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Abstract. The problem of privacy in graph neural networks (GNNs) is
being studied recently. It is necessary in order to ensure the privacy of
the system that is being modeled as graphs. Currently, the existing mod-
els primarily consider the node features and the node labels as privacy
information corresponding to the graphs. We propose an edge-privacy
preserving methodology called EP-GNN to incorporate the privacy of
the structural information of the graphs as well in addition to the fea-
tures and the label information of the graphs. In this preliminary work,
we investigate the impact of the noisy neighborhood on the accuracy of
the GNNs. This is in addition to the We experiment with the amount
of neighborhood that we perturb and the privacy budget for the edge
privacy. We propose two methods to consider the neighborhood, namely
1. λ− selector from the neighborhood, and 2. complete neighborhood in
order to ensure privacy in the edge data of the graph. We continue to
use the node and label privacy as they are implemented in the previous
methods for privacy in GNNs.
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1 Introduction

The real world systems such as social networks, citation networks, molecular net-
works are popularly modeled as graphs. A graph richly represents such systems
as it considers all the entities in the system as well as relationships between the
entities. Graph Neural Networks (GNN) are popularly used to tackle the tasks,
such as node classification, graph classification, link prediction are addressed
using GNNs. The primary goal of GNNs is the aggregation of structural as well
as feature information in an efficient manner while it addresses the tasks related
to the systems represented as graphs.

Problem and Motivation. The problem that we address in this work is to
ensure the data privacy of the users in critical systems that can be represented
using graphs. The term data privacy here means privacy related to structure of
the graphs and the features of the nodes in the graph. We look at the privacy in
GNNs for node-level tasks in this work. Most of the previous work in the area
of privacy in GNN has ensured the privacy of the features and labels of each
of the nodes. It assumes that the server and the users know the connectivity
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information, hence in the previous works, the term data privacy means the pri-
vacy of node features and of node labels. In this work we consider the privacy
of structural information, typically given by the edges in the graphs, along with
the feature and label information of the nodes.

Challenges. In order to ensure the complete privacy that is, the privacy of
nodes, edges and the labels in a graph, following challenges need to be addressed:
1. Edge privacy or the privacy of the graph structure is to be taken care of in
order to avoid the information from being compromised. The existing methods
[12] perturb only the node features and the node labels,however as the structure
of the graph remains publicly available, we need consider that as private infor-
mation as well. 2. To preserve the edge privacy, there has to be a mechanism
to perturb the edges in the graph. Deciding the amount of noise to be added
to the edges data and the mechanism to add noise is one of the challenges. 3.
Determining the amount of edge perturbation, in addition to node and label
perturbation to strike the right balance between privacy and utility in the graph
data.

Contributions. We propose completely locally private graph neural net-
works. The complete local privacy is obtained by privatizing the edge informa-
tion in addition to node and label information. We propose three approaches to
privatize the neighborhood of the nodes in the graphs.

1. completely private neighbourhood through edge perturbations.
2. λ− selector from neighborhood
3. complete neighborhood, and

We provide experimental evidences of the performance of the model by varying
the parameters that controls the noise addition to the edges for perturbations
where we perturb the edges according to the neighborhood privatization ap-
proaches mentioned above.

Paper Organization. This paper is organized as follows. Introduction, mo-
tivation, challenges and contribution of our work are described in section 1. In
section 2, we discuss the works related to the topic. Section 3 gives the pre-
liminaries with problem definition and background. Our proposed method is
described in section 4. The experimental setup and the results are discussed in
section 5 and section 6 concludes the paper.

2 Related Works

With different possible attacks on Graph Neural Networks, the privacy of the
data involved can be compromised. [6] introduced seven different link stealing
attacks on Graphs. The adversary has the black-box access to Graph Neural
Networks, and it can infer whether or not any two nodes used in the training
of the GNN have a link between them. [17] introduced similar attack called
LinkTeller attack that concerns with the privacy of the edges in the graph. In a
setting where the node features and the adjacency information are with different
parties, the party with the adjacency matrix trains the GNN upon receiving the
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node features from the other party and provides back the inference API. The
party holding the node features provides the test node features and also can
query API for predictions related to test nodes. The LinkTeller attack tries to
infer the links present between nodes, based on the queries. The other works
[9], [21], [3] discuss the attacks possible on GNNs, such as membership inference
attack, graph reconstruction attack and attribute inference attack.

A federated framework for privacy preserving GNNs for recommendation
systems is presented in [16]. The GNNs are trained locally at users end and
they upload the local gradients to a server for aggregation. To enhance privacy
of users by protecting user-item interaction, local differential privacy techniques
are applied to the locally computed gradients. [20] is another work involving
federated graph neural networks for privacy preserving classification tasks, the
features and the edges are split among the users, while all the users have the
access to same set of nodes.

To get the differentially private node embeddings, DPNE [18] applies objec-
tive perturbation on the objective function of matrix factorization. [12] proposes
a privacy preserving GNN learning algorithm for privacy of nodes where the
node features and their labels are assumed to be private while the structure of
the graph is not private.

3 Preliminaries

3.1 Problem Definition

Definition 1 (Graph). A graph G is defined as G = (V,E,X, Y ) where, V =
VL ∪ VU is a set union of labeled nodes VL and unlabeled nodes VU and |V | = n.
E is a set of edges and |E| = m, X is the feature matrix corresponding to the
graph where X ∈ Rn×d and d is the size of feature vector corresponding to each
of the nodes in the graph. Y ∈ {0, 1}n×c, where c is the total number of classes
nodes belong to, is the matrix of one-hot encodings of the labels corresponding to
labeled nodes and it is a vector of all zeros for the unlabeled nodes in the graph.

We consider the problem of node classification in a private setting.
Consider a client-server system where the clients are the users represented

by nodes and the server is where the Graph Neural Network run and predict the
labels of unlabeled nodes. The nodes are aware of their feature vectors and their
neighbors. The server is aware only about the vertex set V . The GNN needs
to be trained for the given task on server side. The problem is how to do train
the GNN on server side while preserving neighborhood privacy in addition to
preserving privacy of node features and labels?

3.2 Background

Graph Neural Network Graph neural networks are typically used to answer
the questions based on some graph data. The tasks such as node classification,
link prediction, graph classification can be addressed using GNNs. A graph G =
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(V,E) with a matrix feature vectors X ∈ Rn×d where n = |V | and d is the size of
the feature vector xv of node v ∈ V . We represent the intermediate embedding
of node v at lth layer as hl

v. The intermediate representation are then passed to
downstream deep network so as to make the desirable predictions related to the
task. To get the representation a GNN has two primary steps at each layer for
every node: 1. Aggregation of node’s neighborhood and 2. Updating the node’s
embedding. These steps are applied as many times as the number of layers in
the GNN.

h′
Nv

= Aggregate
(
{hl−1

u : u ∈ N (v)}
)

(1)

hl
v = Update

({
hl−1
v , h′

Nv

})
(2)

In equation 1 above, Aggregate is a differentiable, permutation invariant func-
tion that aggregates the feature vectors from layer l − 1 of the nodes in negihbor-
hood N (v) of the node v. The neighborhood is defined as N (v) = {u : (u, v) ∈
E}. In equation 2, Update is a differentiable function.

Differential Privacy Local differential privacy (LDP) enables users to share
noise added private data with the untrusted aggregator instead of their true
private data, while maintaining considerable accuracy in group queries. It has
been used in the last decade for collection of sensitive private data and answering
group queries such as statistical mean and count. Companies like Apple, Google
and Microsoft have already started including LDP in their products.

Definition 2 (Local Differential Privacy). An algorithm A satisfies ϵ-local
differential privacy (ϵ-LDP), if and only if for any input x and x′, we have

∀y ∈ Range(A) : Pr[A(x) = y] ≤ eϵPr[A(x′) = y] (3)

where Range(A) is the set of all possible outputs of the algorithm A and ϵ ≥ 0.

4 Proposed Method

In this section we describe in detail our method to introduce edge-privacy in
Graph Neural Networks.

To preserve the privacy in the nodes’ neighborhood, we introduce noise into
the edge data. We call our method for noise injection the λ Selector. It takes the
set of neighbors of the node as input for every node in the graph. It also takes in
the percentage of noise (λ) to introduce as input. The λ Selector algorithm gives
out the noisy neighborhood data as output. The noise added by this algorithm is
λ percentage of the actual neighborhood of the node. We calculate the amount
of noise to add using the degree of the node.



Edge-level privacy in Graph Neural Networks 5

4.1 Privacy in Edges

In a locally private setting, a node ideally should decide how much perturbation
of data should be done before it shares a data with the central server. To make
sure that a node has a complete control over its private information, we need
to privatize the neighborhood information, in addition to its feature and label
information.

Näıve EP-GNN In order to privatize the neighborhood of a node in a nav̈e
way is to perturb the relations of a node with every other node in the graph. We
use randomized response as the mechanism to perturb the same.

Lemma 1. Edge perturbation through randomised response satisfies ϵ-local dif-
ferential privacy [4].

This approach of perturbing the relations with all the nodes in graph has
its own drawbacks. As the randomized response is applied over the entire vector
of nodes in the graph, the neighbors of the nodes after perturbation are quite
random. The aggregation of the neighborhood leads to a bad approximation of
the node’s feature values. In order to mitigate this problem in the näıve way of
introducing noise, we control the noise added using a parameter called λ.

λ Selector We propose a method to introduce noise into the edge data. We call
our method λ Selector and is given in Algorithm 2. In this method, based on the
parameter λ we introduce the noise in the edges of a node. In order to guarantee
the utility, we need to put the restriction on how much noise a user/node can
introduce into the data it is sharing.

The λ selector introduces λ percentage noise in neighborhood of every node.
We calculate the value λ′ corresponding to every node by multiplying the param-
eter λ with the degree of every node. This essentially means that every node in
this private setting can add noise proportionate to λ. Once every node has their
corresponding value of λ′, it then samples a set m with d− λ′ many nodes cor-
responding to the particular node, uniformly at random from its neighborhood
without replacement, where d is the degree of the node. Once the neighboring
nodes to add noise are selected, we use different methods to introduce the noise.
As we want to strike the right balance between the privacy and utility, there
is a need of setting the limit on the noise addition. We do this by setting the
parameter λ.

All neighbourhood In randomized response, out of the actual neighborhood
of a node, we keep m nodes same and we apply the randomized response on all
the nodes except those in the set m. We apply randomised response with the
following:

p(a′|a) =

{
eϵ

1+eϵ if a′ = a
1

1+eϵ otherwise
(4)
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The above approach add privacy to the neighbourhood, controlled both by ϵ
and λ. It is known that larger neighbourhood leads to better node representations
[1]. In order to mitigate the low size of conventional neighborhood of nodes in
real networks, we take advantage of the KProp algorithm 1 [12].

Algorithm 1 K-Prop

Input: Graph G = (V, E); input vector xv, ∀v ∈ V; linear aggregator function
Aggregate; step parameter K ≥ 0;

Output: Embedding vector hv,∀v ∈ V
1: for all v ∈ V do
2: h0

N (v) = xv

3: for k = 1 to K do
4: hk

N (v) = Aggregate
(
{hk−1

N (u), ∀u ∈ N (v)− {v}}
)

5: end for
6: hv = hK

N (v)

7: end for
8: return {hv, ∀v ∈ V}

Local neighbourhood In the above case of considering perturbations in the
entire neighborhood, there exists the possibility of perturbations in edge list
of a node to extend beyond the margins of the KProp. These would lead to
addition of distant nodes as neighbours and their significant contribution to
final embeddings. This might be as opposed to the scenario, where they might
not have had any impact on the embeddings in the ground truth.

We use differentially private clustering algorithms [14, 2, 8] to avoid addition
of distant nodes as neighbours and keep the perturbed edge list confined to the
local cluster. This along with KProp help us reduce the noise. The upper bound
on the privacy budget still remains as ϵ.

Algorithm 2 λ Selector Algorithm

Input: v: A node in vertex set V , a: Set of neighboring nodes of node v, λ: Percentage
of noise to add

Output: a∗: Set of neighboring nodes with added noise
1: d← |a|
2: λ′ ← λ× d
3: m← sampled set of (d−λ′) nodes from a uniformly at random without replacement
4: r ← a set of λ′ nodes using the noise-inducing-mechanism
5: return set m+ r
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4.2 Privacy in Node Features

Node features are privatized using multi-bit encoder, which is built upon 1-bit
mechanism, on the user-side. The feature vector corresponding to a node is
requested by the server, the multi-bit mechanism is applied on it to get the
encoded feature vector which is sent to the server. This gives a biased output
which is rectified on server-side using a multi-bit rectifier. The differential privacy
budget for node feature perturbation is ϵx. The estimation error is inversely
proportional to the number of neighbors of a node, but in real graphs, the size
of the neighborhood is usually small. To overcome this issue 1 layer is used as a
first GNN layer in order to denoise the input to the GNN. It considers the k-hop
neighborhood of a node for denoising the perturned node features at server-side.

4.3 Privacy in Node Labels

Each node participating in training has to perturb the labels as they are consid-
ered private. This can be done using an LDP mechanism, which in this case is
Randomized Response. The perturbed labels are sent to the server where K-Prop
is applied on node labels. GCN aggregator is used as the aggregate function in
K-prop as it leads to lower estimation error. The differential privacy budget for
node feature perturbation is ϵy. The label denoising with propagation (Drop)
[12] is used for training using perturbed node features and node labels.

Algorithm 3 Training GNN with Locally Private Edges EP-GNN

Input: G = (VL ∪ VU , E): Graph, GNN algorithm, KProp parameters, λ : Percentage
of noise in the edges, ϵe: Privacy budget for edges

Output: W : Weights of trained GNN
Server-side:

1: V ← VL ∪ VU

2: Send V and KProp parameters to every node v ∈ V
Node-side:

3: Obtain perturbed neighbors a∗

4: Obtain a perturbed vector x∗ by Multi-Bit Algorithm
5: if current node is in V then
6: Obtain a perturbed label y′ by Randomized Response
7: else
8: y′ ← 0⃗
9: end if
10: Send a∗, x∗ and y′ to server.

Server-side:
11: Train GNN using Drop
12: return W
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Fig. 1. Overview of EP-GNN algorithm with edge privacy in addition to node and label
privacy. User’s connectivity data is perturbed using λ selector and then randomized
response can be applied onto it. The new private edges are further passed to the server
and used in subsequent steps.

4.4 EP-GNN

We combine perturbations in node features, labels and neighbourhood (using
the näıve method) with privacy budgets ϵx, ϵy and ϵe respectively in Algorithm
3.

Theorem 1. Algorithm 3 satisfies ϵx + ϵy + ϵe-local differential privacy.

Theorem 1 follows from the post-processing composition theorem [13]. We
process only the output of the LDP mechanisms on features, labels and edges of
the node. LDP mechanism is applied only one time on the nodes and hence any
post-processing does not affect differential privacy [4].

5 Experiments

Dataset Description

We perform the experiments on four popular datasets, namely Cora and Pubmed
[19], Facebook [10] and LastFM [11]. The dataset statistics are as given in the
table 1.

1. Cora and Pubmed [19]: These are citation networks, where each node repre-
sent a document and if a document i cites document j, then (i, j) ∈ E and
(j, i) ∈ E. The feature vector corresponding to a node is the bag-of-words
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representation of the document. The labels are the categories the document
belong to.

2. Facebook [10]: Nodes in this dataset are verified Facebook pages and edges
are the mutual likes between them. The classification is on the site category
and the feature vector are extracted from the site description.

3. LastFM [11]: Nodes represent the users of radio streaming service LastFM,
while the edges represent the friendships among the users. The nodes’ fea-
tures are constituted based on the artists a user likes. The classification task
is to predict the home country of the user. The current usage of the dataset
is only limited to top 10 countries.

Table 1. The statistics of the datasets

Dataset Classes Nodes Edges Features Average Degree

Cora 7 2708 5278 1433 3.90
Pubmed 3 19717 44324 500 4.50
Facebook 4 22470 170912 4714 15.21
LastFM 10 7083 25814 7842 7.29

5.1 Experimental Setup

We conduct experiments on the all four datasets to study the effect of the ad-
dition of noise in the edge data and the effect of varying privacy budgets for
edges in the graph. The experimental setup for privacy of node features and
node labels remains similar to that in LPGNN [12].

The nodes in all the datasets are split in the ratios 50:25:25 in training,
validation and test sets. The node features are normalized between [0, 1]. The
privacy is applied on the graph neural network models namely GCN [7], GAT
[15], and GraphSAGE [5]. Feature perturbation as well as edge perturbation
is applied during training, validation and testing and the label perturbation
is applied during the training and validation only. The privacy budgets for
edge perturbation ϵe are taken from the set {0.01, 0.1, 0.5, 1, 2}. We vary the
amount of noise (in percentage) λ added to the edges for perturbing the neigh-
borhood of the nodes. We different values of λ that we experiment with are from
{1, 2, 3, 5, 8, 10, 20, 30, 50, 80}. The other parameters for training using the Drop
are same as that of LPGNN [12]. We use Adam optimizer to train the model
and based on validation loss we pick the best model for testing.

5.2 Experimental Results

We vary the added noise λ and the privacy budget ϵe for the edge perturbation.
The privacy-accuracy trade-off is well observed in the results. The noise λ decides
the amount of neighborhood that will be perturbed. The amount of perturbation
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in the selected edges is given by the privacy budget ϵe. We see the drop in
accuracy as we increase the amount of neighborhood that is perturbed. This is
a result of the fact that the λ contributes to the privacy of the neighborhood
data.
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Fig. 2. Plots showing the test accuracy for different values of λ and ϵe

The trend that we observe from the results is similar to that shown in the
2 for different values of ϵx and ϵy. From the experiments that we performed,
we do not observe a significant drop in accuracy with the increase in privacy
budget corresponding to edge data in the graph. The values that we chose for
our experiments are small as compared to the size of the neighborhood of the
nodes in the datasets we are using. The privacy budget gets divided across the
neighborhood. This value in our case is very small and hence there is not a
significant drop in accuracy.

6 Conclusion

Graphs have been increasingly used to model real world systems including the
social interactions. GNNs on graphs create embeddings which enable machine
learning algorithms to infer useful insights on such systems. However, real world
systems such as social interactions, mobile computing carry a lot of personal and



Edge-level privacy in Graph Neural Networks 11

sensitive data. In order to safeguard the privacy of users, we use one of powerful
techniques called differential privacy. Perturbations in node features and labels
have been introduced earlier leaving neighbourhood data in open. In this work,
we show how perturbations in node neighbourhood affects the accuracy in both
embeddings and further machine learning tasks. We introduce λ selector to help
us tune trade off in amount of perturbations/privacy with the accuracy of the
models and perform evaluations across multiple datasets and models. However,
this leaves room for future work as initial experiments show drastic drop in
accuracy for perturbations. In the future, we would like to work on improving
the accuracy while introducing privacy in the edges of the nodes in the graph.
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