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Abstract
Despite the recent success achieved by several001
two-stage prototypical networks in few-shot002
named entity recognition (NER) task, the over-003
detected false spans at span detection stage and004
the inaccurate and unstable prototypes at type005
classification stage remain to be challenging006
problems. In this paper, we propose a novel007
Type-Aware Decomposed framework, namely008
TadNER, to solve these problems. We first009
present a type-aware span filtering strategy to010
filter out false spans by removing those seman-011
tically far away from type names. We then012
present a type-aware contrastive learning strat-013
egy to construct more accurate and stable pro-014
totypes by jointly exploiting support samples015
and type names as references. Extensive ex-016
periments on various benchmarks prove that017
our proposed TadNER framework yields a new018
state-of-the-art performance 1.019

1 Introduction020

Named entity recognition (NER) aims to detect021

entity spans and classify them into pre-defined cat-022

egories (entity types). When there are sufficient023

labeled data, deep learning-based methods (Huang024

et al., 2015; Ma and Hovy, 2016; Lample et al.,025

2016; Chiu and Nichols, 2016) can get impressive026

performance. In real applications, it is desirable027

to recognize new categories which are unseen in028

training/source domain. However, collecting extra029

labeled data for these new types will be surely time-030

consuming and labour-expensive. Consequently,031

few-shot NER (Fritzler et al., 2019; Yang and Kati-032

yar, 2020), which involves identifying unseen en-033

tity types based on a few labeled samples for each034

class (i.e., support samples) in test domain, has035

attracted great research interests in recent years.036

End-to-end metric learning based methods are037

the mainstream in few-shot NER (Yang and Kati-038

yar, 2020; Das et al., 2022). These methods need to039

1Our code and data will be available at https://github.
com/ANONYMOUS/TadNER.
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Figure 1: (a) shows over-detected false spans, (b) shows
spans got by adopting our type-aware span filtering
strategy. (c) shows inaccurate and unstable prototypes,
(d) shows prototypes got by adopting our type-aware
contrastive learning strategy.

simultaneously learn the complex structure consist- 040

ing of entity boundary and entity type. When the 041

domain gap is large, their performance will drop 042

dramatically because it is extremely hard to cap- 043

ture such complicated structure information with 044

only a few support examples for domain adaptation. 045

This leads to the insufficient learning of boundary 046

information, resulting that these methods often mis- 047

classify entity boundaries and cannot obtain very 048

satisfying performance. 049

Recently, there is an emerging trend in adopt- 050

ing two-stage prototypical networks (Wang et al., 051

2022; Ma et al., 2022c) for few-shot NER, which 052

decompose NER into two separate span extraction 053

and type classification tasks and perform one task 054

at each stage. Since the decomposed methods only 055

need to handle one single boundary detection task 056

at the first stage, they can find more accurate bound- 057

aries and obtain better performance than end-to-end 058

approaches. 059

While making good progress, these two-stage 060

prototypical networks still face two challenging 061

problems, i.e., the over-detected false spans and the 062

inaccurate and unstable prototypes in correspond- 063
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ing stages. (1) The decomposed approaches usu-064

ally recall at the span extraction stage in test phase065

many over-detected false spans whose types only066

exist in the source domain. For example, “1976”067

in Fig. 1 (a) belongs to a DATE type in the source068

domain since there are many samples like “Obama069

was born in 1961” in training, and thus it is easily070

recognized as a span by the span detector. However,071

there is no such label in the test domain and “1976”072

is thus assigned a false LOC type. (2) The pro-073

totypical networks in decomposed methods target074

at learning a type-agnostic metric similarity func-075

tion to classify entities in test samples (i.e., query076

samples) via their distance to prototypes. Since the077

prototypes are constructed using very few support078

samples in the type-agnostic feature space, they079

might be inaccurate and unstable. For example, in080

Fig. 1 (c), a prototype is just the support sample in081

one-shot NER and thus deviates far away from the082

real class center.083

Based on the above observations, we propose084

a Type-Aware Decomposed framework, namely085

TadNER, for few-shot NER. Our method follows086

the span detection and type classification learning087

scheme in the decomposed framework but moves088

two steps further to overcome the aforementioned089

issues.090

Firstly, we present a type-aware span filtering091

strategy to filter out false spans by removing those092

semantically far away from type names 2. By this093

means, the over-detected spans like “1976” whose094

types do not exist in test domain can be removed095

due to the long semantic distance to type names, as096

shown in Fig. 1 (b).097

Secondly, we present a type-aware contrastive098

learning strategy to construct more accurate and099

stable prototypes by jointly leveraging type names100

and support samples as references. Through this101

way, the type names can serve as the guidance for102

prototypes and make them not deviate too far away103

from the class centers even in some extreme outlier104

cases, as shown in Fig. 1 (d).105

Extensive experimental results on 5 benchmark106

datasets demonstrate the superiority of our TadNER107

over the state-of-the-art decomposed methods. In108

particular, in the hard intra Few-NERD and 1-shot109

Domain Transfer settings, TadNER achieves a 7%110

and 8% absolute F1 increase, respectively.111

2Note that though the type assignments are unknown in
few-shot NER, the type names (labels) in the test domain are
provided.

2 Related Work 112

2.1 Few-Shot NER 113

Existing few-shot NER methods can be roughly cat- 114

egorized into two types: prompt-based and metric- 115

based. The first type mainly focuses on exploring 116

the general pre-trained language model knowledge 117

for NER via prompt learning (Cui et al., 2021; Ma 118

et al., 2022b; Huang et al., 2022; Lee et al., 2022). 119

This type of methods rely heavily on the quantity of 120

templates, prompts, or good examples. The second 121

type expects to learn a feature space with good gen- 122

eralizability in the source domain and then classi- 123

fies test samples via nearest class prototypes (Snell 124

et al., 2017; Fritzler et al., 2019; Ji et al., 2022) or 125

neighbor samples (Yang and Katiyar, 2020; Das 126

et al., 2022). 127

There are also some efforts to improve few-shot 128

NER performance by leveraging the type name 129

(label) semantics (Hou et al., 2020; Wang et al., 130

2021; Ma et al., 2022a). These methods usually 131

treat labels as class representatives and align tokens 132

with them, yet neglecting the joint training of entity 133

words and label representations. Hence they can 134

only use either support sets or labels as class ref- 135

erences. Instead, our method can exploit support 136

samples and type names at the same time, which 137

helps construct more accurate and stable prototypes 138

in the target domain. 139

2.2 Task Decomposition and Contrastive 140

Learning 141

Recently, several decomposed-based methods are 142

proposed to solve NER problem (Shen et al., 2021; 143

Wang et al., 2021; Zhang et al., 2022; Wang et al., 144

2022; Ma et al., 2022c). These methods can learn 145

entity boundary information well in data-limited 146

scenarios and often get better results. However, the 147

widely used prototypical networks in these methods 148

may encounter inaccurate and unstable prototypes 149

given limited support samples at the type classifi- 150

cation stage. Besides, they may face the problem 151

of over-detected false spans produced at the span 152

detection stage. Our method can address these 153

two issues via the proposed type-aware contrastive 154

learning and type-aware span filtering strategies. 155

Our method is also inspired by the idea of con- 156

trastive learning (Chen et al., 2020; Khosla et al., 157

2020). Due to its good generalization performance, 158

two recent methods (Das et al., 2022; Huang et al., 159

2022) borrow this idea for few-shot NER, which 160

construct contrastive loss between tokens or be- 161

2



tween the token and the prompt. However, they162

are both the end-to-end approach and thus have the163

inherent drawback that cannot learn good entity164

boundary information. In contrast, our method is165

a decomposed one and our contrastive loss is con-166

structed between tokens with additional type name167

information, which can find accurate boundary and168

learn a type-aware feature space.169

3 Method170

In this section, we detail our TadNER framework171

consisting of a span detection stage and a type172

classification stage. We first train a pre-trained lan-173

guage model (PLM) with a classification layer to174

detect entity spans as existing decomposed meth-175

ods (Ma et al., 2022c) do. We then address two176

challenging problems unsolved by previous meth-177

ods. (1) For the problem of inaccurate and unsta-178

ble prototypes, we train the pre-trained language179

model via a type-aware contrastive learning strat-180

egy which can help construct type-aware high-181

quality prototypes. (2) For the problem of over-182

detected false spans, we introduce a type-aware183

span filtering strategy to remove false spans whose184

types only exist in the source domain.185

Note that for few-shot NER, both the training186

and inference in source and test domains need two187

stages, where the type-aware contrastive learning188

and type-aware span filtering strategies take effect189

at the type classification stage in the training and190

test domain, respectively. The overall structure of191

our TadNER is shown in Figure 2.192

3.1 Task Formulation193

Given a sequence X = {x1, x2, ..., xN} with N194

tokens, NER aims to assign each token xi a corre-195

sponding label yi ∈ T ∪{O}, where T is the entity196

type set and O denotes the non-entity label.197

For few-shot NER, a model is trained in a source198

domain dataset Dsource with the entity type set199

Tsource = {t1, t2, ...tm}. The model is then fine-200

tuned in a test/target domain datset Dtarget with201

the entity type set Ttarget = {t1, t2, ...tn} using a202

given support set Starget. The entity token set and203

corresponding label set in Starget are denoted as204

Es = {es1, es2, ..., esM} and Y s = {ys1, ys2, ..., ysM},205

where ysi ∈ Ttarget is the label and M is the num-206

ber of entity tokens. The model is supposed to207

recognize entities in the query set Qtarget of the208

target domain. Since Tsource ∩ Ttarget = ∅, it is209

very challenging to learn a generalized NER model210

to recognize unseen class examples. 211

More specifically, in the n-way k-shot setting, 212

there are n labels in Ttarget and k examples associ- 213

ated with each label in the support set Starget. 214

3.2 Source Domain Training 215

The source domain training consists of span detec- 216

tion and type classification stages. The procedure 217

is shown in Fig. 2 (a). 218

3.2.1 Span Detection 219

We adopt sequence labeling for the first stage in 220

training, which is as same as an existing decom- 221

posed method (Ma et al., 2022c) for few-shot NER. 222

We use BERT (Devlin et al., 2019) as our PLM 223

encoder fθ1 with parameters θ1 in our method. 224

Given an input sentence X = {x1, x2, ..., xN}, the 225

encoder produces contextualized representations 226

for each token as: 227

H = [h1, ...,hN] = fθ1([x1, ..., xN ]), (1) 228

where H ∈ RN∗r 3. H is then fed into a classi- 229

fication layer consisting of a dropout layer (Sri- 230

vastava et al., 2014) and a linear layer to get the 231

probability distribution P = [p(x1), ...,p(xN)] 232

(p(xi) ∈ R|C|, C = {I,O}) using a softmax func- 233

tion: 234

p(xi) = softmax(Dropout(W · hi + b)), (2) 235

where W ∈ R|C|∗r and b ∈ R|C| are the weight 236

matrix and bias. 237

After that, the training loss is formulated by the 238

averaged cross-entropy of the probability distribu- 239

tion and the ground-truth labels: 240

Lspan =
1

N

N∑
i=1

CrossEntropy(yi,p(xi)), (3) 241

where yi=0 when the i-th token is O-token, yi=1 242

otherwise. Specifically, we denote the training loss 243

of span detection stage as Lspan. During the train- 244

ing procedure, the parameters {θ1,W,b} are up- 245

dated to minimize Lspan. 246

3.2.2 Type Classification 247

Representation Given an input sentence X , we 248

only select entity-tokens E = {e1, e2, ..., eM} 249

(E ⊂ X) with ground-truth labels Y = 250

{y1, y2, ..., yM} for the training of this stage. For 251

3In this paper, r denotes the hidden size of the pretrained
language model encoder.
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Figure 2: The overall structure of our proposed TadNER framework. (a) Training in the source domain. (b) Inference
on the query set by utilizing the support samples in the target domain. Note that the source and target domains have
different entity type sets.

the entity type set Tsource = {t1, t2, ..., tm} of the252

source domain Dsource, we manually convert them253

into their corresponding type names T ′
source =254

Map(Tsource) = {t′1, t
′
2, ..., t

′
m}4.255

After that, to obtain tokens with type name in-256

formation, which are further used for calculating257

contrastive loss, we concatenate entity tokens with258

their corresponding labels in two orders, i.e., entity-259

label order and label-entity order. Here we use260

another encoder fθ2 with parameters θ2 to obtain261

contextual representations:262

hel
i = fθ2(ei)⊕ fθ2(Map(yi)) (4)263

264
hle
i = fθ2(Map(yi))⊕ fθ2(ei), (5)265

where ⊕ is the concatenation operator, and hel
i and266

hle
i denote two kinds of type-aware representations267

of the entity-token ei, which are obtained in entity-268

label order and label-entity order, respectively.269

Type-Aware Contrastive Learning To learn a270

generalized and type-aware feature space, which271

can further be used for constructing more accurate272

and stable prototypes, we borrow the idea of273

contrastive learning (Khosla et al., 2020) and use274

two kinds of type-aware token representations275

mentioned above to construct positive and negative276

pairs as shown in Fig. 2 (a), i.e., those with the277

same label in different orders as positive pairs and278

4Map() is the function used to convert a label to a type
name, e.g. “PER” to “person”. Please refer to Appendix A.6
for type names of all datasets.

those with different labels as negative pairs. The 279

type-aware contrastive loss is calculated as: 280

Ltype = −
M∑
i=1

log

1
∥Zi∥

∑
z∈Zi

exp(sim(hel
i ,h

le
z )/τ)

M∑
j=1

exp(sim(hel
i ,h

le
j )/τ)

,

(6) 281

282

Zi = {z | 1 ≤ z ≤ M,yz = yi}, (7) 283

284

sim(hel
i ,h

le
j ) =

hel
i · hle

j
T∑M

k=1 (h
el
k · hle

j
T
)
, (8) 285

where M is the number of entity tokens in a batch 286

and Zi is the set of positive samples with the same 287

label type yi. Here we adopt the dot product with 288

a normalization factor as the similarity function 289

sim(). We also add a temperature hyper-parameter 290

τ for focusing more on difficult pairs (Chen et al., 291

2020). During the source domain training, the 292

parameters θ2 are updated to minimize Ltype. 293

3.3 Target Domain Inference 294

As illustrated in Fig. 2 (b), during the target domain 295

inference, we first extract candidate spans in query 296

sentences. We then remove the over-detected false 297

spans via the proposed type-aware span filtering 298

strategy. We finally classify remaining candidate 299

spans into certain entity types to get the final re- 300

sults. 301
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Algorithm 1 Type classification with type-aware
span filtering in TadNER
Require: Candidate span set Cspan, Support set Starget, La-

bel type set Ttarget, PLM for the type classifier fθ2
Lprev ∈ R+ (arbitrarily large value)
Llabel = Lprev − 1
while Llabel < Lprev do

Lprev = Llabel

Calculate Llabel using Eq. (9).
Update fθ2 → f

θ
′
2

by backpropagation to reduce Llabel

end while
Calculate the threshold γt using Eq. (11).
Calculate prototypes of all types in Ttarget using Eq. (12)
Sresult = {}
for each span si in Cspan do

max_sim = max
tj∈Ttarget

((f
θ
′
2
(si)⊕ f

θ
′
2
(si)) · pj

T)

if max_sim/2 > γt then
Assign the label ypred to si using Eq. (14)
Sresult = Sresult ∪ {si}

end if
end for
return Sresult

3.3.1 Span Detection302

The span detector with its parameters {θ1,W,b}303

trained in the source domain is further fine-tuned304

with samples in the support set Starget in the target305

domain to minimize Lspan in Eq.(3). To alleviate306

the risk of over-fitting, we adopt a loss-based early307

stopping strategy, i.e., stopping the fine-tuning pro-308

cedure once the loss rises β times continuously,309

where β is a hyper-parameter.310

After fine-tuning the span detector, we use it to311

detect entity words of query sentences in Qtarget312

and then consider continuous entity words as a313

candidate span, e.g., "Barack Obama". Finally,314

we obtain the candidate span set Cspan containing315

all candidate spans, which will be assigned entity316

types at the type classification stage.317

3.3.2 Type Classification318

Domain Adaption Benefiting from the gener-319

alized and type-aware feature space trained in320

the source domain, we can further get a domain-321

specific encoder f
θ
′
2

via fine-tuning with the fol-322

lowing loss:323

Llabel =
1

M

M∑
i=1

s(esi , Map(y
s
i ))∑

tj∈Ttarget
s(esi , Map(tj))

, (9)324

325
s(p, q) = fθ2(p) · fθ2(q)T. (10)326

Type-Aware Span Filtering As we illustrate in327

the introduction, the span detector may generate328

some over-detected false spans whose type names329

only exist in the source domain. To solve this prob- 330

lem, we propose a type-aware span filtering strat- 331

egy during the inference phase to remove these 332

false spans. Intuitively, the over-detected false 333

spans are extracted because they do not consider 334

the semantics of entity type names in the target 335

domain. Based on this assumption, we calculate a 336

threshold γt with the fine-tuned encoder f
θ
′
2

using 337

entity tokens and corresponding type names in the 338

support set: 339

γt = min
1≤i≤M

f
θ
′
2
(esi ) · fθ′2(Map(y

s
i ))

T. (11) 340

The threshold γt will be used to remove the over- 341

detected false spans. The remaining candidate 342

spans will be assigned the corresponding label 343

types. 344

Type-Aware Prototype Construction We can 345

construct a type-aware prototype for each entity 346

type tj ∈ Ttarget, which is more accurate and stable 347

owing to the generalized and type-aware feature 348

space learned in the source domain: 349

pj = f
θ
′
2
(Map(tj))⊕

1

∥Zj∥
∑
i∈Zj

f
θ
′
2
(esi ), (12) 350

351
Zj = {i | 1 ≤ i ≤ M,ysi = tj}, (13) 352

where ⊕ is the concatenation operator and Zj de- 353

notes the set of entity words with the label type tj 354

in the support set. 355

Inference For each remaining candidate span si, 356

we assign it a label type tj ∈ Ttarget with the high- 357

est similarity: 358

ypred = argmax
tj ,tj∈Ttarget

(hi · pj
T), (14) 359

360
hi = f

θ
′
2
(si)⊕ f

θ
′
2
(si), (15) 361

where pj is the type-aware prototype representation 362

corresponding to the label type tj , and ypred is the 363

predicted label type of the candidate span si. hi 364

is the self-concatenated representation of si for 365

consistency with the dimension of the prototype 366

pj. 367

The entire procedure of type classification in the 368

target domain is presented in Algorithm 1. 369

4 Evaluation Protocal 370

4.1 Settings 371

Few-shot NER has two typical settings, including 372

the Few-NERD setting and the Domain Transfer 373

setting. 374
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4.1.1 Few-NERD Setting375

Datasets Ding et al. (2021) propose a large376

scale dataset Few-NERD (Wiki) for few-shot NER,377

which contains 66 fine-grained entity types across378

8 coarse-grained entity types. It contains two in-379

tra and inter tasks where the train/dev/test sets are380

divided according to the coarse-grained and fine-381

grained types, respectively. Note the intra task is382

more challenging since the coarse-grained entity383

types in the source and target domains are non-384

overlapping.385

Evaluation Following Ma et al. (2022c), we386

adopt the episode-level evaluation method. Each387

episode consists of a support set and a query set,388

both given in the n-way k-shot form. In each389

episode, the model trained in the source domain390

is tested on the query set by utilizing the support391

set. To make fair comparisons, we obtain the micro392

F1 score with the episode-data processed by Ding393

et al. (2021) 5. We report the mean F1 score with394

standard deviation using 3 different seeds.395

4.1.2 Domain Transfer Setting396

Datasets Following Das et al. (2022), we con-397

duct cross-domain experiments under the Domain398

Transfer setting. In this setting, data are from dif-399

ferent text domains (e.g., Wiki, News), and thus400

it even harder to obtain desirable performance.401

We take OntoNotes (General) (Weischedel et al.,402

2013) as our source domain, and evaluate few-403

shot performances on I2B2 (Medical) (Stubbs and404

Uzuner, 2015), CoNLL (News) (Tjong Kim Sang405

and De Meulder, 2003), WNUT (Social) (Derczyn-406

ski et al., 2017) and GUM (Zeldes, 2017) domains.407

Please refer to Appendix A.1 for more details about408

the datasets.409

Evaluation Yang and Katiyar (2020) point410

that sampling test episodes may not reflect the411

real-world performance due to various data412

distributions, and they propose to sample support413

sets and then test the model in the original test414

set. Each support set consists of k examples415

corresponding to each label. The final micro F1416

scores and standard deviations are obtained using417

different sampled support sets. We also adopt this418

evaluation schema for Domain Transfer settings,419

and we directly use the support sets sampled by420

Das et al. (2022)6 for fair comparisons.421

5We use the same data as those in https://ningding97.
github.io/fewnerd/ for fair comparisons.

6https://github.com/psunlpgroup/CONTaiNER.

4.2 Baselines 422

We compare our proposed TadNER with many 423

strong baselines which are divided into one-stage 424

and two-stage types. 425

The one-stage baselines include Proto- 426

BERT (Snell et al., 2017), NNShot (Yang and 427

Katiyar, 2020), StructShot (Yang and Katiyar, 428

2020), and CONTaiNER (Das et al., 2022). 429

The two-stage baselines include ESD (Wang 430

et al., 2022) and the state-of-the-art method De- 431

composedMetaNER (Ma et al., 2022c) on Few- 432

NERD leaderboard 7. We reproduce Decomposed- 433

MetaNER and conduct experiments under Domain 434

Transfer settings with the dataset-level evaluation 435

schema since the authors only report results using 436

the episode-level evaluation method. 437

Please refer to Appendix A.2 and Appendix A.3 438

for more descriptions about the baselines as well 439

as the implementation details. 440

5 Results and Analysis 441

5.1 Main Results 442

Table 1 and 2 report the comparison results be- 443

tween our method and baselines under Few-NERD 444

and Domain Transfer, respectively. We have the 445

following important observations. 446

Our model is the best in both intra and inter tasks 447

under the Few-NERD setting. In particular, in the 448

more challenging intra task, our TadNER reaches 449

an average 7.7% F1 improvement. 450

Under the Domain Transfer setting, our model 451

outperforms all baselines on average. It also 452

achieves the best performance in almost all sep- 453

arate cases with only one exception. 454

If there are only very few samples provided (e.g., 455

1 shot or 1∼2 shot), the improvements by our 456

model become more significant, which is a very 457

attractive property. 458

We also find that DecomposedMetaNER 459

performs extremely poorly in Domain Transfer. 460

Note there are many sentences without entities in 461

some datasets 8 in this setting, which bring about 462

many over-detected false spans and seriously hurt 463

7Few-NERD leaderboard: https://paperswithcode.
com/dataset/few-nerd. Results on the leader-
board are tested with the latest version of data,
which is corresponding with https://github.com/
microsoft/vert-papers/tree/master/papers/
DecomposedMetaNER#few-nerd-arxiv-v6-version.

8e.g., I2B2, where nearly 80% of the sentences have no
entities. In the episode-level evaluation setting, this does not
happen because the query set is sampled by n-way k-shot.
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Paradigms Models
Intra Inter

1∼2-shot 5∼10-shot Avg. 1∼2-shot 5∼10-shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

One-stage

ProtoBERT† 20.76±0.84 15.05±0.44 42.54±0.94 35.40±0.13 28.44 38.83±1.49 32.45±0.79 58.79±0.44 52.92±0.37 45.75
NNShot† 25.78±0.91 18.27±0.41 36.18±0.79 27.38±0.53 26.90 47.24±1.00 38.87±0.21 55.64±0.63 49.57±2.73 47.83
StructShot† 30.21±0.90 21.03±1.13 38.00±1.29 26.42±0.60 28.92 51.88±0.69 43.34±0.10 57.32±0.63 49.57±3.08 50.53
CONTaiNER∗ 41.51±0.07 36.62±0.04 57.83±0.01 51.04±0.24 46.75 50.92±0.29 47.02±0.24 63.35±0.07 60.14±0.16 55.36

Two-stage
ESD† 36.08±1.60 30.00±0.70 52.14±1.50 42.15±2.60 40.09 59.29±1.25 52.16±0.79 69.06±0.80 64.00±0.43 61.13
DecomposedMetaNER† 49.48±0.85 42.84±0.46 62.92±0.57 57.31±0.25 53.14 64.75±0.35 58.65±0.43 71.49±0.47 68.11±0.05 65.75
TadNER 60.29±0.14 54.82±0.21 67.53±0.11 60.55±0.17 60.80 64.79±0.09 63.17±0.18 71.87±0.05 69.30±0.14 67.28

Table 1: F1 scores with standard deviations for Few-NERD. † denotes the results reported by Ma et al. (2022c). ∗

denotes the results reported by our replication using data of the same version since the original ones do not report
standard deviations. The best results are in bold and the second best ones are underlined.

Paradigms Models 1-shot 5-shot

I2B2 CoNLL WNUT GUM Avg. I2B2 CoNLL WNUT GUM Avg.

One-stage
ProtoBERT† 13.4 ± 3.0 49.9 ± 8.6 17.4 ± 4.9 17.8 ± 3.5 24.6 17.9 ± 1.8 61.3 ± 9.1 22.8 ± 4.5 19.5 ± 3.4 30.4
NNShot† 15.3 ± 1.6 61.2 ± 10.4 22.7 ± 7.4 10.5 ± 2.9 27.4 22.0 ± 1.5 74.1 ± 2.3 27.3 ± 5.4 15.9 ± 1.8 34.8
StructShot† 21.4 ± 3.8 62.4 ± 10.5 24.2 ± 8.0 7.8 ± 2.1 29.0 30.3 ± 2.1 74.8 ± 2.4 30.4 ± 6.5 13.3 ± 1.3 37.2
CONTaiNER† 21.5 ± 1.7 61.2 ± 10.7 27.5 ± 1.9 18.5 ± 4.9 32.2 36.7 ± 2.1 75.8 ± 2.7 32.5 ± 3.8 25.2 ± 2.7 42.6

Two-stage
DecomposedMetaNER∗ 15.5 ± 3.0 61.2 ± 9.2 27.7 ± 5.3 20.3 ± 4.2 31.2 19.8 ± 2.6 75.2 ± 5.8 29.8 ± 3.9 33.5 ± 2.4 39.6
TadNER 29.9 ± 2.5 70.4 ± 7.8 33.3 ± 4.8 26.1 ± 3.7 39.9 34.6 ± 6.8 78.8 ± 4.7 32.7 ± 3.8 35.9 ± 1.7 45.5

Table 2: F1 scores with standard deviations for Domain Transfer. † denotes the results reported by Das et al.
(2022). Since no previous two-stage methods have conducted experiments under this setting, we choose the strong
DecomposedMetaNER for reproduction experiments, and ∗ denotes the results reported by our replication. The best
results are in bold and the second best ones are underlined.

the performance of DecomposedMetaNER. In464

contrast, our TadNER can remove false spans and465

achieve promising results in various scenarios with466

the help of the type-aware span filtering strategy.467

5.2 Ablation Study468

To validate the effectiveness of the main com-469

ponents in TadNER, we introduce the following470

variant baselines for the ablation study. 1) TadNER471

w/o Type-Aware Span Filtering (TASF) removes472

the type-aware span filtering strategy and directly473

feeds all spans detected at span detection stage474

to type classification. 2) TadNER w/o Type475

Names (TN) replaces type names with random476

type-agnostic vectors when calculating type-aware477

contrastive loss and constructs class prototypes478

with support samples only. 3) TadNER w/o479

Type-Aware Contrastive Learning (TACL) further480

removes random vectors and only uses entity481

tokens for constructing positive or negative pairs.482

It is clear from Table 3 that removing any compo-483

nents will bring about performance decreases. 1) If484

removing the type-aware span filtering strategy, the485

performance drops a lot in various cases, including486

entity-sparse ones like I2B2 and entity-dense487

ones like GUM. This proves the robustness and488

effectiveness of our model in various real-world489

Model Domain Transfer

I2B2 CoNLL WNUT GUM Avg.

TadNER 29.9 70.4 33.3 26.1 39.9

TadNER w/o TASF 14.3 67.7 30.5 22.8 33.8
TadNER w/o TN 10.1 64.3 29.6 20.8 31.2
TadNER w/o TACL 7.5 41.6 14.3 12.6 19.0

Table 3: Results (F1 scores) for ablation study under
1-shot Domain Transfer setting. The best results are in
bold and the second best ones are underlined.

applications. 2) Removing type names also results 490

in a significant performance decrease, indicating 491

that our model does learn a type-aware feature 492

space which plays a critical role in few-shot 493

scenarios. 3) When we adopt contrastive learning 494

without guidance of type names, the performance 495

shows the biggest drop. This is because the 496

replaced token-level contrastive learning requires 497

a projection layer to prevent the model from col- 498

lapsing. However, this makes it extremely hard for 499

the model to learn the basic clustering capabilities. 500

5.3 Case Study 501

To examine how our model accurately constructs 502

prototypes and filters out over-detected false spans 503

with the help of type names, we randomly select 504

one query sentence from Few-NERD intra and 505
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C2: Query sentence: Leicestershire beat Somerset by an innings and 39 runs in two days.

DecomposedMetaNER:

TadNER (ours):

ORG: Leicestershire (√)  LOC: Somerset (×), two (×)

ORG: Leicestershire (√), Somerset (√)

C1: Query sentence: with the promotion of emrespor to the turkish tff third league at the end of the 2011 season

DecomposedMetaNER:

TadNER (ours):

organization-sportsteam: emrespor (√), turkish tff third league (×)

organization-sportsteam: emrespor (√) organization-sportsleague: turkish tff third league (√)

Figure 3: Case study. C1 and C2 are from Few-NERD intra and CoNLL2003 in Cross datasets, respectively, and
organization-sportsteam, organization-sportsleague, ORG and LOC are entity types.

CoNLL2003 for case study. We compare TadNER506

with DecomposedMetaNER (Ma et al., 2022c),507

which also belongs to the two-stage methods.508

As shown in Fig. 3, in the first case, our509

model correctly predicts “turkish tff third league”510

as “organization-sportsleague” type, while De-511

composedMetaNER identifies it as a wrong512

“organization-sportsteam” type. Since the type513

name and the entity span have a overlapping word514

“league”, incorporating the type name into the con-515

struction of the prototype will make the identifi-516

cation much easier. Conversely, without the type517

name, it would be difficult to distinguish between518

two categories of entities because they both repre-519

sent “sports-related organizations”.520

In the second case, DecomposedMetaNER521

incorrectly identifies “two” as an entity span and522

then assigns it a wrong entity type “LOC”, since523

there are many samples like “The two sides had not524

met since Oct. 18” in the source domain Ontonotes,525

where “two” is an entity of “CARDINAL” type.526

In contrast, our TadNER removes this false span527

successfully by applying the type-aware span528

filtering strategy.529

5.4 Impact of Type-Aware Prototypes530

In order to investigate the effectiveness of our pro-531

posed strategy for solving the problem of inaccu-532

rate and unstable prototypes, we further perform an533

analysis of the impact of stability and quality of pro-534

totypes. We select two baselines as our compared535

methods. One is DecomposedMetaNER (Ma et al.,536

2022c). The other is TadNER w/o Type Names537

(TN) (the second variant baseline in the ablation538

study) as our compared methods. Here we adopt539

the same 10 samplings used in the 1-shot Domain540

Transfer experiments.541

As shown in Fig. 4, our proposed TadNER542

achieves a significant improvement over Decom-543

posedMetaNER on each dataset and is more stable544

under different samplings. Besides, removing type545

names will cause a sharp performance drop in some546
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Figure 4: Impacts of prototypes by different methods
under 1-shot Domain Transfer setting. The horizontal
and vertical coordinates indicate the n-th sampling and
the accuracy of type classification, respectively.

cases for TadNER w/o TN, indicating that the in- 547

corporation of type names indeed helps construct 548

more stable and accurate prototypes. 549

6 Conclusion 550

In this paper, we propose a novel TadNER frame- 551

work for few-shot NER, which handles the span 552

detection and type classification sub-tasks at two 553

stages. For type classification, we present a type- 554

aware contrastive learning strategy to learn a type- 555

aware and generalized feature space, enabling the 556

model to construct more accurate and stable pro- 557

totypes with the help of type names. Based on it, 558

we introduce a type-aware span filtering strategy 559

for removing over-detected false spans produced 560

at the span detection stage. Extensive experiments 561

demonstrate that our method achieves superior per- 562

formance over previous SOTA methods, especially 563

in the challenging scenarios. In the future, we will 564

extend TadNER to other NLP tasks such as POS 565

tagging and explore its ability for zero-shot NER 9. 566

9A preliminary study on zero-shot NER has shown our
improvements over SpanNER. Please refer to Appendix A.5.
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Limitations567

Our proposed TadNER mainly focuses on the568

type classification stage of few-shot NER and sim-569

ply adopt binary classification for detecting entity570

spans. There might be better solutions, e.g., using571

global boundary matrix. However, due to its high572

GPU memory requirements, we do not include it573

in our current framework. This drives us to find574

more efficient and powerful span detector for better575

few-shot NER performance in the future.576

Ethics Statement577

Our work is entirely at the methodological level578

and therefore there will not be any negative social579

impacts. In addition, since the performance of the580

model is not yet at a practical level, it cannot be581

applied in certain high-risk scenarios (such as the582

I2B2 dataset used in our paper) yet, leaving room583

for further improvements in the future.584
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A Appendix799

A.1 Datasets Details800

Table 4 shows statistics of various datasets used in801

our experiments.802

Dataset Domain # Classes # Sentences # Entities

Few-NERD Wikipedia 66 188.2k 491.7k
I2B2’14 Medical 23 140.8k 29.2k

CoNLL’03 News 4 20.7k 35.1k
GUM Wiki 11 3.5k 6.1k

WNUT’17 Social 6 5.7k 3.9k
OntoNotes General 18 76.7k 104.2k

Table 4: Dataset statistics

A.2 Baselines803

ProtoBERT (Fritzler et al., 2019) adopts a804

token-level prototypical network, where the805

prototype of each class is obtained by averaging806

token samples of the same label, and the label of807

each unlabeled token in the query set is determined808

by its nearest class prototype.809

NNShot (Yang and Katiyar, 2020) pre-trains810

BERT by traditional classification methods in811

the source domain training phase, and decides812

the class of each unlabeled token by the nearest813

neighbor at the token level in the target domain814

inference phase.815

StructShot (Yang and Katiyar, 2020) is based on816

NNshot and uses an abstract transition probability817

for Viterbi decoding during testing.818

ESD (Wang et al., 2022) uses a span-level819

prototypical network, which designs multiple820

prototypes for O-tokens and uses inter- and821

cross-span attention for better span representation.822

CONTaiNER (Das et al., 2022) first trains BERT823

in the source domain using token-level contrastive824

learning loss function, then fine-tunes the trained825

model on the support set, and finally use the nearest826

neighbor method proposed in NNShot (Yang and827

Katiyar, 2020) for target domain inference phase.828

DecomposedMetaNER (Ma et al., 2022c) is a829

decomposed approach that incorporates model-830

agnostic meta-learning strategy into traditional831

prototypical network to learn a model-agnostic832

model and more fully exploits the support set.833

834

A.3 Implementation Details835

Following previous methods (Ding et al., 2021;836

Das et al., 2022; Ma et al., 2022c), we use837

bert-base-uncased model (Devlin et al., 2019)838

from HuggingFace (Wolf et al., 2020)10 as our en- 839

coder fθ1 and fθ2 . 840

During the source domain training procedure, 841

we use AdamW (Loshchilov and Hutter, 2019) as 842

the optimizer with a learning rate of 3e-5 and 1% 843

linear warmup steps, and the batch size is set to 844

64. We set the temperature hyper-parameter τ = 845

0.05 in Eq.(6) and keep dropout rate as 0.2 in the 846

classification layer of the span detection. 847

As for the early stopping strategy in 3.3.1, we 848

found that the fewer samples face a higher risk of 849

over-fitting, and a lower β threshold is required. So 850

we set β = 2 in all 1-shot settings and β = 6 in all 851

other cases. Table 5 shows the searching space of 852

each hyper-parameter. Besides, we implement our 853

framework with Pytorch 1.1211 and train it with a 854

V100-16G GPU. 855

Using a V100-16G GPU, we trained the model 856

on the source domain OntoNotes dataset for 60 857

minutes. The finetuning procedures of span detec- 858

tion and type classification stages require less than 859

20 seconds in total under 5-shot settings. 860

Learning rate {1e-5, 3e-5, 1e-4}
Batch size { 32, 64, 128}
Dropout rate {0.1, 0.2, 0.5}
temperature τ {0.01, 0.05, 0.1}
Early stopping threshold β {1, 2, 4, 6, 8}

Table 5: Hyper-parameters search space in our experi-
ments.

A.4 Performance of the Span Detection 861

Table 6 and Table 7 show the performance of 862

the span detection under Few-NERD and Domain 863

Transfer settings, respectively. As we can see that 864

the precision of the span detection phase is much 865

lower than the recall, which also indicates the exis- 866

tence of the over-detection problem in the decom- 867

posed method, especially serious in entity-sparse 868

dataset (I2B2). While this problem is alleviated 869

in our proposed approach by introducing the type- 870

aware span filtering strategy. 871

10https://huggingface.co/bert-base-uncased
11https://pytorch.org/
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Metric
Intra Inter

1∼2-shot 5∼10-shot 1∼2-shot 5∼10-shot

5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

Precision 66.57 68.69 74.84 75.37 65.27 67.30 72.34 73.20
Recall 76.25 76.50 80.98 81.57 73.30 73.67 77.84 77.50
Micro F1 70.31 72.01 77.62 78.26 68.20 69.92 74.78 75.17

Table 6: Performance of the Span Detection under Few-
NERD settings. Precision, recall and micro F1 scores
are reported.

Metric 1-shot 5-shot

I2B2 CoNLL WNUT GUM I2B2 CoNLL WNUT GUM

Precision 17.77 74.85 42.85 47.42 19.41 86.91 41.78 56.71
Recall 66.92 84.81 62.84 50.96 74.15 90.30 67.10 67.33
Micro F1 27.73 79.13 50.16 49.02 30.68 88.52 50.72 61.54

Table 7: Performance of the Span Detection under Do-
main Transfer settings. Precision, recall and micro F1
scores are reported.

A.5 Zero-Shot Performance872

Since there is no domain-specific support set under873

zero-shot NER settings, it is extremely challenging874

and rarely explored. While we believe our pro-875

posed TadNER can obtain certain zero-shot ability876

after training in the source doamin for the following877

two reasons: 1) the model can extract entity spans878

in the span detection stage before fine-tuning with879

support samples, 2) since the feature space learnt880

in the type classification stage is well generalized881

and type-aware, we can directly adopt the represen-882

tations of type names as prototypes of novel entity883

types. To demonstrate the promising performance884

of our model under zero-shot settings, we select885

SpanNER (Wang et al., 2021) as a strong baseline,886

which is a decomposed-based method and good at887

solving zero-shot NER problem.888

Model Domain Transfer

I2B2 CoNLL WNUT GUM Avg.

SpanNER (0-shot) 8.02 23.63 24.82 6.57 15.76
TadNER (0-shot) 17.13 43.14 25.06 7.62 23.24

Table 8: F1 scores under Domain Transfer zero-shot
settings.

As shown in Table 8, our proposed TadNER per-889

forms better than SpanNER (Wang et al., 2021)890

under every case. The reason for this may be that891

the type classification of SpanNER is based on a892

traditional supervised classification model, which893

performs worse generalization in cross-domain sce-894

narios. Besides, compared with previous metric-895

based methods (Das et al., 2022; Ma et al., 2022c)896

for few-shot NER, which heavily rely on support897

sets and had no zero-shot capability, our method is898

more inspirational for future zero-shot NER works. 899

A.6 Type Names of Labels 900

Dataset Original Labels Corresponding Type names

Few-NERD

art-broadcastprogram broadcast program
art-film film

art-music music
art-other other art

art-painting painting
art-writtenart written art
person-actor actor

person-artist/author artist author
person-athlete athlete
person-director director

person-other other person
person-politician politician
person-scholar scholar
person-soldier soldier

product-airplane airplane
product-car car

product-food food
product-game game
product-other other product
product-ship ship

product-software software
product-train train

product-weapon weapon
other-astronomything astronomy thing

other-award award
other-biologything biology thing

other-chemicalthing chemical thing
other-currency currency
other-disease disease

other-educationaldegree educational degree
other-god god

other-language language
other-law law

other-livingthing living thing
other-medical medical

building-airport airport
building-hospital hospital

building-hotel hotel
building-library library
building-other other building

building-restaurant restaurant
building-sportsfacility sports facility

building-theater theater
event-attack/battle

/war/militaryconflict
attack battle
war military conflict

event-disaster disaster
event-election election

event-other other event
event-protest protest

event-sportsevent sports event
location-bodiesofwater bodies of water

location-GPE geographical social
political entity

location-island island
location-mountain mountain

location-other other location
location-park park

location-road/railway
/highway/transit

road railway
highway transit

organization-company company
organization-education education

organization-government
/governmentagency government agency

organization-media/newspaper media newspaper
organization-other other organization

organization-politicalparty political party
organization-religion religion

organization-showorganization show organization
organization-sportsleague sports league
organization-sportsteam sports team

Table 9: Original labels and their corresponding natural-
language-form type names of Few-NERD.
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Dataset Original Labels Corresponding Type names

I2B2’14

AGE age
BIOID biometric ID
CITY city

COUNTRY country
DATE date

DEVICE device
DOCTOR doctor
EMAIL email

FAX fax
HEALTHPLAN health plan number

HOSPITAL hospital
IDNUM ID number

LOCATION_OTHER location
MEDICALRECORD medical record

ORGANIZATION organization
PATIENT patient
PHONE phone number

PROFESSION profession
STATE state

STREET street
URL url

USERNAME username
ZIP zip code

CoNLL’03

PER person
LOC location
ORG organization
MISC miscellaneous

GUM

abstract abstract
animal animal
event event
object object

organization organization
person person
place place
plant plant

quantity quantity
substance substance

time time

WNUT’17

corporation corporation
creative-work creative work

group group
location location
person person
product product

Ontonotes

CARDINAL cardinal
DATE date

EVENT event
FAC fac

GPE geographical social
political entity

LANGUAGE language
LAW law
LOC location

MONEY money
NORP nationality religion

ORDINAL ordinal
ORG organization

PERCENT percent
PERSON person

PRODUCT product
QUANTITY quantity

TIME time
WORK_OF_ART work of art

Table 10: Original labels and their corresponding
natural-language-form type names of datasets under
Domain Transfer settings.
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