi Liao, Shunyu Liu, and Dacheng Tao.
 580 Vorta: Efficient video diffusion via routing sparse attention, 2025. URL <https://arxiv.org/abs/2505.18809>.
 581

582 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 583 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 584 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Xiaofeng Meng, Ningyi Zhang, Pan-
 585 deng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
 586 Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
 587 Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
 588 Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
 589 Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 590 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative mod-
 591 els. *CoRR*, abs/2503.20314, March 2025. URL <https://doi.org/10.48550/arXiv.2503.20314>.
 592

593

594 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 595 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 596 models for text-to-video generation. In *ICCV*, pp. 7589–7599, 2023. URL <https://doi.org/10.1109/ICCV51070.2023.00701>.

598 Yiming Wu, Huan Wang, Zhenghao Chen, and Dong Xu. Individual content and motion dynamics
 599 preserved pruning for video diffusion models, Nov 2024.

601 Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han
 602 Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, and Song Han. Sparse
 603 videogen: Accelerating video diffusion transformers with spatial-temporal sparsity, 2025. URL
 604 <https://arxiv.org/abs/2502.01776>.

605 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 606 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. In
 607 *NeurIPS*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/33646ef0ed554145eab65f6250fab0c9-Abstract-Conference.html.

610 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 611 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 612 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models
 613 with an expert transformer, 2025. URL <https://arxiv.org/abs/2408.06072>.

614 Sihyun Yu, Kihyuk Sohn, Subin Kim, and Jinwoo Shin. Video probabilistic diffusion models in
 615 projected latent space, 2023. URL <https://arxiv.org/abs/2302.07685>.

617 Shanghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
 618 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. *arXiv preprint*
 619 *arXiv:2411.17440*, 2024a.

620 Zhihang Yuan, Hanling Zhang, Pu Lu, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen Yan,
 621 Guohao Dai, and Yu Wang. Difastatttn: Attention compression for diffusion transformer models,
 622 2024b. URL <https://arxiv.org/abs/2406.08552>.

623 Yuanhao Zhai, Kevin Lin, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Chung-Ching Lin, David
 624 Doermann, Junsong Yuan, and Lijuan Wang. Motion consistency model: Accelerating video dif-
 625 fusion with disentangled motion-appearance distillation, 2024. URL <https://arxiv.org/abs/2406.06890>.

628 Yuechen Zhang, Yaoyang Liu, Bin Xia, Bohao Peng, Zexin Yan, Eric Lo, and Jiaya Jia.
 629 Magic mirror: Id-preserved video generation in video diffusion transformers. *arXiv preprint*
 630 *arXiv:2501.03931*, 2025.

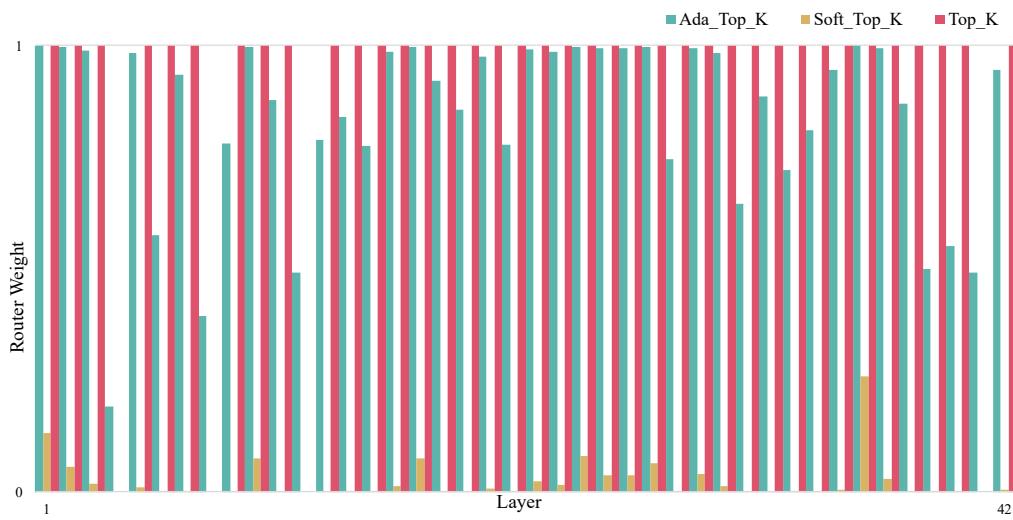
631 Wangbo Zhao, Yizeng Han, Jiasheng Tang, Kai Wang, Yibing Song, Gao Huang, Fan Wang, and
 632 Yang You. Dynamic diffusion transformer. In *The Thirteenth International Conference on Learn-
 633 ing Representations*, 2025. URL <https://openreview.net/forum?id=taHwqSrbrb>.

635 Shangwen Zhu, Han Zhang, Zhantao Yang, Qianyu Peng, Zhao Pu, Huangji Wang, and Fan Cheng.
 636 Accelerating diffusion sampling via exploiting local transition coherence, 2025. URL <https://arxiv.org/abs/2503.09675>.

638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A ADA-TOP- k ROUTING STRATEGY**
649
650

651 As shown in Figure A.1, the weight distributions of three routing strategies are visualized across the
 652 42 Transformer blocks of CogVideoX-5B under the same input. The results show that, while main-
 653 taining differentiability, the Ada-Top- k strategy enables better adaptation of the routing network for
 654 acceleration. From a mathematical perspective, the Ada-Top- k , Soft-Top- k , and Top- k routing strate-
 655 gies differ primarily in their treatment of normalization and scaling factors. However, Ada-Top- k is
 656 the only strategy among the three that is both differentiable and stably yields a k -hot output. Dur-
 657 ing training, given the specific requirements of our block-skipping routing network—particularly its
 658 distinction from conventional Mixture-of-Experts (MoE) architectures—we impose two key criteria
 659 on the routing mechanism: (1) the routing computation must be differentiable to enable end-to-end
 660 training; and (2) the routing output must be k -hot to closely approximate the inference-time scenario
 661 in which only a subset of blocks is activated. Given these constraints, we deliberately excluded Top-
 662 k (which is non-differentiable) and Soft-Top- k (which yields soft, often near-one-hot distributions
 663 rather than exact k -hot selections). Ada-Top- k uniquely satisfies both conditions, making it the most
 664 suitable choice for our framework.

683 Figure A.1: Output Weight Distributions of Ada-Top- k vs. Other Routing Strategies.
684
685
686
687
688689 **B INFERENCE LATENCY AND MEMORY FOOTPRINT OF MoB**
690
691

692 In terms of time overhead, using CogVideoX-5B with 42 Transformer blocks as an example, the
 693 additional time overhead of the routing network accounts for less than 3% of the original model’s
 694 inference time. Furthermore, each block skipped by the routing network results in an approximate
 695 2% acceleration.

696 As for space overhead, the MoB routing network is designed to be lightweight, introducing a negli-
 697 gible number of parameters relative to the original model. During inference, the model caches only
 698 the intermediate outputs from the previous timestep, discarding earlier ones to mitigate excessive
 699 memory consumption. Consequently, in terms of inference memory overhead, the MoB strategy in-
 700 creases GPU memory consumption by approximately 1%. This efficient resource utilization ensures
 701 that the benefits of improved routing are achieved without imposing significant additional memory
 overhead.

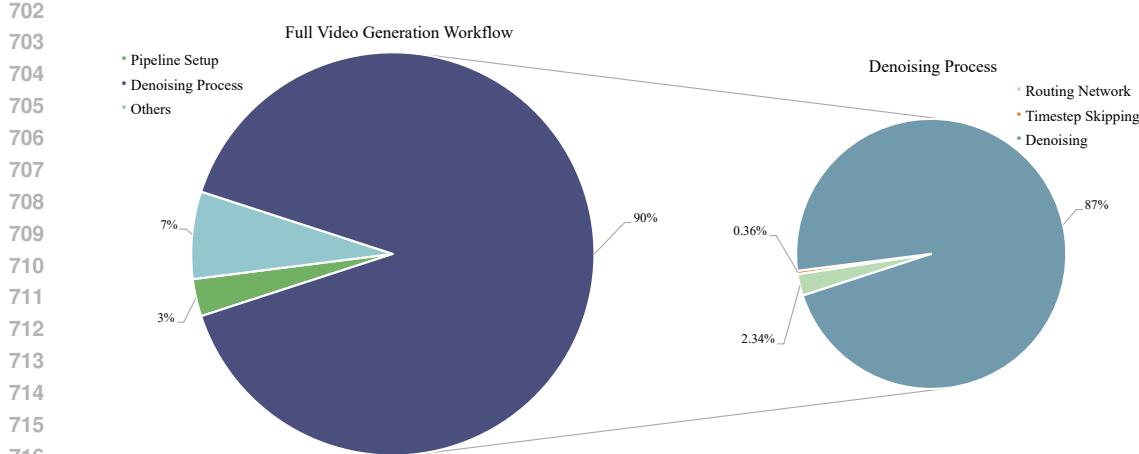


Figure B.1: Time budget allocation across the full inference pipeline with MoB.

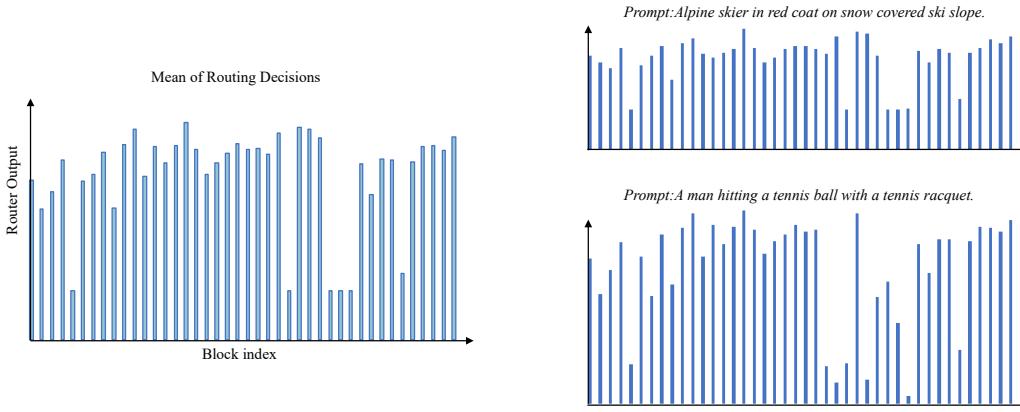


Figure C.1: Visualization of routing decisions.

C VISUALIZATION OF ROUTING DECISIONS

D GENERATING LONG-DURATION VIDEOS USING COGVIDEOX-5B w/o MoB

E STATISTICAL ANALYSIS OF BLOCK-WISE CONTRIBUTIONS IN COGVIDEOX-5B

To analyze the functional contribution of each block, we manually skip individual blocks in CogVideoX when generating videos. Representative cases are shown in Figure E.1.

F TRANSFER OF MoB TO TEXT-TO-IMAGE GENERATION ON FLUX.1-DEV

We conducted the experiment shown in the Figure F.1 on Flux.1-dev, where the baseline Flux uses 10 denoising steps and contains 19 Transformer blocks. In the MoB-augmented variant, we configure the router to skip 2 blocks, resulting in only 17 active blocks during inference. We further conducted a quantitative evaluation of MoB on Flux.1-dev, comparing its performance with several representative baselines, as shown in Table F.1.

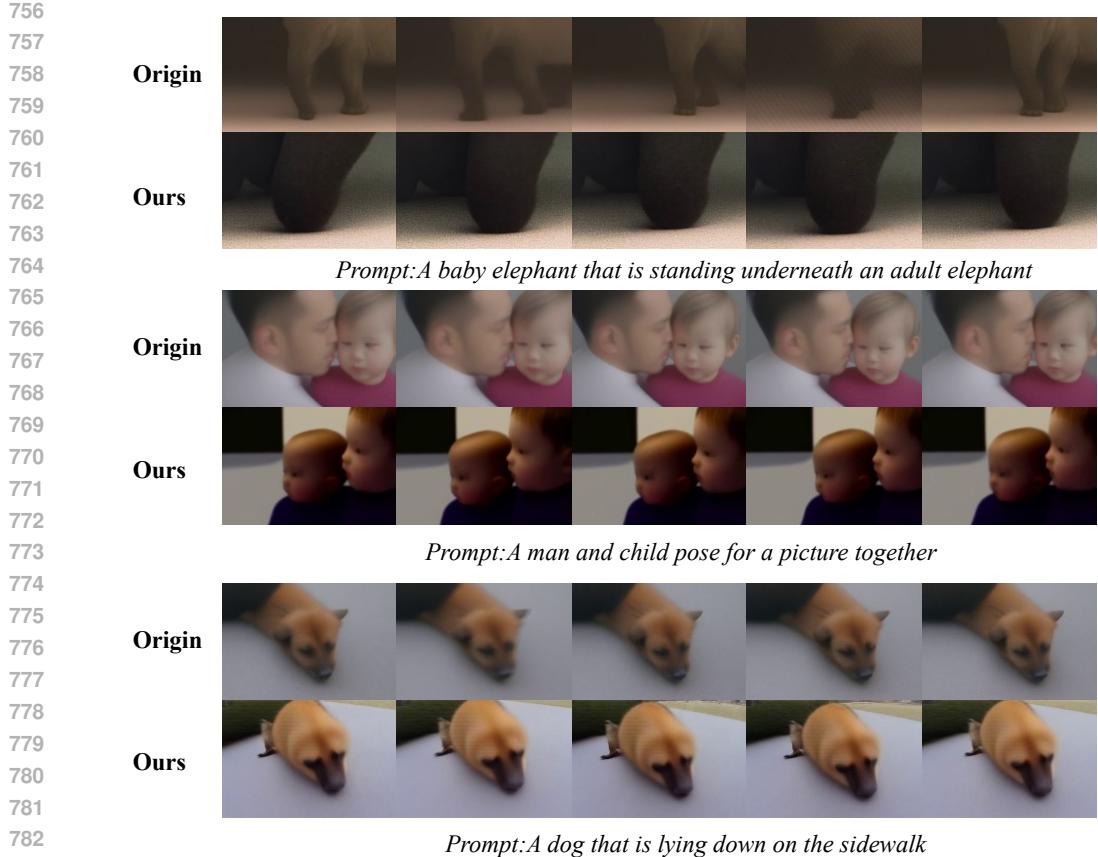


Figure D.1: Generating long-duration videos using CogVideoX-5B w/o MoB.

Table F.1: Evaluation of MoB and Baseline Methods on Flux.1-dev for T2I Acceleration.

Method	Efficiency		Visual Quality		
	Latency (ms)↓	Speedup↑	Text↑	PSNR ↑	SSIM ↑
Flux.1-dev (1024P)					
Flux.1-dev ($T = 28$)	582	1×	0.3108	-	-
MagCache	277	2.10×	0.3087	17.39	0.6952
TaylorSeer(Liu et al., 2025)	362	1.61×	0.2831	13.98	0.6179
Ours	362	1.65×	0.3102	17.64	0.7319

G DYNAMIC TOP-K SETTING ACROSS Timesteps

In this section, we investigate whether dynamically varying the Top- k parameter across timesteps can improve generation quality. Figure G.1 compares three routing strategies.

Random- k refers to performing dynamic routing at each timestep by feeding slightly perturbed inputs into the routing network to induce variation in its outputs. This experiment uses a fixed setting of $k = 40$, as lower Top- k values substantially degrade temporal consistency, making it difficult to assess the effectiveness of the strategy.

Two-stage- k denotes a strategy in which different Top- k settings are applied across timesteps: during the first half of the denoising process, only 50% of the target number of blocks are skipped, whereas in the second half the full skip ratio is applied. This setup allows us to examine whether delaying aggressive skipping yields better results.

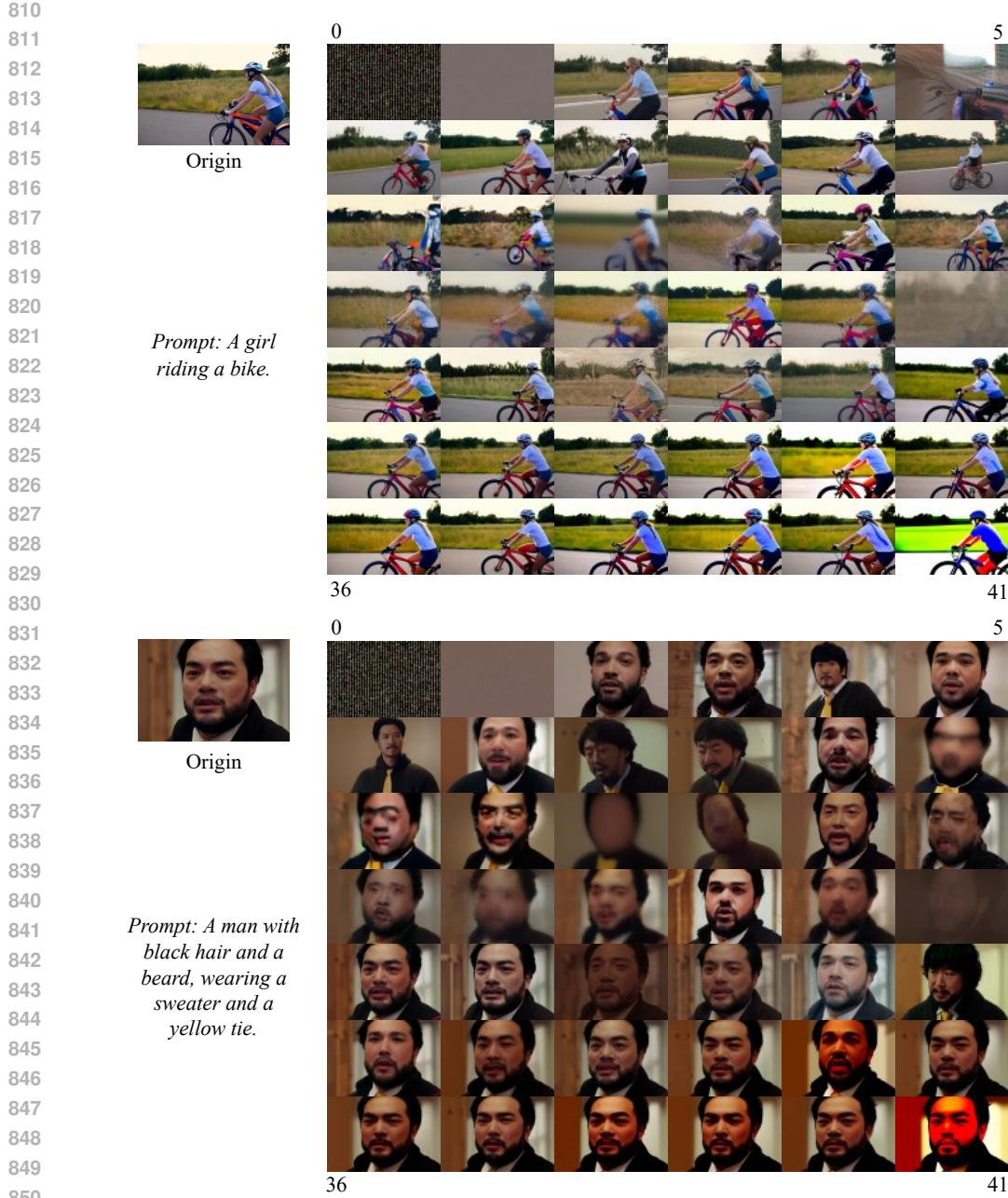


Figure E.1: Visualization of Transformer block outputs across different timesteps.

Ours corresponds to the full-pipeline skipping strategy proposed in the main paper, using a fixed $k = 38$ across all timesteps. For a fair comparison, both Two-stage- k and Ours share the same target Top- k configuration.

The results show that skipping different blocks across timesteps leads to noticeable degradation in video consistency. Although the Two-stage- k strategy does not yield significantly worse results, it reduces the total number of block-skipping operations by approximately one quarter, thereby weakening its acceleration effect. As a result, we do not adopt this strategy in our final design.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903

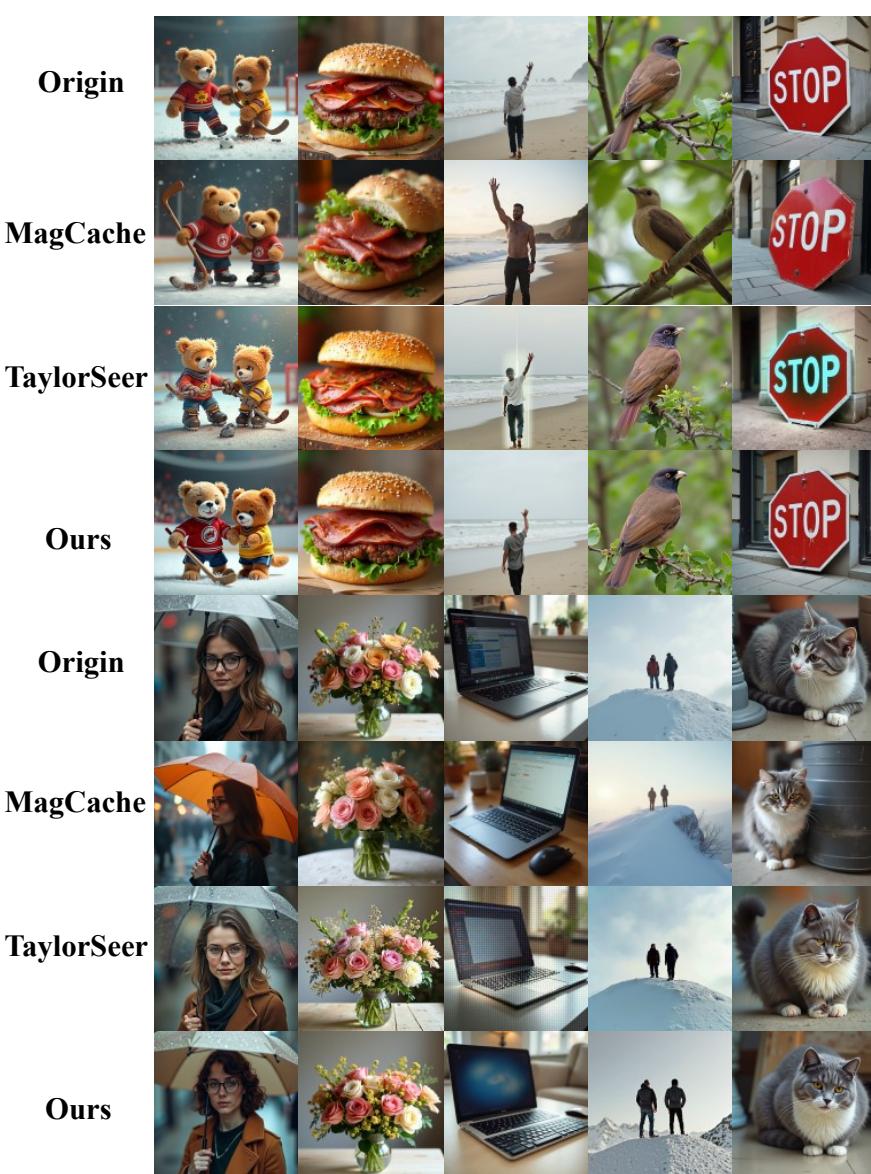


Figure F.1: Comparison of MoB and Baseline Methods on Flux.1-dev.

H EVALUATION OF MOB ON HUNYUANVIDEO AND WAN2.1

I RELATED WORK

I.1 DIFFUSION MODELS FOR VIDEO GENERATION

Compared to earlier approaches such as Generative Adversarial Networks (GANs), diffusion models have exhibited superior capabilities in high-quality video generation tasks. Early video diffusion models enhanced pre-trained image diffusion models by incorporating temporal convolution layers and temporal attention mechanisms to improve interframe consistency. For instance, Singer et al. (2022) extended image diffusion models by introducing temporal modeling, leveraging learned coherence along the time axis to adapt text-to-image generation into text-to-video synthesis. Chen et al. (2023) further advanced the field by scaling up the dataset used for video diffusion models, enabling video generation conditioned on various inputs, including text, images, and motion-adaptive signals.

Figure G.1: Comparison of Different Top-k Router Policies.

However, these methods remain constrained by the scalability limitations of the U-Net framework, which makes them less effective in generating longer-duration videos.

In contrast, Diffusion Transformer (DiT)-based models, such as Yu et al. (2023) and Feng et al. (2025), are better suited for capturing complex spatio-temporal dependencies and can generate videos lasting ten seconds or longer. Brooks et al. (2024) further extended DiT for joint spatio-temporal modeling and leveraged large-scale pre-training, achieving the generation of high-quality videos exceeding one minute in length. These advances highlight the advantages of DiT-based models over traditional U-Net-based architectures, particularly in terms of video length and quality.

I.2 MIXTURE OF EXPERT

In recent years, Transformer-based large language models (LLMs) have exhibited remarkable capabilities, largely driven by their extensive scale, vast training datasets, and substantial computational resources. However, the significant time and financial costs associated with training such models have motivated researchers to explore more efficient strategies to ensure their sustainable development.

The Mixture of Experts (MoE) paradigm was initially introduced in Jacobs et al. (1991) and Jordan & Jacobs (1994). The advent of sparsely gated MoE and its integration into large Transformer-based LLMs have demonstrated its effectiveness in reducing both computational time and memory consumption.

Building upon this idea, Jin et al. (2025b) incorporate this mechanism into the attention module, where each attention head was treated as an expert, and a routing mechanism was employed to dynamically select the Top- k heads for computing weighted attention outputs. Inspired by this, we observe that different DiT blocks contribute unequally to the final generation process. Based on this observation, we propose treating each DiT block as an expert and introducing a routing network that dynamically selects the Top- k blocks for participation in generation, thereby optimizing both training and inference efficiency.

Figure H.1: Results of MoB and Other Acceleration Methods on HunyuanVideo.

Figure H.2: Results of MoB and Other Acceleration Methods on Wan2.1.