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Abstract

Understanding dynamics from visual observations
is a challenging problem that requires disentan-
gling individual objects from the scene and learn-
ing their interactions. While recent object-centric
models can successfully decompose a scene into
objects, modelling their dynamics effectively still
remains a challenge. We address this problem by
introducing SlotFormer - a Transformer-based au-
toregressive model operating on learned object-
centric representations. Given a video clip, our
approach performs dynamic reasoning over object
features to model spatial-temporal object relation-
ships and generate realistic future frames. In this
paper, we successfully apply SlotFormer to the
problem of consistent long-term dynamic model-
ing in object-centric models. We compare Slot-
Former to image-based video prediction models
and object-centric dynamic models on two syn-
thetic video datasets consisting of complex object
interactions. Our method generates videos of high
quality as measured by conventional video predic-
tion metrics, while achieving significantly better
long-term synthesis of object dynamics.

1 INTRODUCTION

Visual reasoning in videos often involves object-oriented
scene decomposition [Yi et al., 2019] and temporal dynam-
ics understanding [Chen et al., 2020b, Ding et al., 2021b].
A traditional approach to video prediction [Shi et al., 2015,
Wang et al., 2017, 2018b, Denton and Fergus, 2018, Yu et al.,
2019] relies on global dense frame-level representations,
which uses past frames feature maps to predict future frames
representations. Such models are lacking object-specific in-
ductive biases and often produce blurry generation outputs,
failing to preserve object identities over time [Lotter et al.,

2016, Wang et al., 2018a]. Fortunately, this issue can be
mitigated if using recently proposed object-centric models
[Burgess et al., 2019, Greff et al., 2019, Locatello et al.,
2020]. This class of methods first constructs a structured
representation of the scene, and then learns the interactions
among these object-centric features (a.k.a. slots) to model
future object dynamics [Jiang et al., 2019, Kossen et al.,
2019, Lin et al., 2020].

While the general direction is promising, most existing
works bake in strong assumptions in their frameworks.
This includes restrictive domain-specific scene priors [Jiang
et al., 2019] or hand-crafted properties for object represen-
tations [Lin et al., 2020]. As a result, such meticulously
engineered methods are successful on simple 2D datasets,
yet failing to scale to more complex 3D environments [Yi
et al., 2019, Hill et al., 2020]. Alternatively, more generic
methods, such as [Creswell et al., 2021] and [Zoran et al.,
2021], can be applied to a wider range of domains, but strug-
gle to model object dynamics faithfully. This is expected, as
such methods model object interactions and their temporal
dynamics separately (using a weaker sequence model, i.e.,
an LSTM [Hochreiter and Schmidhuber, 1997], for the lat-
ter). In addition, all the previous works only experiment on
datasets with limited object movement and relatively short
rollout horizon (often smaller than 20 steps).

In this paper, we address the aforementioned shortcomings
with SlotFormer: a purely Transformer-based autoregressive
model. We treat future prediction as a sequential model-
ing problem: given a sequence of input images, SlotFormer
takes in the object-centric representations extracted from
these frames, and predicts the object features in the future
step. Importantly, as opposed to many previous works, we
do not inject any priors to the model; both the object-centric
and the dynamic model are generic learnable modules. Be-
sides, by conditioning on multiple frames, the self-attention
operation in Transformers is capable of capturing the spatial-
temporal object interactions simultaneously. It ensures the
consistency of object properties and dynamics in the synthe-
sized frames. We evaluate SlotFormer on two video datasets
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consisting of diverse object dynamics. Our method not only
presents competitive results on standard video prediction
metrics, but also achieves significant gains when evaluating
on object-aware metrics in the long range. In summary, our
main contributions are:

• A Transformer-based dynamic model for future syn-
thesis in object-centric models.

• State-of-the-art performance on OBJ3D and CLEV-
ERER, two datasets with complex object interactions,
where our approach outperforms the baselines by a
sizeable margin in modeling long-term dynamics.

2 RELATED WORK

In this section, we provide a brief overview of related works
on object-centric modeling and Transformers, which is fur-
ther expanded in Appendix A.

Object-centric representation learning from videos. Our
work builds upon recent effort in decomposing raw videos
into temporally aligned slots [Crawford and Pineau, 2020,
Kipf et al., 2021, Kabra et al., 2021]. Existing object-centric
dynamic models often make strong assumptions on the un-
derlying object representations. Jiang et al. [2019] explic-
itly decompose the scene into foreground and background
to apply fixed object size and presence priors. Lin et al.
[2020] further disentangle object features to represent object
positions, depth and semantic attributes separately. Some
works leverage the power of Transformers to eliminate these
domain-specific priors, while they still model the single-step
object interactions and temporal scene dynamics separately
[Creswell et al., 2021, Zoran et al., 2021]. The most rele-
vant work to ours is OCVT [Wu et al., 2021], which also
applies Transformers to slots from multiple frames. How-
ever, OCVT utilizes manually disentangled object features,
and needs Hungarian matching for latent alignment during
training. Therefore, it still underperforms RNN-based base-
lines in the future prediction task. In contrast, SlotFormer
is a general Transformer-based dynamic model which is
agnostic to the underlying object-centric representations. It
performs spatial-temporal reasoning over objects simultane-
ously, enabling consistent long-term dynamics modeling.

Transformers for sequential modeling. Inspired by the
success of autoregressive Transformers in language model-
ing [Radford et al., 2018, 2019, Brown et al., 2020], they
are also adapted to several image and video generation tasks
[Esser et al., 2021, Yan et al., 2021, Rombach et al., 2021,
Ren and Wang, 2022]. To handle the high dimensionality of
images, these models often adopt a two-stage training strat-
egy by first mapping images to discrete tokens Chen et al.
[2020a], Esser et al. [2021], and then learning a model over
tokens. However, since they operate on a regular image grid,
their mapping ignores the boundary of objects and usually
splits one object into multiple tokens. In this work, we learn

a transformer-based dynamics model over slot-based repre-
sentations that capture the entire object in a single vector
thus showing high-quality results.

3 METHOD

In this section, we describe our Transformer-based autore-
gressive model for dynamics modeling. We first review the
object-centric models we build upon (Section 3.1), then,
present the SlotFormer model (Section 3.2), and, finally,
describe the training objectives of our method (Section 3.3).

3.1 REVISITING SAVI

SlotFormer can build on any object-centric model that is
able to decompose video frames into temporally-aligned
object slots. We employ SAVi [Kipf et al., 2021] as our base
model in this paper due to its strong performance in unsu-
pervised object discovery and efficient inference process.

Given a series of input frames {xt}Tt=1, SAVi first applies
a Convolutional Neural Network (CNN) encoder to extract
image features, adds positional encoding and flattens the
result, ht = fenc(xt) + ppos ∈ R(HW )×Denc . Then, the
model initializes N slots S̃1 ∈ RN×Dslot from a set of
learnable vectors, and performs Slot Attention [Locatello
et al., 2020] between slots and the visual features. This
process is repeated at every timestep, denoted as:

St = fSA(S̃t,ht). (1)

The iterative attention updates the slot representations to
capture individual objects, thus decomposing the image. The
slot initialization for the next time-step is obtained from the
processed slots in the previous time-step as follows:

S̃t+1 = fdyn(St), (2)

where fdyn is a transformer encoder. That is, by alternating
between Eq. (1) and (2), SAVI decmoposes a video into a
set of temporarily consistent slots.

Finally, SAVi uses Spatial Broadcast Decoder [Watters et al.,
2019] to decode each slot into an RGB image yn

t and a seg-
mentation mask mn

t (segmenting the slots’s object), which
are combined into the final reconstructed image x̂t:

(mn
t ,y

n
t ) = fdec(s

n
t ), x̂t =

N∑
n=1

mn
t ⊙ yn

t . (3)

The entire network is trained end-to-end using a Mean
Squared Error (MSE) loss between xt and x̂t.

One natural way of extending SAVi to future prediction is
enforcing Ŝt to approximate St via future rollout loss as
done in [Zoran et al., 2021]. However, as we will see in
the experiments, this baseline performs poorly in long-term
unrolling, since it only considers slots from one timestep.
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Figure 1: SlotFormer architecture overview. Taking multiple video frames {xi}Ti=1 as input, we first extract object slots using the
pretrained SAVi model. Then, slots are linearly projected and added with temporal positional encoding. The resulting tokens are fed to the
model to generate future frames in an autoregressive manner.

3.2 SLOTFORMER

Overview. Given T input video frames {xi}Ti=1, SlotFormer
synthesizes a sequence of future frames {xT+k}Kk=1 of any
given horizon K. Our model operates in three steps: i) we
convert every video frame into a set of object slots St, using
a pretrained SAVi encoder, then ii) we feed the slots into a
Transformer model that models future dynamics and predict
slots at the next time-step, Ŝt+1, finally, iii) we feed the
predicted slots back into the Transformer to keep generating
future rollout autoregressively. To turn the future slots into
video frames, we use a pretrained SAVi decoder. The overall
pipeline of our method is shown in Figure 1.

Architecture. To build the SlotFormer’s dynamics model,
T , we adopt the standard Transformer encoder module with
NT layers. To match the inner dimensionality of T , we
project the input sequence of slots {St}Tt=1 ∈ R(TN)×Dslot

with linear mapping:

Gt = Linear(St), (4)

where Gt ∈ RN×De are the latent embeddings at frame t.

To indicate the temporal order of slots, we add positional
encoding (P.E.) to the input embeddings. A naive solution
would be to add a sinusoidal positional encoding to every
slot regardless of its timestep, as done in [Ding et al., 2021a].
However, this would break the permutation equivariance

among the slots, which is a useful property of our model.
Therefore, we only apply positional encoding at the tempo-
ral level, such that the slots at the same time-step receives
the same positional encoding:

V = [G1, G2, ..., GT ] + [P1, P2, ..., PT ], (5)

where V ∈ R(TN)×De is the resulting input to the trans-
former T and Pt ∈ RN×De denotes the sinusoidal posi-
tional encoding duplicated N times. Not only the tempo-
ral positional encoding preserves permutation equivariance
among slots, it also gives slightly better prediction results.

Now, we can utilize the Transformer to reason about the dy-
namics of the scene. Denote the Transformer output features
as U = [U1, U2, ..., UT ] ∈ R(TN)×De :

U = T (V ). (6)

We use the last N output features, UT ∈ RN×De , to predict
the slots at the next timestep via a linear mapping:

ŜT+1 = Linear(UT ), (7)

where ŜT+1 ∈ RN×Dslot .

For consequent future predictions, ŜT+1 will be treated as
the ground-truth slots along with {St}Tt=2 to predict ŜT+2.
In this way, the Transformer can be applied autoregressively
to generate any given number, K, of future frames.



Remark. The SlotFormer’s architecture allows to preserve
temporal consistency among slots at different timesteps.
To realize the temporal consistency, we employ residual
connections from ST to ŜT+1, which forces the transformer
T to apply refinement to the slots while preserving their
absolute order. Thanks to this useful property, SlotFormer
can be used to reason about individual object’s dynamics
for consistent future rollout.

3.3 MODEL TRAINING

Different from previous works that employ a GPT-like ar-
chitecture which predicts image tokens one by one with
a causal attention mask, we directly generate all the slots
at the next timestep in parallel. Therefore, we do not need
the teacher forcing strategy [Radford et al., 2018] for train-
ing. Instead, we train the model using the predicted slots
as inputs. This simulates the error accumulation process in
long-term sequence generation and improves the quality of
the generated videos as will be shown in Section 4.5.

We use a slot reconstruction loss and an image reconstruc-
tion loss for training. The former one is the MSE between
the predicted and the ground-truth slots, denoted as:

LS =
1

K ·N

K∑
k=1

N∑
n=1

||ŝnT+k − snT+k||2. (8)

We also enforce another MSE loss in the image space to pre-
serve consistent object attributes such as colors and shapes.
We obtain the reconstructed image x̂T+k using the pre-
trained SAVi decoder following (3). The image reconstruc-
tion loss is derived as:

LI =
1

K

K∑
k=1

||x̂T+k − xT+k||2. (9)

The final objective function is a weighted combination of
the two terms with a hyper-parameter λ:

L = LS + λLI . (10)

4 EXPERIMENTS

In this section, we evaluate the future prediction capabilities
of SlotFormer on two synthetic video datasets. We aim to
answer the following questions:

1. Can an autoregressive Transformer operating on slots
generate future frames with high visual quality? (Sec-
tion 4.2)

2. Does our method achieve consistent long-term dynam-
ics? (Section 4.3)

3. Does a Transformer capture meaningful cues in pre-
dicting the future state of objects? (Section 4.4)

4. How does each component of our method contribute
to the final performance? (Section 4.5)

4.1 EXPERIMENTAL SETUP

Datasets. For our evaluation we use OBJ3D [Lin et al.,
2020] and CLEVRER [Yi et al., 2019] - synthetic video
datasets capturing objects of diverse appearance, their dy-
namics and complex interactions, such as collisions and
occlusions. OBJ3D consists of videos where a sphere is
launched to collide with other objects. We follow [Lin et al.,
2020] to use 2,920 videos for training and 200 videos for
testing. Since most of the interactions end before 50 steps,
we only use the first 50 out of 100 frames in our experi-
ments. CLEVRER is a similar dataset with smaller objects,
and there are various objects entering the scene throughout
the video, making it harder than OBJ3D. Following [Zoran
et al., 2021], we subsample the video by a factor of 2, result-
ing in a length of 64. We also filter out video clips where
there are newly entered objects during the rollout period.
Further details on the datasets are provided in Appendix B.

Implementation Details. We resize all the images to the
H × W = 64 × 64 resolution, following previous works
[Lin et al., 2020, Zoran et al., 2021]. We first pretrain SAVi
on OBJ3D and CLEVRER dataset and then extract slots
for training SlotFormer. We discovered that vanilla SAVi
cannot properly handle some videos on CLEVRER. So we
introduce a stochastic SAVi to solve this problem, which
will be described in the Appendix. All predictive models
are trained by observing T = 6 burn-in frames to predict
K = 10 rollout images. For the Transformer, we use NT =
4 layers, and set De = 128 on OBJ3D and De = 256 on
CLEVRER. We train our model using a batch size of 64 with
Adam optimizer [Kingma and Ba, 2015] on both datasets.
The loss weight λ is 1. See Appendix C for more details.

Baselines. We compare our approach with four baselines
which are further described in Appendix D. The first base-
line is a naive copy-last-frame method (dubbed Copy). We
use a video prediction model PredRNN [Wang et al., 2017]
that directly generates future frames based on global image
features as our second baseline. We also adopt the state-of-
the-art generative object-centric model G-SWM [Lin et al.,
2020] which applies sophisticated priors. Finally, since the
code of PARTS [Zoran et al., 2021] is not publicly available,
we incorporate their Transformer-LSTM based dynamic
module to SAVi (denoted as SAVi-dyn) and train the model
using the same setting as [Zoran et al., 2021].

Evaluation Metrics. To evaluate the visual quality of the
generated videos, we report PSNR, SSIM [Wang et al.,
2004] and LPIPS [Zhang et al., 2018]. As pointed out by
[Zhang et al., 2018, Sara et al., 2019], PSNR and SSIM
align poorly with human perception, while LPIPS captures
more consistent perceptual similarity with human leveraging
learned deep features. Therefore, we focus our comparison
on LPIPS. To evaluate the predicted object dynamics, we
utilize the segmentation mask annotations, and calculate
the axis-aligned bounding boxes (AABB) of objects. We



Figure 2: Evaluation of SlotFormer and baselines at each rollout step. We show results in visual quality (left) and object dynamics (right).

PSNR↑ SSIM ↑ LPIPS↓

34.05 0.93 0.10

29.04 0.87 0.08

33.72 0.92 0.10

32.87 0.91 0.04

PredRNN

G-SWM

SAVi-dyn

Ours

GT

Figure 3: Generation results on OBJ3D. On the right, we report the visual quality metrics of the visualized rollouts for each model.

Method OBJ3D CLEVRER
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Copy 23.14 0.77 0.26 25.56 0.84 0.20
PredRNN 33.68 0.91 0.12 31.34 0.90 0.17
G-SWM 31.43 0.89 0.10 28.42 0.89 0.16
SAVi-dyn 32.94 0.91 0.12 29.77 0.89 0.19
Ours 32.40 0.91 0.08 30.21 0.89 0.11

Table 1: Visual quality of the generated frames on both datasets.
Though PSNR and SSIM are poor metrics for this task, we report
them for reference. The results of ours are averaged over 3 runs.

calculate the Average Recall (AR) with an IoU threshold of
50% for the predicted object boxes and the Adjusted Rand
Index (ARI) for the segmentation masks. We also report a
variant of ARI and a variant of mIoU which only focus on
foreground objects termed FG-ARI and FG-mIoU as done
in [Kipf et al., 2021]. These metrics measure how well our
simulated objects follow the ground-truth object trajecto-
ries. To test the long-term consistency of different methods,
we unroll the model for 44 and 42 frames on OBJ3D and
CLEVRER, respectively. By default, all metrics are aver-
aged over the entire rollout horizon.

4.2 EVALUATION ON VISUAL QUALITY

Table 1 presents the results on visual quality of the generated
videos. SlotFormer outperforms all baselines with a sizeable
margin in terms of LPIPS, and achieves competitive results
on PSNR and SSIM. We note that PSNR and SSIM are poor

Method AR ↑ ARI ↑ FG-ARI ↑ FG-mIoU ↑

G-SWM 43.98 57.14 49.61 24.44
SAVi-dyn 8.94 8.64 64.32 18.25
Ours 53.14 63.45 63.00 29.81

Table 2: Object dynamics of the generated frames on
CLEVRER dataset. All values are in %. The results of ours
are averaged over 3 runs.

metrics in this setting. For example, though PredRNN and
SAVi-dyn often produce predictions with objects disappear-
ing (as shown in Figure 3), they score highly in these two
metrics. In contrast, SlotFormer generates objects with con-
sistent attributes thorough the rollout, which we attribute to
modelling dynamics in the object-centric space, rather than
in the frames directly. This is also verified in the per-step
LPIPS results as shown in Figure 2 left. Since SlotFormer
relies on pretrained slots, the reconstructed images at ear-
lier steps have lower quality than baselines. Nevertheless, it
achieves clear advantage at longer horizon, demonstrating
superior long-term modelling. See Appendix E.1 for more
qualitative results on both datasets.

4.3 EVALUATION ON OBJECT DYNAMICS

To measure how well do the synthesized objects match the
ground-truth trajectories, we evaluate the bounding boxes
and the segmentation masks of objects. Since OBJ3D does
not have such annotations and Copy and PredRNN cannot
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Figure 4: Attention map visualization on the OBJ3D dataset. Our
model takes in slots from {xi}6i=1 (column 1-6) to predict slots of
x̂7 (column 7). We show images at the first row and the per-slot
future reconstructions at the rightmost column. The body of the
table shows the per-slot attention of SlotFormer when predicting
Ŝ7, with the arrows pointing at the regions of high importance for
predicting the future slot in the same row.

generate object-level outputs, we do not include them here.
Table 2 summarizes the quantitative results. SlotFormer
achieves the best performance on AR, ARI and FG-mIoU,
and competitive result on FG-ARI. SAVi-dyn scores a high
FG-ARI because its blurry predictions assign many back-
ground pixels to foreground objects, while the computation
of FG-ARI ignores false positives. This is verified by its
poor performance in FG-mIoU which penalizes such mis-
takes. We also show the per-step results in Figure 2 right
and Appendix E.2, where our method outperforms other
baselines throughout the entire rollout length.

4.4 ATTENTION ANALYSIS

In this section, we analyze the visual cues in the past that
SlotFormer utilizes to make future predictions. We do so
by visualizing the attention map from the last self-attention
layer in the transformer T . More precisely, given the last
T encoded frames {St}Tt=1, we are predicting the future
slots ŜT+1. Denote the attention scores from ŝiT+1 to sjt
as ai

t,j , where i, j ∈ [1, N ] and N is the number of slots.
At each timestep t and for each future slot i, we obtain
spatial attention maps oit over input frames xi as a weighted
combination of the slot reconstructions as follows:

oi
t =

N∑
j=1

ai
t,j · (m

j
t ⊙ yj

t ), (11)

which indicates the regions of xt SlotFormer attends upon
when predicting ŝiT+1. Figure 4 presents one example,
where the purple cube just collided with the purple sphere,
and is about to hit the yellow sphere. When predicting the
purple cube, the model focuses on the past collision event
in {xi}4i=1, and highlights the yellow sphere in x6. For the

Method PSNR ↑ SSIM ↑ LPIPS ↓

Ours (Full Model) 32.40 0.91 0.080
Burn-in T = 3 31.26 0.88 0.093
Burn-in T = 4 31.95 0.89 0.088
Burn-in T = 8 32.08 0.90 0.082
Naive P.E. 32.05 0.90 0.082
Teacher Forcing 30.52 0.87 0.106
No LI 31.23 0.88 0.093

Table 3: Ablation study on OBJ3D in terms of visual quality.

purple sphere, the Transformer only looks at the purple cube
because it will not hit the yellow sphere. Besides, since the
yellow sphere becomes heavily occluded in x6, SlotFormer
attends to earlier frames, while predicting its future motion
based on the purple cube. Finally, the red cylinder merely
looks at itself because it is not involved in the collisions.

4.5 ABLATION STUDY

Here, we study the importance of SlotFormer components
for future modelling on OBJ3D dataset (see Table 3).

Burn-in sequence length T . We compare our default burn-
in length T = 6 to variants with different length. The model
performance first improves with more input frames, and
slightly drops when T further increases to 8. We hypothesize
that this is because the Transformer is difficult to optimize
when the number of input tokens is too large.

Positional encoding. Using a vanilla sinusoidal positional
encoding which removes the permutation equivariance
among slots results small performance drop comparing to
the temporal positional encoding. This is not surprising, as
permutation equivariance is a useful prior for object mod-
elling, which should be preserved.

Teacher forcing. We try the teacher forcing strategy [Rad-
ford et al., 2018] by taking in ground-truth slots instead of
using the predicted slots autoregressively during training,
which degrades the results significantly.

Image reconstruction loss LI . As shown in the table,
adding an auxiliary image reconstruction loss improves the
quality of the generated videos drastically.

5 CONCLUSION

In this paper, we propose SlotFormer to enable object-
centric models to perform consistent long-term dynamics
modeling. Our approach leverages a Transformer-based au-
toregressive model to generate plausible future states given
a few initial observations of the scene. It leverages the pow-
erful self-attention mechanism to capture spatial-temporal
relationship of the scene. Experiments demonstrate that our
model can generate videos with high quality and achieves
state-of-the-art performance in object dynamics synthesis.
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A ADDITIONAL RELATED WORK

We provide a detailed review of related works in this section.

Dynamics modeling in object-centric representation
learning. SCALOR [Jiang et al., 2019] scales the SQAIR
[Kosiorek et al., 2018] model to work on scenes with multi-
ple moving objects. It introduces a background module to
model the image background separately. It also equips each
object with a depth property to handle occlusions. STOVE
[Kossen et al., 2019] incorporates a GNN-based dynamic
model into SuPAIR [Stelzner et al., 2019] to reason object in-
teractions, where object representations are explicitly disen-
tangled into positions, velocities and appearance. Similarly,
OP3 [Veerapaneni et al., 2020] learns pairwise relationship
between objects based on a symmetric assumption. G-SWM
[Lin et al., 2020] combines the key properties of the above
methods and proposes a unified framework for accurate dy-
namics prediction. A hierarchical latent modeling technique
is utilized to handle the multi-modality of the scene dynam-
ics. Leveraging the power of Transformers, OAT [Creswell
et al., 2021] directly learns to align slots extracted from each
frame to gain temporal consistency and perform slot inter-
actions. However, the temporal dynamics is still modeled
by an LSTM module. Similarly, PARTS [Zoran et al., 2021]
employs the same Transformer-LSTM module from OAT.
It utilizes the Slot-Attention Locatello et al. [2020] mech-
anism to detect objects and relies on a fixed independent
prior to achieve stable future rollout performance. OCVT
[Wu et al., 2021] is the most relevant work to SlotFormer.
It also applies Transformer over slots from multiple frames
and performs future prediction in an autoregressive man-
ner. However, OCVT still disentangles its underlying object
features into position, depth and semantic information. It
also relies on a Hungarian matching algorithm to achieve
temporal alignment of slots. As a result, OCVT is inferior
to G-SWM in terms of future rollout. Compared to previous
works, SlotFormer is a general Transformer-based dynamic
model that is agnostic to the object-centric representations
it builds upon. It does not assume any explicit disentangle-
ment of the object property, while still can handle the object
interactions well. Without the use of RNNs or GNNs, we
achieve state-of-the-art dynamics modeling ability.

Transformers. With the prevalence of Transformers in the
NLP field [Vaswani et al., 2017, Kenton and Toutanova,
2019], there have been tremendous efforts in introducing
it to computer vision tasks Dosovitskiy et al. [2020], Car-
ion et al. [2020], Liu et al. [2021]. Our method is highly
motivated by previous works in Transformer-based autore-
gressive image and video generation [Esser et al., 2021,
Chen et al., 2020a, Yan et al., 2021, Rombach et al., 2021,
Ren and Wang, 2022]. VQGAN [Esser et al., 2021] first
pretrains the encoder, decoder and a codebook that can map
images to discrete tokens and tokens back to images. Then,
a GPT-like Transformer model is trained to autoregressively

predict the input tokens for high-fidelity image generation.
GeoGPT [Rombach et al., 2021] adopts the same image
tokens as well as camera tokens as inputs to the Transformer
for novel view synthesis. However, their results are not con-
sistent since they only take two views as model input. The
design of SlotFormer is mostly related to [Ren and Wang,
2022], which also uses image tokens from multiple frames
to enable consistent long-term view synthesis. Different
from these works, our mapping step maps images to object-
centric representations, preserving the identity of objects.

B DATASET DETAILS

Both datasets used in this paper are simulated with physics
engine and rendered via Blender [Community, 2018], re-
sulting in physically plausible object interactions such as
collision and occlusion and photorealistic image quality.

OBJ3D. The objects in this dataset have three shapes
(sphere, cylinder, cube), two materials (rubber, metal), three
sizes, and five colors, leading to a total of 90 combinations
of properties. The videos are generated by first placing 3 to 5
static objects in the scene, and then launching a sphere from
the front of the scene to collide with those objects. Com-
pared to CLEVRER, the objects in OBJ3D occupy more
pixels in images, have less collisions and occlusions, and
are all visible in the scene at the beginning of the videos.
Since most of the interactions end before 50 steps, we only
train and test the models on the first 50 out of 100 frames.

CLEVRER. The objects in this dataset have three shapes
(sphere, cylinder, cube), two materials (rubber, metal), one
size, and eight colors, leading to a total of 48 combinations
of attributes. It is originally designed for Visual Question
Answering (VQA) tasks. The videos contain static or mov-
ing objects at the beginning, and there will be various new
objects entering the scene from random directions through-
out the video. The smaller size and more diverse interactions
of objects make CLEVRER more difficult than OBJ3D. We
obtain the ground-truth segmentation masks from their of-
ficial website. The bounding boxes are generated from the
object masks.

C IMPLEMENTATION DETAILS

We provide more implementation details of our method in
this section.

SAVi. We reproduce the unconditional version of SAVi in
PyTorch [Paszke et al., 2019] to perform unsupervised ob-
ject discovery. Specifically, we use the same CNN encoder,
decoder, Slot Attention based corrector and Transformer
based predictor as their experiments on CATER. The num-
ber of slots N is 6 on OBJ3D and 7 on CLEVRER. The slot
size is 128 and the training video clip length is 6 on both
datasets. We pretrain SAVi for 80k and 200k steps using the



Figure 5: Illustration for missing objects of vanilla SAVi on
CLEVRER videos. There are two objects at the beginning of this
video (top). When the red cube enters the scene, all 4 empty slots
attend to this object, resulting in object sharing (middle). When
another object enters the scene from the top right corner, SAVi
does not have empty slots to detect it (bottom). As a result, this
object is ignored by the model.

Adam [Kingma and Ba, 2015] optimizer with a batch size
of 64 on OBJ3D and CLEVRER, respectively. We use the
same warmup and decay learning rate schedule which first
linearly increases from 0 to 2× 10−4 for the first 2.5% of
the total training steps, and then decrease to 0 in a cosine
annealing strategy. We perform gradient clipping with a
maximum norm of 0.05. After pretraining SAVi, we extract
slots from each frame and fix them for training our proposed
dynamic model.

Stochastic SAVi. As stated in the main paper, vanilla SAVi
sometimes fails to capture newly entered objects in a video,
and we detail the reason and our solution as follows. We
use 7 slots for SAVi on CLEVRER which has a maximum
of 6 objects in the scene. Imagine a video with 4 objects
Oi

4
i=1 at the beginning. Let us assume SAVi captures the

objects in the first 4 slots and the background in the 5th slot.
This leads to two empty slots s6 and s7, which are very
similar with L2 distance ||s6 − s7||2 generally smaller than
0.05. Consequently, when there is a new object O5 enters
the scene, s6 and s7 will both attend to it, resulting in object
sharing between slots. Now, if there is another object O6

entering the scene, there is no empty slot to detect this new
object. Therefore, O6 will be ignored by SAVi, until one
of the previous object leaves the scene. This issue occurs
only on CLEVRER because all the objects are presented
in videos of OBJ3D from the beginning, and it happens in
scenes with varying number of objects as shown in Figure 5.
Besides, SAVi did not experiment on datasets with multiple
newly entered objects 1, and thus they did not observe such
problem.

From our analysis, the issue stems from the similarity of
empty slots, which is because of the permutation equivari-
ance of slots. To break the symmetry, we introduce stochas-
ticity to slots initialized from previous timestep. Specifically,
we modify (2) by applying a two-layer MLP with Layer
Normalization [Ba et al., 2016] to predict the mean and log

1confirmed with the authors of SAVi

variance of S̃t+1:

(µt+1, log σ
2
t+1) = MLP(ftrans(St)). (12)

Then, we sample from this distribution to get S̃t+1 ∼
N (µt+1, log σ

2
t+1) for performing Slot Attention with vi-

sual features at frame t+ 1.

To enforce this stochasticity, we apply a KL divergence loss
on the predicted distribution. Since we do not regularize the
mean of S̃t+1, the loss only penalizes the log variance with
a prior value σ̂:

Lt+1
KL = DKL(N (µt+1, log σ

2
t+1) || N (µt+1, log σ̂

2))

= log
σ̂

σt+1
+

σ2
t+1

2 · σ̂2
− 1

2
,

(13)

which will be averaged over all input timesteps. We set
σ̂ = 0.1 which produces enough randomness to break the
symmetry without destroying the temporal alignment of
slots. With this simple modification, we can detect all the
objects throughout the video. We use the same strategy as
SAVi to train the stochastic SAVi model on CLEVRER
under a combination of the frame reconstruction loss and
the KL divergence loss, where the later one is weighted by
a factor of 1× 10−4.

Transformer. We follow BERT [Kenton and Toutanova,
2019] to implement our model by stacking multiple trans-
former encoder blocks. The number of self-attention head is
8 and the hidden size of FFN is 512. We adopt the Pre-LN
Transformer [Xiong et al., 2020] design as we empirically
find it easier to optimize. We train our model using a batch
size of 64 for 200k and 500k steps with an Adam optimizer
[Kingma and Ba, 2015] on OBJ3D and CLEVRER, respec-
tively. The initial learning rate is 2 × 10−4 and decayed
to 0 in a cosine schedule. We also adopt a linear learning
rate warmup strategy during the first 5% of training steps.
We do not apply gradient clipping or weight decay during
training. For all the experiments, we implement our model
in PyTorch and train it on 4 NVIDIA RTX6000 GPUs.

D BASELINES

We detail our implementation of baselines in this section.

Copy is a naive baseline that simply repeat the last frame in
the burn-in frames for the entire rollout length. It serves as
the lower bound of performance in all the tasks.

PredRNN [Wang et al., 2017] is a famous video prediction
model leveraging spatial-temporal LSTM to model scene
dynamics via global frame-level features. We adopt the
online official implementation 2. The models are trained
until convergence for 16 epochs and 6 epochs on OBJ3D

2https://github.com/thuml/predrnn-pytorch
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Figure 6: Generation results on OBJ3D (top) and CLEVRER (bottom). On the right, we report the visual quality metrics of the visualized
rollouts for each model.

and CLEVRER, respectively. We adopt the same training
settings as their original paper.

G-SWM [Lin et al., 2020] unifies several priors in previous
object-centric models and is shown to achieve good results
on various simple video datasets. It constructs a background
module to process the scene context, disentangles object
features to positional and semantic information, explicitly
models occlusion and interaction using depth and GNN
module, and performs hierarchical latent modeling to deal
with the multi-modality over time. We use the online of-
ficial implementation 3. We train the model for 1M steps
on both datasets, and select the best weight via the loss on
the validation set. Our re-trained model achieves slightly
better results than their pretrained weight on the OBJ3D
dataset. Therefore, we also adopt the this training setting on
CLEVRER.

SAVi-dyn. Inspired by the success of PARTS [Zoran et al.,
2021], we replace the Transformer predictor in SAVi [Kipf
et al., 2021] with the Transformer-LSTM dynamic module
in PARTS. The model is trained to observe initial burn-in

3https://github.com/zhixuan-lin/G-SWM

frames, and then predict the slots as well as the reconstructed
image of the rollout frames using the dynamic module. We
use a learning rate of 1× 10−4 and train the model for 500k
steps. The other training strategies follow SAVi.

We do not compare with OCVT [Wu et al., 2021] because it
underperforms G-SWM even on simple 2D datasets, while
SlotFormer outperforms G-SWM under all the settings.

E MORE EXPERIMENTAL RESULTS

E.1 QUALITATIVE RESULTS

Figure 6 (top) shows additional qualitative results on OBJ3D.
SlotFormer achieves excellent generation of the object tra-
jectories thus very low LPIPS score. However, its PSNR and
SSIM are still close to PredRNN and SAVi-dyn, which blurs
the moving objects into the background in later frames. This
again proves that LPIPS are superior metrics for measuring
the generated videos. Besides, G-SWM can also preserve
the object identity because it leverages complex priors such
as depth to model occlusions. Nevertheless, its simulated
dynamics are still worse than our Transformer model.



Figure 7: Comparison of the object dynamics of the generated
videos at each rollout step on CLEVRER. We report FG-API (left)
and FG-mIoU (right) of the segmentation masks.

We present a visual result on CLEVRER in Figure 6 (bot-
tom). The objects are smaller in size and have longer term
dynamics, making it much harder than OBJ3D. PredRNN
and SAVi-dyn still generate blurry objects at later steps. G-
SWM sometimes cannot detect objects newly entering the
scene because of the limited capacity of its discovery mod-
ule. In contrast, SlotFormer builds Transformer on SAVi
slots, enabling both accurate object detection and precise
dynamics modeling. This is also verified by the object-aware
metrics AR and mIoU we show in the figure.

See Figure 9 for more qualitative results.

E.2 QUANTITATIVE RESULTS ON OBJECT
DYNAMICS

We show the per-step FG-ARI and FG-mIoU results in Fig-
ure 7. Since SAVi-dyn generates blurry objects, it produces
many false positives in the segmentation masks. Instead,
SlotFormer preserves the object identity and achieves high
scores in both metrics over long rollout steps.

E.3 ATTENTION MAP ANALYSIS

We show additional attention map visualizations in Figure 8.
The top figure presents a scene from OBJ3D dataset, where
the blue sphere collides with the red sphere in x3 and will
hit the green cylinder soon. SlotFormer looks at the red
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Figure 8: Example attention map visualization on OBJ3D (top)
and CLEVRER (bottom). Zoom in for better viewing.

sphere at first and gradually switches to the green cylinder
to predict the future blue sphere. For the red sphere, the
model focuses on the collision event in earlier frames, while
begins to attend on the blue cube it might hit. Similarly, the
blue cube and the green cylinder both look at the object that
might collide with them.

The bottom one of Figure 8 illustrates one example from
CLEVRER. We only analyze the left side of the images
since there is no object interaction in the right part. There
are two collision events (the purple cylinder hitting the or-
ange cylinder, and the yellow sphere hitting the blue cube)
happening in x7, and SlotFormer successfully captures their
interactions in the attention maps. In general, we found the
attention maps in CLEVRER less clear than those in OBJ3D,
due to the smaller object size. Nevertheless, the Transformer
can still detect correct object relationships to reason their
future motion.



F LIMITATIONS AND FUTURE WORKS

Limitations. SlotFormer currently builds upon pretrained
object-centric models. This family of methods still fail to
scale up to real world data, preventing our application to
real world videos as well. Besides, the two-stage training
strategy harms the model performance at the early rollout
steps as shown in Figure 2. It is interesting to explore joint
training of SAVi and SlotFormer, which could potentially
benefit the performance of both models.

Future Works. We only experiment on unconditional gener-
ation task in this paper, while we are looking into extending
our model to the conditioned video prediction task, such
as action-conditioned generation as done in [Zoran et al.,
2021]. Some recent works have shown success in this di-
rection by treating conditional inputs as tokens and also
feeding them to the Transformer [Ren and Wang, 2022,
Rombach et al., 2021, Tevet et al., 2022]. Another direc-
tion is the Visual Question Answering (VQA) task which
also requires understanding object dynamics [Girdhar and
Ramanan, 2019, Bear et al., 2021]. We also want to design
other losses for more accurate dynamics modeling, such
as the masked embedding prediction loss in [Ding et al.,
2021a], and the contrastive loss in [Löwe et al., 2020]. Fi-
nally, as uncertainty is necessary for modeling real world
dynamics [Lin et al., 2020], we are working on enabling
Transformer to represent multi-modality of the future. Over-
all, we believe SlotFormer is an important step to explore
the combination of Transformers and object-centric models,
which we see as a promising direction.
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Figure 9: More qualitative results on OBJ3D (top two) and CLEVRER (bottom two).
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