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ABSTRACT

Federated Learning (FL) is a distributed learning paradigm, which computes
gradients of a model locally on different clients and aggregates the updates to
construct a new model collectively. Typically, the updates from local clients are
aggregated with weights proportional to the size of clients’ local datasets. In
practice, clients have different local datasets suffering from data heterogeneity,
such as imbalance. Although proportional aggregation still theoretically con-
verges to the global optimum, it is provably slower when non-IID data is present
(under convexity assumptions), the effect of which is exacerbated in practice. We
posit that this analysis ignores convergence rate, which is especially important
under such settings in the more realistic non-convex real world. To account
for this, we analyze a generic and time-varying aggregation strategy to reveal
a surprising trade-off between convergence rate and convergence error under
convexity assumptions. Inspired by the theory, we propose a new aggregation
strategy, Exp-α, which weights clients differently based on their severity of data
heterogeneity. It achieves stronger convergence rates at the theoretical cost of
a non-vanishing convergence error. Through a series of controlled experiments,
we empirically demonstrate the superior convergence behavior (both in terms of
rate and, in practice, even error) of the proposed aggregation on three types of
data heterogeneity: imbalance, label-flipping, and domain shift when combined
with existing FL algorithms. For example, on our imbalance benchmark, Exp-α,
combined with FedAvg, achieves a relative 12% increase in convergence rate and
a relative 3% reduction in error across four FL communication settings.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a decentralized approach for learning a model
on distributed data to preserve data privacy. Because data reside on clients and are never transmitted
to a central server, privacy is preserved. However, data on local clients are often correlated with their
demographics and preferences. This makes training data highly non-IID or heterogeneous (Wang
et al., 2021; Zhang et al., 2021; Kairouz et al., 2021), containing label imbalance, noisy labels (e.g.
label-flipping), or domain shift. This can significantly impact a model’s performance and specifically
convergence rates (Zhao et al., 2018; Li et al., 2019). To tackle the issue of data heterogeneity, the
majority of federated learning have focused on improving the local optimization (Zhao et al., 2018;
Shoham et al., 2019; Karimireddy et al., 2020; Zhang et al., 2020; Acar et al., 2021) and the global
optimization (Hsu et al., 2019; Reddi et al., 2020) objectives in a federated learning pipeline. Few
papers have paid attention to the other aspects of federated learning, such as client selection (Cho
et al., 2020) and model aggregation (Chen et al., 2020; Wang et al., 2020).

Most existing methods use proportional aggregation (McMahan et al., 2017), whose aggregation
weights are proportional to the size of local dataset. Although proportional aggregation still theoret-
ically converges when non-IID data is present under convexity assumptions, we posit that this anal-
ysis ignores convergence rate, which is especially important under such settings in the real world,
because proportional aggregation assumes equal importance of all samples. Intuitively, non-IID
data makes the equal importance property questionable since imbalanced data can bias predictions
towards majority classes, and noise or domain shift can slow down convergence.
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To study this, we start by introducing the proportional aggregation strategy and discussing its mer-
its: equal importance and asymptotic convergence. Following prior works (Wang et al., 2021; Rei-
sizadeh et al., 2020; Yuan et al., 2021), we define the federated global objective F (W) of the server
as a weighted sum of N local objectives Fi(W) in Eq. 1. F (·) denotes generic loss/risk function.

Definition 1

F (W) :=

N∑
i=1

ρiFi(W) where Fi(W) = Eξ∼Pi [f(W; ξ)] . (1)

∑N
i=1 ρi = 1 are the aggregation weights, W ∈ Rd denotes the global model and ξ is a sample

from the local data distribution Pi. Usually in the distributed learning (Stich, 2018) and federated
learning (Li et al., 2019) literature, the weights are set to be proportional to the number of samples
on a client denoted as ρi = |Ξi|∑N

j=1 |Ξj |
, where |Ξi|1 is the size of local dataset Ξi. This weighting

scheme has an intuitive interpretation, i.e., the global data can be equivalently seen as the union
of local datasets, and the federated global objective is equivalent in expectation to what one would
optimize centrally if data are sampled randomly from it. Proportional aggregation is then used to
compute an unbiased update to Eq. 1. In summary, proportional aggregation is a statistically sound
strategy, giving all data points equal importance and providing asymptotic convergence to a hypo-
thetical centralized objective, i.e., achieving zero-error eventually. However, a recent survey calls
these properties into question (Wang et al., 2021). In the real world, the defining characteristics
of proportional aggregation, particularly equal importance and asymptotic convergence, can be less
well justified. The property of equal importance of all participating data can be less desirable when
data heterogeneity is severe. For example, even though the convergence of using proportional ag-
gregatoin (with zero-error under convex settings) with non-IID clients is guaranteed, it is provably
slower (Li et al., 2019), and with data poisoning (such as label-flipping), it can be even unstable (Xie
et al., 2019; Jebreel et al., 2022). This is exacerbated by the limited communication rounds in FL,
making the asymptotic convergence property less relevant since asymptotic convergence can only
be achieved under the assumption of unlimited communication. As a result, two algorithms with
comparable asymptotic convergence can perform quite differently in practice (Wang et al., 2021).

In this paper, we study a generic and time-varying aggregation strategy,
∑N

i=1 ρ
t
i = 1, where ρti is

the weight for client i at time t, as opposed to proportional aggregation. A theoretical study of this
strategy reveals a surprising trade-off between convergence rate and convergence error, allowing
us to make more explicit what proportional aggregation favors and to develop new algorithms that
make different trade-offs. For example, proportional aggregation, when instantiated in our frame-
work as a special case, is shown to favor convergence error at the cost of convergence rate. More
specifically, we start from a theoretical analysis on the convergence of FedAvg (McMahan et al.,
2017), a prototypical FL algorithm, while allowing the aggregation weights to change over time.
The resultant convergence bound in this more generic setting reveals a family of aggregation strate-
gies that 1) improves convergence rate but 2) leaves a theoretically non-vanishing error w.r.t the
proportionally weighted federated objective (Eq. 1). Subsequently, we propose a specific aggrega-
tion strategy in this family, Exp-α, which weights clients differently based on their severity of data
heterogeneity and can achieve stronger convergence rates at the theoretical cost of a non-vanishing
convergence error. Intuitively, this strategy puts larger weights on clients sharing more similar data
distribution to each other. Empirically, we go beyond theory to test its effectiveness on three major
types of local data heterogeneity: imbalance (Zhao et al., 2018), label-flipping (Xie et al., 2019) and
domain shift (Li et al., 2021). Our results suggest that an aggregation strategy with faster conver-
gence rate can be more important in practice than one with theoretically zero-error under the convex
assumption; in practice, our method achieves both better rates and better errors, owing to the fact
that practical settings are non-convex. For example, on our imbalance benchmark, Exp-α, combined
with FedAvg, achieves a relative 12% increase in convergence rate and a relative 3% reduction in
error across four FL communication settings. To sum up, our contributions are:

• We analyze the convergence of FedAvg with a generic and time-varying aggregation strat-
egy to reveal a trade-off between convergence rate and error under convexity assumptions,
and elucidate properties of prior proportional aggregation strategies.

1We use the notation| · | to denote the size of a set.
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• We propose a new aggregation strategy, Exp-α, that trades convergence rate over error
under convexity assumptions. When applied to several existing FL algorithms in real world
experiments, Exp-α demonstrates superior performance in both convergence rate and error
over the widely used proportional aggregation on three types of data heterogeneity.

2 BACKGROUND AND RELATED WORKS

Federated learning (FL) is a distributed machine learning paradigm developed to preserve privacy
while enabling continual development of an ML model on private data (McMahan et al., 2017).
FL generally consists of three stages: client selection, client update and server update. Most FL
algorithms innovate on one component of this algorithm.

Client Selection: At the beginning of a round of communication (a global iteration), the current
global model Wt ∈ Rd is distributed to a randomly sampled set of N local clients from a large
pool of candidates N , sampled from a population distribution C supported on N . If N < |N |, then
this is called partial-participation. Most paper follows a uniform client sampling strategy (Li et al.,
2019). However, a recent work (Cho et al., 2020) shows that a biased strategy can bring pratical
improvement to FL algorithms.

Client Update: After receiving the global model, the clients optimize their copies of it indepen-
dently on their own local data ξ ∈ Ξi ∼ Pi(X,Y ), where ξ represents an element in the set of local
data Ξi on client i sampled uniformly from the local data distribution Pi, for a specified E number
of steps to arrive at different updated local models Wt+E

i ∈ Rd for i ∈ {1, ..., N}. This is the
most investigated stage in FL research due to its unique non-IID (distribution shift) challenge (Zhao
et al., 2018; Li et al., 2019). The vanilla FedAvg (McMahan et al., 2017) uses plain SGD updates,
which can only handle mild non-IID data. Many followup works design regularization techniques
to improve convergence under more severe distribution shift. Please see Appendix A.1 for an intro-
duction to those methods. Our contribution is orthogonal to FL research in this category and can be
combined. We will demonstrate this compatibility in our experiments (Sec. 4).

Server Update: To complete this round of communication, the updated local models are sent back to
the central server for aggregation, which yields the next global model. Server update can be split into
two steps: aggregation and optimization (Reddi et al., 2020). Our work focuses on the aggregation
step in the server update stage. Specifically, aggregation refers to how gradients are combined
and optimization refers to how the aggregated gradients are applied. Please see Appendix A.1 for
an introduction to FL algorithms with different server optimization techniques. Few have studied
the aggregation step in server update. FOCUS (Chen et al., 2020) measures the performance of a
local model on a globally shared dataset and assigns an aggregation weight accordingly. However,
the requirement of a global dataset that encompasses unknown local data distributions violates the
privacy premise of FL. A recent work (Wang et al., 2020) discovered an implicit bias in aggregation
when the number of local updates is different and proposed a mitigation strategy. This problem is
orthogonal to our target on non-IID data and therefore, we keep the number of local updates the same
on all clients in our experiments. Nonetheless, most existing works use proportional aggregation.
Our contribution is orthogonal and compatible to other innovations in the optimization step. We will
demonstrate this compatibility in the experiment section (Sec. 4).

3 GOING BEYOND PROPORTIONAL AGGREGATION

Existing FL convergence analyses often assume proportional aggregation in their deviation (Li et al.,
2019; Khaled et al., 2020). This strategy yields asymptotically zero-error convergence under convex
settings. However, as we will show in this section, revisiting the convergence analysis with a generic,
time-varying aggregation strategy reveals that by carefully designing the aggregation weights, one
can theoretically trade off convergence rate over error. This section is organized as the following.
Sec. 3.1 introduces several common assumptions in FL convergence analysis and notations neces-
sary to understand the theoretical results; Sec. 3.2 presents a convergence bound with a generic and
time-varying aggregation strategy; Sec. 3.3 discusses the trade-off between convergence rate and
error with a derived corollary; Finally, inspired by the corollary, Sec. 3.4 proposes a practical aggre-
gation strategy, Exp-α, which demonstrates superior convergence behavior in terms of both rate and
error on several benchmarks in Sec. 4.
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Figure 1: Illustration of our proposed Exp-α (Sec. 3.4) with three local optimization steps, i.e.,
E = 3, and two clients. In this example, synchronization/communication steps are t = 0, 3, 6. Exp-
α calculates the aggregation weights based on the latest accessible global model and local models.

3.1 TIME-VARYING AGGREGATION: ASSUMPTIONS AND NOTATIONS

We first make some common assumptions in FL convergence analysis.

Assumption 1 The local objective functions F1, ...FN are µ-strongly convex: Fi(W) − Fi(V) ≥
(W −V)T∇Fi(V) + µ

2 ∥W −V∥22 ∀W,V.

Assumption 2 The local objective functions, F1, ..., FN are L-smooth functions: Fi(W) −
Fi(V) ≤ (W −V)T∇Fi(V) + L

2 ∥W −V∥22 ∀W,V.

Assumption 3 Bounded local gradient variance, let ξi ∼ Pi be a sampled data point on client i.
The variance of gradients on all devices is bounded: E∥∇fi(Wt; ξi) − ∇Fi(W

t)∥2 ≤ σ2
i ∀i ∈

{1, ..., N}.

Assumption 4 Bounded local gradients, let ξi ∼ Pi be a sampled data point on client i. The
squared norm of gradients on all devices are bounded: E∥∇fi(Wt; ξi)∥2 ≤ G2 ∀i ∈ {1, ..., N}.

In addition to the convex Assumption 2, Assumptions 1-4 are fairly common assumptions in non-
convex optimization literature (Reddi et al., 2016; Ward et al., 2020) and federated learning litera-
ture (Li et al., 2019; Cho et al., 2020). There are other FL works relaxing the above assumptions.
For example, FedAdaGrad (Reddi et al., 2020) relaxes the convex assumptions and shows that the
expected gradient goes to zero, thus converging to a stationary point with unknown error bound.
While it’s sufficient to demonstrate the hidden convergence dependency on aggregation weights un-
der the current assumptions, extending our subsequent analysis to different FL assumptions can be
an interesting future work.

We will utilize the method of virtual sequence (Stich, 2018) for the proof of the main theorem. Let
IE be the set of synchronization/communication steps, such that IE = {n × E|n = 0, ..2}, where
E denotes the number of local update iterations. The virtual sequence W̄t+1 is defined as:

W̄t+1 =

N∑
i=1

ρt+1
i Wt+1

i where Wt+1
i =

{
Vt+1

i , if t+ 1 /∈ IE∑N
i=1 ρ

t+1
i Vt+1

i , if t+ 1 ∈ IE

}
. (2)

where ρt+1
i ≥ 0 and

∑N
i=1 ρ

t+1
i = 1 is the time-varying aggregation weight, and W̄0 = W0

i =
W0. Vt

i denotes the local model i at optimization step t. In reality, we only have access to W̄t+1

when t+ 1 ∈ IE , i.e., time of actual synchronization. When this happens, we write WT where
T ∈ IE . We provide a graphical illustration of the virtual sequence in Fig. 1, which also features
our proposed method, Exp-α. Furthermore, let W∗ be the optimal solution to the federated global
objective in Eq. 1, i.e., W∗ = argminW F (W) = argminW

∑N
i=1 ρiFi(W), and W∗

i be the
optimal solution to a client’s data distribution, i.e., W∗

i = argminW Fi(W).

3.2 TIME-VARYING AGGREGATION: CONSERVATIVE ERROR BOUND

Taking into account of generic and time-varying aggregation weights, ρti, we present the following
theorem for the FedAvg algorithm (McMahan et al., 2017), a prototypical FL algorithm that uses
vanilla SGD for local and global updates and proportional aggregation in the original work.
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Theorem 1 Assume Assumptions 1- 4 hold and L, µ, σi, G be defined therein. Choose γ = max L
µ

and the learning rate ηt =
2

µ(γ+t) and T ∈ IE . Then FedAvg using SGD with full device participa-

tion and a generic, time-varying aggregation weights
∑N

i=1 ρ
t
i = 1 satisfies

E[F (WT )]− F (W∗) ≤ L

(γ + T )

(
2B̄

µ2
+

γ

2
∆0

)
︸ ︷︷ ︸

vanishing

+
L

µ
(Γ− Ω)︸ ︷︷ ︸

non−vanishing

where ∆0 = ∥W0 − W∗∥22, B̄ = maxt(
∑N

i=1(ρ
t+1
i )2σ2

i ) + 8(E − 1)G2 + 6LΩ, Γ =

maxt
∑N

i=1 ρ
t+1
i (Fi(W

∗)− Fi(W
∗
i )), and Ω = mint

∑N
i=1 ρ

t+1
i (Fi(W̄

t)− Fi(W
∗
i ))∀t ≥ 0.

We provide a complete proof of the main theorem in A.9. The convergence bound in Thm. 1 has
two outstanding components, a vanishing term decreasing over time and a non-vanishing term. The
vanishing term goes to zero with time and controls convergence rate; the non-vanishing term does
not decrease over time and results in a non-zero error after convergence. The convergence result
is consistent with convergence bound using proportional aggregation (Li et al., 2019). Specifically,
we can show (Appendix A.13) that if ρti = ρi = |Ξi|∑N

j=1 |Ξj |
, then Ω = Γ =

∑N
i=1 ρi(Fi(W

∗) −
Fi(W

∗
i )), and the non-vanishing error is zero. This demonstrate that proportional aggregation, as a

special case of our more general analysis, favors convergence error at the cost of convergence rate.

3.3 TIME-VARYING AGGREGATION: TRADE-OFF BETWEEN SPEED AND ERROR

From Thm. 1, we observe that FedAvg with a generic time-varying weighing converges at a rate of

O
(
Ω

T

)
+O(Γ− Ω). where Ω = min

t

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗
i ))

The quantity Ω controls the convergence rate and the non-vanishing error. The intuitive way to
improve the convergence rate is to design a strategy which gives a small Ω. Let Ωpr denote the
quantity Ω defined by proportional aggregation, i.e., Ωpr ≜ mint

∑N
i=1 ρi(Fi(W̄

t) − Fi(W
∗
i )),

where ρi =
|Ξi|∑N

j=1 |Ξj |
. Specifically, if the goal is to improve over proportional aggregation, then the

proposed aggregation strategy should lead to an Ω smaller than Ωpr. Upon close examination of Ω
in Thm. 1, one can expect that the key lies in choosing the aggregation weight ρt+1

i according to the
relative magnitude of the quantity Ωt

i ≜ Fi(W̄
t) − Fi(W

∗
i ) for all i ∈ {1, ..., N}. To this end, we

provide the following corollary to formally justify the intuition. We show that with a specific choice
of ρt+1

i , one can achieve Ω ≤ Ωpr.

Corollary 1.1 Assume N |Ξi|∑N
j=1 |Ξj |

(Fi(W̄
t) − Fi(W

∗
i )) are arranged in decreasing order, i.e.,

N |Ξi|∑N
j=1 |Ξj |

(Fi(W̄
t)− Fi(W

∗
i )) ≥

N |Ξi+1|∑N
j=1 |Ξj |

(Fi+1(W̄
t)− Fi+1(W

∗
i+1)). If we choose

ρt+1
i ∝ N |Ξi|∑N

j=1 |Ξj |
U

(
N |Ξi|∑N
j=1 |Ξj |

(
Fi(W

∗
i )− Fi(W̄

t)
))

∀t,

where U(∗) ≥ 0 is a non-decreasing function, then Ω ≤ Ωpr.

A detailed proof is provided in Appendix A.11. In Corollary 1.1, W̄t is the virtual global model
(Eq. 2) at the previous step and W∗

i is the optimal local model for client i. Therefore, the quantity
Ωt

i ≜ Fi(W̄
t) − Fi(W

∗
i ) captures the performance difference between the closest virtual global

model and the optimal local model on client i. Intuitively, one would expect that a client with more
severe distribution shift will result in a larger Ωt

i since the current virtual global model should not
work well on this severely shifted distribution, resulting in a larger discrepancy between Fi(W̄

t)
and Fi(W

∗
i ). In other words, the aggregation strategy in Corollary 1.1 puts smaller weights on more

severely shifted clients based on current performance difference. Consequently, it is reasonable to
expect a trade off between convergence speed and convergence error depending on how aggressively
the algorithm down-weights shifted clients. In our experiments, to avoid the compound issue of
update bias due to unequal number of local updates (Wang et al., 2020), we deliberately keep the
size of local datasets equal, i.e., |Ξi| = |Ξj |. Therefore N |Ξi|∑N

j=1 |Ξj |
= 1.
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3.4 TIME-VARYING AGGREGATION: THE EXPONENTIAL FUNCTIONS

One family of functions that satisfies U(∗) ≥ 0 and non-decreasing, is the exponential functions. We
will use this as the paramterization for our empirical investigation. However, at a synchronization
step T ∈ IE , according to Thm. 1 and Corollary 1.1, we need to evaluate Fi(W̄

T−1) and Fi(W
∗)

to calculate the aggregation weights. This is not realistic, however; first, we only have access to
the virtual global model at t = T − E, i.e., the model from the previous synchronization step since
the current one has yet to be calculated. Therefore, the closest available global model is W̄T−E .
Second, in the most common setting, FL algorithms only optimize a local model for fixed number
of E epochs and do not train it to convergence2. Thus, the closest approximation to Fi(W

∗) is the
current local model after E local updates from the previous synchronization, Fi(W

T
i ). A graphical

illustration is provided in Fig. 1. For subsequent investigation, we use the following approximation,

ρTi ∝ exp

(
Fi(W

T
i )− Fi(W̄

T−E)

α

)
, (3)

where α is a temperature hyperparameter to control the strength of the proportionality. As α→∞,
the strength of proportionality decreases, e.g., in the limit, ρt → 1. Intuitively, a small α increases
the concentration of ρti and a large α decreases the concentration and makes the weights more evenly
spread. In subsequent sections, we term this family of aggregation strategy as the Exp-α method. We
provide a detailed algorithm description of Exp-α and discussion on computation in Appendix A.2.

4 EXPERIMENTS

Overview. In this section, we present experiments to test the capability of the Exp-α strategy be-
yond theory. To this end, we surveyed existing literature and identified three dominant data hetero-
geneity types: imbalance (Zhao et al., 2018), label-flipping (Xie et al., 2019) and domain shift (Li
et al., 2021). Each types of heterogeneity brings a specific challenge to an aggregation strategy.
Specifically, imbalanced clients require the aggregation to be adaptive to the severity of imbalance;
label-flipping requires the aggregation to block contributions from label-flipped clients; domain shift
requires the aggregation to not disregard any clients since all domains should contribute.

Datasets. To benchmark on different data heterogeneity, we use popular datasets in FL re-
search (Zhao et al., 2018; Li et al., 2021; Yuan et al., 2021). For imbalance, we adopt the popular
Imbalanced CIFAR10 (Cao et al., 2019) setting in the imbalanced classification task. For label-
flipping experiments, we use CIFAR10 with randomly flipped labels (Xie et al., 2019; Jebreel et al.,
2022). For domain shift experiments, following Li et al. (2021), we use Digits (Li et al., 2021),
Office-Clatech10 (Gong et al., 2012), and DomainNet (Peng et al., 2019), each of which consists
of a range of different domains with shared labels. Specifically, Digits has five domains, Office-
Clatech10 has four domains, and DomainNet has six domains. Please see Appendix A.4 for details.

Metrics. We compare different methods using the accuracy achieved at both the halfway and full
global training iterations (McMahan et al., 2017). Higher accuracy means lower converged error us-
ing the same number of optimization steps. We also report the global iterations required to achieve
X performance (given as “Accx”) (McMahan et al., 2017). Lower “Accx” means that the algo-
rithm converges to the same performance using fewer rounds of global communications and has
higher convergence rate. We separate datasets into train, validation, and test splits, and report both
validation and test accuracy if applicable in our experiments.

Backbone Algorithms. Exp-α is an aggregation strategy and can plug into most existing FL meth-
ods. We select five representative baselines from different categories as the backbone algorithm:
FedAvg (McMahan et al., 2017), FedAvgM (Hsu et al., 2019), FedAdam (Reddi et al., 2020), Fed-
Prox (Zhao et al., 2018), and FedFor (Tian et al., 2022). Specifically, FedAvgM and FedAdam use
different server-side momentum while FedProx and FedFor have different client-side regularization.
For domain shift experiments, we include the SOTA personalized FL alogorithm FedBN (Li et al.,
2021). For all experiments, we assume a large amount of available clients and sample a fraction
of them to participate in each round of communication. This corresponds to the most practical FL
setting: cross-device FL with partial participation (Kairouz et al., 2021). For different experiments,
we use different neural network architectures. Please refer to the Appendix A.3 for more details.

2Some FL algorithms require exact convergence on local model, e.g., FedPD (Zhang et al., 2020).
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4.1 IMBALANCE EXPERIMENTS

For imbalance experiments, we use the Imbalanced CIFAR10 (Cao et al., 2019) dataset created with
an artificial exponential imbalance among classes. To create this exponential imbalance, we specify
a variable imbalance ratio. For example, an imbalance ratio of 0.01 means that the ratio between
the number of samples in the smallest class and the largest class is 0.01.

Table 1: Compatibility Experiments on Imbalanced CIFAR. Results are averaged over 3 runs. E
is the number of local iterations and t refers to the number of global iterations. A complete table
with standard deviation is available at A.5.

E = 20 E = 40 E = 160

Backbone Strategy acc40↓ t = 200 ↑ t = 400 ↑ Test↑ acc40↓ t = 100 ↑ t = 200 ↑ Test↑ acc40↓ t = 25 ↑ t = 50 ↑ Test ↑

FedAvg Propto. 43.33 55.89 64.78 64.60 22.33 55.77 64.41 64.25 7.00 54.85 63.48 63.55
Exp-α 38.00 58.24 67.19 66.86 19.67 57.20 66.12 65.59 5.33 57.77 66.12 66.09

FedProx Propto. 47.33 56.53 64.86 64.57 25.00 55.92 65.44 64.98 7.33 55.52 64.06 63.91
Exp-α 36.00 57.99 65.74 65.54 22.00 57.41 66.22 65.83 6.33 56.55 66.05 65.63

FedFor Propto. 37.67 60.80 69.78 69.62 16.33 64.71 74.04 73.25 6.33 57.74 67.02 66.71
Exp-α 34.67 62.15 70.48 70.04 16.67 64.47 74.44 73.90 5.33 59.49 69.34 69.06

FedAvgM Propto. 26.67 63.43 71.36 70.72 16.33 62.38 70.55 70.28 8.00 59.25 69.17 68.40
Exp-α 25.00 65.04 72.65 72.21 13.00 64.15 72.69 72.55 6.00 61.08 69.61 69.52

FedAdam Propto. 22.33 72.67 79.38 78.87 14.67 67.59 76.41 76.15 10.00 55.05 64.98 64.32
Exp-α 18.67 74.16 80.56 79.69 14.33 69.26 76.86 76.49 11.33 54.75 65.37 65.20

1

Compatibility to other FL algorithms. To mimic the real world situation of varying imbalance,
we sample a batch of 10 clients for each round of communication and each client is created using
an imbalance ratio sampled randomly from the set of ratios {1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}
covering a gradual increase of severity of imbalance from balanced, moderately imbalanced and
extremely imbalanced datasets. At the beginning of each round, we re-sample the clients and their
imbalance ratios. We benchmark the performance of Exp-α and proportional aggregation in six
FL algorithms under four communication-computation configurations with a trade-off between the
number of global iterations (denoted as t) and local update iterations (denoted as E) in Tab. 1. More
local update (larger E) iterations lead to more severe weight divergence (Li et al., 2019) but with
potential global communication savings (smaller t). Here, we report the number of steps to reach
40% accuracy (denoted as acc40), half-time, final validation accuracy, and the final test accuracy.
Moreover, we fix the temperature hyperparameter α = 0.2, chosen by a grid search on a validation
set using FedAvg and FedAvgM with {t = 100, E = 80} and an imbalance ratio of 0.001. Please see
Appendix A.5 for the details on effects of α. We observe that Exp-α brings improvement to all FL
algorithms considered3. Specifically, most algorithms using Exp-α reach 40% accuracy with fewer
rounds of global steps than using proportional aggregation, e.g., 12.3% reduction in number of steps
using FedAvg with E = 20. This shows that Exp-α improves convergence rate over proportional
aggregation. Furthermore, all algorithm using Exp-α reach higher converged accuracy, thus lower
error, than using proportional aggregation. This shows that in real world settings, where function
are non-convex, faster convergence speed can potentially lead to lower error, in contrast to the speed
and error trade-off in theoretical convergence analysis in convex settings.

Adaptability to Severity of Imbalance. As a dynamic algorithm, Exp-α should weight each sample
differently based on the severity of imbalance. To provide more insights into the adaptability to the
degree of imbalance, we now use more controlled sampling strategies and imbalance ratios. Instead
of sampling clients with random imbalance ratio as in the previous experiment, we designate a few
combinations of imbalance configurations. For example, we use the notation {1.0×4, 0.01×3, 0.1×
3} to denote a composition of four balanced clients, three imbalanced clients with an imbalance
ratio of 0.01 and three imbalanced clients with an imbalance ratio of 0.1. Specifically, we visualize
the aggregation weights of Exp-α and compare its performance against that of the proportional
aggregation in four imbalance configurations. Again, we sample ten clients at the beginning of
each round however with different imbalance configurations. The hyperparameter α is set to 0.2
and the FL setting is {t = 400, E = 20}. As we can see from Fig. 2a, Exp-α adapts to different
imbalance configurations. For example, as a client becomes less imbalanced, it receives a higher

3Exp-α can be applied to other FL algorithms such as SCAFFOLD (Karimireddy et al., 2020), Fed-
Dyn (Acar et al., 2021). However, these algorithms are not compatible with the current benchmark because
they are stateful algorithms and perform poorly in the cross-device setting (Xu et al., 2021).
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(a) Imbalance Adaptability Experiments (b) Flip Adaptability Experiments

Figure 2: We visualize the average aggregate weights and report test accuracy of Exp-α for different
imbalance and flip configurations. Exp-α always assigns smaller weight to more shifted clients.
Fedavg is used as the backbone FL algorithm and results are averaged over three runs.

weight. The balanced clients always have the highest aggregation weights. Also, as expected,
Exp-α shows more performance improvement when imbalance is more severe. In the case, when all
clients are balanced, Exp-α assign roughly equal weights to all clients with marginal variation due to
stochasticity in sampling. Experiments with IID clients are provided in Appendix A.5. As expected,
when clients have balanced datasets, Exp-α performs just as well as proportional aggregation.

4.2 LABEL FLIPPING EXPERIMENTS

For label flipping experiments, we use CIFAR10 as the dataset. To control the extend of label
flipping, we define corruption rate and flip ratio. For example, a corruption rate of 1/3 means that
with 1/3 chance, a client has flipped labels and a flip ratio of 1.0 means that all classes are incorrectly
labeled and 0.5 means that half of the classes are incorrectly labeled. The number of classes whose
labels are flipped is determined by the flip ratio multiplied by the number of classes.

Table 2: Compatibility Experiments on CIFAR with flipped clients. Results are averaged over 3
runs. E is the number of local iterations and t refers to the number of global iterations. A complete
table with standard deviation is available at A.6.

E = 20 E = 40 E = 160

Backbone Strategy acc40↓ t = 200 ↑ t = 400 ↑ Test↑ acc40↓ t = 100 ↑ t = 200 ↑ Test↑ acc40↓ t = 25 ↑ t = 50 ↑ Test ↑

FedAvg Propto. 69.33 52.00 59.55 59.47 31.67 52.80 60.59 60.21 10.00 49.65 60.73 60.45
Exp-α 36.33 58.39 66.97 67.01 18.33 57.19 65.78 66.21 5.33 58.34 66.45 66.24

FedProx Propto. 59.67 52.25 60.08 60.27 33.67 53.03 61.00 60.83 12.33 51.11 59.71 59.71
Exp-α 34.33 58.95 67.14 66.51 19.67 58.31 66.74 66.75 5.00 58.65 66.71 66.60

FedFor Propto. 53.00 54.54 61.71 61.98 25.67 56.77 66.79 66.49 9.67 53.32 62.78 61.94
Exp-α 28.00 62.50 70.89 70.39 15.33 64.50 73.02 72.57 5.33 60.56 70.18 69.70

FedAvgM Propto. 39.33 56.11 64.29 64.13 28.00 56.95 65.76 65.82 10.67 54.45 61.40 61.05
Exp-α 22.67 65.95 73.82 73.45 13.00 64.93 73.28 72.40 6.00 62.66 70.97 70.62

FedAdam Propto. 30.00 61.61 71.72 71.51 24.33 57.46 64.37 64.00 18.67 43.53 57.27 57.07
Exp-α 20.00 74.15 80.17 79.51 12.33 70.14 77.46 76.79 11.33 54.22 64.40 64.09

;

Compatibility to other FL algorithms. Similar to the imbalance experiments, we benchmark Exp-
α and proportional aggregation using six different FL backbone algorithms. In this experiment,
we keep α = 0.2, chosen by a grid search on a validation set using FedAvg and FedAvgM with
a corruption rate of 1/3, a flip ratio of 1.0 and {t = 100, E = 80}. Please see Appendix A.6
for the effects of α. At the beginning of each round, we sample six clients with different data
composition and each client has a probability of 1/3 being corrupted with a flip ratio of 1.0, meaning
that all its labels are incorrect. Therefore, the algorithm is challenged with a different flipping
pattern each time. We report the number of global steps to reach 40% accuracy, half-time, final
time validation accuracy and final test accuracy across four federated learning configurations in
Tab. 2. In all experiments, Exp-α brings significant improvements over proportional aggregation.
This demonstrates that 1) label flipping is detrimental to federated learning and 2) Exp-α can greatly
alleviate its negative affect.

Adaptability to Severity of Label Flipping. In this experiment, we study how Exp-α responds to
partially flipped clients. Specifically, we keep α = 0.2 and vary the flip ratio ∈ {1.0, 0.1}, meaning
a corrupted client can either have all labels wrong or just labels for one class incorrect. Furthermore,
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instead of sampling, we use a deterministic corruption rate ∈ {2/3, 1/3}. This means that at the
beginning of each round of communication, we sample six clients and four or two clients out of
the six clients will be corrupted, corresponding to 2/3 or 1/3 corruption rate respectively. The
hyperparameter α is set to 0.2 and the FL setting is {t = 400, E = 20}. In Fig. 2b, we present
four configurations covering the aforementioned variables of interest. We notice that 1) Exp-α
outperforms proportional aggregation in all configurations; 2) Exp-α differentiates between clients
with different level of label flipping, e.g., it assigns higher weights to flipped clients where only a
single class is incorrect than to those where all classes are incorrect. Furthermore, Exp-α works
when the number of flipped clients is majority and minority.

4.3 DOMAIN SHIFT EXPERIMENTS

Table 3: Domain Shift Experiments on Digits, Office-Clatech10 and DomainNet. Results are
averaged over 3 runs. Each benchmark has several domains. We use shorthand notation in this table.

Digits (Li et al., 2021) Office-Caltech10 (Gong et al., 2012) DomainNet (Peng et al., 2019)

Backbone Strategy MNIST SVHN USPS SD M-M Avg. A C D W Avg. C P I R S Q Avg.

FedAvg Propoto 95.64 61.33 95.38 81.82 75.26 81.89 57.47 50.81 65.63 77.40 62.83 72.37 64.13 38.81 69.87 69.31 59.23 62.29
Exp-α 95.62 61.13 95.39 81.77 75.71 81.92 59.03 51.70 64.58 86.44 65.44 73.44 65.05 39.93 70.01 70.76 60.50 63.28

FedBN Propoto 90.77 74.66 96.97 78.88 84.83 85.22 76.30 55.78 92.19 94.92 79.80 76.56 69.85 44.55 81.38 72.75 82.67 71.29
Exp-α 96.73 70.25 97.04 83.28 78.91 85.24 78.82 56.45 93.75 93.79 80.70 78.84 71.30 43.48 80.97 73.77 84.47 72.14

Unlike in the previous two challenges, for domain shift, a federated learning algorithm needs to con-
sider all clients despite their data heterogeneity. We benchmark Exp-α and proportional aggregation
on three domain shift benchmarks: Digits, Office, and DomainNet. Each benchmark consists of
several domains with a shared label space. Specifically, Digits consists of five digit-like datasets;
Office-Caltech10 has four domains and DomainNet has six domains. Please see Appendix A.4
for detailed description. We distribute the data from each domain to a client separately, such that
each client has a distinct data distribution with domain shift. FedAvg (McMahan et al., 2017) and
FedBN (Li et al., 2021) are used as the backbone FL algorithms. We report test accuracy of each
domain and cross-domain average for each benchmark under the FL setting {t = 400, E = 16}
in Tab. 3. Different α has been used for each dataset, chosen by grid search using the validation
set. Please see Appendix A.7 for the discussion on effects of α. We observe that Exp-α leads to
similar performance as proportional aggregation in most cases. This shows that Exp-α incorporates
all local data despite the existence of domain shifts among clients. Furthermore, Exp-α even brings
noticeable improvement in some cases . For example, Exp-α improves FedAvg with proportional
aggregation on Office-Clatech10 by a relatively 4% on average across four domains. Upon close
examination, the improvement mainly comes from the Webcam (W) domain (relatively 10% im-
provement). The Webcam domain is the best performing domain already when using proportional
aggregation, indicating that it benefits the most from federated learning across the four domains.
Exp-α emphasizes it further by assigning the Webcam domain the largest aggregation weight. For
this particular experiment, the average aggregation weights over the entire training trajectory for
Amazon (A), Caltech (C), DSLR (D) and Webcam (W) are {0.19, 0.26, 0.22, 0.34}. While Amazon
(A) received the smallest average aggregation weight, this did not deteriorate the performance of
Exp-α on this domain but rather improved it by a relative 3%.

5 CONCLUSION

While proportional aggregation enjoys several theoretical advantages, e.g., equal importance and
asymptotic convergence, a fixed client weighting is less sensible under non-IID settings. In this pa-
per, we start out by removing the assumption of proportional aggregation and derive a convergence
bound using a generic and time-varying aggregation strategy. This analysis reveals a surprising
trade-off between convergence speed and error under convexity assumptions. The analysis moti-
vates a family of aggregation strategies, which prioritize convergence speed and weight samples
dynamically. Consequently, we propose a new aggregation strategy, Exp-α, from this family. Our
extensive experiments on three types of data heterogeneity demonstrates its superior performance
and robustness, and compatibility to existing algorithm albeit the existence of non-zero error in the-
ory. More importantly, the theoretical analysis opens a new direction to study aggregation strategy
to focus on convergence speed and robustness in future works.
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6 REPRODUCIBILITY STATEMENT

We include a code repository to reproduce the results on imbalanced CIFAR10 reported in Tab. 1.
Specifically, the codebase includes an implementation of FedAvg (McMahan et al., 2017) with the
original proportional aggregation and the proposed Exp-α aggregation strategy. Readers can repro-
duce results reported in the first row of Tab. 1. The code repository has a readme file with necessary
instructions to install environment and run experiments. The code is written to run on a single GPU.
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A APPENDIX

A.1 EXTENDED RELATED WORKS

Client Update. FedProx (Zhao et al., 2018) adds a first order proximal term in the loss function;
FedCurv (Shoham et al., 2019) and FedFor (Tian et al., 2022) use a second order and first order
gradient regularization respectively; SCAFFOLD (Karimireddy et al., 2020) uses control-variate to
align objective functions; FedPD (Zhang et al., 2020)/FedDyn (Acar et al., 2021) propose a dynamic
regularization based on gradient consensus among clients.

Server Update. In the aggregation step, updated gradients are averaged in a weighted man-
ner to generate pseudo-gradients for the global model (Reddi et al., 2020). In the optimiza-
tion step, methods differ in how the pseudo-gradients are applied. FedAvg (McMahan et al.,
2017) directly uses SGD-like updates; FedAvgM (Hsu et al., 2019) adds Nesterov momentum and
FedAdam/FedYogi (Reddi et al., 2020) generalizes more adaptive optimization techniques. Our
method specifically tackles the less discussed aggregation step.

A.2 ALGORITHM DESCRIPTION OF EXP-α

Algorithm 1: Exp-α.
Data: K clients with local data Ξi for i ∈ {1, ...,K} are selected, temperature parameter α.
Result: WT

Initialize W0

for T ∈ {nE|n = 0, ..2} do
for i ∈ {1, ...,K} in parallel do

Fi(W
T )← CalculateRisk (Ξi,W

T )

WT+E
i ← ClientUpdate(WT ) ▷ e.g., FedProx Zhao et al. (2018)

Fi(W
T+E
i )← CalculateRisk (Ξi,W

T+E
i )

ρT+E
i = exp

(
Fi(W

T+E
i )−Fi(W

T )

α

)
. ▷ Eq. 3

end
∇F (WT ) = 1∑K

j=1 ρT+E
j

∑K
i=1 ρ

T+E
i

(
WT −WT+E

i

)
WT+E ← ServerUpdate(WT ,∇F (WT )) ▷ e.g., FedAvgM Hsu et al. (2019)

end

In this section, we describe the Exp-α algorithm (Alg. 1). Exp-α is an aggregation algorithm,
so it is compatible with most existing FL algorithms. Following the convention in (Reddi et al.,
2020) and to describe the algorithm as general as possible, we abstract the client optimization and
global optimization procedures as ClientUpdate and ServerUpdate. The majority of FL algorithms
differ in how they change these two components. Please refer to the related works section (Sec. 2)
for a brief discussion on this. In our experiments (Sec. 4), we aim to demonstrate generality and
compatibility of Exp-α in combination of innovations to these components. In Alg. 1, we implement
a CalculateRisk function to calculate the risk values. This is a simple inference forward pass through
the local dataset given specific model. The computation on the client side is fairly cheap, as it only
requires two additional inference passes on the local data. During local training, an FL algorithm
needs to run forward-backward pass, e.g., computing, storing and applying gradients for multiple
epochs, each of which has many more local iterations while the calculation of risk only requires a
simple forward pass without computing, storing and applying gradients. Therefore, the computation
cost of CalculateRisk is only a small fraction of the original computation cost.

A.3 IMPLEMENTATION DETAILS

For CIFAR experiment in Sec. 4.1 and 4.2, we use ResNet20 (He et al., 2016). Specifically, we use
the proper ResNet implementation for CIFAR10 (He et al., 2016). For Digits experiment in Sec. 4.3,
we use a custom CNN provided by Li et al. (2021). For Office and DomainNet experiment in Sec 4.3,
we use ResNet18 (He et al., 2016). All models are trained with SGD, with no momentum and weight
decays. We use constant learning rate, i.e., no learning rate decay: CIFAR, Digits and Office 0.01
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Table 4: Implementation Details for CIFAR10, Digits, Office and DomainNet.

Dataset Architecture Optimizer Learning Rate Batch Size Steps per Epoch

CIFAR10 ResNet20 He et al. (2016) SGD 0.01 128 10

Office-Caltech10 ResNet18 He et al. (2016) SGD 0.01 64 4

DomainNet ResNet18 He et al. (2016) SGD 0.05 64 4

Digits DigitModel Li et al. (2021) SGD 0.01 64 4

and DomainNet 0.05. We summarize the statistics in Tab. 4. To avoid the issue of implicit bais due
to difference in number of local updates (Wang et al., 2020), we keep the optimization steps per
epoch constant on all clients in one experiment. Therefore, we also report the the number of steps
in each local epoch in Tab. 4 for each dataset.

A.4 DATASET STATISTICS

Table 5: Train, validation and test splits for the Office-Caltech10 dataset.

Amazon Caltech DSLR Webcam

Train 536 628 87 165

Val 230 270 38 71

Test 192 225 32 59

Table 6: Train, validation and test splits for the DomainNet dataset.

Clipart Painting Infograph Real Sketch Quickdraw

Train 1472 1730 1838 3404 1549 2800

Val 631 742 788 1460 664 1200

Test 526 619 657 1217 554 1000

The Digits benchmark consists of SVHN (Netzer et al., 2011), USPS Hull (Hull, 1994), SynthDig-
its (Ganin & Lempitsky, 2015) and MNIST-M (Ganin & Lempitsky, 2015), MNIST (LeCun et al.,
1998); the DomainNet benchmark (Peng et al., 2019) has six domains. The Office-Caltech10
dataset (Gong et al., 2012) selects three doamins from Office-31 (Saenko et al., 2010), Amazon,
DSLR and Webcam, and one domain from Caltech256 (Griffin et al., 2007).

We split datasets into training, validation and test sets. In our experiments we report validation
accuracy and test accuracy if applicable. We summarize the number of samples in each split for
Office, DomainNet and Digits in domain shift experiments in Tab. 5,Tab. 6 and Tab. 7 respectively.
For CIFAR 10 experiments, we have the following splits {train : 35, 000, validation : 15, 000, test :
10, 000}.

A.5 ADDITIONAL RESULTS FOR IMBALANCE EXPERIMENTS IN SEC 4.1

Effects of Alpha. In this experiment, we fix the imbalance ratio to 0.001, the number of local epochs
as 2 and the number of global iteration 200, and vary the hyperaparameter α in Exp-α. Specifically,
we sample a different set of ten clients, among which four are balanced and six are imbalanced each
time. So the total number available clients is the number of rounds of communication multiplied by
ten. We compare convergence performance of under different α ∈ {0.2, 1.0, 5.0, 25.0, 125.0} using
two backbone FL algorithms: FedAvg (McMahan et al., 2017) and FedavgM (Hsu et al., 2019) in
Fig. 3. Compared to proportional aggregation, Exp-α with a proper selection of α can consistently
improve both convergence speed and converged performance. Specifically in this experiment, we
noticed that smaller α leads to better performance because a smaller α makes the weights more
concentrated on the balanced clients. We use α = 0.2 in the main paper in Sec. 4.1.

Effects of Local Steps and Degree of Heterogeneity. With increasing increasing number of local
steps and increasing heterogeneity among clients, a smaller α can do better. To demonstrate this
we present the following experiments. Specifically, At each round of global communication, we
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Table 7: Train, validation and test splits for the Digits dataset.

MNIST SVHN USPS SynthDitgits MNIST-M

Train 892 892 892 892 892

Val 595 595 595 595 595

Test 14000 19858 1860 97791 14000

(a) Fedavg (b) Fedavgm

Figure 3: Convergence of Fedavg and Fedavgm using Exp-α and proportional aggregation on Im-
balance CIFAR10. Results are averaged over three runs. Imbalance ratio = 0.001.

sample a different set of 10 clients, six of which are imbalanced. To show the effects of increasing
local steps, we run experiments across four communication settings with increasing number of local
steps E ∈ {20, 40, 80, 160} and a fixed imbalance ratio of 0.1. For each setting, we sweep α ∈
{0.2, 1, 5, 25, 125}.In Tab. 8, we show the test accuracy with different α for each communication
setting. We observe that increasing number of local steps requires smaller α.

To show the effects of increasing heterogeneity, we fix the number of local steps to be E = 160 and
vary the imbalance ration in {0.1, 0.2, 0.3, 0.4, 0.5} with smaller number indicating more severe
imbalance. Similarly, we sweep α ∈ {0.2, 1, 5, 25, 125}. In Tab. 9 we present test accuracy for
each imbalance ratio with different α. We observe that more severe heterogeneity can benefit from
smaller α.

Imbalance Compatibility Table with Standard Deviation. Here, we show the full table of Tab. 1
with standard deviation in Tab. 10.

Exp-α in IID Setting. In the main paper, we explored Exp-α in non-IID settings, where clients
are subject to different degrees of imbalance. In this section, we present results comparing FedAvg
using Exp-α and proportional aggregation under IID settings, where all clients have balanced data
in Tab. 11. As expected, Exp-α and proportional aggregation perform similarly.

(a) Fedavg (b) Fedavgm

Figure 4: Convergence of Fedavg and Fedavgm using Exp-α and proportional aggregation on
Flipped CIFAR10. Results are averaged over three runs. Flip ratio = 1.0.
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Table 8: Effects of Local Steps with EXP-α. We use a fixed imbalance ratio of 0.1.

0.2 1.0 5.0 25.0 125.0

E=20 66.68 66.63 65.35 66.72 67.13
E=40 66.33 66.54 66.92 66.72 66.81
E=80 65.62 66.61 66.65 66.37 66.34
E=160 66.50 66.36 65.53 65.53 64.78

Table 9: Effects of Heterogeneity with EXP-α. We sweep different imbalance ratio and use a fixed
number of local steps E = 160

Imbalance Ratio 0.2 1.0 5.0 25.0 125.0

0.1 66.50 66.36 65.53 65.53 64.78
0.2 67.19 66.83 66.84 66.71 66.22
0.3 67.07 66.38 66.40 66.96 65.85
0.4 66.87 67.48 68.79 66.64 66.71
0.5 65.75 66.18 66.16 66.63 67.33

A.6 ADDITIONAL RESULTS FOR LABEL FLIPPING EXPERIMENTS IN SEC. 4.2

Effects of Alpha. In this experiment, we fix the corruption rate to be 1/3, the flip ratio to be
1.0, i.e., all labels on a flipped client are incorrect, and vary the hyperparamter α. Specifically, we
randomly sample data from a training set to create six balanced clients. However, clients are subject
to label-flipping with a chance of 1/3. We compare convergence performance of under different α ∈
{0.2, 1.0, 5.0, 25.0, 125.0} using two backbone FL algorithms: fedavg (McMahan et al., 2017) and
fedavgm (Hsu et al., 2019) in Fig. 4. We notice that Exp-α with small α values provides significant
convergence improvement compared to proportional aggregation. This is because a smaller α forces
the aggregation algorithm to focus more on the clean clients. We use α = 0.2 in the main paper in
Sec. 4.2.

Label Flipping Compatibility Table with Standard Deviation. Here, we show the full table of
Tab. 2 with standard deviation in Tab. 12.

A.7 ADDITIONAL RESULTS FOR DOMAIN SHIFT EXPERIMENTS IN SEC. 4.3

Effects of Alpha. In this section, we sweep across a range of α ∈ {0.2, 1, 5, 25, 125} on the three
domain shift benchmarks: Digits, Office-Caltech10 and DomainNet. We report validation accuracy
in Tab. 13. While there is not obvious trend on which α works the best, Exp-α with a moderate
α ≥ 1 outperforms proportional aggregation in most cases.

A.8 LEMMAS

To facilitate the derivation of the main convergence bound, we will introduce some lemmas. Specif-
ically, we will utilize the method of virtual sequence (Stich, 2018). Let IE be the set of synchro-
nization/communication steps, such that IE = {nE|n = 0, ..2} where E denotes the number of
local update iterations. We first introduce an intermediate notation denoting the update of a single
step SGD update on a client:

Vt+1
i = Wt

i − ηt∇fi(Wt
i ; ξ

t
i). (4)

where ξti ∼ Pi is a sampled data point on the client i at time t.

Depending on whether the current iteration is a synchronization step, the local update on each client
can be written as the following, for t ≥ 0:

Wt+1
i =


Vt+1

i if t+ 1 /∈ IE , (5)
N∑
i=1

ρt+1
i Vt+1

i if t+ 1 ∈ IE . (6)

where ρt+1
i ≥ 0 and

∑N
i=1 ρ

t+1
i = 1 is the aggregation weight for client i, and W0

i = W0.
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Table 10: Compatibility Experiments on Imbalanced CIFAR. Results are averaged over 3 runs.
E is the number of local iterations and t refers to the number of global iterations.

E = 20 E = 40 E = 80 E = 160

Backbone Strategy acc40↓ t = 200 ↑ t = 400 ↑ Test↑ acc40↓ t = 100 ↑ t = 200 ↑ Test↑ acc40↓ t = 50 ↑ t = 100 ↑ Test↑ acc40↓ t = 25 ↑ t = 50 ↑ Test ↑

FedAvg
Propto. 43.33 55.89 64.78 64.60 22.33 55.77 64.41 64.25 11,33 56.44 64.81 64.73 7.00 54.85 63.48 63.55

± 3.21 ±1.44 ±0.60 ±0.34 ±0.58 ±1.11 ±1.62 ±1.44 ±1.53 ±1.49 ±0.58 ±0.62 ±2.65 ±1.35 ±0.19 ±0.67

Exp-α 38.00 58.24 67.19 66.86 19.67 57.20 66.12 65.59 11.33 57.74 66.20 65.81 5.33 57.77 66.12 66.09
±3.00 ±0.36 ±0.14 ±0.34 ±1.53 ±1.19 ±0.93 ±0.25 ±2.52 ±0.85 ±0.43 ±0.59 ±0.58 ±1.04 ±0.83 ±0.88

FedProx
Propto. 47.33 56.53 64.86 64.57 25.00 55.92 65.44 64.98 12.67 54.97 64.35 64.05 7.33 55.52 64.06 63.91

±2.31 ±0.15 ±0.66 ±0.16 ±5.57 ±1.68 ±1.09 ±0.68 ±1.53 ±0.60 ±0.81 ±0.56 ±0.58 ±0.32 ±0.64 ±0.49

Exp-α 36.00 57.99 65.74 65.54 22.00 57.41 66.22 65.83 10.00 57.90 66.53 66.08 6.33 56.55 66.05 65.63
±1.00 ±0.68 ±0.86 ±0.78 ±1.00 ±0.34 ±0.16 ±0.54 ±1.00 ±0.43 ±0.62 ±0.37 ±1.53 ±0.88 ±0.42 ±0.50

FedFor
Propto. 37.67 60.80 69.78 69.62 16.33 64.71 74.04 73.25 10.33 62.91 73.52 73.34 6.33 57.74 67.02 66.71

±3.06 ±0.89 ±0.67 ±0.46 ±1.53 ±1.11 ±1.01 ±1.10 ±0.58 ±0.48 ±0.82 ±0.39 ±0.58 ±1.29 ±0.46 ±0.61

Exp-α 34.67 62.15 70.48 70.04 16.67 64.47 74.44 73.90 9.00 63.98 73.68 73.29 5.33 59.49 69.34 69.06
± 2.52 ±1.17 ±0.72 ±0.70 ±0.58 ±0.22 ±0.57 ±0.69 ±0.00 ±0.46 ±0.87 ±0.64 ±0.58 ±0.55 ±0.15 ±0.30

FedAvgM
Propto. 26.67 63.43 71.36 70.72 16.33 62.38 70.55 70.28 10.33 61.37 69.41 69.32 8.00 59.25 69.17 68.40

±3.06 ±0.33 ±0.39 ±0.55 ±2.52 ±0.91 ±0.65 ±0.66 ±1.53 ±0.95 ±0.45 ±0.50 ±1.00 ±0.88 ±.94 ±1.20

Exp-α 25.00 65.04 72.65 72.21 13.00 64.15 72.69 72.55 8.33 64.29 72.77 72.77 6.00 61.08 69.61 69.52
±2.00 ±0.20 ±0.16 ±0.48 ±1.00 ±1.06 ±0.82 ±1.07 ±1.53 ±0.62 ±0.98 ±1.07 ±0.00 ±0.03 ±0.96 ±0.73

FedAdam
Propto. 22.33 72.67 79.38 78.87 14.67 67.59 76.41 76.15 12.00 63.03 72.01 71.50 10.00 55.05 64.98 64.32

±5.77 ±1.17 ±0.91 ±0.83 ±0.58 ±1.09 ±0.88 ±0.62 ±1.00 ±1.24 ±0.05 ±0.34 ±2.65 ±1.17 ±0.79 ±1.26

Exp-α 18.67 74.16 80.56 79.69 14.33 69.26 76.86 76.49 13.67 62.04 71.91 71.63 11.33 54.75 65.37 65.20
± 2.08 ±0.84 ±0.31 ±0.19 ±2.31 ±0.86 ±0.29 ±0.55 ±1.15 ±0.70 ±0.70 ±0.80 ±1.53 ±1.28 ±0.28 ±0.93

Table 11: Exp-α and Proportional Aggregation on IID CIFAR. Results are averaged over 3 runs.
E is the number of local iterations and t refers to the number of global iterations.

Local Epochs E = 20 E = 40 E = 80 E = 160

Strategy Global Iter. acc40↓ t = 200 ↑ t = 400 ↑ Test↑ acc40↓ t = 100 ↑ t = 200 ↑ Test↑ acc40↓ t = 50 ↑ t = 100 ↑ Test↑ acc40↓ t = 25 ↑ t = 50 ↑ Test ↑

FedAvg
Propto. 32.67 59.72 67.70 67.56 16.67 59.26 67.64 67.69 9.00 59.01 67.50 66.89 5.00 58.76 67.46 66.96

±4.93 ±0.97 ±0.63 ±0.78 ±0.58 ±0.29 ±0.36 ±0.24 ±1.00 ±1.31 ±0.57 ±0.54 ±0.00 ±1.28 ±1.06 ±0.50

Exp-α 34.00 59.30 67.59 67.17 17.00 58.48 67.06 67.30 9.00 58.94 67.30 66.88 4.67 59.52 67.85 67.66
±3.00 ±1.29 ±1.26 ±1.00 ±2.65 ±1.30 ±0.85 ±0.95 ±1.00 ±0.75 ±0.67 ±0.56 ±0.58 ±0.41 ±0.56 ±0.38

Then we define a virtual sequence

W̄t+1 =

N∑
i=1

ρt+1
i Wt+1

i

. In reality, we only have access to W̄t+1 when t+ 1 ∈ IE . We provide a graphical illus-
tration of virtual sequence with E = 3 and two clients in Fig. 1. The virtual sequence W̄t+1

can be viewed as a virtual single step SGD update from W̄t, i.e, W̄t+1 = W̄t − ηtgt where
gt =

∑N
i=1 ρ

t+1
i ∇fi(Wt

i ; ξ
t
i). Furthermore, the expected gradient is denoted as ḡt = E[gt] =∑N

i=1 ρ
t+1
i ∇Fi(W

t
i). Note that Lemma 2 and Lemma 3 are adaptations of lemmas from Li et al.

(2019) with the addition of time-varying aggregation weights. Deferred proof of lemmas is in A.10.

Lemma 1 Results of one-step SGD on the virtual sequence. With Assumption 1 and 2, if ηt ≤ 1
4L ,

we can show that

∥W̄t+1 −W∗∥2 ≤ (1− ηtµ)∥W̄t −W∗∥2 + 2

N∑
i=1

ρt+1
i

(
∥W̄t −Wt

i∥2
)

+ 6Lη2tΩ+ 2ηt(Γ− Ωt) + η2t ∥ḡt − gt∥2.

where Γ = maxt
∑N

i=1 ρ
t+1
i (Fi(W

∗)− Fi(W
∗
i )) and Ω = mint

∑N
i=1 ρ

t+1
i (Fi(W̄

t)−Fi(W
∗
i )).

Lemma 2 Bounded variance. With assumption 3, it follows that

E∥gt − ḡt∥2 ≤
N∑
i

(ρt+1
i )2σ2

i ≤ max
t

N∑
i=1

(pt+1
i )2σ2

i .

Lemma 3 Bounded divergence. With assumption 4, ηt is non-decreasing and ηt ≤ 2ηt+E , ∀t ≥
0, it follows that

E

[
N∑
i=1

ρt+1
i ∥W̄t −Wt

i∥2
]
≤ 4η2t (E − 1)G2
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Table 12: Compatibility Experiments on CIFAR with flipped clients. Results are averaged over
3 runs. E is the number of local iterations and t refers to the number of global iterations.

E = 20 E = 40 E = 80 E = 160

Backbone Strategy acc40↓ t = 200 ↑ t = 400 ↑ Test↑ acc40↓ t = 100 ↑ t = 200 ↑ Test↑ acc40↓ t = 50 ↑ t = 100 ↑ Test↑ acc40↓ t = 25 ↑ t = 50 ↑ Test ↑

FedAvg
Propto. 69.33 52.00 59.55 59.47 31.67 52.80 60.59 60.21 20.00 51.40 60.39 60.12 10.00 49.65 60.73 60.45

±3.06 ±2.11 ±1.52 ±1.91 ±2.08 ±0.19 ±0.59 ±0.84 ±3.46 ±0.29 ±0.48 ±1.05 ±1.73 ±1.70 ±0.93 ±0.70

Exp-α 36.33 58.39 66.97 67.01 18.33 57.19 65.78 66.21 10.33 58.47 66.57 66.80 5.33 58.34 66.45 66.24
±2.31 ±1.09 ±0.72 ±0.23 ±1.15 ±1.11 ±0.99 ±0.82 ±0.58 ±1.13 ±0.90 ±0.64 ±0.58 ±0.50 ±0.76 ±0.79

FedProx
Propto. 59.67 52.25 60.08 60.27 33.67 53.03 61.00 60.83 15.67 51.56 60.74 60.47 12.33 51.11 59.71 59.71

±4.16 ±0.79 ±1.28 ±1.31 ±4.93 ±1.50 ±0.50 ±0.28 ±4.04 ±1.47 ±1.80 ±2.08 ±1.53 ±2.01 ±0.72 ±0.98

Exp-α 34.33 58.95 67.14 66.51 19.67 58.31 66.74 66.75 9.33 58.80 66.76 66.46 5.00 58.65 66.71 66.60
±0.58 ±0.38 ±0.27 ±0.44 ±0.58 ±0.40 ±0.24 ±0.64 ±1.15 ±1.01 ±0.29 ±0.14 ±1.00 ±0.96 ±1.22 ±1.21

FedFor
Propto. 53.00 54.54 61.71 61.98 25.67 56.77 66.79 66.49 16.33 57.92 66.88 66.41 9.67 53.32 62.78 61.94

±12.00 ±0.92 ±1.17 ±1.15 ±3.79 ±0.41 ±0.29 ±0.61 ±1.53 ±1.15 ±0.36 ±0.83 ±0.58 ±1.55 ±1.34 ±1.50

Exp-α 28.00 62.50 70.89 70.39 15.33 64.50 73.02 72.57 9.00 64.21 74.16 73.76 5.33 60.56 70.18 69.70
±3.00 ±0.96 ±0.80 ±1.38 ±0.58 ±0.22 ±0.17 ±0.34 ±1.00 ±0.13 ±1.18 ±0.84 ±0.58 ±1.28 ±0.44 ±0.65

FedAvgM
Propto. 39.33 56.11 64.29 64.13 28.00 56.95 65.76 65.82 15.67 52.13 63.68 63.22 10.67 54.45 61.40 61.05

±3.79 ±0.87 ±0.78 ±0.48 ±9.54 ±1.92 ±0.85 ±1.42 ±2.08 ±1.08 ±2.56 ±2.45 ±1.53 ±1.40 ±2.14 ±2.27

Exp-α 22.67 65.95 73.82 73.45 13.00 64.93 73.28 72.40 8.33 64.74 73.05 72.46 6.00 62.66 70.97 70.62
±2.08 ±0.19 ±0.36 ±0.78 ±1.00 ±0.37 ±0.57 ±0.38 ±1.53 ±0.61 ±0.50 ±0.50 ±1.00 ±0.62 ±0.77 ±0.98

FedAdam
Propto. 30.00 61.61 71.72 71.51 24.33 57.46 64.37 64.00 22.33 52.92 61.96 61.95 18.67 43.53 57.27 57.07

±4.36 ±0.31 ±0.98 ±0.94 ±3.06 ±1.02 ±0.96 ±1.00 ±2.52 ±3.00 ±1.32 ±1.77 ±5.51 ±2.92 ±.74 ±0.77

Exp-α 20.00 74.15 80.17 79.51 12.33 70.14 77.46 76.79 12.00 62.40 71.42 70.88 11.33 54.22 64.40 64.09
±2.65 ±0.90 ±0.44 ±0.41 ±1.53 ±0.45 ±0.16 ±0.04 ±1.00 ±0.11 ±0.75 ±1.11 ±1.53 ±2.04 ±0.61 ±0.97

;

Table 13: EXP-α with Varying α on Digits, Office-Clatech10 and DomainNet. Results are
averaged over 3 runs. We use two FL algorithms FedAvg (McMahan et al., 2017) and Fedbn (Li
et al., 2021). The numbers reported are validation accuracy.

Dataset FL Algorithm EXP-α Proportional

α = 0.2 α = 1.0 α = 5.0 α = 25.0 α = 125.0

Digits (Li et al., 2021) FedAvg 78.41 81.45 81.45 81.79 81.65 81.64
Fedbn 84.92 85.10 85.03 85.02 85.01 84.97

Office-Clatech10 (Gong et al., 2012) FedAvg 63.09 66.58 65.58 66.07 65.24 66.10
Fedbn 78.86 81.86 80.88 80.95 81.62 79.81

DomainNet (Peng et al., 2019) FedAvg 60.50 61.86 62.01 61.32 61.65 61.18
Fedbn 70.34 69.76 69.30 69.88 69.53 69.98

A.9 PROOF OF THEOREM 1

Here we present the proof of the main theorem using the lemmas from the previous section. It
follows closely the method in Li et al. (2019). While we do not claim novelty in the methodology of
this derivation, we show that there exists an error term due to time-varying weighting, that has been
previously ignored.

Let ∆t = E∥W̄t −W∗∥2. From Lemma 1, Lemma 2 and Lemma 3, we have that

∆t+1 ≤ (1− ηtµ)∆t + η2tB (7)

where B = maxt
∑N

i=1(ρ
t+1
i )2σ2

i + 8(E − 1)G2 + 6LΩ + 2
ηt
(Γ − Ω). Following the setting in

Li,2019 (Li et al., 2019), we set ηt = β
t+γ for some β ≥ 1

µ and γ > 0 such that η1 ≤ 1
4L and

ηt ≤ 2ηt+E . Let v = max{ β2B
βµ−1 , γ∆0}. We first assume that ∆t ≤ v

γ+t and prove by induction
that this holds for all t. By induction,

∆t+1 ≤ (1− ηtµ)∆t + η2tB =

(
1− β

t+ γ
µ

)
∆t +

β2

(t+ γ)2
B (8)

≤
(
1− β

t+ γ
µ

)
v

γ + t
+

β2

(t+ γ)2
B =

t+ γ − 1− βµ+ 1

(t+ γ)2
v +

β2

(t+ γ)2
B

=
t+ γ − 1

(t+ γ)2
v +

[
β2

(t+ γ)2
B − βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1

By the L-smoothness assumption (Assump. 1),

E[F (W̄t)]− F (W∗) ≤ L

2
E∥W̄T −W∗∥2 ≤ L

2

v

γ + t
(9)
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Following Li,2019 (Li et al., 2019), we choose β = 2
µ , γ = max{8L

µ , E} − 1, and let ηt = 2
µ

1
γ+t ,

we can show that the learning rate satisfies ηt ≤ 2ηt+E ,∀t ≥ 0. Then,

v = max

{
β2B

βµ− 1
, γ∆0

}
≤ β2B

βµ− 1
+ γ∆0 ≤

4B

µ2
+ γ∆0. (10)

Finally, plugging this in to Eq. 9, we obtain a convergence bound as,

E[F (W̄t)]− F (W∗) ≤ L

2

1

γ + t

[
4B

µ2
+ γ∆0

]
(11)

=
L

(γ + t)

{
2

µ2

[
max

t

N∑
i=1

(ρt+1
i )2σ2

i + 8(E − 1)G2 + 6LΩ+
2

ηt
(Γ− Ω)

]
+

γ

2
∆0

}

=
L

(γ + t)

(
2B̄

µ2
+

γ

2
∆0

)
+

L

µ
(Γ− Ω)

where ∆0 = ∥W0 − W∗∥22, B̄ = maxt
∑N

i=1(ρ
t+1
i )2σ2

i + 8(E − 1)G2 + 6LΩ, Γ =

maxt
∑N

i=1 ρ
t+1
i (Fi(W

∗)− Fi(W
∗
i )) and Ω = mint

∑N
i=1 ρ

t+1
i (Fi(W̄

t)− Fi(W
∗
i )).

A.10 PROOF OF LEMMAS

Proof of Lemma 1.

From the definition of W̄t+1 = W̄t − ηtgt, we can decompose ∥W̄t+1 −W∗∥2 as

∥W̄t+1 −W∗∥2 = ∥W̄t − ηtgt −W∗ − ηtḡt + ηtḡt∥2 (12)

= ∥W̄t −W∗ − ηtḡt∥2︸ ︷︷ ︸
A1

+2ηt
〈
W̄t −W∗ − ηtḡt, ḡt − gt

〉︸ ︷︷ ︸
A2

+η2t ∥ḡt − gt∥2.

In the above expression, E[A2] = 0 so we only need to bound A1.

A1 = ∥W̄t −W∗ − ηtḡt∥2 = ∥W̄t −W∗∥2 − 2ηt
〈
W̄t −W∗, ḡt

〉︸ ︷︷ ︸
B1

+ η2t ∥ḡt∥2︸ ︷︷ ︸
B2

. (13)

We first focus on B2. From the L-smooth assumption (Assump. 1), we have that

∥∇Fi(W
t
i)∥2 ≤ 2L(Fi(W

t
i)− Fi(W

∗
i )). (14)

We now bound B2 as the following,

B2 = η2t ∥ḡt∥2 = η2t

∥∥∥∥∥
N∑
i=1

ρt+1
i ∇Fi(W

t
i)

∥∥∥∥∥
2

≤ η2t

N∑
i=1

ρt+1
i ∥∇Fi(W

t
i)∥2 (15)

≤ 2Lη2t

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i )).

where the first inequality comes from the convexity of norms and Jensen’s inequality for convex
functions.

To bound B1, we first split it into two terms by the linearity of inner product as

B1 = −2ηt
〈
W̄t −W∗, ḡt

〉
= −2ηt

〈
W̄t −W∗ +Wt

i −Wt
i ,

N∑
i=1

ρt+1
i ∇Fi(W

t
i)

〉
(16)

= 2ηt

N∑
i=1

ρt+1
i

〈
Wt

i − W̄t,∇Fi(W
t
i)
〉︸ ︷︷ ︸

B1,1

+2ηt

N∑
i=1

ρt+1
i

〈
W∗ −Wt

i ,∇Fi(W
t
i)
〉︸ ︷︷ ︸

B1,2

.
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To bound B1,1, we invoke Cauchy-Schwarz and AM-GM inequality as the following,

B1,1 =
〈
Wt

i − W̄t,∇Fi(W
t
i)
〉
≤
√

1

ηt
∥W̄t −Wt

i∥2ηt∥∇Fi(Wt
i)∥2 (17)

≤ 1

2

(
1

ηt
∥W̄t −Wt

i∥2 + ηn∥∇Fi(W
t
i)∥2

)
.

To bound B1,2, we use the convexity assumption (Assump. 2), which gives

B1,2 =
〈
W∗ −Wt

i ,∇Fi(W
t
i)
〉
≤ Fi(W

∗)− Fi(W
t
i)−

µ

2
∥W∗ −Wt

i∥2. (18)

Now we plug Eq. 15, 16, 17 and 18 back into A1 (Eq. 13) as the following,

A1 = ∥W̄t −W∗ − ηtḡt∥2 ≤ ∥W̄t −W∗∥2 + ηt

N∑
i=1

ρt+1
i

(
1

ηt
∥W̄t −Wt

i∥2 + ηn∥∇Fi(W
t
i)∥2

)

+ 2ηt

N∑
i=1

ρt+1
i

(
Fi(W

∗)− Fi(W
t
i)−

µ

2
∥W∗ −Wt

i∥2
)

+ 2Lη2t

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i ))

= ∥W̄t −W∗∥2 − ηtµ

N∑
i=1

ρt+1
i ∥W∗ −Wt

i∥2 +
N∑
i=1

ρt+1
i

(
∥W̄t −Wt

i∥2
)

+ 2Lη2t

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i )) + η2t

N∑
i=1

ρt+1
i ∥∇Fi(W

t
i)∥2

+ 2ηt

N∑
i=1

ρt+1
i

(
Fi(W

∗)− Fi(W
t
i)
)

≤ (1− ηtµ)∥W̄t −W∗∥2 +
N∑
i=1

ρt+1
i

(
∥W̄t −Wt

i∥2
)

+ 4Lη2t

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i )) + 2ηt

N∑
i=1

ρt+1
i

(
Fi(W

∗)− Fi(W
t
i)
)

︸ ︷︷ ︸
C

.
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The last inequality uses the convexity of norms, Jensen’s inequality and Eq. 14. We now rearrange
C.

C = 4Lη2t

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i )) + 2ηt

N∑
i=1

ρt+1
i

(
Fi(W

∗)− Fi(W
t
i)
)

(19)

+ 2ηt

N∑
i=1

ρt+1
i Fi(W

∗
i )− 2ηt

N∑
i=1

ρt+1
i Fi(W

∗
i )

= −2ηt
N∑
i=1

ρt+1
i Fi(W

t
i) + 2ηt

N∑
i=1

ρt+1
i Fi(W

∗
i ) + 4Lη2t

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i ))

+ 2ηt

N∑
i=1

ρt+1
i Fi(W

∗)− 2ηt

N∑
i=1

ρt+1
i Fi(W

∗
i )

= −2ηt(1− 2Lηt)

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗
i )) + 2ηt

N∑
i=1

ρt+1
i (Fi(W

∗)− Fi(W
∗
i ))

= −γt
N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗))︸ ︷︷ ︸
D

+4Lη2tΓt

where we define γt = 2ηt(1− 2Lηt) and Γt =
∑N

i=1 ρ
t+1
i (Fi(W

∗)− Fi(W
∗
i )).

To bound D, we use first use the convexity assumption (Assump. 2).

D =

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W

∗)) =

N∑
i=1

ρt+1
i (Fi(W

t
i)− Fi(W̄

t)) +
N∑
i=1

pρt+1
i (Fi(W̄

t)− Fi(W
∗))

(20)

≥
N∑
i=1

ρt+1
i

〈
Wt

i − W̄t,∇Fi(W̄
t)
〉
+

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗))

≥ 1

2

N∑
i=1

ρt+1
i

[
ηt∥∇Fi(W̄

t)∥2 + 1

ηt
∥Wt

i − W̄t∥2
]
+

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗))

≥ 1

2

N∑
i=1

ρt+1
i

[
2Lηt(Fi(W̄

t)− Fi(W
∗
i )) +

1

ηt
∥Wt

i − W̄t∥2
]
+

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗))

where the second last inequality uses the AM-GM inequality and the last equality comes from the
L-smooth assumption (Assump. 1).
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Therefore,

C ≤ γt

N∑
i=1

ρt+1
i

[
Lηt(Fi(W̄

t)− Fi(W
∗
i )) +

1

2ηt
∥Wt

i − W̄t∥2
]

(21)

− γt

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗)) + 4Lη2tΓt

= γt

N∑
i=1

ρt+1
i

[
Lηt(Fi(W̄

t)− Fi(W
∗
i )) +

1

2ηt
∥Wt

i − W̄t∥2
]

− γt

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗) + Fi(W

∗
i )− Fi(W

∗
i )) + 4Lη2tΓt

= γt(ηtL− 1)

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗
i )) + (4Lη2t + γt)Γt +

γt
2ηt

N∑
i=1

ρt+1
i ∥Wt

i − W̄t∥2

≤ γt(ηtL− 1)min
t

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗
i ))︸ ︷︷ ︸

Ω≥0

+2ηt max
t

Γt︸ ︷︷ ︸
Γ≥0

+
γt
2ηt

N∑
i=1

ρt+1
i ∥Wt

i − W̄t∥2

= (6η2tL− 2ηt − 4η3tL
2)Ω + 2ηtΓ +

γt
2ηt

N∑
i=1

ρt+1
i ∥Wt

i − W̄t∥2

≤ 6η2tLΩ+ 2ηt(Γ− Ω) +

N∑
i=1

ρt+1
i ∥Wt

i − W̄t∥2

where the second inequality is because
∑N

i=1 ρ
t+1
i (Fi(W̄

t) − Fi(W
∗
i )) ≥ 0 and ηtL − 1 ≤ − 3

4 ,
and the last inequality is because γt

2ηt
≤ 1 and 4η3tL

2Ω ≥ 0.

Plugging in everything into A1, we can bound the effect of one-step SGD as

∥W̄t+1 −W∗∥2 ≤ (1− ηtµ)∥W̄t −W∗∥2 + 2

N∑
i=1

ρt+1
i

(
∥W̄t −Wt

i∥2
)

(22)

+ 6Lη2tΩ+ 2ηt(Γ− Ω) + η2t ∥ḡt − gt∥2.

Proof of Lemma 2.

Assume Assumption 3 hold, the variance of gradients on all devices is bounded E∥∇fi(Wt; ξi) −
∇Fi(W

t)∥2 ≤ σ2
i ∀i ∈ {1, ..., N}.

E∥gt − ḡt∥2 = E

∥∥∥∥∥
N∑
i=1

ρt+1
i ∇fi(Wt; ξi)−

N∑
i=1

ρt+1
i Fi(W

t)

∥∥∥∥∥
2
 (23)

≤
N∑
i=1

(ρt+1
i )2E

[∥∥∇fi(Wt; ξi)− Fi(W
t)
∥∥2]

≤
N∑
i=1

(ρt+1
i )2σ2

i ≤ max
t

N∑
i=1

(ρt+1
i )2σ2

i

where the first inequality comes from the convexity of norms and Jensen’s inequality.

Proof of Lemma 3.
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Assume Assumption 4 holds, i.e., E∥∇fi(Wt; ξi)∥2 ≤ G2 ∀i ∈ {1, ..., N}. Let t0 denote a
synchronization step. This means that Wt0

i = W̄t0 . Because FL requires synchronization of every
E step, we have that t− t0 ≤ E − 1 where t is any step between now and the next synchronization
step (inclusively). Furthermore, we assume the learning rate ηt is non-increasing and ηo ≤ 2ηt.
Then,

E

[
N∑
i=1

ρt+1
i ∥W̄t −Wt

i∥2
]
= E

[
N∑
i=1

ρt+1
i ∥(W̄t − W̄t0)− (Wt

i − W̄t0)∥2
]

(24)

= E
[
Eρt∥Eρt

[
(Wt

i − W̄t0)
]
− (Wt

i − W̄t0)∥2
]

≤ E
[
Eρt∥Wt

i − W̄t0∥2
]

= E

Eρt

∥∥∥∥∥W̄t0 −

(
W̄t0 −

t−1∑
i=0

ηt∇fi(Wt; ξi)

)∥∥∥∥∥
2


= Eρt

E∥∥∥∥∥
t−1∑
i=0

ηt∇fi(Wt; ξi)

∥∥∥∥∥
2
 ≤ Eρt

E∥∥∥∥∥η0
t−1∑
i=0

∇fi(Wt; ξi)

∥∥∥∥∥
2


≤ Eρt

E∥∥∥∥∥η0
t−1∑
i=0

∇fi(Wt; ξi)

∥∥∥∥∥
2
 ≤ Eρt

[
E
[
η20(t− t0)

∥∥∇fi(Wt; ξi)
∥∥2]]

≤ Eρt

[
η20(E − 1)G2

]
≤ 4η2t (E − 1)G2

A.11 PROOF OF COROLLARY 1.1

Assume N |Ξi|∑N
j=1 |Ξj |

(Fi(W̄
t)− Fi(W

∗
i )) are arranged in decreasing order, i.e., N |Ξi|∑N

j=1 |Ξj |
(Fi(W̄

t)−

Fi(W
∗
i )) ≥

N |Ξi+1|∑N
j=1 |Ξj |

(Fi+1(W̄
t) − Fi+1(W

∗
i+1)). If we choose U(∗) ≥ 0 as a non-decreasing

function, then it follows that,

N |Ξi|∑N
j=1 |Ξj |

(Fi(W̄
t)− Fi(W

∗
i )) ≥

N |Ξi+1|∑N
j=1 |Ξj |

(Fi+1(W̄
t)− Fi+1(W

∗
i+1))

→ N |Ξi|∑N
j=1 |Ξj |

(Fi(W
∗
i )− Fi(W̄

t)) ≤ N |Ξi+1|∑N
j=1 |Ξj |

(Fi+1(W
∗
i+1)− Fi+1(W̄

t))

→ U

(
N |Ξi|∑N
j=1 |Ξj |

(Fi(W
∗
i )− Fi(W̄

t))

)
≤ U

(
N |Ξi+1|∑N
j=1 |Ξj |

(Fi+1(W
∗
i+1)− Fi+1(W̄

t))

)

Let’s define ρ̃t+1
i ∝ U

(
N |Ξi|∑N
j=1 |Ξj |

(Fi(W
∗
i )− Fi(W̄

t))

)
, we have

N∑
i=1

ρ̃t+1
i

N |Ξi|∑N
j=1 |Ξj |

(Fi(W̄
t)− Fi(W

∗
i )) ≤

1

N

N∑
i=1

N |Ξi|∑N
j=1 |Ξj |

(Fi(W̄
t)− Fi(W

∗
i ))

where the inequality is a direct consequence of the Chebyshev’s sum inequality.

Then rewrite the equation above as the following,

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗
i )) ≤

N∑
i=1

ρi(Fi(W̄
t)− Fi(W

∗
i ))

where ρt+1
i = N |Ξi|∑N

j=1 |Ξj |
ρ̃t+1
i and ρi =

|Ξi|∑N
j=1 |Ξj |

.
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Therefore,

min
t

N∑
i=1

ρt+1
i (Fi(W̄

t)− Fi(W
∗
i )) ≤ min

t

N∑
i=1

ρi(Fi(W̄
t)− Fi(W

∗
i )).

A.12 EXTENSION TO PARTIAL PARTICIPATION

To provide an partial participation extension to Thm. 1, we need to define some additional notations.
Note that the following derivation and notations largely follow the prior work (Li et al., 2019), which
provides an easy way to extend FL convergence analysis to the partial participation setting.

Stochasticity due to Client Sampling. Now, instead of full participation of N clients, at time t, we
assume to sample K clients from the pool of N available clients, forming an active set of St+1. This
new client sampling procedure introduces another level of stochasticity in addition to data sampling
stochasticity on each client. We use the notation Es[·] and E[·] to denote expectation w.r.t each of
the stochasticity respectively.

Assumption 5 The active set St+1 is constructed by sampling a client with probabilities {ρt+1
i |i =

1, ..., N} repeatedly for K times with replacement, and the aggregation pattern is defined as,

W̃t+1 =

N∑
i=1

ρt+1
i Wt+1

i where Wt+1
i =

{
Vt+1

i , if t+ 1 /∈ IE
1
K

∑K
i=1 V

t+1
i , if t+ 1 ∈ IE

}
. (25)

The virtual sequence W̃t+1 is different than the virtual sequence W̄t+1 in Eq. 2 when t+ 1 ∈ IE .
Therefore, the key to incorporate partial participation is characterizing the difference between the
two when t+ 1 ∈ IE .

To facilitate the proof we present the following two lemmas.

Lemma 4 If t+ 1 ∈ IE , then

Es[W̃
t+1] = W̄t+1.

Lemma 5 If t+ 1 ∈ IE and ηt ≤ 2ηt+E is non-increasing ∀t ≥ 0, then

Es[∥W̃t+1 − W̄t+1∥2] ≤ 4

K
η2tEG2

Theorem 2 Assume Assumptions 1-5 hold and L, µ, σi, G be defined therein. Choose γ = max L
µ

and the learning rate ηt = 2
µ(γ+t) and T ∈ IE . Then FedAvg using SGD with partial device

participation and a generic, time-varying sampling weights
∑N

i=1 p
t
i = 1 satisfies

E[F (WT )]− F (W∗) ≤ L

(γ + T )

(
2(B̄ + C)

µ2
+

γ

2
∆0

)
︸ ︷︷ ︸

vanishing

+
L

µ
(Γ− Ω)︸ ︷︷ ︸

non−vanishing

where ∆0 = ∥W0 −W∗∥22, B̄ = maxt
∑N

i=1(p
t+1
i )2σ2

i + 8(E − 1)G2 + 6LΩ, C = 4
KEG2,Γ =

maxt
∑N

i=1 ρ
t+1
i (Fi(W

∗)− Fi(W
∗
i )), and Ω = mint

∑N
i=1 ρ

t+1
i (Fi(W̄

t)− Fi(W
∗
i ))∀t ≥ 0.

Proof of Lemma 4

Es[W̃
t+1] = Es

[
1

K

K∑
i=1

Vt+1
i

]
=

1

K

K∑
i=1

Es

[
Vt+1

i

]
=

N∑
i=1

ρt+1
i Vt+1

i = W̄t+1
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Proof of Lemma 5

Es[∥W̃t+1 − W̄t+1∥2] = Es

∥∥∥∥∥ 1

K

K∑
i=1

Vt+1
i − W̄t+1

∥∥∥∥∥
2
 = Es

 1

K2

∥∥∥∥∥
K∑
i=1

(
Vt+1

i − W̄t+1
)∥∥∥∥∥

2


≤ Es

[
1

K2

K∑
i=1

∥∥Vt+1
i − W̄t+1

∥∥2] =
1

K2

K∑
i=1

Es

[∥∥Vt+1
i − W̄t+1

∥∥2]
=

1

K
Es

[∥∥Vt+1
i − W̄t+1

∥∥2]
where the first inequality stems from triangle inequality of norms. Now we introduce a new notation
ts

.
= t + 1 − E ∈ IE , which is the most recent aggression moment. Therefore, W̄ts is the same

across all clients.
1

K
Es

[∥∥Vt+1
i − W̄ts + W̄ts − W̄t+1

∥∥2] = 1

K
Es

[∥∥(Vt+1
i − W̄ts)− (W̄t+1 − W̄ts)

∥∥2]
=

1

K
Es

[∥∥(Vt+1
i − W̄ts)− Es[V

t+1
i − W̄ts ]

∥∥2] ≤ 1

K
Es

[∥∥Vt+1
i − W̄ts

∥∥2]
The last inequality stems from the calculation of auto-correlation, i.e., E[∥x − E[x]∥2] = E∥x∥2 −
E[x]2. Finally, we have the following,

E
[
Es[∥W̃t+1 − W̄t+1∥2]

]
≤ 1

K

N∑
i=1

ρt+1
i

(
E
[∥∥Vt+1

i − W̄ts
∥∥2))

=
1

K

N∑
i=1

ρt+1
i

E


∥∥∥∥∥∥

t∑
j=ts

ηj∇fi(Wj
i ; ξ

j
i )

∥∥∥∥∥∥
2



≤ 1

K

N∑
i=1

ρt+1
i

 t∑
j=ts

E
[∥∥∥ηj∇fi(Wj

i ; ξ
j
i )
∥∥∥2]


≤ 1

K

N∑
i=1

ρt+1
i

4η2t

t∑
j=ts

E
[∥∥∥∇fi(Wj

i ; ξ
j
i )
∥∥∥2]


≤ 1

K

N∑
i=1

ρt+1
i

(
4η2tEG2

)
=

4

K

(
η2tEG2

)
A.13 ADDITIONAL PROOF

In the main paper, we claimed equality between Thm. 1 and the convergence bound in a prior
work (Li et al., 2019) if ρti = ρi = |Ξi|∑N

j=1 |Ξj |
. Specifically, we want to show that Ω = Γ =∑N

i=1 ρi(Fi(W
∗) − Fi(W

∗
i )). In this section, we give a detailed proof to this statement. The

equality holds because

Ω = min
t

N∑
i=1

ρi(Fi(W̄
t)− Fi(W

∗
i )) = min

t

[
N∑
i=1

ρiFi(W̄
t)

]
−

N∑
i=1

ρiFi(W
∗
i )

=

N∑
i=1

ρiFi(W
∗)−

N∑
i=1

ρiFi(W
∗
i ),

and,

Γ = max
t

N∑
i=1

ρi(Fi(W
∗)− Fi(W

∗
i )) =

N∑
i=1

ρiFi(W
∗)−

N∑
i=1

ρiFi(W
∗
i ).
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Therefore, the bound in Thm 1 reduces to the following,

E[F (WT )]− F (W∗) ≤ L

(γ + T )

(
2B̄

µ2
+

γ

2
∆0

)
︸ ︷︷ ︸

vanishing

where ∆0 = ∥W0 −W∗∥22, B̄ =
∑N

i=1 ρ
2
iσ

2
i + 8(E − 1)G2 + 6LΓ, Γ =

∑N
i=1 ρiFi(W

∗) −∑N
i=1 ρiFi(W

∗
i ).
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