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ABSTRACT

Federated learning enables cooperative training among massively distributed
clients by sharing their learned local model parameters. However, with increasing
model size, deploying federated learning requires a large communication band-
width, which limits its deployment in wireless networks. To address this bot-
tleneck, we introduce a residual-based federated learning framework (ResFed),
where residuals rather than model parameters are transmitted in communication
networks for training. In particular, we integrate two pairs of shared predictors
for the model prediction in both server-to-client and client-to-server communica-
tion. By employing a common prediction rule, both locally and globally updated
models are always fully recoverable in clients and the server. We highlight that
the residuals only indicate the quasi-update of a model in a single inter-round, and
hence contain more dense information and have a lower entropy than the model,
comparing to model weights and gradients. Based on this property, we further
conduct lossy compression of the residuals by sparsification and quantization and
encode them for efficient communication. The experimental evaluation shows that
our ResFed needs remarkably less communication costs and achieves better accu-
racy by leveraging less sensitive residuals, compared to standard federated learn-
ing. For instance, to train a 4.08 MB CNN model on CIFAR-10 with 10 clients
under non-independent and identically distributed (Non-IID) setting, our approach
achieves a compression ratio over 700× in each communication round with mini-
mum impact on the accuracy. To reach an accuracy of 70%, it saves around 99%
of the total communication volume from 587.61 Mb to 6.79 Mb in up-streaming
and to 4.61 Mb in down-streaming on average for all clients.

1 INTRODUCTION

Federated learning has become an emerged machine learning paradigm, which enables distributed
training on broad data sources without disclosing their original data McMahan et al. (2017). Instead
of transmitting raw data, only parameters (mostly model weights or gradients) in federated learning
are iteratively shared between clients and a server via heterogeneous networks. Federated learning
has been successfully applied to various applications Lyu et al. (2020), such as mobile keyboard
prediction, speech recognition, image object detection, etc, However, with the increasing size of
machine learning models, the existing mobile communication infrastructure cannot always meet the
requirement in terms of bandwidth and latency in federated learning, which constraints the wide
deployment of federated learning. For instance, to train a transformer model with billions of pa-
rameters usually 32-bit float parameters), the size of a message in a single federated learning round
can be several 10 or 100 Gigabytes, e.g. a CTRL model (Keskar et al. (2019)) with 1.6 billions
parameters or a T5 model (Raffel et al. (2020)) with up to 11 billions parameters. That can cause
an enormous and extremely costly data traffic, even in 5G NR networks, where the throughput can
be from 5 Gbps to 18 Gbps. Another application scenario is to improve machine learning mod-
els for road traffic object recognition and detection in V2X (Vehicle-to-Everything) communication
networks, where the bandwidth for V2X is also occupied for other traffic services at the same time,
e.g. collective perception service, and obviously the safety-related services should have higher pri-
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(a) Standard federated learning system

(b) Residual-based federated learning system

Figure 1: Paradigm shift from standard federated learning to residual-based federated learning sys-
tem, with additional two pairs of predictors and corresponding operators (in green and orange). The
model is updated in the client i by local training (Train) and in the server by aggregation (Agg).

ority. Therefore, communication efficiency is a pivotal component for deploying federated learning,
especially in wireless networks.

In an attempt to tackle the communication bottleneck, the parameter compression is considered as
one of the most effective approaches, which allows for updating the models by transmitting much
smaller size of messages in networks, and thereby reduces the required time per communication
round in federated learning. The approaches proposed by Xu et al. (2022); Reisizadeh et al. (2020);
Hönig et al. (2022) can effectively reduce the communication volume in each round by various
quantization techniques, however they only consider the communication efficiency for uploading
(client-to-server) but not for downloading (server-to-client). Lin et al. (2018) compress the gradients
instead of model parameters for distributed learning, which can not well fit federated learning, where
clients can train multiple epochs in each round. Wu et al. (2022) use knowledge distillation (Hinton
et al. (2015)) to learn and transmit a smaller model, where the original model structure is affected.
Furthermore, all of those works attempt to compress the model parameters or gradients based on
the model in a specific round, without consideration of inter-round model update similarity, which
contains additional redundancy sequentially.

Inspired by residuals in video compression protocols from Li et al. (2021), we introduce a residual-
based federated learning framework, termed as ResFed. It allows the server and clients to share
and update models by sharing model parameter residuals rather than model parameters or gradients.
Particularly, by observing training trajectory in each local client and the aggregation trajectory in the
server, we believe model updates in both clients and the server can be predictable. Those predictive
models – in analogy with predictive frames in video transmission – can foresee model updates
in the federated learning. After each communication round, we use the deviations between the
predictive and the actual updated model parameters, which we call the model residuals, for the
communication in networks. Note that the actual updated models can be always recoverable by
acquiring the residuals, as the predictors in the senders are shared to the receivers in ResFed. More
details are provided in Sec. 2 and 3.

Unlike transmitting model weights, ResFed can wring out the potential redundancy by removing
the predictive information from history updates and only keep the residuals for communication.
Compared to transmitting model gradients after each training epoch, ResFed allows the models to be
trained locally multiple times. Compared to transmitting residual accumulation for multiple epochs,
ResFed further minimizes the information by predicting the model updates from history. As shown
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in Fig.C.2, the values of residuals are overall smaller than weights and gradients during the entire
training process. To further shrink the size of messages for communication, we then compress only
residuals using sparisification and quantization, and encode the messages for information sharing in
client-to-server and server-to-client.

Our main contributions are summarized as follows:

• We introduce and formulate the model residuals for the communication efficiency in feder-
ated learning and indicate the residuals contain more dense information than model weights
and gradients.

• We propose a novel federated learning framework (ResFed) based on deep residual com-
pression, which consists of the following steps: predictor sharing, model prediction,
residual generation, residual compression, residual communicating, model recovering and
model trajectory synchronization.

• We provide the experimental evaluation of our framework with various communication cost
budgets in both up- and down-streaming, which gives an insight in deploying it in resource-
constrained communication environments. The open source implementation of ResFed will
be publicly available.

2 SYSTEM SETUP

We first introduce the related concepts and techniques that will be used in our framework. Given
N clients and a server in a federated learning system, we only focus on the information sharing
between one single client i and the server from communication round t to t +1, as shown in Fig 1.
The information sharing for other clients is the same.

Notation. Throughout this paper, we use w to denote model weights, r to denote model residuals.
To distinguish the parameters, we use u and v to denote the model weights in the server and clients
respectively. For residuals, we use rt

i,ul and rt
i,dl to denote the residuals of the client i for uploading

and the residuals of the server for downloading respectively. More details on notation are shown in
Tab. A1.

2.1 MODEL UPDATE

Client. Given a client i with a local dataset Di, the initial local model in a new round t is ut−1
i .

Before the local training starts, the client initially receives the global model vt from the server and
updates the local model to ût

i . After that, local model ût
i is trained on Di and transited to ut

i . We
mark the first update as ut−1

i → ût
i and the second one as ût

i → ut
i . Note that the first updated model

is equal or similar to the global updated model vt , i.e. ût
i ≃ ut . If lossy compression is used for

communication and the loss due to compression can not be repaired, then ût
i ∼ ut .

Server. Similarly, the global model vt−1 in the server is also updated twice after one round of
communication t. The first update happens when it receives models from the clients, i.e. vt−1 →
{v̂t

i|i = 1,2, ...,N}. Then the aggregation leads to the second update, {v̂t
i|i = 1,2, ...,N}→ vt .

2.2 MODEL TRAJECTORY

Client. Given a client i at time point t, we cache the updated models with a sliding time window
[t−T, t] in two different queues, that distinguish by two model updates. We refer the time sequence
of local model updates L t

i = {ut−T
i , ...,ut

i} from ut
i → ût

i as a local model trajectory, and Ĝ t
i =

{ût−T
i , ..., ût

i} from ût
i → ut+1

i as a global model trajectory.

Server. Correspondingly, we cache the local and global model updates in the local and global model
trajectories for all client at the server, i.e. {L̂i|i = 1,2, ...,N} and {Gi|i = 1,2, ...,N}. Note that if
the server can always send the lossless global model update to all clients, the global trajectories at
time t are the same for all clients.
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2.3 MODEL PREDICTION

Client. Given a client i at time point t, we predict ût
i → ut

i from the local and global training
trajectories, L t−1

i and Ĝ t−1
i as follows:

ũt
i = fpredict,i(L

t−1
i , Ĝ t−1

i , ût
i) = argmax

ut
i

p(ut
i|ut−T

i , ...,ut−1
i︸ ︷︷ ︸

L t−1
i

, ût−T
i , ..., ût−1

i︸ ︷︷ ︸
Ĝ t−1

i

, ût
i) (1)

where fpredict,i is the used predictor for model prediction in the client i.

Server. For the server, we predict model updates v̂t
i → vt for each client i from local and global

trajectories L̂ t−1
i and G t−1

i as follows:

ṽt
i = hpredict,i(L̂

t−1
i ,G t−1

i , v̂t
i) = argmax

vt
i

p(vt
i|vt−T

i , ...,vt−1
i︸ ︷︷ ︸

L̂ t−1
i

, v̂t−T
i , ..., v̂t−1

i︸ ︷︷ ︸
G t−1

i

, v̂t
i),∀i ∈ 1, ...,N (2)

where hpredict,i is the used predictor for model prediction in the server for each client i.

2.4 MODEL RESIDUAL

Given a model update vt−1→ v̂t
i for the client i at time t in the server or ût

i → ut
i in the client i, if we

can compute the model prediction ṽt
i or ũt

i based on Eq. 1, we define the model residual as follows:

rt
i,ul = ut

i− ũt
i or rt

i,dl = vt
i− ṽt

i (3)

where rt
i,ul is the residuals from the client i for uploading, and rt

i,dl is the residuals from the server
for downloading, respectively. More understanding of residuals is provided in Sec. C.

2.5 DEEP COMPRESSION

To reduce the model size for more efficient communication, we shrink the model size before sending
it out. We define a compressed model in the client i:

ūt
i = fcompress(ut

i) (4)

and in the server:
v̄t

i = hcompress(vt
i),∀i ∈ {1, ...,N} (5)

where fcompress and hcompress is the used compressor for model compression in clients and server
respectively. In our system, we consider to compress and communicate model residuals instead of
model itself in the client i:

r̄t
i,ul = fcompress(rt

i,ul) = fcompress(ut
i− fpredict,i(ut−T

i , ...,ut−1
i , ût−T

i , ..., ût−1
i , ût

i)) (6)

and in the server:

r̄t
i,dl = hcompress(rt

i,dl) = hcompress(vt
i− fpredict,i(vt−T

i , ...,vt−1
i , v̂t−T

i , ..., v̂t−1
i , v̂t

i)),∀i ∈ {1, ...,N} (7)

We provide details on our employed lossy compression scheme consisting of sparsification, quanti-
zation and encoding in Sec. B.

3 RESFED: RESIDUAL-BASED FEDERATED LEARNING FRAMEWORK

The overview of the ResFed is shown in Fig. 1 and the detailed steps with lossy compression in one
communication round is given in Fig. 2. In particular, we introduce (a) predictor sharing, (b) model
prediction, and (c) residual generation in Sec 3.1. In Sec. 2.5, (d) residual compression is formulated
in Eq. 6 and Eq. 7. Then, after (e) communicating residual bits, we provide details on (f) model
recovering in Sec. 3.2. Finally in Sec. 3.3, we describe (g) trajectory synchronization.
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Figure 2: ResFed system model with a lossy deep compression pipeline for efficiently transmit-
ting encoded model residuals. The following steps should be implemented for one communication:
(a) Share the predictor for both sender and receiver before the federated learning starts; (b) Execute
the same model prediction before communicating any model information; (c) Generate the model
residuals; (d) Compress residuals using deep compression; (e) Communicate residual bits with en-
coding and decoding; (f) Recover the model from received residuals; (g) Synchronize the model
trajectory by simulation, recovering the model locally with consideration of lossy compression.

3.1 PREDICTOR SHARING

Then, we consider to deploy a pair of predictors in both clients and the server, which can execute
the model predictions based on the local and global model trajectories in the time series. In our
framework, the server caches the local model trajectories in all clients once the local model update is
received. Given a client i, if the received models in the server is exactly the same as the local model,
and the models in Ĝi also the same, we say that both trajectories in client i are fully observable in
the server.

Give a predictor fpredict,i in the client i, we share it to make the predictor in the server f ′predict,i =
fpredict,i in ResFed. If the trajectories in client are fully observable in the server, we can get the
same model predictions in both server and clients from Eq. 1. Then, by communicating the model
residuals, the new model update at time t +1 can be recovered by the model residual and the model
at last time point. Also, we share the set of predictors in the server {hpredict,i|i = 1, ...,N} to the
corresponding client, i.e. h′predict,i = hpredict,i,∀i ∈ {1, ...,N}. Then we can get the same model
predictions based on Eq. 2.

For the predictor, various design choices exist. In this work, we employ the predictor with respect
to the model transition dynamics in a sliding history time window. The predictor is formulated as
follows:

w̃t
i = fpredict(L

t−1
i , Ĝ t−1

i , ŵt
i) =

{
ŵt

i, T = 0.
ŵt

i +∑
T
τ=1(−1)T−τ(T − τ +1)(wt−τ

i − ŵt−τ

i ), T > 0.
(8)

To reduce the used memory for caching trajectories in the client, we apply a short time window
[t − T, t] in the prediction process. We term (i) stationary predictor when T = 0; and (ii) linear
predictor when T = 1. Note that we consider the model updates in Barnes et al. (2020); Mitchell
et al. (2022); Isik et al. (2022) as special residuals, which calculated by stationary predictor. We
compare the statistical features (sum and variance) of residual values from stationary and linear
predictors in Fig. C.3. The residual values from linear predictor are lower and more concentrated
than from stationary predictor at the beginning of the federated learning (before convergence), which
can potentially achieve a higher accuracy with the same compression ratio, as exactly shown in Fig 3.

Specifically, the stationary predictor uses the current model for the prediction of the next model,
w̃t

i = ŵt
i , where the model residual is always rt

i =wt
i−ŵt

i . Note that when the number of local training
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Algorithm 1 : ResFed: Residual-based federated learning framework

1: Server runs:
2: initialize the global model v
3: initialize the empty local model trajectories L̂1, ...,L̂N
4: initialize the global model trajectories G1, ...,GN
5: initialize the predictor hpredict
6: for i ∈ {1,2, ...,N} do
7: initialize an empty local model trajectories Li ▷ @client i
8: initialize an empty global model trajectories Ĝi ▷ @client i
9: h′predict,i = hpredict ▷ sharing predictors to client i

10: f ′predict,i = fpredict,i ▷ get the shared predictors from client i
11: end for
12: for t ∈ {1,2, ...,M} do
13: for i ∈ {1,2, ...,N} in parallel do
14: if t < T then
15: Ĝi← cache(v) ▷ cache the global model in Ĝi @client i
16: server communicates w to the client i
17: v̂i← LocalTrain(v) ▷ @client i
18: client i communicates ŵi to the server
19: Li← cache(v̂i) ▷ cache the local model in Li @client i
20: else
21: server communicates r̄i,dl to the client i
22: r̄i,ul ← ResFedClientUpdate (i, r̄i,dl) ▷ @client i
23: client i communicates r̄i,ul to the server
24: ṽi← f ′predict,i(Gi,L̂i, v̂) ▷ predict updated model
25: v̂i← ṽi + r̄i,ul ▷ recover models
26: end if
27: L̂i← cache(v̂i) ▷ update local trajectory
28: end for
29: v← Aggregate(v̂1, ..., v̂N)
30: for i ∈ {1,2, ...,N} do
31: ṽi← hpredict(Gi,L̂i,v) ▷ predict updated model
32: ri,dl ← v− ṽi ▷ compute model residuals
33: r̄i,dl ← hcompress(ri,dl) ▷ compress model residuals
34: Gi← cache(ṽi + r̄i,dl) ▷ synchronize global trajectory
35: end for
36: end for
37: return v

38: ResFedClientUpdate (i, r̄)
39: ũ← h′predict,i(Ĝi,Li,ui) ▷ predict updated model
40: û← ũ+ r̄ ▷ recover models
41: Ĝi← cache(û) ▷ update global trajectory
42: ui← LocalTrain(û)
43: ũi← fpredict,i(Ĝi,Li, ŵ) ▷ predict updated model
44: ri← ui− ũi ▷ compute model residuals
45: r̄i← fcompress(ri) ▷ compress model residuals
46: Li← cache(ũi + r̄i) ▷ synchronize local trajectory
47: return r̄i

epochs is fixed to 1, the stationary residuals is proportional to gradients, i.e. r = ηg, where η is the
learning rate and g represents the gradients. In the linear predictor, w̃t

i = ŵt
i +wt−1

i − ŵt−1
i , the model

transition in the last local training step is always considered, where rt
i = wt

i− ŵt
i−wt−1

i + ŵt−1
i . The

predictor for the client i in the server hpredict,i is similar to fpredict,i.
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3.2 MODEL RECOVERY

We cache the trajectories in both server and clients. Each client has two model trajectories for local
and global model updates in the history. In the server, it caches the global trajectory and the local
model trajectories of all connecting clients in the history. In this case, the two trajectories in each
client are fully observable in the server. Through sharing predictors, given a client i at round t, the
server is able to get the same model prediction w̃t

i as the client i.

If uncompressed model residuals (ŵt
i = wt ) are received from client i , the model update after local

training wt
i can be recovered in the server as follows:

wt
i = rt

i + ŵt
i = rt

i +wt (9)

where ŵt
i is the global model in the last round. Similarly, if we predict the global model update in

the client, through sharing predictors and uncompressed residuals, the aggregated model can also be
recovered in the client.

3.3 MODEL TRAJECTORY SYNCHRONIZATION

Since for the model residuals lossy compression is applied, i.e. r̄ ̸= r, the updated model of a
sender w can be recovered in receivers as ŵ = r̄+ w̃. Therefore, we say that the w cannot be fully
recovered in receivers, as ŵ ̸= w. If we cache the original models w in the sender and ŵ in receivers,
the trajectories in the sender and receiver are different, which leads to drift in results of shared
predictors.

To avoid the drift effect, we synchronize the model trajectories in the sender by simulating the
recovering process: The originally updated models are not cached in the trajectories; instead, we
recover the model from compressed model residuals locally, in order to enforce the trajectories in
the sender in the same way as the trajectories in the receiver. The ResFed pseudocode is given in
Algorithm 1 and the simplified procedures in Algorithm 2.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Guided by the previous work by Caldas et al. (2018)Li et al. (2020a), we process and distribute the
datasets MNIST (LeCun & Cortes (2010)), Fashion-MNIST (Xiao et al. (2017)), SVHN (Netzer
et al. (2011)), CIFAR-10 (Krizhevsky (2009)) and CIFAR-100 (Netzer et al. (2011)) on a set of
clients, and train LeNet-5, CNN1, ResNet-18 on those federated dataset distributively, as shown in
Tab. B1. We provide details on the experimental settings in Sec. B.

4.2 RESIDUALS VS GRADIENTS AND WEIGHTS

On top of the basic evaluation in Fig. C.2, we believe deep residual compression can save more
communication volume in federated learning with minimum impact on the accuracy. Thus, we
demonstrate the federated learning integrating compressing weights, gradients and two different
residuals, i.e. stationary and linear residuals in Eq. 8. As shown in Fig. 3, the testing accuracy
on both IID and Non-IID datasets from deep residual compression always outperforms weight and
gradient compression. Also, the linear residuals can achieve a higher accuracy and faster conver-
gence than stationary residuals. The results indicate communicating residuals in federated learning
can enable larger compression ratio per communication round, compared to communicating other
parameters.

4.3 COMMUNICATION EFFICIENCY IMPROVEMENT

Next, we evaluate the required communication volume for training three sizes of models on different
datasets in both IID and Non-IID settings. Tab. 1 shows that to reach a promising target accuracy,
ResFed with lossy compression (compression ratio is set on 350×−375×) can save on average

1It consists of 5 convolutional and 3 fully connected layers.

7



Under review as a conference paper at ICLR 2023

Figure 3: Comparison of compressing weights, gradients, residuals with stationary (Res-0) and
linear (Res-1) predictors. The sparsities are 0.2 and 0.01 for training on MNIST and CIFAR-100
distributed in 10 clients, respectively. We quantize the non-zero parameters and use 1 bit to represent
each of them. For Non-IID setting, each client owns only the data with half classes.

Table 1: The communication volume (CV) and the bitsaving rate (BR) to reach the target accu-
racy (ACC) for only using ResFed in uploading (UL) and downloading (DL). We use FedAvg
for both baseline (without any compression) and ResFed (Res-1). Note that the compression
ratio per communication round is set from 350× to 375×. More details on experiment setup
are shown in Sec. B.

Dataset
Fashion-MNIST CIFAR-10 SHVN

IID Non-IID IID Non-IID IID Non-IID

Target ACC 85% 70% 88%

Baseline CV 17.73 Mb 29.55 Mb 261.16 Mb 587.61 Mb 7.15 Gb 10.73 Gb

ResFed UL
CV 0.16 Mb 0.28 Mb 4.09 Mb 6.79 Mb 0.08 Gb 0.17 Gb
BR 99.10% 99.10% 98.43% 98.84% 98.89% 98.42%

ResFed DL
CV 0.10 Mb 0.21 Mb 1.48 Mb 4.61 Mb 0.07 Gb 0.11 Gb
BR 99.43% 99.30% 99.43% 99.22% 99.02% 98.97%

around 99% of the total communication volume for all clients in only up- or down-streaming. Fur-
thermore, the bitsaving ratios of ResFed on IID and Non-IID settings are similar, which indicates the
compression performance of ResFed is robust to data heterogeneity in federated learning. We show
testing accuracy and training loss change with increasing required communication volume in ResFed
in Fig. B.1. The results indicate communicating residuals in federated learning can remarkably save
overall communication volume.

4.4 SCALABILITY FOR RESOURCE-CONSTRAINED COMMUNICATION ENVIRONMENTS

Finally, we explore the scalability of ResFed by tuning compression ratios for client-to-server and
server-to-client, as in real application scenarios. The available network resources for up- and down-
streaming can be heterogeneous. Fig 4 shows the test accuracy effected for different values of
sparsity, which leads to various compression ratios for each communication round for up- and down-
streaming. From Fig. 4a, we can observe the testing accuracy reduces with higher compression ratio
per communication round, when the number of communication rounds is always the same, i.e. set
to 300. However, when we consider the dedicated budget for communication costs in up- or down-
streaming, a large compression ratio in ResFed can achieve better accuracy, as shown in Fig. 4b. By
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(a) Number of communication
rounds (300) is the same.

(b) The communication cost budget (14 Mb) is the same in up-
streaming (left) and down-streaming (right).

Figure 4: Testing accuracy on various values of sparsity and compression ratio per communication
round in deep residual compression for both up- and down- streaming in ResFed (Res-1). We train
a CNN model on a federated CIFAR-10 dataset with 10 clients. The testing accuracy decreases
with a higher sparsity at the same number of communication rounds, while when the communica-
tion resource is constrained, the deep residual compression with higher sparsity can achieve more
compromising testing accuracy.

adapting the compression ratio in resource-constrained communication environments, ResFed can
effectively enhance the federated learning using deep residual compression.

5 RELATED WORK

Deep compression. Deep compression was originally proposed by Han et al. (2016) and aims at
compressing deep learning models by a pipeline including sparsification (pruning), quantization
and encoding for more efficient deployment. Based on deep compression, Lin et al. (2018) have
proposed deep gradient compression to reduce the communication costs in distributed learning by
compressing gradients rather than model weights, which can also be used in federated learning.

However, models are usually trained more than one epoch locally in federated learning (McMa-
han et al. (2017); Li et al. (2020b); Wang et al. (2020); Karimireddy et al. (2020)), which results
in gradient accumulation instead of gradients in other distributed learning scenarios (Sattler et al.
(2019)). Our conducted experiments also show compressing residuals can achieve better communi-
cation efficiency comparing to compress gradients due to the additional prediction step. In ResFed,
we especially consider residuals, which eliminate the model similarity in a single inter-round of
federated learning communication and achieve a better compression performance by leveraging the
deep residual compression.

Federated learning and communication efficiency. Communication efficiency is the key for de-
ploying federated learning in real application scenarios, especially to train a large model. Previous
research by Yuan & Ma (2020); Karimireddy et al. (2020); Hamer et al. (2020) attempted to reduce
the number of needed communication rounds for a better communication efficiency. Meanwhile, the
proposed approaches by Xu et al. (2022); Reisizadeh et al. (2020); Hönig et al. (2022) are built upon
deep compression and focus on improving communication efficiency by decreasing the communi-
cation volume. However, unlike compressing residuals in ResFed, they compressed model weights
without consideration of any potential redundancy in sequential updating of federated learning. The
recent work by Yue et al. (2022) has also mentioned the predictive model update in federated learn-
ing, which is concurrent to our work, but the information in the history of model updating is not
considered for reducing the parameter redundancy there.

Additionally, all those algorithms above can only be used to improve the communication efficiency
for up-streaming, while ResFed can handle with up- and/or down-streaming for heterogeneous
resource-constrained environments.

Residuals in video encoding. The residuals have been widely and successfully utilized in video
encoding since H.261 (Girod et al. (1995); Li et al. (2021)). By considering inter-frame correlations,
the pixel values in the current frame are predicted from history frames and then only residuals, i.e.
the deviations between predicted and the actual pixel values in the current frame, are encoded and
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streamed to the receivers. Inspired by the residuals in video encoding, we integrate the model
residuals into federated learning in ResFed, where the inter-round similarity of a model update is
analogous to inter-frame correlation in video encoding.

6 CONCLUSION

In this work, we introduce a residual-based federated learning framework, which allows clients and
the server to share residuals instead of weights or gradients. It achieves more efficient communica-
tion for both up- and down-streaming in federated learning by leveraging deep residual compression,
and hence can be flexibly deployed in heterogeneous network environments. Our conducted experi-
mental evaluation shows that the framework remarkably reduces overall communication volume to
reach the same prediction accuracy in standard federated learning. Compared to compressing model
weights or gradients, ResFed achieves higher accuracy and faster convergence speed.

Limitations. We cache the recovered models as local and global trajectories for continual model
prediction and residual computing in all clients and server. Assuming that we perform ResFed with
N clients for training a model with V 32-bit float parameters and we set the trajectory length on T ,
each client should use 2 ∗ 32 ∗V ∗T bits memory to cache the 2 trajectories. Thus, the additional
required memory size in each client is proportional to T ∗V . For the server, it needs 2∗32∗V ∗T ∗N
bits memory to cache the local and global trajectories for all clients. In order to reduce the required
memory, a potential solution is to cache the compressed models in the trajectories for both sender
and receiver symmetrically, after model recovery. However, the accuracy of model prediction based
on compressed trajectories is reduced, then the memory-accuracy trade-off needs to be investigated
in future work.

7 REPRODUCIBILITY STATEMENT

We provide the source-code for the implementation and evaluation of our proposed framework Res-
Fed in the code appendix. The user guidelines for installation and execution is given in the file
README.md. The details on our conducted experiments are provided in Sec. B. The source-code
will be made publicly available after double-blind review.
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A TABLES OF NOTATIONS

We provide an overview of the most relevant notations in Tab. A1.

Table A1: Summary of mainly used notations in this paper.

Notation Meaning Navigation
i Index of clients Sec. 2.1
t Index of communication round Sec. 2.1
η Learning rate Sec. 3.1
N Number of connected clients Sec. 2
T Number of total communication rounds Sec. 2.2
V Number of parameters in a machine learning model Sec. 6
w Model weights Sec. 2.1
u w in clients Sec. 2.1
v w in server Sec. 2.1

wt Model weights in communication round t, also for ut ,vt Sec. 2.1
wi Model weights for client i, also for ui,vi Sec. 2.1
w̄ Compressed model weights, also for ū, v̄ Sec. 2.5
w̃ Predicted model weights, also for ũ, ṽ Sec. 2.3
ŵ Received model weights for update, also for û, v̂ Sec. 2.1
g Model gradients Sec. 3.1
r Model residuals Sec. 2.4
rt Model residuals in communication round t Sec. 2.4
ri Model residuals in client i Sec. 2.4

ri,dl Model residuals of client i for uploading in client i Sec. 2.4
ri,ul Model residuals of server for downloading in client i Sec. 2.4

r̄ Compressed model residuals Sec. 2.5
r̂ Received model residuals Sec. 2.1
D Data set Sec. 2.1
G Global trajectory queue Sec. 2.2
L Local trajectory queue Sec. 2.2

B EXPERIMENTAL DETAILS AND FURTHER RESULTS

In this section, we provide the details on our conducted experiment in 4. We run on a computer
cluster with 4× NVIDIA-A100-PCIE-40GB GPUs and 4× 32-Core-AMD-EPYC-7513 CPUs. The
environment is a Linux system with Pytorch 1.8.1 and Cuda 11.1.

We demonstrate the learning task on 5 different datasets:

• MNIST LeCun & Cortes (2010): 60000 data points in the training set and 10000 data points
in the test set. Each data point is a 28x28 gray-scale digit image, associated with a label
from 10 classes.

• CIFAR-10 Krizhevsky (2009): 50000 data points in the training set and 10000 data points
in the test set. Each data point is a 32x32 RGB image, associated with a label from 10
classes.

• Fashion-MNIST Xiao et al. (2017): 60000 data points in the training set and 10000 data
points in the test set. Each data point is a 28x28 gray-scale image, associated with a label
from 10 classes.

• SVHN Netzer et al. (2011): 73257 data points in the training set and 26032 data points in
the test set. Each data point is a 32x32 RGB digit image, associated with a label from 10
classes.

• CIFAR-100 Netzer et al. (2011): 50000 data points in the training set and 10000 data points
in the test set. Each data point is a 32x32 RGB image, associated with a label from 100
classes.
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The models trained on those dataset are shown in Tab. B1.

Table B1: Dataset and models in experiments

Dataset MNIST CIFAR-10 Fashion-MNIST SVHN CIFAR-100

Model LeNet-5 CNN LeNet-5 ResNet-18 CNN

# of Param 61706 1020160 61706 11175370 1020160

Size in MB 0.25 4.08 0.25 44.70 4.08

B.1 EXPERIMENTS FOR SEC. 4.2

We divide the dataset, i.e. MNIST and CIFAR-100, into 10 clients and run the FedAvg with local
optimizer of stochastic gradient descent (SGD) (momentum is 0.9) to train LeNet-5 and CNN (with
5 convolutional and 3 fully connected layers), respectively. The learning rate is fixed on 0.01 and
the batch size is 64 for all tests. The number of local epoch is 5. In Non-IID data setting, each client
owns only 2 out of 10 classes in MNIST and 50 out of 100 classes in CIFAR-100.

In clients, we consider 5 different approaches as follows:

• No Compression: The standard federated learning without any compression methods is
used as the baseline, which provides the best results among all of the approaches, when
number of communication rounds is the same.

• Compress Weights: Before communication in standard federated learning, the model
weights are first compressed.

• Compress Gradients: The gradients in each epoch are compressed and communicated to
the server.

• Compress Res-0: The residuals are computed by stationary predictor, i.e. Eq. 8 with T = 0.

• Compress Res-1: The residuals are computed by linear predictor, i.e. Eq. 8 with T = 1.

For each approach on each dataset, we run 10 tests with different seeds and show the mean value
and standard variance in Fig. 3.

Lossy Compression. We compress the those model parameters using deep compression
pipeline (Han et al. (2016)) only for client-to-server. In particular, we set sparsity on 80% and
99% for residuals in LetNet and CNN, respectively. We use SGD optimizer momentum of 0.9.
Those sparsified parameters are zero-parameters and the number of the continually appearing zero-
parameters are encoded as a 16-bit float parameters (Lin et al. (2018)). After that, we quantize
the non-zero parameters in 1 bit with median value of positive and negative parameters (Xu et al.
(2022)). Finally, Huffman encoding (Van Leeuwen (1976)) is used.

B.2 EXPERIMENTS FOR SEC. 4.3

We train LeNet-5, CNN and ResNet18 (size from small to large) on Fashion-MNIST, CIFAR-10
and SVHN with 10 clients in both IID and Non-IID settings. We demonstrate the ResFed and lossy
compress the residuals either only for uploading (UL) or downloading (DL) to study the effects on
each direction separately. The learning rate is fixed on 0.01 and the batch size is 64 for all tests.
In Non-IID data setting, each client owns 50% classes (5 out of 10). We use mean values from 5
tests in each experiment for the evaluation in Tab. 1 and show the results with standard variance in
Fig. B.1, which indicate the overall communication volume can be remarkably reduced in ResFed.

For all experiments, we set the sparsity on 99% and use 1 bit for each non-zero parameters. Conse-
quently, the compression ratio per communication round for LetNet-5 is about 350×, CNN is about
375× and ResNet-18 is about 356×.
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(a) Training LeNet-5 on Fashion-MNIST.

(b) Training CNN on CIFAR-10.

(c) Training ResNet-18 on SVHN.

Figure B.1: Overall communication efficiency enhanced by ResFed with Lossy Compression (LC)
for only Uploading (UL) or Downloading (DL)

B.3 EXPERIMENTS FOR SEC. 4.4

To show the correlation between deep residual compression in up- und down-streaming, we train
the CNN model on IID CIFAR-10 with 10 clients and tune the sparsity for realizing different com-
pression ratios per communication round in ResFed. The learning rate is fixed on 0.01 and the batch
size is 64. We use SGD optimizer momentum of 0.9. The number of local epoch is 1. Specifically,
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the value of sparsity is {0%,90%,95%,99%,99.5%} for both up- and down-streaming and then set
1 bit for all non-zero parameters in quantization.

C UNDERSTANDING RESIDUALS

We provide an illustration of model transitions during federated learning in Fig. C.1. Given a sender
and a receiver (both can be a client or a server), the communication and operation result in model
transition. Note that for a client, the operation is local training; for a server, the operation is aggrega-
tion. We consider the model transition caused by an operation as a internal model transition, and by
communication as a external model transition. Then, as explained in Sec. 2.1, the model is updated
twice between two communication rounds, which is shown in Fig. C.1 as dual model transition.
Consequently, we can have an internal and an external model transition trajectory in both sender and
receiver. Note that for a client, the internal model transition trajectory is a local model trajectory; for
a server, the internal model transition trajectory is a global model trajectory, as described in Sec. 2.2.

Figure C.1: Residual generation in ResFed during model transitions. For a better overview, we
simplify the system by disregarding the trajectory synchronization step in Sec. 3.3.

Figure C.2: Value comparison of model parameters, gradients and residuals in federated learning.
We train a LeNet with 61706 weights of 32-bits float on MNIST distributed among 10 clients,
with fixed learning rate 0.001 and batch size 64. For fairly comparing gradients and residuals,
the number of local epoch in each client is set as 1. We set 6 checkpoints when the number of
communication rounds is {1,4,8,16,32,128}. The results show that most values of residuals are
smaller than weights and gradients during the training. It indicates that lossly compressing residuals
naturally lose less information and have a smaller affect on the accuracy.
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Figure C.3: Comparison of linear residuals (Res-1) and stationary residuals (Res-0) while commu-
nicating in down- and uploading (server-to-client and client-to-server) for federated learning on IID
and Non-IID MNIST for each of 10 clients, with fixed learning rate 0.001 and batch size 64. The
number of local epoch in each client is set as 3. We show the training loss, variance (Var) and
sum of parameter (Param) values in the first 3 rows. In the fourth row, we evaluate the residuals
using reduction ratio (RR) per communication round, where the Var RR denote the reduction ra-
tio (×) of parameter value variance from Res-1 w.r.t. Res-0, i.e. Varres−0/Varres−1, and similarly,
the Sum RR denote the reduction ratio (×) of parameter value sum from Res-1 w.r.t. Res-0, i.e.
Sumres−0/Sumres−1. The comparison results show that the parameter values in Res-1 are lower and
more concentrated than in Res-0 at the beginning of the federated learning (before convergence),
which allows us to compress it with less information loss and higher accuracy using the same spar-
sification and quantization. The conclusion is consistent with the results shown in Fig. 3

Then, ResFed allows the sender to predict the model for the next internal model transition, which is
shown in orange. Meanwhile the sender does the operation to execute the internal model transition
and residuals (in purple) are deduced from the difference of both model transition results. We believe

17



Under review as a conference paper at ICLR 2023

the predicted model can be closer to the updated model than the previous model, which leads to
smaller values of residuals. To evaluate it, we set 6 checkpoints when the number of communication
rounds is {1,4,8,16,32,128}, and show the values of model weights, gradients and residuals in
Fig. C.2. Based on this, the residuals can be compressed smaller than weights and gradients. For
a clear big picture of ResFed formulated in Algorithm 1, we provide a simplified formulation in
Algorithm 2.

Finally, We conduct the experimental study on model residuals from stationary (Res-0) and linear
(Res-1) predictors. The comparison results show that the parameter values in Res-1 are lower and
more concentrated than in Res-0 at the beginning of the federated learning (before convergence),
which allows us to compress it with less information loss and higher accuracy using the same spar-
sification and quantization. The conclusion is consistent with the results shown in Fig. 3.

Algorithm 2 : Simplified residual-based federated learning framework

1: server initializes the global model, empty local and global model trajectories, and the predictor
at the server

2: for i ∈ {1,2, ...,N} do
3: client i initializes empty local and global model trajectories, and the predictor
4: client i and server share the predictors to each other
5: end for
6: for each communication round t do
7: for each client i in parallel do
8: if t < T then
9: do normal federated learning and update trajectories

10: else
11: server communicates r̄i,dl to the client i
12: r̄i,ul ← ResFedClientUpdate (i, r̄i,dl) ▷ @client i
13: client i communicates r̄i,ul to the server
14: server recovers models v̂i based on predicted models ṽi
15: end if
16: server updates local trajectory
17: end for
18: v← Aggregate(v̂1, ..., v̂N)
19: for each client i do ▷ @server
20: server computes residuals ri,dl based on predicted model ṽi
21: server compresses residuals r̄i,dl and synchronizes global trajectory
22: end for
23: end for
24: return v

25: ResFedClientUpdate (i, r̄)
26: client i recovers models û based on predicted models
27: client i updates global trajectory
28: ui← LocalTrain(û)
29: client i computes residuals ri based on predicted models ũ
30: client i compresses residuals r̄i and synchronizes global trajectory
31: return r̄i
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