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ABSTRACT

Regret Matching™ (RM™) variants have been widely developed to superhuman
Poker Als, yet few studies investigate their last-iterate convergence. Their last-
iterate convergence has been demonstrated only for games with strong monotonicity
or two-player zero-sum matrix games. A primary obstacle in proving the last-iterate
convergence for these algorithms is that their feedback is not the loss gradient of
the vanilla games. This deviation results in the absence of crucial properties, e.g.,
monotonicity or the weak Minty variation inequality (MVI), which are pivotal for
establishing the last-iterate convergence. To address the absence of these properties,
we propose a remarkably succinct yet novel proof paradigm that consists of: (i)
recovering these key properties through the equivalence between RM™ and Online
Mirror Descent (OMD), and (ii) measuring the the distance to Nash equilibrium
(NE) via the tangent residual to show this distance is related to the distance between
accumulated regrets. To show the practical applicability of our proof paradigm, we
use it to prove the last-iterate convergence of two existing smooth RM™ variants,
Smooth Extra-gradient RM™ (SEXRM™) and Smooth Predictive RM* (SPRM ™).
We show that they achieve last-iterate convergence in learning an NE of games
satisfying monotonicity, a weaker condition than the one used in existing proofs
for both variants. Then, inspired by our proof paradigm, we propose Smooth
Optimistic Gradient RM™ (SOGRM™). We show that SOGRM™ achieves last-
iterate convergence in learning an NE of games satisfying the weak MVI, the
weakest condition in all known proofs for RM™ variants. The experimental results
show that SOGRM™ significantly outperforms other algorithms.

1 INTRODUCTION

Nash Equilibrium (NE) is a fundamental concept in the field of game theory. Recent advancements
in superhuman game Al, are largely attributed to NE learning (Moravcik et al., 2017; Brown &
Sandholm, 2018; 2019; Pérolat et al., 2022). Despite these advancements, the most popular algo-
rithms for learning an NE—no-regret algorithms, typically achieve only average-iterate convergence.
Moreover, in two-player zero-sum matrix games, these algorithms are prone to divergence or cyclic
behavior (Bailey & Piliouras, 2018; Mertikopoulos et al., 2018b; Pérolat et al., 2021). Average-iterate
convergence requires strategy averaging. This averaging poses significant challenges in large-scale
games where function approximation is used to represent the strategy since a new function has to be
trained to represent the average strategy (Liu et al., 2023).

To address the challenges related to averaging, numerous studies consider the last-iterate conver-
gence, ensuring iterates converge to NE (Mertikopoulos et al., 2018a; Daskalakis & Panageas, 2019;
Tatarenko & Kamgarpour, 2020; Wei et al., 2021; Lee et al., 2021; Cen et al., 2021; Liu et al.,
2023; Sokota et al., 2023; Abe et al., 2022a;b; 2023; Pérolat et al., 2021; 2022; Cai & Zheng, 2023).
These algorithms are based on Online Mirror Descent (OMD) or Follow the Regularized Leader
(FTRL). Despite their theoretical appeal, Regret Matching™ (RM™) variants (Bowling et al., 2015;
Farina et al., 2021; 2023), are more commonly utilized in solving real-world games. Precisely, they
are widely used in superhuman Poker Als (Bowling et al., 2015; Moravcik et al., 2017; Brown &
Sandholm, 2018). The key distinction between RM™ variants and FTRL/OMD based algorithms is
that RM™ variants update within the (subset of the) non-negative orthant, whereas FTRL/OMD based
algorithms update within the original strategy space of the game.



Under review as a conference paper at ICLR 2025

Table 1: Comparisons between the last-iterate convergence results of this paper and previous studies
about RM™ variants. "2p0Os Games", "SM", "SN", and "RS" refer to two-player zero-sum matrix
games, strong monotonicity, strict NE, and restarting (Cai et al., 2023), respectively. Games with
monotonicity cover games with strong monotonicity and two-player zero-sum matrix games. Games
with the Weak M VI is a super set of games with monotonicity. Notably, the convergence of " SExXRM™
& SPRM™" in Cai et al. (2023) is the convergences to a point of the set of NE, which is stronger than
our convergence concept that ensures the iterates converge to the set of NE (see details in Section 2.1).

Algorithm Games with | 2p0s Games 2p0s Games with | Games with
SM with SN Games | Monotonicity | Weak MVI
Meng et al. (2023) RMT v
RM T v
Cai et al. (2023) SEXRMT & SPRM™T v v
RS-SExRM™ & RS-SPRM™ v v
This paper SEXRM™ & SPRM™T v v v v
SOGRM ™ v v v v v

Unfortunately, few studies investigate the last-iterate convergence of RM™ variants. To date, the only
known results on the last-iterate convergence of RM™ variants are confined to a specific game with
strong monotonicity (Meng et al., 2023) or two-player zero-sum matrix games (Cai et al., 2023).
In contrast, the OMD/FTRL based algorithms achieve last-iterate convergence in a broader class
of games, those that satisfy monotonicity. These games are also called as monotone games (Cai
et al., 2022b; Cai & Zheng, 2023; Abe et al., 2023; Pérolat et al., 2021; 2022). They cover several
common game types, such as two-player zero-sum matrix games and convex-concave games, along
with significant applications like the training of Large Language Models (LLM) (Munos et al.,
2023). Moreover, recent studies show that OMD/FTRL based algorithms even achieve last-iterate
convergence in learning an NE of games satisfying the weak Minty variation inequality (MVI)) (Cai
& Zheng, 2022; Diakonikolas, 2020; Pethick et al., 2023). Weak M VI is weaker and covers more
games than monotonicity. It includes applications like Generative Adversarial Networks (GAN) (Cai
& Zheng, 2022). Therefore, a key question is:

Do RM™ variants achieve last-iterate convergence in
learning an NE of games satisfying monotonicity or even only the weak MVI?

Compared to traditional no-regret algorithms, e.g., FTRL/OMD based algorithms, the primary
challenge in proving the last-iterate convergence of RM™ variants is that their feedback is not the
loss gradients of the vanilla games. This deviation results in the absence of crucial properties, e.g.,
monotonicity or weak MVI, which are pivotal for establishing the last-iterate convergence.

Contributions. (i) To address the absence of crucial properties, e.g., monotonicity or weak MVI,
we introduce a novel proof paradigm. Firstly, it recovers these properties by leveraging the equiv-
alence between RM™ and OMD in Liu et al. (2021). Secondly, it measures the distance of RM™
variants to NE via the tangent residual (Cai et al., 2022b) to show that this distance is related to the
distance between accumulated regrets. Specifically, in RM™ variants, the feedback does not exhibit
monotonicity or weak MVI. However, in their OMD equivalents, the feedback is the loss gradient
of the vanilla games, which satisfies monotonicity or weak MVI. Then, We establish the last-iterate
convergence of RM™ variants by demonstrating that the distance between accumulated regrets, rather
than the strategies in OMD based algorithms, converges to 0. This convergence occurs since, in RM™
variants, the tangent residual converges 0 as this distance converges to 0. (ii) To show the practical ap-
plicability of our proof paradigm, we utilize this paradigm to establish that two existing smooth RM™
variants (Farina et al., 2023), Smooth Extra-gradient RM™ (SExXRM™) and Smooth Predictive RM™
(SPRM™), achieve last-iterate convergence in learning an NE of games satisfying monotonicity. (iii)
Inspired by our proof paradigm, we propose Smooth Optimistic Gradient RM™ (SOGRM™), which
combines Optimistic Gradient (OG) (Cai & Zheng, 2022) and smooth RM™* variants. SOGRM™
achieves last-iterate convergence in games satisfying the weak MVI. (iv) Experimental results show
that SOGRM™ significantly outperforms other algorithms. (v) Our proof paradigm yields explicit
best-iterate convergence rates for SEXRM™, SPRM™, and SOGRM™ without any modifications.

Discussions. Table 1 shows the comparison between our work and the two most relevant litera-
ture (Meng et al., 2023; Cai et al., 2023). (i) Our proof diverges significantly from theirs as they either
analyze the dynamics of limit points (Cai et al., 2023) or use the strongly monotonicity (Meng et al.,
2023). (ii) The last-iterate convergence results of Cai et al. (2023) and Meng et al. (2023) cannot be
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extended to games satisfying monotonicity (let alone the weak MVI). The reason is that their results
need more assumptions than monotonicity, e.g., the existence of the strict NE, the interchangeability
of NE, the Saddle-Point Metric Subregularity (Cai et al., 2023), or even strong monotonicity (Meng
et al., 2023). (iii) Our proof paradigm implies that existing last-iterate convergence results of OMD
based algorithms can be applied to RM™ variants. In contrast, Cai et al. (2023)’s proof cannot achieve
this goal as their motivation is that the feedback of RM™ variants only satisfies MVI (which is weaker
than monotonicity while stronger than weak MVI, and defined in Section 2.1) even when the loss
gradient of vanilla games satisfies monotonicity. (iv) Cai et al. (2023)' have to use another approach
to prove the best-iterate convergence while we employ the same proof paradigm. (v) The best-iterate
convergence results of Cai et al. (2023) only hold in two-player zero-sum matrix games as their results
depend on the definition of the duality gap of these games. In contrast, our best-iterate convergence
results hold in all games satisfying monotonicity or even only the weak MVL.

Technical Novelty. We develop a remarkably succinct yet novel proof paradigm via two techniques:
the equivalence between RM™ and OMD in Liu et al. (2021) and the tangent residual (Cai et al.,
2022b). These techniques have been overlooked in previous works about the last-iterate convergence
of RM™ variants (Meng et al., 2023; Cai et al., 2023). To the best of our knowledge, neither of these
techniques was used alone to prove the last-iterate convergence of RM+ variants. We combine and
extend both techniques, but this process is not straightforward. For example, the proof for SOGRM™
requires additional techniques, i.e., transforming variables via the definition of the inner product to
use the weak M VI and tangent residual, rather than directly using equalities as in OG.

2 PRELIMINARIES
2.1 SMOOTH GAMES AND TANGENT RESIDUAL

Smooth games. In this paper, we consider smooth games whose strategy space is simplex. We use
x; € X; to denote the strategy of player i and x = {x;|i € N} to represent the strategy profile,
where X; is an (|A;| — 1)-dimension simplex, |A;] is the dimension of X;, and A is the set of
players. The utility of player ¢ if all players follow strategy profile x is —o0 < u;(x;, x_;) < 400,
where —1 is the players other than 4. For any ¢ and the fixed x_; € X _;, u;(x;, x_;) is a concave
function w.r.t. ¢; € X;. Also, £F = —V, u;(x;, x_;) is loss gradient. In smooth games,

€% — %' ||2 < Ll — 2|2, Vo, & € X,

where €% = [¢¥ : ¢ € N, and L > 0 is a constant. In addition, we assume ||£€7||; < P for each
player ¢ and strategy @, where P is a positive constant.

Nash equilibrium (NE). In NE, for any player, her strategy is the best-response to the strategies of
others. The notation X* denotes the set of NE. As u;(x;, ¢_;) is a concave function w.r.t. ; € X,
thenVz* ¢ X*,xz c X, (Kf*,ac* x;) < 0 (Facchinei, 2003).

-
Monotonicity. Smooth games with monotonicity is called smooth monotone games, which include

many common and well-studied classes of games, such as two-player zero-sum matrix games and
convex-concave games. The most important property of monotone games is monotonicity

- x—2')>0Ve,2 € X.
Monotonicity is the most widely used assumption in existing works about the last-iterate convergence.

Minty variation inequality (MVI). From (¢, z* — x) < 0 and monotonicity, we get (£, x —
) > 0,V € X,Jz* € X*, also called MVI. MVI is weaker than monotonicity as MVI holds if
monotonicity holds, but not vice versa. We provide an example of games that satisfy the weak MVI
but not monotonicity in Appendix G.

Weak MVI. Some recent works consider a weaker assumption than monotonicity and MVI called
weak MVI (Cai & Zheng, 2022; Diakonikolas, 2020; Pethick et al., 2023; Cai et al., 2022a), which
covers more game types. Formally, weak MVI with p < 0 implies there exists * € X™ that ensures
€+ z,x — ") > p|l€® + z|3,Vz € Nx(x),z € X,

where Nx (z) = {v € RI¥l : (v, 2’ — ) < 0,Va’ € X} is the normal cone of x. If p — —o0,
intuitively, any smooth games satisfy the weak MVI. In Appendix G, we provide a smooth game
that satisfies the weak MVI with 0 > p > —oo and does not satisfy the MVI. The relations between
monotonicity, the MVI, and the weak M VI, is that monotonicity C MVI C weak MVL.

"Meng et al. (2023) do not investigate best-iterate convergence.
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Tangent residual. To measure the distance from a strategy profile to the set of NE, we employ the
tangent residual provided by Cai et al. (2022b). Formally, V& € X, its tangent residual is

tan(

r'(x) = min |£€° + z|.

zEN x (z)
If rt‘"‘(:c) = 0, then « is an NE in smooth games. Also, if « is an NE in smooth games, rt‘m(ac) =0.

Last-iterate convergence. In this paper, this convergence refers to the behavior where the sequence
of strategy profiles converges to the set of NEs. As previously discussed, if lim;_, o, 77" (z?) = 0,
then ! is an NE, which implies that &' converges to the set of NE. However, it is important to note
that Cai et al. (2023) define a stronger concept of convergence, known as last-iterate convergence of
the iterates. In contrast to the last-iterate convergence discussed in our paper, their definition implies
that 2! converges to a specific point within the set of NE. Our results do not pertain to the last-iterate
convergence of the iterates, whereas the results regarding SEXRM™ and SPRM™ in Cai et al. (2023)
do.

2.2 REGRET MATCHING'

Online convex optimization. Each player i selects a decision «! via the feedback in this framework.
Such feedback is the loss gradient Ef‘l = kal in solving smooth games. No-regret algorithms are

the algorithms, which ensures the regret RT (x) = maxg,c x, Zle (£, xt —x;) to grow sublinearly,
where @! is the decision at iteration ¢.

Online mirror descent (OMD). OMD is a traditional no-regret algorithm (Nemirovskij & Yudin,
1983). Let ¢! (+) : X; — R, V¢ > 0, OMD generates the decisions via the prox-mapping operator

™ € argmin{ (€}, x;) + qf (z;) + D jo:e—1 (@i, x)},
x,€EX,; v

where ¢} ' () = ¢f() + ¢/ () + -+ ¢ (), and Dyoa (z,y) = ¢ (@) — ¢ (y) -

(V¢! (y), x — y) is the Bregman divergence associated with ¢{** !

; . (+). Notably, we employ the
definition of OMD in Joulani et al. (2017) and Liu et al. (2021), which represents a generalization of
the standard OMD, to demonstrate the equivalence between RM™ and OMD as proposed by Liu et al.
(2021). To recover the standard OMD, we can set ¢ = ¢(-)/n and ¢! = 0 for all ¢ > 1, where ¢(-)

is a 1-strongly convex regularizer with respect to some norm in the decision space X', and n > 0.

Blackwell approachability framework. RM™ variants are from this framework whose core insight
lies in reframing the problem of regret minimization within X’; as regret minimization within
cone(X;) (Abernethy et al., 2011). Specifically, a regret minimization algorithm is instantiated in
cone(X;), where its output at iteration ¢ is 8. This corresponds to the strategy x! = 0 /(6!, 1)
within X’;. Given the loss 1Zf at iteration ¢, the algorithm observes the transformed loss Fi(Ot) =
(€, xt)1 — £¢ and subsequently generates 6/ 1,

Regret Matching®™ (RM™) (Bowling et al., 2015). RM™ keeps track of the accumulated regret 6?.

In RM ™, the strategy @! at each iteration ¢ is denoted by x! = 0! /||0¢||, . It updates its accumulated
regret 6! via the regret matching™ operator (Bowling et al., 2015)

0;"" = [0 +nF;(6")]",

where 1 > 0 is the step-size, F;(0") = (£}, x!)1 — £ ({6" = [0! : i € N]). As analyzed in Farina
etal. (2021), RM™ is closely connected to an OMD instance which updates in cone(X;) and faces a
sequence of loss [F(6")];>1. Formally, RM™ can be rewritten as

t+1 : (0t 0. 1 .9t t+l 0"
0,7 € argmin{(—F;(0"),0;) + EDw(BZ,Bi)}, x,

ool CT e

where ¢ (a) = ||a||3/2 is the quadratic regularizer, and R, = {y|y € R,y > 0}.

Equivalence between RM™ and OMD in Liu et al. (2021). The analysis in Farina et al. (2021) is
the main approach for proving the last-iterate convergence of RM™ variants (Meng et al., 2023; Cai
et al., 2023). However, in this analysis, the feedback (—F(6") = [~ F;(8") : i € N]) does not enjoy
monotonicity or the weak M VI, crucial for proving the last-iterate convergence in existing works.
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To recover monotonicity or the weak MVI, we use the equivalence provided by Liu et al. (2021) to
rewrite RM ™ as
41 : : 16:
w1 € argmin{{€, @) 4ol @) + Dy (@)}, () = () (1)
T, E€EX; 4

The feedback (£'*! = [Ef“ : 4 € N) is the loss gradient of the vanilla game, which enjoys
monotonicity or the weak MVI. Therefore, we recover monotonicity or the weak MVI via this
equivalence. Notably, this equivalence indicates that, given Bf“ at iteration ¢, the update of RM™

can be expressed in the form of Eq. (1). However, utilizing Eq. (1) to derive Of *1 is impossible.

2.3 SMOOTH REGRET MATCHINGT VARIANTS

Smooth RM™ variants (Farina et al., 2023) are designed to address the instability of Predictive RM™
(PRM™) (Farina et al., 2021). To do that, they enable the decision 8! in R, instead of RY , in other
RM variants to obtain the smoothness of F;(8*), where R, = {y|ly € R%, y > 0, ||y[j; > 1}. We
consider two existing smooth RM™ variants, Smooth Extra-gradient RM™ (SExXRM™) and Smooth
Predictive RMT™ (SPRMT). SExRM™T and SPRM™ are respectively related to instances of two
OMD variants, Optimistic Gradient Descent Ascent (OGDA) (Wei et al., 2021) and Extra-Gradient
(EG) (Korpelevich, 1976), which updates in Rip the subset of cone(X’;). The update rule of
SExRM™ is

t+1 t 1 t t+1 0t+%
0, *> cargmin{(—F;(0°),0:) + ~Dy(0;,6;)}, =, > = —"—5—,
[A;] n ttg
0i€R3] 16: "2 I )
1 1 0?«%1
0;"! € argmin{(~F,(6'72),0,) + —Dy(6:,6))}, " = i,
0, el n 16:7" Il
iR,
and the update rule of SPRM™ is
1
1 1 1 1 otz
0."% € argmin{(~Fi(6'"2),0:) + ~Dy(6:,00)}, 2, ? = —L—
' Al " ! t+3
Oi R 16, 2l
- 3
t+1 41 1 ¢ 41 i+t
6;"" € argmin{(~F;(6""2),0,) + EDw(eugi)}, x = ||9:+1|| ,
i 1

"
0,erlAi!

where 1 > 0 and ¢)(+) is the quadratic regularizer.

3 OUR PROOF PARADIGM

We now introduce our proof paradigm that includes: (i) recovering monotonicity or the weak MVI by
leveraging the equivalence between RM™ and OMD proposed by Liu et al. (2021), and (ii) measuring
the distance of RM™ variants to NE via the tangent residual to show that this distance is related
to the distance between accumulated regrets rather than the strategies in OMD based algorithms.
We considers smooth RM™ variants, since other RM™ variants, e.g., vanilla RM™ and PRM™, are
experimentally shown to diverge in two-player zero-sum matrix games (Cai et al., 2023).

Phase 1. To recover monotonicity or the weak MVI of smooth RM™ variants via the equivalence in
Liu et al. (2021), we prove this equivalence holds between smooth RM ™ variants with OMD. To do

that, it is sufficient to show the update rule in Eq. (4) can be written as the form in Eq. (5).
0" 1 o
=1 0> cargmin{(~F(6").0:)+ Dy(0:,60)}, Fi0")=( 71— 001"
TRy " 1071

0;2 0;°
Bt @, niten =2 Ly ),

. &)
where tg, t1, t3 refer to different iterations, > 0, ' = 8 /||0%°||;, 8}° with 8!* leoil, £97 is
the loss gradient of player 4 induced by &'t = [z}* = 0!*/||0*||1 : i € N, and 9(-) is the quadratic
regularizer. As shown in Section 3.1 of Liu et al. (2021), Eq. (5) can be written as

2 [0/ + a1 — ne?™ ],
' 167 11 ’

x? Gargmin{(ﬂ?tl &)+ fi(@:)+ D, (2,250)}, hi(x:)+ fi(x:)=
x, €EX;
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where « is a unique constant to ensure ||z/?||; = 1 (o always exists). Then, considering Eq. (4), with
the analysis in Section K of Farina et al. (2023), if

t1

HG“H

t
116;° + n( 0L — e > 1,
6! in Eq. (4) can be obtained via
t1

t t
HetlH e91>1_7]ei91]+'

o l08

Therefore, in this case, a = p{—%— T etl T ,E? ). Similarly, if

to 0t1 6t1 6t1
”[01 + <H0t1H ﬂez > _n‘ez ]+||1<17

6! in Eq. (4) can be obtained via
i1

62 = [0 + 1 01— ne?™ 4 By,

H9t1 &
where $3 exists and is unique to ensure ||0?||; = 1. Therefore, in this case, o = 7/ ”::” 097y 4 B,
As « is unique, we have that
I A M [ I Wl SIS WY
|t B B (i 10 <.

These complete the proof. Due to page limitations, a detailed proof is in Appendix A. This equivalence
is the inherent property of smooth RM™ variants and does not involve the game types. It also implies
that smooth RM™ variants can be represented by OMD based algorithms whose feedback is the loss
gradient of vanilla games. We recover monotonicity or the weak MVI since the feedback in Eq. (5) is
the loss gradient of the vanilla game.

Phase 2. As analyzed in Cai & Zheng (2022), if the loss gradient of the vanilla game enjoys
monotonicity or the weak MVI, we can use the tangent residual to denote the distance to NE.
Formally, from the first-order optimality of the prox-mapping operator in Eq. (5), we have

(€0 4V oo [i(®!2) 4V o D, (22 1) @i—!?)20
& 1V hi(@2) 4V s fil@!?) -V Johi(@)@i—al?)20
iEN ¢ ¢

0!°—-0;> 0" —6"
T R A e e P A ENx(z"?)
n n
iEN

(6)

6’9"

@Ttan(th)SHEGtz _eef1_|_ ||2’

where ' = 6 /||0." ||1, where the third line comes from V_, h;(x}*) + V o2 fi(@ 2) =07/
and V_:o h; (z!°) = 8! /n, the last line is from the definition of the tangent residual. Therefore, if

we can prove |92 — £9* ||, — 0 and [|6*2 — 805 — 0, we can get that !9 (x'2) — 0, which
implies "2 is an NE. In smooth RM* variants, we have that |[£0 — £9° ||, < O(||0"2 — 6" |5)
(||€8"* —°™ ||, < O(]|6*2 —6"1|5) does not hold in other RM™T variants, which is the reason why we

consider smooth RM™ variants). Thus, in smooth RM™ variants, if we can prove ||0%2 — 8%y — 0
and |02 — 6" ||y — 0, we can get that ' converges to NE.

4  APPLICATION OF OUR PROOF PARADIGM: CONVERGENCE RESULTS OF
SEXRM™ AND SPRM ™

To show the practical applicability of our paradigm, we use it to prove the last-iterate and best-
iterate convergence of two existing smooth RM™ variants, e.g., SEXRM™ and SPRM™. Note that
our convergence results in this section cover all games that existing works about the last-iterate
convergence of RM™ variants investigate.
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Theorem 4.1. SEXRM™ with 0 < 1 < 57— or SPRM™ with0 < n < ﬁ achieves asymprotic last-
iterate convergence and O( =) best- lterate convergence rate in learning an NE of games satisfying

monotonicity, where D = max;cn |A;| and L, = V2P? 4+ 4L2. Specifically, if all players follow
the update rule of SEXRM™ or SPRM™, then 1™ (z'+2) — 0 and min, plan(pT+s) < O(%)
ast — oo.

To prove Theorem 4.1, we introduce the Theorem 4.2, Theorem 4.3, and Lemma 4.4 (the proof of
Theorems 4.2 and 4.3 are in Appendix B and C, respectively).

Theorem 4.2. SExRM* with 0 < 1) < 5 ensures |01z — @%||, — 0and ||0"F! — 62|, — 0
as t — 0o, and min, ¢ (HBTJFz — 07||2 + (|07 — 07+%||§) <O}, vt>1

Theorem 4.3. SPRM* with 0 <1 < 3 L ensures |02 — 0|y — 0 and || — 61z ||, — 0
ast — 0o, and min, ¢y (HGT+2 0T||2 + Tt — @7tz ||§) <O(}), vt > 1.

Lemma 4.4. (Proposition 1 in Farina et al. (2023)) Va,b € ]R>0, aly >

lle < Villa bl

Proof. Now, we start to prove the last-iterate and best-iterate convergence of SExXRM™ and SPRM ™.
Firstly, from the analysis in Section 3 that Eq. (4) can be written as the form in Eq. (5), the update
rule of SEXRM™ can be written as (see details in Appendix F)

1 1
m? 2 eargmin{<£§7wi>+q: (@) +D o1 (xs,2)},

x; €EX; K
it +3
cargmin{ (£, * @) +q! (@:)+D, 01— (@s,@7) }, %)
xz; €EX;
o 6! . _1 o'tz e e
@ @)=L g el @)=L i) L0 ),
Similarly, the update rule of SPRM™ can be written as
i+l . -1 t—1 t
x; *cargmin{(f; *.wi)+q; *(@i)+D o1 (wixi)},
x; EX; K
1
@} cargmin{(€;"* @i} +q! (i) 4D 0 (o))}, ®)
xz; €X;
. 6! . 1 o'tz e oIt
@)=L ) g @ g @)=l @) g @ el =10 ),

n

Monotonicity is recovered since the loss gradient £ is a monotonic operator. Now, we prove the
tangent residual of the strategy profiles x¢ converges to 0. From the analysis in Phase 2 of Section 3,
according to the second prox-mapping operator in Eq. (7) and Eq. (8), V& € X, we have

Ot 0t+1

TN ().

From the definition of the tangent residual, we obtain

ot _gt+t
———|2<|e - ft+2llz+ 16" —6 "2

Ttan(mt+1)§|‘£t+17£t+%+
1 1 1 1
<Lz —a'ts u2+f||ef—of+% o+~ % —0"+ s,
n n

where the last inequality is from the smoothness of the smooth games. Then, using Lemma 4.4 with
a= 0" and b= 0%, we have

1 1 1 1 1
P @) S LVDOT = 0" a4 26— 0" a4 267 — 6"
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From Theorem 4.2 and 4.3 ([|@" — 8+ 2|5 — O and ||@*+2 — @' |5 — 0), we get " (') — 0 as
t — oo. Similarly, we get

t t+1
(rtan(wt+l))2§||£t+17‘et+%+6 —0
n

I3<2(le £t+2||2+ sllo"—6" 1|13
<2L%||2"" ’+2|| e ||0t 0" I3
<2L*D?|0"" — 9t+2”2+ S 16— 9”2|\2+n |67 "2
g<2L2D2+%> (||0t+1—6t+5 I3+]l6"—6"*= H%).

Therefore, from Theorem 4.2 and 4.3 (min, ¢ (HBTJ% 7|2+ 07 — 72 |\§) O(1)), we
get that for 7 = arg min, ¢, (||07+§ — 07|32+ 07t — o7tz H%),

e @< J0((l67 6 [ +lor+i -7 ) <0( ).
These complete the proof. [

5 OUR ALGORITHM: SOGRM™

By using our proof paradigm, we prove that SEXRM™ and SPRM™ achieve last-iterate convergence
in games satisfying monotonicity. However, OMD/FTRL based algorithms even achieve last-iterate
convergence in games satisfying the weak MVI, covering games satisfying monotonicity.

S

Inspired by our paradigm, we propose a new smooth RM™ variant called Smooth Optimistic Gradient
Regret Matching™ (SOGRM™). We prove that SOGRM ™ achieves last-iterate convergence in games
satisfying monotonicity via our paradigm. SOGRM™ is connected to an OG instance which updates
at RZ |, the subset of cone(X';). Note that the proof of SOGRM™* needs additional techniques, such
as transforming variables using the definition of the inner product to employ the weak MVI and
tangent residual (details are in Eq. (11), (12), (35), (36), and (38)), rather than directly transforming
variables using equalities as in OG. Formally, the update rule of SOGRM™ at iteration ¢ is

t+1 +— 1 1 + t+1 9t+%
0, 2 cargmin{(—F;(0" 2),0;) + —Dy(0;,0;)}, =, > = #7
eieR‘ZAf' g 16; 2l ©))
oIt =07 —F(0" ) 4 yF(0"h),
Theorem 5.1. In smooth games satisfying the weak MVI with p > —ﬁ, there always

exists 0 < n < W that ensures SOGRM™ achieves asymptotic last-iterate convergence and

O(%) best-iterate convergence rate in learning an NE of these games, where D = max;c x| A;]
and L, = 2P? + 412 Speciﬁcally, ifall players follow the update rule of SOGRM™, then
b (gt3) 5 0 and ming e " (2712) < O( =) ast — oo.

To prove the convergence of SOGRM™, we introduce Theorem 5.2 and Lemma 5.3, whose proofs
are in Appendix D and E, respectively.

Theorem 5.2. If p > —m, there always exist 0 < 1 < zp— that ensures |07 — 6"||2 — 0
ast — 0o and min, ¢y |07 — 073 < O(1), Vt > 1.

Lemma 5.3. If all players follow the update rule of SOGRM™, Vx € X,
1
D e D DAL LA}
iEN n iEN N
Proof. Now, we prove Theorem 5.1 via our proof paradigm. Firstly, from the equivalence in Section
3 (Eq. (4) can be written as the form in Eq. (5)), the update rule of SOGRM+ can be written as (see
details in Appendix F)

2.2 cargmin{(€ "} @) ta F (@) 4D 0 (i)} 0160 (6" )1 (61 ),
x;, €EX;
(10)
it 0; d t—1 9§+§
¢ ()= n”lwwi),q?-t ool H =1 L),
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Figure 1: Performance of different algorithms in 10 x 10 (top), 20 x 20 (middle), 50 x 50 (bottom)
randomly generated two-player zero-sum matrix games.

From the first-order optimality of the first prox-mapping operator in Eq. (10), V& € X, we have

-1 t—1 t+1 t+1 + t+1
£ *+V t+4 s (@, *)+V t+%Dq9=t*1(mi soxi), i —x; ?) >0
@ @x. i

t—1 . 1 t—1 1 . t+1
@D (874 L d T @4V e (@) = Ve (@), @ - > 0,
ieN i i
Then, we have
1 t _ pt+d 1 1 t _ ptt+l 1
St o e s 0w S ety s, (1)
iEN N PiEN K
1 1

where the left-hand side is from Vm&%q?:t_l(mﬁ%) + wa&%qf 2(wt+é) = 9?2/77 with

Vi)' (x}) = 6} /n, and the right-hand side is from Lemma 5.3. According to Eq. (11) and the

definition of the normal cone, we have
et _ 0t+1

ety € Nx(z't2), (12)

1
where 12 = [EZJr ? ;4 € N]. From the definition of the tangent residual, we obtain

0" — o'

tan _t+L t+1 t+1 + 10 t+1
A C ARSI VAR AR ||2S5H9 — 0" 2. 13)

Combining Eq. (13), Theorem 5.2 (||@" —6'+1||y — 0), we get 719" (x!+2) — 0 ast — oc. Similarly,
from Theorem 5.2 (min ¢y |07 —87[|5 < O(3)), we get that for 7 = arg min, () [|07 —671[|3,

tan ‘r+% <l 07’_97’4»1 <0 i .
rET )< l2< (\/E)

6 EXPERIMENTS

We conduct experiments on randomly generated two-player zero-sum matrix games with sizes
[10, 20, 50], where learning an NE is defined as ming, e x, maXq, cx, :ch:nl. Each element of the
payoff matrix A is uniformly sampled from [—1, 1]. For each game size, we generate 20 instances
and report the average duality gaps with variances. The duality gap, %9 (x), is used to evaluate the
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distance to NE, defined as r%(z) = ", maxg (67, x; — ;). As analyzed in Cai et al. (2022b),

the duality gap involves a lower bound of the tangent residual, r%(z) < Cor'®"(z), where Cy
is a game-dependent constant. Thus, if the tangent residual converges to 0, the duality gap also
converges to 0. Due to the difficulty in precisely calculating the tangent residual, we do not use
it as the metric. We compare smooth RM™ variants (SExXRM™*, SPRM™, and SOGRM™) with
existing RM™T variants (ExXRM*, PRM™, and RM™), as well as traditional last-iterate convergence
OMD based algorithms—Optimistic Gradient Descent (OGDA) (Wei et al., 2021), Extra-Gradient
(EG) (Korpelevich, 1976), and Optimistic Gradient (OG) (Hsieh et al., 2019; Cai & Zheng, 2022).
For initialization, we set 6; to 1|x,/|X;| and 0 for smooth and other RM™ variants, respectively.
For OGDA, EG, and OG, the initial strategy is the uniform strategy. For all tested algorithm, we use
simultaneous updates since to the best of our knowledge, the theoretical analysis of existing work
on last-iterate convergence is based on simultaneous updates. All experiments are performed on a
machine with an i9-13900K CPU and 128 GB of memory.

The convergence results are shown in Figure 1, smooth RM™ variants generally achieve at least similar
performance compared to other algorithms. Specifically, OGDA, EG, and OG underperform relative
to their smooth RM™ counterparts (SPRM™, SExXRM™, and SOGRM ™, respectively) and are more
sensitive to parameters. For larger n values (n = 1 and n = 10), OGDA, EG, and OG consistently
diverge, while smooth RM™T variants maintain last-iterate convergence. Additionally, we observe
that SPRM™ and SExXRM™ consistently achieve comparable performance to their corresponding
non-smooth RM™ variants, namely PRM™ and EXRM™, respectively. Under optimal parameter
settings, SPRM™ and SEXRM™ significantly outperform PRM* and EXRM™, respectively. More
importantly, we find that our algorithm, SOGRM™, exhibits the fastest convergence rate and shows
the least sensitivity to parameter changes. Moreover, for the similar performance of SOGRM™ under

n = 1 and n = 10, we hypothesize that when 1 > 1, the term r]Fi(Ot_%) becomes extremely larger

1
than 0}, either positively or negatively. Consequently, the accumulated regret 0? ? heavily depends
on the feedback nFi(QT*%) from iterations 7 (7 < t) rather than 8. Since the strategies are derived

by normalizing the accumulated regret 0!+, the resulting strategies exhibit only minor differences.
Therefore, we can observe the similar performance of SOGRM™ under 7 = 1 and = 10.

7 CONCLUSIONS

We study the last-iterate convergence of RM™ variants in learning an NE for games that satisfy
monotonicity or only the weak MVI. We introduce a novel proof paradigm to analyze the last-iterate
convergence of RM™ variants. Using this paradigm, we show that two existing variants, SEXRM™
and SPRM™, exhibit last-iterate convergence in games with monotonicity. Building on this, we
propose a new variant, SOGRM™, which achieves last-iterate convergence in games satisfying the
weak MVI. To our knowledge, this is the first last-iterate convergence results for RM™ variants in
such games. Our paradigm stands out for its simplicity and innovation, and we believe this approach
can extend to proving last-iterate convergence for additional RM™ variants in broader game classes.
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A DETAILED PROOF OF SECTION 3

In this section, we provide a detailed proof for Section 3. Firstly, as shown in Section 3, the update
rule in Eq. (5) can be written as (more details about how to get this form is in Appendix A.1)

to [950 +al — ﬁE?tl]Jr
xr? = ,
' 167211

(14)

where « is a unique constant to ensure |z}*|; = 1 (a always exists) (see the reason why « is a

unique constant in the proof of Theorem 2.2 of Chen & Ye (2011)) (note that 022, 020, and thl are
the same between Eq. (4) and Eq. (5)).

Now, considering Eq. (4), as we show in Section 3, 0;52 in Eq. (4) can be obtained via (more details
about how to get this form is in Appendix A.2)

o1 t t . o't t
I i I L A T
i = t . P} t
610+l €0V — b B[00+ (e 601~ e < 1.
(15)
where 3 exists and is unique to ensure ||?%||; = 1 (we can get /3 if we know 6/ +1( H:tl L ’Eftl )1—

nE?tl) (see the reason why [ is a unique constant in the proof of Theorem 2.2 of Chen & Ye (2011)).
Assume « in Eq. (14) is

o't t 1 t1
<”9t1H ?'87,0 1> lf H[gto + T}<H9t1“ 7’e7,0 1> - 7’],620 ]+||1 Z 13
a (16)
0;! 6*1 to 6*1 6*1
<”9’51H ’El >+5 lfH[e +77<H9f1” 7el >1_77£z ]+||1 < 1

Then, [0}° + al — ned™ ], = 6!>. Therefore, substituting Eq. (16) into Eq. (14), we get that the
update rule in Eq. (14) (or Eq. (5)) can be written as (since [Bfo +al — néft1]+ = 0;2)

PN A S S P '
’ 165211 [CA

(17)
which enables ||z ||; = 1 (the !> in Eq. (5)). In addition, we have « is unique. Hence, the value of

«a must be same as Eq. (16) shown! Also, note the w? in Eq. (4) is obtained via

to
to 01

xr? = .
to6

(18)

Therefore, combining Eq. (17) with Eq. (18), we get that the update rule in Eq. (4) is the same as Eq.
(5). It completes the proof®.

A.1 DETAILS ABOUT GETTING EQ. (14)

From Eq. (5), we have

@2 € argmin{ (€0 @:) + fi(w:) + D, (;, @)}

T, €EX;
) + 02 gto
Sai? € argmin{(€] ", @) + u1#(51’31') _ 18 ||1¢(wi) +D gy, (@)}
T, €X; n n iy

n

3To verify our proof, we experimented 10° times and did not find a counterexample.

14
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Since 1(-) is the quadratic regularizer (in other words, Va,b € R% ¢ € R,cyp(a) = c|al3/2,
Dy (a,b) = clla — b||3/2), we have

22 € argmin{ (€7, @;) + fi(@:) + Di, (i, 20)}

T, €EX;
¢ ot 1621y, o 160, o 16:°01 to12
el € argmin{ (€ @)+ 53— 5 a4 T s — a3}

. t
e}’ € afgerﬁm{@ﬂf? b@a) 11072 | lail|E — 105 llallwa13 + 167011 [l — 213}

. t
sz € argen;m{@nf? toaa) 11072 1|13 — 11670 |1 llaa3 + 1167 [|1[|: 13+

2
102 11 ll3° 113 — 21167° [l {aes, 27°) }

t
a? € argmin{(2n€] ", @) + 10721 lil|3 — 21071 (i, 27°)}

T, €EX; 19
¢ 19
e’ € argn;in{@??e? 2000 ha, @) + 16 ]|z |3}
TiEX;
29" _ |1gto to ..
szl e argmin{2<77 U I = Lz @) + ||Ccz||§}
T, €EX; 116:2 11
. 20— 0% |z, x 00— ||et0|| ato
<:>m§2 € argmin{2 (néi I t; s, i) + ||mz||§+ Hn ! ,|5|2 e, Hg}
T €X; ||0'L Hl Hez Hl
0% || o — ned™
Sal? € argmin || 16; ”1:812 0% xi||3
T €X; 116;%11
0! — ne?™
Sxl? € argmin H% — )3,
T €EX; 11611
to
where the last line is from 8}° = ||0}°||1z!° (x/° = ”:;0“1 ). Since X; is simplex, Eq. (19) indicates getting the
toinl_gtl ’

orthogonal projection of — on simplex. Therefore, as analyzed in Chen & Ye (2011), the closed-form

19;2 111
solution of Eq. (19) is Eq. (20), and « exists and is unique to ensure ||'?||; = 1 (see the reason why « is a
unique constant in the proof of Theorem 2.2 of Chen & Ye (2011)).

t1
[0:° + a1l —ned ],
1. = o 20)

0 — el
16111

’

o=

+

e
7 .
16;2 111

where o/ =

A.2 DETAILS ABOUT GETTING EQ. (15)

From Eq. (4) and % (-) is the quadratic regularizer (in other words, Ya,b € R% ¢ € R, cy)(a) =
cllal|3/2, Dey(a,b) = c||a — b||3/2), we have

0! € argmin{(—F,(6"),0:) + %m(% 61°)}

enlAil
0;erlf)

1
<:>052 S argmin{(—Fi(9t1)70i> + 2—||91 - 0:°||§}
0;erlfyi! n
1

. gto
3, (0000}

: 1 1
©0;? € argmin{(-F,(6"),6;) + %H@illg + %IIBf"\Ig -2

enlAil
0;erlLY

15
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Then, we have
1
0; € argmin{(~F;(6"),0) + ~Dy(0:,0;")}
0,crl 2! N
i ERS Y
©0;* € argmin{(=2F,(0"),0:) + [10:]13 + 1613 — 2(6:, 6,°)}
eieRlzf"
©0;* € argmin{(—2nF;(6"),6:) + ||6i]|3 — 2(6:,6;°)}
aieRleli\
©01% € arg min{ (—2nF,(6") — 2610, 6,) + [|64]|3}
0,crlAil
i >1
©0;” € argmin{(—2nF;(8") — 260", 6:) + [|0i[[3 + [[nFi(6") + 6;°[13}
0;erlf)i!
&0 € argmin |[nF;(0") + 0 — 6,])3.

A,
0,erlAi!

Since F;(6%) = <‘|;;1|| £07)1 — 297 we have

0! ¢ argmin{(—F;(0"),0;) + lpw(ehgfo)}
0,crlAil "
= o 2D
&0 ¢ argmin ||0/° + n( e o >1— 0 - 6i3.
are iy 1871
s ERL

gt1 gt1 | A
”9’1 1 7£z >1 - n’ez on RZI .

As analyzed in Section K of Farina et al. (2023), V& € RY, projecting x to RIZC”P if [[[x]4]1 > 1,
then the solution of the pI‘OJCCthIl is [x]4. If ||[z]+|l1 < 1, return the orthogonal projection of & on

2971 — ned* | we have

Eq. (21) indicates getting the orthogonal projection of Hto + n{

simplex. Let & = 0. + n(

ne“u T
0t2 B [9 +n<”9t1” 7'€291>1_77'eze1]+7 lf“[0t0+n<”0t1‘l "87,91>1_77e101]+H1 Z 17
[ 9t1 t tl t t
[9 +77<”9751” 7£19 1> _775? ! +ﬁ1]+7 lfH[efO "‘77(”9751“ vezo 1> _7749 1]+H1 < ]-7

Oy > L the

where the top means if ||[0?0+77<”et1” N4

09°Y1 — e, and the bottom  implies  if

t
||e‘1|\ 1 i

solution is  [B)° + n(

[0 +77<H0t1” 091 — o)L |l; < 1, the solution is the orthogonal projection of

02-0—}—77(”6,1" 0971 — et on simplex.  Hence, as analyzed in Chen & Ye (2011),
1=y < 1 s

the closed-form solution in the case where ||[6° —&-n(H 9’1\| 7

t
[67° +n( Hetllu 091 — ne?"* 4 1], where 3 exists and is unique to ensure [|0%[; = 1 (see

the reason why £ is a unique constant in the proof of Theorem 2.2 of Chen & Ye (2011)).

B PROOF OF THEOREM 4.2

Lemma B.1. (Proof is in Appendix B.1) Let x* € X™ and assume all players follow the update
rule of SEXRM™, then for every iteration t > 1, it holds that ||@*+! — z*||3 < ||@* — =*||3 — (1 —

nDL,) <||0t+% — 0|3+ ||o" —ott3 ||§> where D = max;cn |Ai| and L, = V2P? + 4L2.
From Lemma B.1, we have

6" — 2|3~ 10" — 2"|} < —(1 - uDL.) (l6"72 — 013 + 6 — 0 2]3) . @2
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Assume <||0t+% — 0|2 + |0ttt — 9tz ||§> do not converge to 0. Then, from Eq. (22), we have

T
167 — "3 < 16" — "3 = (1~ nDL.) (1672 — 6|3 + 6"+ — 6" 3 3)

t=1

In addition, since n < ﬁ, we have (1 — nDL,) > 0. Therefore, as T — oo, |87+ —

x 2 < |0 — 2|3 - 3T, (||0t+% — 012+ ot — 9t+%ug) — o0, which contracts that

|67+ — x*||2 > 0. Therefore, we have <||0t+% — 0|2 + |0ttt — gt ||§> ast — oo.
In addition, from 7 < ﬁ and Eq. (22), we have

T

01 _ w*H2 _ H0T+1 _
git3s _ gt|2 g+l _ gt+t 2) < [ 2

> (o — o3+ H3) < DL

t=1

>3 _
— Y

where C' is a constant which depends on 6!, x*, 1, D, and L,,. Therefore, we get
T

T 1%1 (||0t+% — 0|2+ [0t — 9t+%”§) < } : <||0t+% — 0|2+ ||o"H OH%H%) <c,
te
=1

which implies

min (1|67 — 63 + |0+ — 674 )3) <
teT

SIQ

B.1 PROOF OF LEMMA B.1

Lemma B.2. (Proof is in Appendix B.2) Assume all players follow the update rule of SExXRM™, then
forany 6 € R‘le‘, we have
Dy(6,8")~=Dy(6,6")

<—n(F(0"7%),0)+n(F(0"%)—F(6"),07 —0""3)—D, (61,0 %)~D, (" ,6").

Substituting @ = x* € X™ into Lemma B.2, we get
Dy(x",0""")~Dy(z".0")

(23)
<—n(F(6"7%)@") =Dy (0,0 2) =Dy (0" 2 6" +n(F (0" 2)—F(6'),6" 6" 2).
For the first term of the right-hand side of Eq. (23), we have
S SEO ) ) = - ST e —al) = et e <0,

iEN iEN
where the last line is from the definition of NE (Section 2.1). For the fourth term of the right-hand
side of Eq. (23), we have

n(F(0"2) = F(6),6'" — 0" %) <nl|F (0" %) — F(6") 20" — 6" 2|5
<HDL,[0% = 0" 20" —6""2 2,
where the last line is from Lemma 5.2 of Farina et al. (2023) (||F(0) — F(0')|s < DL,|6 —
0'(2,v6,0" € Rgl, where D, L., are in Theorem 4.1). Combining Eq. (23), (24), and (25), we get
Dy(a",0") — Dy(a", 6"
<= Dy(0",0"72) = Dy (072, 8") + DL — 0'|]s]|6" — 0"z 2
< Dy(8", 0" 2) — D, (62 ,0") + DL, (Dw(ef%, 6") + Dy (6", 9f+%))

(25)

< (1—nDLy)Dy (Dw(et%, ') + Dy (0", 9f+%)) .

where the second inequality is from Va,b € R,ab < pa?/2 + b?/2p,V¥p > 0 (in this case, a =
HG“’% — 0)2,b = ||@*F — 0”%”2, p=1)and Dy(a,b) = |la — b||3/2, Ya,b € R if () is
the quadratic regularizer.
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B.2 PROOF OF LEMMA B.2

To prove Lemma B.2, we first introduce the following folk theorem (we drop the terms involved @ in
Eq. (2) and Eq. (3) since they are not used in the following proofs).

Theorem B.3. The Update rule of SEXRM™ can be written as
0% ¢ argmin {(—F(6'),0) + ~ D, (6,0},
GGXieN]R:l"' n
) . 1 (26)
0" € argmin {(-F(6'72),0) + 5D¢(9,9t)},

1A
GGXiEN]sz

and the update rule of SPRM™ can be written as

6" € argmin {(—F(6'%),0)+ ~D,(6,6")},
BGX,LE/\/]Rleli‘ n

) 1 27)
6" ¢ argmin {(~F(6'7%),0) + Dy (6,6},
n

| A3l
BGX,iENRZf

where 1 > 0 is the learning rate.

Considering Eq. (26), and using Lemma D.2 with a@ = 0, a’ = '*! a* = @ and g = —nF (0" 2)
(in this case, A is xieNR‘ZAfl), we have

n(—F(6"72),0"" — 0) < D,(0,0") — D,(6,0"") — D, (8", 8"). (28)
Similarly, with @ = 0%, @’ = 672, a* = 0*! and g = —F(0"), we get
n(—F(0"),0"2 — 9"y < Dy (8", 0%) — Dy (0", 0°72) — D,(8" 2, 0. (29)
Summing up Eq. (28) and (29), and adding n(F (0'+2) — F(0"), 'L — '3 to both sides, we get
n(—F(8'"%),6'"% —6)
<Dy (6,0") — Dy(0,0") — Dy (0,07 3) — D072, 0") + n(F (8" 2) — F(6'),0"" — 0'"3).
Arranging the terms, we have
Dy (6,0'"") — D, (6,0")
<n(F(6'72),0'72 — 0) + n(F(6'"2) — F(6'),0'" — 6'72) — Dy(0'",6"72) — D, (62, 0")
< —(F(6'72),0) + n(F(6'" %) — F(6'),0"" —0'"%) — D,(6",6""2) — D(6"72,0"),

1
where the last line comes from (F(0'2),0't2) = EieN<Fi(9"+%),0;+2> =
Nient@ @ = 707 = S (L6 — (76T =

1 t+3 1 1 1
Zier:J”, Zf >||49fJr2 I — (£:+2,0:+2> = 0. It completes the proof.
e, >l

C PROOF OF THEOREM 4.3

1

Lemma C.1. (Proof is in Appendix C.1) Let x* € X* and 0 < n < ST T

t > 1, it holds that
" 1 1 b 1 _1 15 : 1 1
167 —a" ||+ 75116 —6" 2 [3<]|6"—a" |34 10" ~6" 25— 35 (167 —6" = [3+]16° 6" 2 |15).

then for every iteration

From Lemma C.1, we have
* 1 5 *
107 — a5 + [l 6" H 5 < |6 — 673+

(30)
1 1 15 1 1
16" =025 — 151167 — 05 + 19" — 6T ).

18
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Assume |01 — 01z ||3 + ||@* — 812 |3 do not converge to 0. Then, from Eq. (30), we have

. 1 1
167 — a3+ o7 - 73

T
. 1 _1 15 1 1
<I16” — "3+ | 610" — 0" 23 — 36 > (16" — 0" =5 + [|6° — 6" 3).

5107 =073 |[3 < |10 — 073+ {50! — 0" ||3 —
125 I (|07 =012 |24 ]6' -0 2||2) = —o0, which contracts that |07 —z*||3+ L [|0T 1 —
67+2 |2 > 0. Therefore, we have ||§*+! — @22 + |0 — @'z ||2 — 0 as ¢ — oo, which implies
01t — @+ 2 |2 — 0 and |8 — 62 ||2 — 0 as t — oo. It completes the proof.

Therefore as T — oo, |07+ —z*|]2 +

In addition, from n < ﬁ and Eq. (30), we have

T
> (l6th — o'+ o' — 6 H|3) < ¢

t=1

where C is a constant which depends on 6*, 0%, x*,n, D, and L,,. Therefore, we get

T
Tmin (674~ 013+ 6" — 6" 4 |3) <3 (04 — 03 + 0" — 04 )3) < €.
te
t=1

which implies
min (1|6" — 673 + [|6"+! — 6"} |3) <

teT

SlQ

C.1 PROOF OF LEMMA C.1

Lemma C.2. (Proofis in Appendix C.2) Assume all players follow the update rule of SPRM™, then
forany 0 € Rg‘, we have
Dy(0.6")~D,,(0.,6")

<-n(F(0'2).0)4n(F (0" 2)~F(6' )0 0" 2)-Dy(6"1,6'"5)-Dy (6" 0").
Substituting @ = x* € X™ into Lemma C.2, we get

Dy(a",0""")~Dy(z",0")

<—n(F(0""3),a")~Dy (6,07 5)—Dy (0% ,0") +n(F(0'"%)~F(6'" )0 —0"F3).

According to the analysis in Section 4, for the ﬁrst term of the right-hand side of Eq. (31), we have

7772 $)<0.

iEN

(€29}

To simply the fourth term of the right-hand side of Eq. (31), we first introduce Lemma C.3, whose
proof is in Appendix C.3.

Lemma C.3. Assume all players follow the update rule of SPRM™, then we have
16 = 6" o < [ F(O'2) — F(6'%)]l2,

Therefore, for the fourth term of the right-hand side of Eq. (31), we have
N(F(0™%) — F(6'"%),0"" —9'"%)
<n|F(0""%) — F(0'"%)||2 0" — 6%,
< F(0""%) — F(6' %)|3.

where the third line is from Lemma C.3. Then, from Lemma 5.2 of Farina et al. (2023) (|| F(0) —

F(0')|2 < DL,||6 —6'|2,V8,6" € R‘;\;‘, where D, L,, are defined in Theorem 4.1) and the choice
of 77, we have B

1 _1 1 _1 1 _1
WIIF(O2) — F(6' 2[5 <’ D’L7||6"" — 6" 2|3 < 4H9t+2 A
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Continuing from Eq. (31), we then have
Dy(x*,0""") — Dy(x*,0")
<= Du(O" 1,0 ) — Dy(eh 0 + o — 0 b
<= Dy, 0% 3) — Dy(0 3,0 + [0 — 03+ 10" — 0" H 3
S0 2t 34 o 03
<116 2" I3+ 16"~ 6" F|E — T2 (6 — 6" H|E + o' — 0 p),
where the last line is from Dy (a, b) = ||a — b||3/2.
C.2 PROOF OF LEMMA C.2

Considering Eq. (27), and using Lemma D.2 with a = 0, a’ = '*! a* = @ and g = —nF(0'*2)
(in this case, A is xie/\/R‘ZAfl), we have

N(—F(6"7%),0%1 — 0) < D,(6,6") — Dy(6,61) — Dy (61", 6")

(32)
en(—F(0"77),0'" — ) < D,(0,0") — Dy(0,0"") — D, (6", 0").
Similarly, with @ = 6%, @’ = "2, a* = 0" and g = —nF (0"~ 2), we get
M-F(O1),070 - 0"t < Dy(6,0) — Dot 67 ) Dot e

Sn(—F(072),0" % — @'ty < D,(6'1,0') — D, (6"F,0'72) — D, (02, 0Y).
Summing up Eq. (32) and (33), and adding n(F(6"+2) — F(8"2),0""! — 9'+2) to both sides, we
get

n(~F(6'7%),67% —6)
<Dy(6,6%) — Dy(0,6'"") — Dy(8"7,0"78) — Dy (6'72,0") + (F(6'7F) — F(6'"%),0" —6'7%).
Arranging the terms, we have

Dy(6,6"") — D, (8,8")
<H(F(6'7%),6"73 — 0) + n(F(6'72) — F(6'2),0"" — 6'72) — Dy(6'",6""2) — D,(6""2,6")
<—0(F(6"7%),0) + n(F(6'"2) — F(6' 2),0"" — 6'72) — Dy(6'",8"2) — D,(6""2,6"),

1
where the last line comes from (F(0'tz) 6'tz) = ZieN<Fi(9t+%)v9Z+2> =
t+3  t+3 t+3 pt+i t+3  t+3 t+ 3 t+3 t+i
Zie]\/<<£i » L 1>1 - £ %,6;, %) = Zie]\/<£i sy 2)(1,0;7%) — (¢,2,0; %) =
1 ity 1 1 1
ZZ.GN<£:+2, et;; >||0;-5+2 Il — <£§+2,0:+2) = 0. It completes the proof.
e; %l

C.3 PROOF OF LEMMA C.3

To prove Lemma C.3, we first introduce Lemma C.4, which is Lemma 11 of Wei et al. (2021)

Lemma C.4. Suppose that o(-) satisfies Dy,(b,b') > |b—b'||2 for some p > 1, and let a, a1, a; €
A (a convex set) be related by the following:

a; € argmin{(a’, g1) + Dy (a’,a)},
a’c A

asz € argmin{(a’, g2) + Dy(a’,a)}.
a’'c A

Then, we have
lar —az|lp < g1 — g2llq,
where ¢ > land%—kéz 1.
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Considering Eq. (27) and substituting a; = 6! ay = 02, g, = —nF(0'2), g, =
—nF(Bt*%) and o(-) = ¢(-) (¥(-) is the quadratic regularizer, which satisfies D, (b,b’) >
1]|b — b'||3) into Lemma C.4 (in this case, A is xzeNR‘ “) we have
164! — 62 o < |nF(6"F %) — nF(6' )|
|0 =02 o <yl F(6'F2) — F(6'2)]|2,
which completes the proof.
D PROOF OF THEOREM 5.2
LemmaD.1. Letx* € X" and 0 < n < 2DL , then for every iteration t > 1, it holds that
Z ( - 2" D°L ) l6°+! ~ ') < llo" — =713 + ;0% — 0~ ¥5.
where D = max;c |A1| and L, = /2P2 + 42
From Lemma D.1, we have
12 1, 1 1
> (5 + - 2772D2Li) lo°+t — 63 < 0" — 2" |3 + 6% — 67 =3, (34)
t=1
Now, we first prove that if p > fm, there always exists 0 < n < 5 D 7, that ensures
:+ 2er —2n2D?L2 > 0. Formally, consider this case where p = —m , we can set 1 =

1/(2v/3DL,,) that ensures

LT 2PD’LE = - — = — 2 =0.
2
Therefore, we can obtain that if p > that ensures

1+2-22D%2 > 0.

there always exists 0 < 1 <

1
12v/3DL,,’ 2DL

Assume [|@*1 — 0%]|2 do not converge to 0. Then, from Eq. (34), we have

12
Z(*+fp 2 DL )HO*“ o' > O(T),
2
t=1

which contracts that

T
1 2 X 1, .1 1
> <§ + - 2772D2Li) [0t —0'[3 < [l0" — |3+ Jll0% — 075

t=1
Therefore, |87 — 6|3 — 0.

In addition, from § + i}—p —2n?D%L2 > 0 and Eq. (34), we have

1 _1
1% — =3 + 7[10= — 6~ =||3

T
> 16t — 0|3 <

1 2
t=1 (5 T

=C.
L _ QUQDQL%)

Since 61, 0%, 0*%, x*,n, p, D, and L, is fixed, C' must be a constant. Therefore, we get

T
T mi 0t+170t 2< 9t+170t 2<
min | Iz < ; I Iz <C,
which implies

min ||@TT! — 0|2 <
teT

ﬂ\Q
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D.1 PROOF OF LEMMA D.1

Lemma D.2. (Lemma 10 of Wei et al. (2021)) Let A as a convex set and a' € argming, ¢ 4{(a’, g)+
Dy(a’,a)}. Then for any a* € A,

<a, - a’*ag> < Dd)(a’*aa’) - Di/)(a*7a/) - Dﬂl(a’lva)'

Lemma D.3. (Adapted from Lemma A.2 of Hsieh et al. (2019)) Assume all players follow the update
rule of SOGRM™, then for any 0; € R‘;ﬁ”, we have
Dy(6:,6; ") =Dy (6:,67)

t+5

1 1 1
<(0!—0. 2 4y F (0 2)—nFi(0"%),00—0, F) 1D, (611,62 )—Dy (6,2 61).

t+1 t+1
=0, %, a" =« %, ,andg =

Considering Eq. (9) and using Lemma D.2 with a = 6!, a’ .2, ;
1
—nF;(6'2), we have
1 1
0< (NFi(0'72),6,% —2"?) + Dy (a;
1 1 1 1 1
S0 < (NF(0'77),0,7 —a ")+ (01— 02 0,7 — ],
where the second line comes from

1 1 1 1
T2.9!) — Dy(z,2,6,72) — Dy(6)" 7,6

’ 35)

1 1 1 1
Dy, 00)~Dy(w;"*.0,"*)~Dy(6; " 6))
t+3 2 t+1 9 t+3 90 t+10
P 1l S Pl Ol P

t+3 t+d o+l
=(0;-0,"%.0, -, %).

(3

Substituting §; = xzf € X* and Eq. (35) into Lemma D.3, and using the fact that

(F(0'15),0,/73) = ((£1+5 gt+3)1 — £1+3 9,%3) = 0 (x,!+5 = 6,'72/]6,""||;) and

(Fy(0t2), ;i T2) = (€03 mit2)1 — €% 2 a,t3) = 0, we get
Dy(65,0;"") — Dy (6:,6;)

1 1 1 (36)
<(6l -0/ £ qF(0'E) — (0" E), 2] — 2. E) + D616, h) — Dy(e 6l
1
Since 0!7" = 0,72 — F;(6' %) 4+ nF;(8' %), we have
t _ pgtt+l t t+5
0; -0, :01 0,2 +F’i(0t_%)_Fi(0t+%)- (37)
n n
From Eq. (12), we have
t _ ptt+l
% — 0 e Na(a't). (38)

From the definition of weak MVI ((€® + z,x — z*) > p|[f® + z||3,Vz € Nx(z)) and setting
t_pt+l
z=x"2and z = % — 03 € Ny (x2) (Eq. (38)), we have

et _ 0t+1

<9t _ 0t+1,a:* _ wt+%> :n<£t+% + _£t+%7m* _ wt+%>

(39
o' — o't 2
< —pl=— I < =7 Du(6 1, 6"),

Now, we define ¢ = § — 29> D?L2 > 0. Combining Eq. (36), (37) and (39), we have
D¢(e,e“l)—Dw(e,ot)sm(ef“70”%>—D¢<9t+%ﬂi)—%%(efﬂew

gm(et“,et*%)—wt*%,ef>+ch<0t“,ef>—<2n—p+c>Dw<et“,et> (40)
<(142¢) Dy (8" ,0'F %)~ (1-20) Dy (02 ,et)—(%JrC)Dw(@tHﬂt),

where the last line comes from D, (011, 0%) < 2D, (01!, 01+3) + 2D,,(6'2, 9").
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1
Using the fact that /7! = 0?2 — nF;(6"2) + nF;(6'2), Lemma 5.2 of Farina et al. (2023)
(|F(6) — F(0")|2 < DL,||0 — 6'||5,76,6" € RX! where D, L, are defined in Theorem 4.1), and
Dy(a,b) = ||a — b||3/2, we have
Dy(6",67 %) = Dy (nF (6" %), nF(6'7%)) < n?D’L2Dy(6'"2,0'°%). @1
Using Eq. (41), we get
Dy(6"15,0'7%) < 2D, (6"%,0%) + 2D, (6',0'") < 2D, (6%, 0") + 2> D*L2Dy(0'2,0' %),
which implies
DTP(GH_% ) 0t) > %D¢(0t+% ) ot_%) - UQDQL?LDw(Ot_% ) ot_%)7 42)
Combining Eq. (40), (41), and (42), we have
Dw(97 0t+1) - D¢(97 Bt)
<1+ 29D, (0,07 H) — (129D, 01,09 — (L + )0, 0
1

<= (5 —c— (1+20°D*LY)D,(6"2,6' %) + (1 - 200" D’ LD, (6" %,6' )=

2
(;” +c)Dy(6,0")

<-— (@ +¢)Dy (6, 0") + 4p* D L (Dw(ef*%,et*%) . Dw(ef%,et*%)) .
n

Telescoping the above inequality, and using ¢ = 3 — 27> D2L2 with Dy (a,b) = ||a — b||3/2, we

have

1 2 . 1 _1
> (5 2 2n2D2L3) |67 — 6|3 <[l6" — 2" |3 + 4" D' LL 0% — 6|3

t=1

. 1, 1 _1
<|6" —="[l3 + ;16> — 67 |]3,

(note that ¢ > 0, which implies 2772D2LZ < % thus

where the last line comes from 4n*D*L? < i

A4t DALL < D).

E PROOF OF LEMMA 5.3

t=3 _ o'—0't3

1
From the definition of ) ;. \-(£; > — J@; —x, ), we have

n
_1 t_ gtts 1
St O
ieEN n
1 t __ pt+l 1
S0 Re ) - R(e ) e -2l
ieEN
1 t_gttl 1 1
I R e AV I S R B VA A AL NP}
ieN n
1 0t_0t+1 1
_ZM?Q— ) Li — §+2>,
ieN n
L t—1  ¢-1 t+3, t+1 41 t+3,
where the last line is from ((¢, 2>, x; 2)1,xz; —x, ?>)=0and ((¢; >, &, )l,x;—x, >)=0

F How 10 OBTAIN EQ. (10), (7), AND (8) VIA THE ANALYSIS IN SECTION 3

Now, we provide the details of obtaining Eq. (10), (7), and (8) from Eq. (9), (2), and (3) via the
analysis in Section 3. From the analysis in Section 3, we have that ¥ 8%, 8'*, 9% ¢ RLA 1 | ,n > 0and

[ A )
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1(+) as the quadratic regularizer, the update rule in Eq. (43) can be written as the form in Eq. (44).

to
0" 0 c argmin{(~F:(6"),0,) + L Du(6:,61),

@t = gt
OFI ey @)
ot tq ty
F; Otl = - ) 29 - 16 )
O o
to . ot1 to
x> € argmin{(€; ", x;) + fi(x:) + Dn,(xs, 2;°)},
x;, €X;
t2 t0 (44)
) + i) = Py, g = 2ty

where z;* = 6;° /167 |1, z}° = 6;°/[|6;°|1..
Consider the update rule of SOGRM™ as shown in the following

1
t+1 . 1 1 : t41 9é+2
0, % cargmin{(—F;(0"72),0;) + —Dy(0;,0;)}, , > = #,
K 16; "1 45)

BieR‘ZAfl
1
0t = 0,7 —F, (0" %) 4 nFi(6' 7).

1 1
Substituting 022 = 9?2 , 021 = 0: 2, 9;0 = Gf» into Eq. (43), we have that

t+1 s 1 1 . orl 9?*‘%

0, 2 cargmin{(—F;(0"2),0;) + —Dy(0;,0;)}, , > = #7
eieR;” K 16; 2l
1 etfé t— 1 1

R = (0 e et

_1 ’
16: % s
which is consistent with the first prox-mapping operator in Eq. (45). Therefore, according to the
relationship between Eq. (43) and Eq. (44), we have that the first prox-mapping operator in Eq. (45)

1 1 1
and a:?z = 0?2 /||(9f+2 |l1 can be rewrite as

t+1 . t—3 t—1 t
2% cargminf(€) 2, @) +q (@) + Do (@2},

T, EX;
1
L 0! g t—3 9:+§

_1
0:t=1(g;) and qf 2 (x;), respectively. Therefore, we get

In this case, h;(x;), fi(x;) in Eq. (44) are g;
Eq. (10).
Consider the update rule of SEXRM™ as shown in the following

t+1 1 1 t+1 0t+%
0% € argmin{(—F(0" 1), 0) + LD, (0,00}, ot = 0
' 1Al " ‘ t+3
0;€R5 " |2
- (46)
t41 . t+l 1 . et gttt
02' € arg mln{<_Fl(0 2 )7 0l> + 7D’¢1(0i7 01)}7 €T; = 0t1+1 .
0,erlAi! n 16:7" Ilx

1 _1
Substituting Gf"‘ = 0?2 , 0;1 = 0: 2, H,f” = 02 into Eq. (43), we have that
t+1
1 1 1 o
6% € argmin{(~F(6),0.) + - Dy (6,00}, 2P = %
GiGR‘ZAfl n 16;72 |1

0: t t
Fi(0") = <W,e§’ 11—,
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which is consistent with the first prox-mapping operator in Eq. (46). Therefore, according to the
relationship between Eq. (43) and Eq. (44), we have that the first prox-mapping operator in Eq. (46)

1 1 1
and ac;&z = 0?2 /||0:+2 |l1 can be rewrite as

1

t+1 . t—1 t—1 ¢
x; * €argmin{(¢; *, i) +q; *(®i)+ Doe-1(i, @)},

T €EX; ‘
. (47)
Y\ 0! o -3 6.
?At 1(mz) _ Il 17”1 W), qZQAt 1(%)_‘_% 2 (x) = %w(mz)

_1
In this case, h;(x;), fi(z;) in Eq. (44) are ¢*"~'(x;) and qf 2 (x;), respectively. Similarly,

K3

1
substituting 022 = 02"’1, 9;1 = 0:+2 , Bfo = 07; into Eq. (43), we have that

1 e
9:“ € argmin{(—F¢(9t+%),9¢> + wa(Gi,@Z)}7 atf“ =
0, cr A n 16:7" [l
i €RLY
t+1
Q.2 t41 t+1
F(0"2) = (—t— . *)n—e 7,
16; 11

which is consistent with the second prox-mapping operator in Eq. (46). Therefore, according to the
relationship between Eq. (43) and Eq. (44), we have that the second prox-mapping operator in Eq.
(46) and ! = 0! /||617||; can be rewrite as

1

al™ € argmin{ (€, 2, @) + gl (%) + Dype—s (@i, @)},
T, €EX; '
(48)
- 0! - o
q;).t 1(&) _ %w(mi% q?'t 1(:&) + qf(wl) = ww(.’m)

In this case, h;(x;), fi(x;) in Eq. (44) are q?zt*l(wi) and ¢! (x;), respectively. Combining Eq. (47)
with (48), we get Eq. (7).

Consider the update rule of SPRM™ as shown in the following

1
t+1 . 1 1 ¢ t+ 1 0:+2
6"} € argmin{(—F.(0" 1,00 + 1D, (0,00}, 2l h = B
141 n t+3
0,€R Y 6; 2l
= i 49)
1 0!
6" € argmin{(—Fi(0'73),8,) + ~ Dy (6,00}, @t = i
0,crl ! n 16;" " [l1

. . to t+% t1 t—% to __ pt :
Substituting 8;> = 6, *>,0;* =6, *,0,° = 0; into Eq. (43), we have that

t4+1 . 1 1 ¢ t4+1 9]&%
0, 2 cargmin{(—F;(0" 2),0;) + =Dy (0;,0;)}, ¢, > = ——F—,
o.erLy! ! e
t—1 9?7% ot—3 ot— 3
F’L(e 75):<;_717£i >17£1 )
6; I

which is consistent with the first prox-mapping operator in Eq. (49). Therefore, according to the
relationship between Eq. (43) and Eq. (44), we have that the first prox-mapping operator in Eq. (49)

1 1 1
and a:?z = 0?2 /||0:+2 |l1 can be rewrite as

t+3 . t—3 t—1 ¢
z, * €argmin{(¢;, *,xi) +q; *(zi)+ qu,”—l (®i,24)},

x, €EX;
- (50)
0t—1,, \ _ 116} 11 _ 0:t—1,, 1o 16, *h )
q; (®:) = n P(xi), ¢ (i) +q *(x:) = n ().
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In this case, h;(x;), fi(x;) in Eq. (44) are qQ”“_l(a}i) and qffé(mi), respectively. Similarly,

(2

1
substituting 62 = 67+1 9" = 6.7 2 9> = 6! into Eq. (43), we have that

1 ottt
0!"! € argmin{(—F,(0"%),0,) + =Dy (0,,00)}, 2" = i
N 0 16:7
JeRY
t+1
9. 2 t+1 t+3
Fz(0t+%):< :+l 5216 2>17Z19 27
6; *x

which is consistent with the second prox-mapping operator in Eq. (49). Therefore, according to the
relationship between Eq. (43) and Eq. (44), we have that the second prox-mapping operator in Eq.
(49) and ;™ = 0/ /||@11 ||, can be rewrite as

1
xz ™! € arg min{(f?2 L i)+ gf (i) + D o:e-1 (i, xi)},

x,€X; (51)
" 0! g oIt
) = Py, @) + i) = 10 e,

In this case, h;(x;), fi(x;) in Eq. (44) are q?zt*l(wi) and ¢! (x;), respectively. Combining Eq. (50)
with (51), we get Eq. (8).

G EXAMPLE OF DIFFERENT GAME TYPES

In this section, we provide examples of smooth games that satisfy the MVI and weak M VI, respec-
tively. We do not provide the example of smooth games satisfying monotonicity as any two-player
zero-sum matrix game is a smooth game and satisfies monotonicity. Note that in this section, we
focus on two-player normal-form game, whose utility function is convex and represented by payoff
matrices. Note that any two-player normal-form game is a smooth game. For each two-player
normal-form game, the utility functions of player O and 1 are presented by payoff matrices A and B,
respectively. Formally, ug(z) = x{ Az, and ui (x) = x] Bz, which implies £ = — Az and
E:f =-B .

G.1 EXAMPLE OF GAMES SATISFYING THE MVI

The example is defined as following

Gl oY)

This game violates monotonicity when

0 0 / 0.1 / .
o-(0) =0 (). -6

Formally, in this case, we have

@) w0 o)
- a—a) = (g) . (‘&1) 4 (g) : (‘ff) — _04<0

which violates monotonicity.

Now, we show that the provided example satisfies the MVI. The unique NE of this game (learned by
"Nashpy" (Knight & Campbell, 2018)) is

- (). = ()

We define the strategies of players as following

a b
w():(l_a)a wlz(l_b)7
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where 0 < a < 1and 0 < b < 1. The loss gradient £ of player 1 is
Ow = —AZBl, E‘f = —BT:L'().

Formally, for player 0, we have

Az, = (3 8) <13b> N (20b>
= —am= ().
B (29).
wre= (3 5) (20) - ()

- —2a
£ BTa:O( 0 >
In this case, we have

z N —2b a—1 —2a b—1
€% x—x >< 0 )'<1—a>+< 0 >.<1—b> = —4ab+ 2a + 2b = (—4a + 2)b + 2a.

We can find that (—4a+2)b+2a is linear function w.r.t b given fixed a. If 1 > a > %, (—4a+2)b+2a
decreases as b increases. Therefore, given 1 > a > 1, ming<p<1(—4a+2)b+2a = (—4a+2)+2a =
2 —2a > 0. Similarly, if 0 < a < % (—4a + 2)b + 2a decreases as b decreases. Therefore, given
0<ac< % ming<p<i1(—4a + 2)b + 2a = 2a > 0. Hence, we get —4ab + 2b + 2a > 0, which
implies —4ab + 2a + 2b > 0. Therefore, we get

€%, x —x*) = —4ab+2a +2b > 0.

Then, we have (4%, — x*) > 0,Vx € X and Jz* € A", which means the MVT holds in this game.

Similarly, for player 1, we have

G.2 EXAMPLE OF GAMES SATISFYING THE WEAK MVI

The example is defined as following

(4 ()

The unique NE of this game (learned by "Nashpy" (Knight & Campbell, 2018)) is

* 0 N 0
mo == 1 5 331 == 1 .
(0.7 (09
Zo=103) 1= lo01)"
Formally, in this case, we have

o . (=09\ [07-0 03\ [09-0
<£’w_f”>:(0.8)‘(0.3-1)*(—1)'(0.1—1>:_0'02<0’

which violates the MVI.

This game violates the MVI when

Now, we show that the provided example satisfies the weak MVI. Adapted from Lemma 2 of Cai
et al. (2022b) (although the original statement of this lemma is established under monotone games, it
can be naturally extended to the smooth games considered in our work. This extension is achieved
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using (£, x — 'y < (% x — ') + (z,x — ') < ||[€* + z|2]|]x —
any smooth game, we have

o, where z € Nx(x)), for

dg _ x _ < tan _ : x
(@) = max (£*,x — ') < Crr'*"(x) Clzerj{l/;n(m)llf + 2|2,

where (' is a game-dependent constant. Recall the definition of the weak MVI
(0% + z,x —x*) > p|€* + z||3,Vz € Nx(z).
Therefore, if we can show that
(€ x—x*) > —(r(x))?,
we can always find a p = —C% < 0 to ensure the weak MVI holds since Vz € Nx (),

(lw,:):—w*)2—(7"’19(:118))2:—(max(l"”,:c—:tf))22—(017"“”‘(:v))Qz—Cl2 min €5 +2||53>—C7 || €% +z]|3,
z'cX z' ENx ()

and
(z,x —x*) > 0.

Now, we show that (£, & — x*) > —(r%(x))? holds in this game. We define the strategies of

players as following
a b
To=\1-a) ®Zr1=\1-p)>

where 0 < a < 1and 0 < b < 1. The loss gradient £7 of player i is
Eg: = —A(Bh KT = —BTw().

Formally, for player 0, we have

A — (1 OY( b ) _ b (b
Tr={-1 1)\1-b) " \—o+1-0) " \1-2)"
z . —b . —b
0= Az = (—(1 —2b)> = (26— 1) :
Similarly, for player 1, we have
T (0 -1
o).
T (0 -1 a \ _(—-(10-a)\ _ [a-1
B"’”O—(l 1)(1—a>_<a—|—(1—a) -1 )

¢ =BTz, = (1__1") .

Now, we show (€%, & — x*) > —(r%9(z))? by showing (£, — x*) + (r¥9(x))? > 0 holds. We
first compute (%, x — x*). Formally, we get

wo-ai=(1%,) - (1) = (%)
wowi=(3%) - ()= (5)

Next, calculate the dot products
(€8, 2o — ) = D))= —ab—a(2b—1) = -3ab+a
0,0 0/ \2h — 1 —a) "~ - ’

<£?,$1 - $T>

(1_—1a> . (_bb) =b(l—a)+b=0b1—-a+1)=0b2-a).
Combine the results

% x—x") = (€3, xo —x) + (€T, 21 —x]) = —3ab+ a + b(2 — a).
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This simplifies to:
€%,z —x") = —3ab+a+2b— ab= —4ab+ 2b+ a.
Similarly, for r%9(x) = maxg cx (€%, € — '), we get
max (€%, @ — @) = (€5, xo) — min(£F(0], £5[1]) + (€7, 1) — min(€F(0], £7(1]),
:E/
which results in

mg%(fm x—x'y=—4ab+4b—2+a—min(—b,2b—1)—min(1—a,—1)=—4ab+4b—1+a—min(—b,2b—1)
w/
Case 1: If 0 < b < I,

%, x—x*)+(r¥(x))? = —4ab+2b+a+(—4ab+4b—1+a—2b+1)* = —dab+2b+a+(—4ab+2b4a)?.

It is obviously if —4ab + 2b +a > 0, —4ab +2b + a + (—4ab+ 4b — 1 +a — 20 + 1)? =
—4ab + 2b+ a + (—4ab + 2b + a)? > 0. Now, we show —4ab + 2b + a > 0. Formally, we get

—4ab+2b+a=(—4a+2)b+a.

We can find that (—4a +2)b+ a is linear function w.r.t b given fixed a. If 1 > a > 3, (—4a+2)b+a

decreases as b increases. Therefore, given1 > a > 1, ming,< 1 (—4a+2)b+a= (—4a+2)t+a=
% — % > % Similarly, if 0 < a < %, (—4a + 2)b + a decreases as b decreases. Therefore, given
0<a< %, minogbgé(—éla +2)b+ a=a > 0. Hence, we get —4ab + 2b+ a > 0, which implies
—4ab+2b+a+ (—4dab+4b— 1+ a —2b+ 1)% = —4ab + 2b + a + (—4ab + 2b + a)? > 0.

Case2: If 1 <b <1,

0 x—x*)+(r¥(x))? = —4ab+2b+-a+(—4ab+-4b—1+a+b)? = —4ab+2b+a+(—4ab+5b+a—1)2.
Now, we simplify the expression
—4ab+2b+ a + (—4ab + 5b 4+ a — 1),

Then,

(—4ab+5b+a—1)?
=(—4ab+5b+a—1)(—4ab+5b+a—1)
=(—4ab)®+(5b)2+a’+(—1)*4+2(—4ab-5b)+2(—4ab-a)+2(—4ab-—1)+2(5b-a)+2(5b-—1)+2(a-—1)
=16a*b*+25b*+a*+1-40ab*—8a*b+-8ab-+10ab—10b—2a
=16a>b2425b%+a*—40ab*—8a*b+18ab—10b—2a+1.
So the full expression is

—4ab + 2b + a + 16a%b* + 25b% + a® — 40ab® — 8a2b + 18ab — 10b — 2a + 1.
Therefore, we define
f(a) = (16b* — 8b + 1)a® + (=400 + 14b — 1)a + 25b* — 8b - 1.

For f(a), given a fixed b, it is a quadratic function with respect to a. For the term 32b% — 16b + 2, as

it takes the minimum value when b = g = %, we have that the value of 3262 — 16b + 2 increases as

b increases when % < b < 1. Therefore, the minimum and maximum values of 3262 — 16b + 2 when
i <b<lare32: — 154+ 2=2and 32— 16 + 2 = 18, respectively. As 32b> — 16b + 2 > 0, for

f(a), given a fixed b, so it takes the minimum value in the following case

. 400 — 14b+1 320 —16b+2+8b +2b—1 N 8b% +2b — 1
3202 —16b4+2 3262 — 166+ 2 B 3202 — 166+ 2°
For the term 8b% + 2b — 1, as it takes the minimum value when b = =2 < 0, we have that the value of

16
8b% + 2b — 1 increases as b increases when % < b < 1. Therefore, the minimum value of 862 + 2b — 1
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when £ <b<1is85 + 2 — 1 = 5. Combining 86> +2b— 1 > 5 and 18 > 320> — 16b + 2 > 2,
we have

8b%2 +2b—1
14— = >1.
+32b2—16b+2 =

Therefore, given a fixed b, f(a) takes the minimum value when a = 1. Therefore, we get
1
f(1) = 166> —8b+ 1 — 406> +14b — 14+ 250> —8b+ 1 =b* — 20+ 1 zo,vg <b< 1.

Conclusion: Combining the results in Case 1 and Case 2, we have
(% x—x*)+(r%9 (x))?>0.
Therefore, we get Vz € Nx(x),
(£* @—w*)Z—(ng(w))2=—(g,1g§<f“’vw—w’>)22—(Clrm”(m))Q:—CfZ,gJI\l}&w)Hﬁ‘“rZ’||§
>—Cf €™ +2][3.
In addition, from the definition of the normal cone, we have
(z,x —x*) > 0,Vz € Nx(x).
Combining the above results, we obtain
(€ +z,@—a*) > —(r¥(x))® > ~CP||€° + 2|3, V2 € Nx (),

which means the weak MVI holds in this game with p = —C?.

H PSEUDOCODE OF RM™ VARIANTS MENTIONED IN THIS PAPER

Now, we provide the pseudocode of RM™ variants mentioned in this paper. Specifically, the pseu-
docode of RM*, SExXRM ™, SPRM ™, and SOGRM™ are shown in Algorithm algorithm 1, 2, 3, and 4,
respectively.

Algorithm 1 RM T
Require: Step size n € (0, 00).
1: Initialize: 0} < 1/|A;|,Vi € N
2: fort=1,2,... do
3 for i € A/ do
4 ;! = [0} +nF}(6")]*
5
6

end for
: end for

Algorithm 2 SExXRM ™

Require: Step size n) € (O, ﬁ)
1: Initialize: 6} < 1/|A;|,Vi € N
2: fort=1,2,... do
3: fori € N do

t-‘rl . t_;,_l 9f+%
4 8, * < argmmeieR‘;‘lﬂ{<_Fi(9t)a0i> + %Dw(euef)}» x; * = HOt:—%H
> )
5: end for
6: fori ¢ N do .
. 1 1 0,
7: 0!t € arg mlneieR;ﬂ{<—E(0t+2),0i> + %Dw(ei,Bf)}, it = T
3: end for
9: end for
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Kuhn Poker
duality gap

Goofspiel
duality gap

1 1
I I I
10° 10 10?

I H h
10® 10 10°

:"‘l ‘

i i
i

1 1 1 1 1 1
-2l I I I I I
10° 10 102 10° 10* 10°

iterations
n=0.01

—A— SEXRM*

1 1 1 1 1
0414 I I I h 10
10° 10 102 10° 10* 10°

¥ SPRM*

1 1 1 1 1 1
-2l I I I I I
10° 10 102 10° 10* 10°

-<- SOGRM*

iterations

-p-- EXRM* -e PRM* -~ RM*

1 1 1 1 1 1
10-4 14 I I I I 10
10° 10 102 10° 10* 10°

iterations
n=10

-®  OGDA  -»- EG 0G

Figure 2: Performance of different algorithms in Kuhn Poker (top) and Goofspiel (bottom).

Algorithm 3 SPRM ™

Require: Step size 7 € (O7 ﬁ).
1
1: Initialize: 62 < 1/|A;|, 6} + 1/]A;|,Vi e N

2: fort=1,2,... do

3: for i ¢ N do )
1 1 3
£ 07 cargming o {(CF(01),00+ 1Du(0:0)), @ = A
2 ) 1
5: end for
6: for i ¢ N do .
. 1 o
7: 0!t c arg m]noieRLAf‘{<—E(0t+2)’07j> + %Dw(Oi,Bf)}, ot = Tt
8: end for -
9: end for
Algorithm 4 SOGRM™
Require: Step size n) € (O, ﬁ)
1
1: Initialize: 62 < 1/|4;|, 6} + 1/]A;|,Vi e N
2: fort=1,2,... do
3: for i € N do .
1 1 3
4 0;"* € argmin, i {(~Fi(6"7%),0,) + 1D, (6:,00)}, @ * = Hj"—”
> )
5: end for
6: for i € N do )
7: 611 =0, — nF,(6' %) 4+ nF,(6'3)
8: end for
9: end for

I ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present experimental results on (i) the normal-form representation of two extensive-
form games, Kuhn Poker and Goofspiel, and (ii) randomly generated three-player zero-sum poly-
matrix games with sizes [10, 20, 50]. Notably, polymatrix games are classical games with satisfying
monotonicity (Pérolat et al., 2021). The normal-form representations of the two extensive-form
games are derived from the open-source code provided by Cai et al. (2023) (https://openreview.net/
forum?id=LWeV VPulx0&noteld=4vbVIryMNi&referrer=%5BTasks%5D(%?2Ftasks)). The payoff
matrices for Kuhn Poker and Goofspiel are of sizes [27, 64] and [72, 7808], respectively. For the
randomly generated three-player zero-sum polymatrix games, as did in Section 6, we generate 20
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Figure 3: Performance of different algorithms in 10 x 10 (top), 20 x 20 (middle), 50 x 50 (bottom)
randomly generated three-player zero-sum polymatrix games.

instances for each size. In the randomly generated three-player zero-sum, the payoff matrix for each
pair of players is a diagonal matrix, with each diagonal element sampled from a standard normal
distribution.

Convergence Performance on Kuhn Poker and Goofspiel. The results are shown in Figure 2
and consistent with those presented in Section 6. OGDA, EG, and OG exhibit poorer convergence
performance and higher sensitivity to hyperparameters compared to their corresponding smooth
RM™ variants (SPRM™, SExXRM™, and SOGRM™, respectively). Moreover, we observe that OG
fails to converge in Goofspiel for any set of parameters. We hypothesize that this is due to the
significantly larger scale of Goofspiel compared to the other games tested, requiring OG to use a
much smaller learning rate 1) for convergence. In contrast, SOGRM™ demonstrates lower sensitivity
to hyperparameters, consistently exhibiting convergence across all parameter settings.

Convergence Performance on randomly generated three-player zero-sum polymatrix games.
The experimental results are shown in Figure 3. Consistent with the results in Figure 1 and Figure 2,
the smooth RM™ variants generally exhibit superior convergence performance and reduced sensitivity
to hyperparameters compared to their corresponding OMD algorithms. However, we also observe that
the OG tends to diverge significantly when ) > 1. In contrast, SOGRM™, consistent with previous
experimental findings, demonstrates low sensitivity to parameters and retains strong convergence
even forn > 1.

J DISCUSSION OF THE REASON WHY SOGRM™ ALLOWS LARGE 11 COMPARED
TO OTHER RM™ VARIANTS

For the reason why SOGRM™ allows large 7 compared to other RM™ variants, we hypothesize that
it arises because our proposed algorithm, SOGRM ™, performs only a single prox-mapping operator
per update step, unlike other smooth RM™ algorithms, which involve two prox-mapping operations
at each iteration (the first occurrence of the prox-mapping operator is in the introduction of OMD,
Section 2).

Specifically, the prox-mapping operator in smooth RM™ variants (such as SExXRM™, SPRM™, and
SOGRM™) involves a projection onto the simplex at sometimes (Farina et al., 2023) (not always
as in OMD algorithms), which may lead to significant changes in ¢ depending on the choice of
7. In contrast, the update rule of SOGRM™ (in the second line) omits this prox-mapping operator
and instead relies solely on simple addition and subtraction operations. As a result, the initial
parameter 0y may become negligible compared to the term 7nF;(6). Thus, the values of 6, in
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SOGRM™ are likely to vary in direct proportion to 7, and the resulting strategy z; = 6, /]|0; |1 will
exhibit a more stable behavior with respect to changes in 1. Therefore, for different values of 7,the
sequence of strategies generated by SOGRM™ exhibits small differences. Moreover, when 7 is small,
Theorem 5.1 guarantees thatthe sequence of strategies produced by SOGRM™ converges to the set of
NE. Consequently, SOGRM™ permits the use of larger 1 values compared to other algorithms.

To validate our statement, as demonstrated in Section 6, we conducted evaluations on 20 randomly
generated 10-dimensional two-player zero-sum matrix games. Specifically, we analyzed the strategies
of Player 0 output by SEXRM ™, SPRM ™, and SOGRM™ at iterations 1, 10, 100, 1000, and 10,000.
To mitigate randomness, we averaged the strategies across the 20 instances. The results clearly show
that for different values of 7,the sequence of strategies generated by SOGRM™ exhibits minimal
variation. Notably, when 1 > 1 and the number of iterations > 1000, the strategies produced by
SOGRM™ are nearly identical across different values of 7. This behavior is not observed in the other
two RM™ variants.

Table 2: The sequence of strategies generated by SEXRM+.

eta=0.01
iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]
iteration 10

[0.098491, 0.100056, 0.109717, 0.106483, 0.096661, 0.091065, 0.094224, 0.101697, 0.107110, 0.094496
iteration 100

[0.115888, 0.047996, 0.172965, 0.159585, 0.078764, 0.017972, 0.063801, 0.116942, 0.204308, 0.021778]
iteration 1000

[0.247108, 0.000000, 0.114474, 0.070481, 0.000000, 0.000000, 0.082859, 0.185139, 0.299941, 0.000000]
iteration 10000

[0.269960, 0.000000, 0.144571, 0.049592, 0.024670, 0.000000, 0.080797, 0.145601, 0.284809, 0.000000]
iteration 100000

[0.277022, 0.000000, 0.141075, 0.056758, 0.011324, 0.000000, 0.081395, 0.152016, 0.280411, 0.000000]
eta=0.1
iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]
iteration 10

[0.115382, 0.045286, 0.170913, 0.159142, 0.080181, 0.018597, 0.065633, 0.117780, 0.205713, 0.021372]
iteration 100

[0.244384, 0.000000, 0.121762, 0.065640, 0.000000, 0.000000, 0.088998, 0.180417, 0.298800, 0.000000]
iteration 1000

[0.271157, 0.000000, 0.144291, 0.052641, 0.017717, 0.000000, 0.084207, 0.145175, 0.284811, 0.000000]
iteration 10000

[0.271794, 0.000000, 0.142475, 0.054832, 0.012438, 0.000000, 0.083277, 0.150720, 0.284463, 0.000000]
iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]
GEa=l - e e e e e

iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]
iteration 10

[0.250238, 0.000000, 0.141786, 0.047503, 0.000000, 0.000000, 0.071202, 0.174680, 0.314590, 0.000000]
iteration 100

[0.272172, 0.000000, 0.107236, 0.031325, 0.012185, 0.000000, 0.098432, 0.173866, 0.304784, 0.000000]
iteration 1000

[0.271736, 0.000000, 0.149928, 0.056319, 0.012477, 0.000000, 0.078212, 0.149291, 0.282037, 0.000000]
iteration 10000

[0.271736, 0.000000, 0.151644, 0.057013, 0.012477, 0.000000, 0.076993, 0.148728, 0.281409, 0.000000
iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000, 0.083266, 0.150734, 0.284490, 0.000000]
eta=10
iteration 1

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000]
iteration 10

[0.269329, 0.000000, 0.000000, 0.040992, 0.028389, 0.000000, 0.153818, 0.197411, 0.310061, 0.000000]
iteration 100

[0.267860, 0.000000, 0.142353, 0.054205, 0.019992, 0.000000, 0.066032, 0.178721, 0.270838, 0.000000]
iteration 1000

[0.282710, 0.000000, 0.142474, 0.054823, 0.006415, 0.000000, 0.095782, 0.118767, 0.299029, 0.000000]
iteration 10000

[0.270484, 0.000000, 0.142474, 0.054823, 0.013252, 0.000000, 0.082598, 0.153161, 0.283207, 0.000000]
iteration 100000

[0.280316, 0.000000, 0.142474, 0.054823, 0.006891, 0.000000, 0.095685, 0.118429, 0.301383, 0.000000]
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Table 3: The sequence of strategies generated by SPRM™.

eta=0.01
iteration 1

iteration 10

eta=0.1
iteration 1

iteration 10

eta=1
iteration 1

iteration 10

iteration 1

iteration 10

[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000,
[0.098491, 0.100056, 0.109718, 0.106484, 0.096661, 0.091065,
iteration 100

[0.115888, 0.047996, 0.172965, 0.159585, 0.078764, 0.017972,
iteration 1000

[0.247107, 0.000000, 0.114474, 0.070481, 0.000000, 0.000000,
iteration 10000

[0.269960, 0.000000, 0.144571, 0.049592, 0.024670, 0.000000,
iteration 100000

[0.277022, 0.000000, 0.141075, 0.056758, 0.011324, 0.000000,
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000,
[0.115372, 0.045123, 0.170807, 0.159184, 0.080205, 0.018616,
iteration 100

[0.244321, 0.000000, 0.121870, 0.065578, 0.000000, 0.000000,
iteration 1000

[0.271172, 0.000000, 0.144289, 0.052646, 0.017681, 0.000000,
iteration 10000

[0.271796, 0.000000, 0.142475, 0.054831, 0.012437, 0.000000,
iteration 100000

[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000
[0.237655, 0.000000, 0.000000, 0.000000, 0.000000, 0.000000,
iteration 100

[0.275397, 0.000000, 0.137955, 0.053723, 0.009448, 0.000000,
iteration 1000

[0.261815, 0.000000, 0.142474, 0.054823, 0.019802, 0.000000,
iteration 10000

[0.265631, 0.000000, 0.142474, 0.054823, 0.016390, 0.000000,
iteration 100000

[0.266516, 0.000000, 0.142474, 0.054823, 0.015538, 0.000000,
eta=10 === === ===
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000,
[0.227614, 0.000000, 0.000000, 0.000000, 0.035267, 0.000000
iteration 100

[0.271127, 0.000000, 0.138072, 0.053705, 0.000000, 0.000000,
iteration 1000

[0.272132, 0.000000, 0.142474, 0.054823, 0.013019, 0.000000,
iteration 10000

[0.265599, 0.000000, 0.142474, 0.054823, 0.016434, 0.000000,
iteration 100000

[0.267444, 0.000000, 0.142474, 0.054823, 0.015058, 0.000000,
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Table 4:
eta=0.01
iteration 1
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000,
iteration 10
[0.098649, 0.100078, 0.108744, 0.105828, 0.096983, 0.091963,
iteration 100
[0.115373, 0.048574, 0.172920, 0.159312, 0.079077, 0.018314,
iteration 1000
[0.247102, 0.000000, 0.114400, 0.070508, 0.000000, 0.000000,
iteration 10000
[0.269951, 0.000000, 0.144571, 0.049631, 0.024661, 0.000000,
iteration 100000
[0.277013, 0.000000, 0.141074, 0.056758, 0.011325, 0.000000,
eta=0.1
iteration 1
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000,
iteration 10
[0.109695, 0.054811, 0.168579, 0.154984, 0.082590, 0.023255,
iteration 100
[0.244066, 0.000000, 0.121463, 0.065806, 0.000000, 0.000000,
iteration 1000
[0.271160, 0.000000, 0.144287, 0.052636, 0.017740, 0.000000,
iteration 10000
[0.271809, 0.000000, 0.142475, 0.054831, 0.012428, 0.000000,
iteration 100000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
eta=1
iteration 1
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000
iteration 10
[0.143554, 0.000000, 0.000000, 0.019365, 0.081302, 0.059547,
iteration 100
[0.272928, 0.000000, 0.140918, 0.055096, 0.011850, 0.000000,
iteration 1000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
iteration 10000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
iteration 100000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
eta=10 === === ===
iteration 1
[0.100000, 0.100000, 0.100000, 0.100000, 0.100000, 0.100000,
iteration 10
[0.139452, 0.013191, 0.089558, 0.134699, 0.099862, 0.016938
iteration 100
[0.267804, 0.000000, 0.142767, 0.053852, 0.014696, 0.000000,
iteration 1000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
iteration 10000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,
iteration 100000
[0.271736, 0.000000, 0.142474, 0.054823, 0.012477, 0.000000,

35

.100000,
.094790,
.063757,
.082918,
.080760,

.081401,

.100000,
.067513,
089626,
.084047,
.083271,

.083266,

.100000,
.165077,
.079330,
083267,
083266,

.083266,

.100000,
.047250,
.083433,
.083266,
.083266,

.083266,

.100000,
101526,
117009,
185222,
.145596,

.152020,

.100000,
117496,
180912,
.145153,
.150721,

.150734,

.100000,
.274010,
.152495,
.150733,
.150734,

.150734,

.100000,
.174526,
.150929,
.150734,
.150734,

.150734,

The sequence of strategies generated by SOGRM ™,

.100000,
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