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Abstract

Easy to build and reliable machine learning models are what all data analysts want.1

Although machine learning is advancing daily, the labeling cost for supervised2

learning and the black-box nature of machine learning are the main obstacles to3

its further diffusion. As a method of reducing the labeling cost without increasing4

the black-box nature, weakly supervised learning, especially data programming,5

is gaining attention. Its advantage is due to labeling functions that domain experts6

create based on their knowledge instead of labeling each data point manually.7

However, data programming alone cannot reduce the actual process cost. This8

is because domain experts have to carry out a full search in their mind and end-9

lessly implement labeling functions without any insight into what unimplemented10

labeling functions will be effective. We propose an active learning strategy for in-11

teractive weakly supervised learning with labeling functions to solve this problem.12

The proposed method iteratively presents a small number of highly prioritized data13

points to be labeled by additional labeling functions considering the uncertainty14

of predictions. With this method, domain experts need to only implement their15

knowledge that can be applied to a small number of presented data points as a16

labeling function. We also verified the effectiveness of this method through a six-17

class text classification task. The experimental results indicate the effectiveness of18

the method and its high potential in a machine learning implementation.19

1 Introduction20

Longstanding technical improvements in machine learning, especially in supervised learning, have21

had practical results in both academic and industrial fields. Wide applications of machine learning22

have also highlighted potential problems such as heavy labeling cost and difficulty in interpreting its23

black-box nature. Solving these problems will lead to a reduction in the resistance to implementing24

machine learning and further contributions to a broader and deeper field.25

A variety of methods using few-shot learning and transfer learning have been proposed as machine-26

centric methods to solve the labeling-cost problem [10, 22]. It is true that these methods are achiev-27

ing much success, but the effects of transfer and few-shot are not yet sufficiently understood and28

may also have some limitations [15, 3]. First, their main scopes are limited to computer vision29

or natural language processing. The existence of large amounts of labeled data or trained neural30

networks in similar domains is assumed with these methods. Moreover, they can unintentionally31

enhance the black-box nature of machine learning. Their accuracy and reliability depend on domain32

similarity and the distribution of a small number of labeled data. Since the interpretability of these33

sources is lower than that of a large amount of labeled data in simple supervised learning, the path34
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to interpreting the machine learning results becomes longer and more challenging. Because of these35

limitations, these methods are not yet widely used in the wild.36

Weakly supervised learning is another notable human-centric method for these problems [6]. It37

does not require domain experts to label each data point directly but indirectly with their knowledge38

related to the data points. In particular, data programming [16, 2] has gained much attention as a39

weakly supervised learning method to reduce labeling cost by using human knowledge. Data pro-40

gramming probabilistically labels data points based on the collective knowledge of human-defined41

labeling functions. Such a method is very useful in many practical situations where domain experts42

have spent much time on redundant manual labeling without limiting the application field. This is43

because domain experts use their own implicit rules for the manual labeling process, and these rules44

are likely to be implemented as labeling functions. Moreover, this human-centric method based on45

domain experts’ knowledge may reduce but never increase the black-box nature of machine learn-46

ing, unlike the above machine-centric methods. This method only changes the way to assign labels47

from direct to indirect and makes it possible to understand the simple reasons the labels are assigned48

from labeling functions.49

However, data programming alone does not completely reduce the manual labeling process cost.50

Domain experts have to perform a full search in their mind for finding their knowledge that can51

be applied to any data points in a huge pool, and endlessly implement labeling functions. This is52

attributed to the lack of criteria for which knowledge they should implement as a labeling function53

to effectively train machine learning models. The missing key is active learning [19, 23]. In tra-54

ditional supervised learning, active learning iteratively searches and presents unlabeled data points55

that should be labeled to efficiently improve the accuracy of the model. If the subjects of this search56

can be replaced with unimplemented labeling functions from unlabeled data points, the workload of57

domain experts could be reduced sufficiently.58

Our research objective is to develop an active learning strategy for interactive weakly supervised59

learning, in which machines present information about the knowledge that should be incorporated60

in data programming and domain experts interactively implement labeling functions based on the61

information. Specifically, machines calculate an uncertainty-based acquisition function for each62

data point from the probabilistic labeling result of the implemented labeling functions and the output63

probabilities of the classification model learned on the training dataset created by the implemented64

labeling functions. The acquisition function is defined as an extension of uncertainty sampling,65

that is, it is calculated from the difference between the above two types of probabilities and their66

respective variations. Domain experts then implement labeling functions that can be mostly applied67

to a small number of presented data points with a high acquisition-function score. This method can68

reduce the domain experts’ task to only the iterative implementation of their implicit knowledge that69

is useful for efficient model training. In other words, this method reduces the actual labeling process70

cost for the first time.71

The main contribution of this paper is the proposal and verification of an active learning strategy for72

interactive weakly supervised learning through data programming. This method can reduce the real73

labeling process cost of domain experts without the limitation of the application field and sacrificing74

interpretability. We experimented to evaluate our proposed method in a text classification task. The75

experimental results indicate that our proposed method requires less labeling functions than state-76

of-the-art methods. This contribution leads to broader machine learning penetration by reducing the77

cost of and resistance to its deployment.78

2 Related work79

2.1 Data programming80

Data programming is one of the main weakly supervised learning methods [16, 2]. It does not re-81

quire domain experts to give a label to every single data point but requires them to implement their82

knowledge as labeling functions. These labeling functions probabilistically label the data points that83

fit the knowledge together. Of course, labeling functions can also be created from other resources84

such as the results of crowd-sourcing, distant supervision [14], and so on. Snorkel [17, 18] is a rep-85

resentative Open-Source Software (OSS) for data programming. An example of labeling functions86

implemented in Python with Snorkel library is shown in Figure 2 in the Experiment section.87
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One of the important advantages of data programming as weakly supervised learning is that it is88

acceptable to have some extent of overlapping and inconsistencies between labeling functions [17].89

The training dataset in data programming is generated by the collective knowledge of multiple label-90

ing functions. When labeling functions come from a rule that simplifies some of the domain experts’91

knowledge, a few exceptions can emerge, resulting in mutually contradictory or broken votes. If the92

votes for a data point are split between a high-precision labeling function and low-precision label-93

ing function, the vote of the higher-precision one should take precedence. Even though the real94

problem is not so simple because the precision of each labeling function is unobservable, a labeling95

aggregator estimates the precision of each labeling function by using an unsupervised model from96

the overall voting results and softly classifies each data point based on the estimated results in data97

programming [18].98

Another important advantage of data programming is its interpretability. Data programming can99

give a reason a data point is given a label through a labeling function. This does not affect the black-100

box nature of a classification model, but it gives data points room for interpretation. Therefore, data101

programming is a method of reducing the labeling cost while improving rather than sacrificing its102

interpretability.103

However, data programming alone does not completely reduce the manual labeling process cost of104

domain experts. Implementing all the knowledge in their mind as labeling functions might require105

a rather significant cost unless domain experts can acquire any insight into what kind of knowledge106

to implement. The desired task is to efficiently implement only their knowledge that is effective for107

training models.108

Some studies are being conducted to reduce the cost of creating labeling functions. BabbleLab-109

ble [8] can convert natural language explanations to labeling functions by a simple rule-based se-110

mantic parser. Domain experts provide not only a label but an explanation of why they provide111

that label to the data point in natural language, then machines automatically create a labeling func-112

tion. This contributes to enabling domain experts to easily perform their tasks, but not to reduce113

the number of labeling functions to implement. Snuba [24] and GOGGLES [5] can automatically114

create labeling functions. Snuba can be regarded as a mixed concept of few-shot learning and data115

programming. This method creates labeling functions automatically and iteratively based on a few116

manually labeled data points and primitives of many unlabeled data points. In each iteration, ma-117

chines create simple classifiers as labeling-function candidates based on a few labeled data points118

and select some that achieve high accuracy on the labeled data points and high coverage on the unla-119

beled data points. The sampled candidates are added to the labeling function set. GOGGLES can be120

regarded as a mixed concept of transfer learning and data programming. This method automatically121

creates labeling functions for image datasets based on a few labeled data points and pre-trained122

representation learning models such as VGG-16 [20]. Machines first concatenate all labeled data123

points and unlabeled data points and apply the affinity function extracted from the pre-trained rep-124

resentation learning model to each pair. They then determine the cluster-to-class assignment using125

a small number of labeled data points. These methods greatly contribute to the automated creation126

of labeling functions, but the limitations of few-shot learning and transfer learning become apparent127

again. Thus, domain experts themselves should provide effective knowledge to machines, and the128

machines should help with that. Active learning [19] is expected to solve this problem in supervised129

learning.130

2.2 Human-in-the-loop machine learning131

Human-in-the-loop machine learning is a machine learning framework requiring iterative human132

interaction for constructing and training models [26]. It has ironically attracted much attention as133

a practical countermeasure to the doubts and complaints about the reliability and interpretability134

of machine-only machine learning for full automation. In this framework, humans are expected to135

make human decisions to avoid bias and mistaking correlation for causality [1], improve accuracy136

in case a fully automated framework does not result in sufficient accuracy [11], and provide expert137

knowledge to solving computationally hard problems [9]. Tamr [21] and Magellan [7] are exam-138

ples of OSS for human-in-the-loop machine learning. Tamr automatically classifies only data points139

with high confidence and asks humans to classify other data points with low confidence. Magellan140

supports model learning based on automated tools for debugging processes and step-by-step, end-141

to-end procedure guides. In short, the goal of human-in-the-loop machine learning is to achieve142
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knowledge discovery and reliable performance that is impossible or difficult for machines and hu-143

mans to achieve alone. There are diverse approaches, but it is important to minimize the amount of144

human labor to ensure reliable and useful results for humans by humans because we are human.145

Active learning is one of the main human-in-the-loop strategies to build high-performance models146

while reducing labeling cost [27]. In each iteration, active learning calculates the acquisition func-147

tion for each unlabeled data point to sample a few data points to label next, based on the model148

learned on already labeled data points. The acquisition function is diverse, but the most commonly149

used acquisition function is the one for uncertainty sampling[28]. Uncertainty sampling is a strategy150

to sample a few data points with low confidence by using a current classification model based on,151

for example, a margin of the top two classes and entropy of predicted probabilities. Sampled data152

points are labeled mainly by domain experts and added to the labeled training dataset from the next153

iteration. Active learning alone can reduce labeling cost to some extent, but it still requires domain154

experts to label every single data point, which is redundant and time-consuming.155

Only Wang et al. [25] focused on iterative implementation of labeling functions in loops with human156

intervention. In each iteration, machines sample a data point for which no labeling function can be157

applied or whose voting results from the labeling functions are broken, and humans create a labeling158

function that can be applied to the data point. This means that its method does not involve any159

feedback information from either the labeling aggregator or the subsequent classification model.160

Moreover, the sampling method is much simpler than active learning. The motivation of this work161

is excellent, however, its method is not much different from the method to implement a labeling162

function that can be applied to randomly sampled data points. Especially, this method is not so163

effective in environments with few implemented labeling functions or their coverage is small, even164

though these are the very environments where effective labeling function implementations are most165

needed. This is because there are a large amount of unlabeled data points that fit the sampling166

conditions. This will be shown in the experimental results described later. Moreover, its main target167

is binary classification. Although it is extensible to multi-class classification, it is not practical in168

many problems.169

3 Active learning strategy for interactive weakly supervised learning170

In this section, we describe our proposed method for reducing labeling cost by reducing the num-171

ber of labeling functions to implement. With our method, domain experts add a labeling function172

iteratively by referring to a few prioritized data points derived from acquisition function defined for173

the data programming framework. This acquisition function is based on uncertainty sampling and174

is calculated from the two output probability vectors of labeling aggregator in data programming175

and of the subsequent classification model. Our method enables domain experts’ tasks to implement176

only that knowledge as labeling functions that are effective for efficient training of a classification177

model considering the insight given by machines.178

Figure 1 shows an overview of our proposed method, where D, L, and F denote the set of data179

points, label classes, and implemented labeling functions, respectively, and |·| denotes the number of180

factors in a set. In the simplest generic supervised learning, domain experts annotate the data points181

|D| times repeatedly for creating a labeled training dataset. Then, parameters of a classification182

model are optimized to the dataset, and the model returns the predicted probability matrix (pcl,d),183

whose d-th column shows the predicted probability vector on labeling functions l for d-th data184

point. For simplicity, a test dataset is not shown in Figure 1, but of course, the model will be applied185

to the test dataset.186

With our proposed method, the forward process is derived from data programming. Labeling func-187

tions return a vote matrix (vf,d), which is labeling function f ’s voting result for data point d188

(vf,d ∈ L ∪ {ABSTAIN}). ABSTAIN means that a labeling function does not vote for any la-189

bel classes. The labeling aggregator returns a probability matrix (pll,d), whose d-th column shows190

the estimated probability vector for the d-th data point. The training dataset is generated from this191

probability matrix. The label of data point d, label d, is set by argmax
l

pll,d. The classification model192

returns the predicted probability matrix (pcl,d), as in generic supervised learning.193

The active learning model in the backward process is the key component of our method. This194

model receives two types of probability matrices (pll,d) and (pcl,d) from the labeling aggregator and195
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Figure 1: Our proposed method compared with general supervised learning

classification model, respectively, and calculates the priority of each data point to be presented to196

domain experts. This priority is calculated by a defined acquisition function, which is described197

later. Domain experts implement a new labeling function by referring to the presented top N data198

points in the priority (N ≪ |D|). If domain experts cannot implement from the data points, they199

refer to the next top N data points.200

The acquisition function is defined as Equation 1 based on an extension of uncertainty sampling.201

A(d) = logH(pl
d) + logH(pc

d) + log (1− cos(pl
d,p

c
d)) (1)

The first term represents the uncertainty of the prediction probability by the labeling aggregator. The202

vector pl
d(∈ [0, 1]|L|, Σlp

l
l,d = 1) denotes the probability vector of data point d, namely the column203

corresponding to it in (pll,d), and H(·) denotes the entropy of a probability vector. The uncertainty204

becomes larger not only when no labeling function can vote or some of them break the vote for d205

but when only labeling functions with low confidence can vote for d. In these cases, an additional206

labeling function applicable to d should be implemented. The second term represents the uncertainty207

of the prediction probability by the classification model. The vector pc
d(∈ [0, 1]|L|, Σlp

c
l,d = 1)208

denotes the probability vector of data point d, namely the column corresponding to it in (pcl,d).209

This term is generally used in the uncertainty sampling for supervised learning. Thus, data point d210

with a large second term also needs a corresponding labeling function. The last term represents the211

dissimilarity between the predictions by the labeling aggregator and by the classification model. The212

function cos(·, ·) denotes cosine similarity between two probability vectors. If both of uncertainty213

indicators are small but their predicted label classes differ, either model makes wrong predictions.214

No matter which model predicts wrongly, an additional labeling function applicable to data point d215

should be implemented, and this is why the acquisition function is described as the sum of logs.216

Thanks to the acquisition function, our proposed method is an active learning strategy that makes217

much use of data programming. First, the labeling function created in each iterative loop with this218

method can make a larger contribution to training models than one created haphazardly. Second, it is219

incomparably easier to create a labeling function by referring to a small number of highly prioritized220

data points than to create one by referring to a large pool because of N ≪ |D|. Since similar data221

points’ score close to each other, such data points are more likely to appear in the top N if we do222

not dare to consider diversity. These advantages make it easier for domain experts to implement223

effective and general knowledge as labeling functions. As a result, we can expect to reduce the224

number of labeling functions required for the classification model to achieve a certain accuracy.225
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Table 1: Basic settings of experiment

# of data points 5452 (training), 500 (test)
# of classes 6
# of LF candidates 42
# of LFs in the initial LF set 6
classification model bidirectional LSTM
# of data points sampled in an iteration (N ) 10

Figure 2: Example of labeling function for TREC-6

4 Experiment226

4.1 Experimental settings227

We conducted an experiment in a text classification task involving TREC-6 [12]. Table 1 shows228

the basic experimental settings. Since the purpose of the experiment was to verify the effectiveness229

of our proposed method, we made all labeling function candidates based on the rule-based method230

beforehand and selected one labeling function among the candidates for each loop to eliminate231

any arbitrariness. The labeling-function candidates are manually created based on the study by232

Madabushi and Lee [13] and word lists on Li and Roth [12]’s web page1. Figure 2 shows an example233

of a labeling function. This example votes for the LOCATION (’LOC’) class if the question starts234

with "where" and abstains from voting otherwise. The initial labeling function set is assumed to235

start with 5W1H, including the above example.236

We implemented four types of labeling-function-selection (LF-selection) methods, our proposed237

method, Wang et al. [25]’s method extended to multi-class classification, and two types of random238

selection methods. With our proposed method, the labeling function to add the next ladd is ideally239

determined from Equation 2 ideally to eliminate any arbitrariness and to the fullest effect.240

ladd = argmax
l∈Lcand

∑
d∈Dvote(l)

A(d), (2)

where Lcand denotes the set of labeling-function candidates that have not been added, and Dvote(l)241

denotes the set of data points that are ranked in top N in terms of acquisition function A and do242

not abstain from voting by labeling function l. However, creating a labeling function while adding243

the values of acquisition functions is too complicated for humans. Therefore, we simplified it to the244

following two steps. The labeling-function candidate whose Dvote(l) contains the most data points245

in Lcand is selected as ladd. If there is more than one corresponding labeling function, the one that246

has a data point with a larger acquisition function in Dvote(l) is selected. With the extended method247

of Wang et al. [25], data points are prioritized as the first if they are abstained by all implemented248

labeling functions and as the second if they are voted by some labeling functions but the votes are249

broken. The top N data points are selected (in the same priority, they are selected randomly), and250

the labeling function candidate whose Dvote(l) contains the most data points in Lcand is selected as251

ladd. If there is more than one corresponding labeling function in the same priority, ladd is selected252

randomly from the corresponding labeling functions. The two types of random sampling methods253

are random (DP) and random (LF). Random (DP) selects N data points randomly and the labeling254

function candidate, which can be applied to most of the data points in the N data points, is selected255

as ladd. Random (LF) selects ladd directly and randomly. Since these comparison methods include256

random elements, we validated five times with different seeds with each method and evaluated them257

by their mean and standard deviation. The evaluation indicator is the macro F-measure calculated258

using the classification model applied to the test dataset for each loop.259

1https://cogcomp.seas.upenn.edu/Data/QA/QC/
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Figure 3: F-measures of each iterative loop on each LF-selection method

Table 2: Sum of F-measure improvements on each LF-selection method

proposed Wang et al. [25] random (DP) random (LF)
5.72 4.65 4.50 2.96

Table 3: The number of LFs that are required to always achieve representative F-measure values

F-measure proposed Wang et al. [25] random (DP) random (LF)
0.4 7 7 7 7
0.5 11 22 19 30
0.6 27 30 35 35

4.2 Experimental results260

Figure 3 shows the experimental results, F-measure values of each iterative loop on each LF-261

selection method. The F-measure increased more quickly in the order of our proposed method,262

Wang et al. [25], random (DP), and random (LF) as an overall trend. Table 2 shows the quantitative263

evaluation result indicating this overall trend. This table shows the sum of (achieved F-measure264

minus the initial F-measure) of each plot on each method. This metric indicates the overall per-265

formance of how higher F-measure can be achieved with fewer labeling functions. A larger value266

means better performance under the same setting as the Area Under the Curve (AUC) for Receiver267

Operating Characteristic (ROC) curve. These results indicate that not only our proposed method268

is superior to other methods, but Wang et al. [25] and random (DP) are almost neck and neck as269

described in Related Work section.270

At last, Table 3 shows the number of labeling functions that are required to always achieve F-271

measure ≥ 0.4, 0.5, and 0.6. ’Always’ means that F-measure never decrease from 0.4, 0.5, and 0.6272

even though further additional labeling functions are added (since the addition of labeling functions273

may lead to lower F-values). This result indicates that our proposed method can reduce the number274

of labeling functions to implement.275

4.3 Comparison with conventional manual labeling276

As a further evaluation, we also implemented two types of data-point-selection (DP-selection) meth-277

ods, entropy-based uncertainty sampling (active) and random sampling (random). Data points are278

selected and are labeled directly as general active or supervised learning. The purpose is to com-279

pare our proposed method with conventional manual labeling to each data point. In other words,280

we evaluated the labors required in traditional labeling methods to reach an accuracy comparable to281

that achieved by our proposed method. The evaluation indicator is the same as the above evaluation282

using labeling functions. This comparison is only reference data because the comparison is strongly283

influenced by the quality of each labeling function and the size of training dataset, but the results can284

represent the potential of our proposed method. The number of data points selected for each loop is285

set to 10 also to align with N in the above methods. The initial data points were selected randomly.286
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Figure 4: F-measures of each iterative loop on each DP-selection method

Table 4: Comparison of our proposed method and each DP-selection method

F-measure proposed (# of LFs) active (# of DPs) random (# of DPs)
0.4 7 240 250
0.5 11 570 750
0.6 27 1200 1430

Figure 4 shows the results of the data point selection (DP-selection) setting, and Table 4 lists the287

numbers of labeling functions in our proposed method and data points in both DP-selection meth-288

ods that are required to always achieve F-measure ≥ 0.4, 0.5, and 0.6. It is clear that on a simple289

average, an implementation of one labeling function is equivalent to labeling 30 to 50 data points.290

These results indicate that our proposed method can significantly reduce the burden of domain ex-291

perts’ redundant labeling tasks. Additionally, we can confirm the effectiveness of active learning in292

supervised learning by comparing active and random.293

4.4 Limitation294

Our proposed method is very effective for domain experts who introduce machine learning as shown295

in the experimental results. However, an issue remains that actual effectiveness depends somewhat296

on the ease of implementing labeling functions. It is also true that there is a demand to reduce297

labeling cost for building a machine learning model because it is difficult to articulate the domain298

expert’s knowledge for some problems. Varma et al. [24] and Das et al. [5], which are referred to299

in Related Work section, are already working on this issue by using an automation approach for300

creating labeling functions. We believe that human intervention is still essential for creating reliable301

low-resistance machine learning models, so combining these ideas for automation with our proposed302

method and incorporating their benefits is our future work.303

5 Conclusion304

We proposed and evaluated an uncertainty-based active learning strategy for interactive weakly su-305

pervised learning to reduce labeling cost without sacrificing interpretability of data. Our proposed306

method is a human-in-the-loop method that presents a small number of highly prioritized data points307

to humans based on the acquisition function derived from uncertainties of the labeling aggregator308

and the subsequent classification model and requires humans to iteratively implement their knowl-309

edge applicable to the highly prioritized data points as labeling functions. With this method, domain310

experts’ redundant and time-consuming labeling process can be replaced by the minimum required311

implementation of labeling functions by referring to a small number of highly prioritized data points.312

The experimental results verify the effectiveness of our proposed method in reducing the required313

number of labeling functions. For future work, we will reduce the cost of creating labeling functions314

without losing the interpretability of these functions by incorporating the benefits of our method and315

methods of automatically creating labeling functions.316
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