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ABSTRACT

Time series forecasting (TSF) aims to predict future values based on historical
data. Recent advancements in large language models (LLMs), which integrate
cross-modal information (time series data and textual prompts), have demonstrated
remarkable performance in TSF tasks. However, significant gaps remain between
LLM-based methods and deep learning approaches due to their inherent differ-
ences. To bridge this gap, we propose TimeFK, an innovative TSF framework that
uses LLMs as “fuzzy keys” to activate forecasting capabilities. Specifically, we
introduce a tri-branch multi-modal encoding scheme that combines numerical and
linguistic representations: (1) a time series encoder generates precise but weak
embeddings, (2) a statistical encoder captures robust yet entangled features, and (3)
a background encoder learns dataset-related information that remains disentangled.
The fusion of precise, robust, and disentangled representations improves predic-
tion accuracy. To further mitigate noise from language prompts, we introduce a
Gaussian fuzzy mapping mechanism that maps hidden representations from LLMs
into a fuzzy set space, preserving semantic richness while reducing irrelevant noise.
Additionally, we prevent entanglement by using fused cross-modal representations
as keys and time series embeddings as values in a fuzzy-aware attention decoder,
enabling query-based interactions for forecasting. Extensive experiments on seven
real-world benchmark datasets demonstrate that TimeFK outperforms state-of-the-
art methods, highlighting the effectiveness of integrating fuzzy reasoning with
multi-modal time series analysis.

1 INTRODUCTION

Time series data is ubiquitous across various domains, and accurate forecasting is crucial for decision-
making in industries such as finance (Bhambu et al., 2024; Dong et al., 2024), transportation (Kieu
et al., 2024; Qin et al., 2024), agriculture (Lv et al., 2024; Liu et al., 2024a), health care (Shen et al.,
2024; Chen & Tang, 2025), and climate science (Ma et al., 2023; Valipour et al., 2024). In practice,
human experts often rely on multi-modal information to forecast time series. For instance, economists
may combine historical market data with policy documents to predict economic trends.

Over the past few decades, time series forecasting (TSF) models have evolved into deep learning
approaches, including recurrent neural networks (Hochreiter & Schmidhuber, 1997), convolutional
neural networks (Wu et al., 2023), and Transformers (Liu et al., 2024b). These models rely on
the design of effective temporal or frequency domain extractors, which achieves high accuracy at
the cost of complexity and limited scalability (Yi et al., 2023; Liu et al., 2024b). Recently, the
emergence of large language models (LLMs) such as GPT-4 (Sanderson, 2023; Achiam et al., 2023),
LLaMA (Touvron et al., 2023; Singh, 2025), and Deepseek-R1 (Guo et al., 2025) have revolutionized
NLP tasks and shown promising potential in structured and complex domains (Yan et al., 2024; Jiang
et al., 2025). This raises the question: Can LLMs be leveraged for TSF?

As summarized in Table 1, LLMs offer TSF methods a scalable alternative but often face challenges,
including insufficient training data, poor numerical reasoning, and loss of linguistic capacity after
fine-tuning (Bi et al., 2023; Ma et al., 2024). Recent approaches have explored transforming time
series data into textual prompts to better prompt with (or retrieve from) LLMs. However, prompt-
based methods tend to introduce textual noise, while retrieval-based approaches encounter design
and efficiency bottlenecks (Sun et al., 2024; Liu et al., 2025). Furthermore, tokenizing numerical
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Table 1: Comparison for TSF models across different paradigms.

Category Method Type Advantages Limitations Representative Works

DL for TSF Redesign&Retraining High accuracy and feature
expressiveness

High implementation com-
plexity

iTransformer (Liu et al.,
2024b), FreTS (Yi et al.,
2023)

LLMs for TSF
Retraining Architecture-agnostic and

easy to implement
Limited scalability due to
insufficient training data

Pretraining (Ma
et al., 2024), Earth-
Transformer (Bi et al.,
2023)

Fine-tuning Retains prior knowledge
with adaptability

Potential degradation of lin-
guistic capabilities

GPT4TS (Zhou et al.,
2023), LLM4TS (Chang
et al., 2023)

TSF for LLMs

Retrieval-based Clear embedding structures Bottlenecks in inference
speed

TimeCMA (Liu et al.,
2025), TEST (Sun et al.,
2024)

Prompt-based

Enhanced expressiveness
via prompts

Entangled representations,
prone to prompt noise

TimeLLM (Jin et al.,
2024), S2IPLLM (Pan
et al., 2024)

Reduces prompt noise and
enhances robustness

Design complexity in fuzzy
strategies Ours

sequences can disrupt numerical precision, reflecting the cognitive distinction between numerical and
linguistic reasoning in the human brain (Singh & Strouse, 2024). This leads to a key question: How
can we bridge the inherent gap between natural language and numerical time series data to unlock
the full potential of LLMs for TSF?

In this work, we aim to harness the prior knowledge of LLMs without modifying their internal
parameters, focusing instead on enhancing their utility as TSF augmenters. To this end, we propose
TimeFK, a novel framework that leverages fuzzy multi-modal fusion to overcome the challenges
of prompt noise and modality fusion. Our method introduces innovative a Gaussian fuzzy mapping
mechanism and a fuzzy-aware attention decoder to overcome the limitations of existing approaches,
demonstrating the necessity and advantages of our design.

Our main contributions are summarized as follows:

1. We propose a novel tri-branch multi-modal encoder that learns precise, robust, and disen-
tangled time series representations. By combining (i) numerical time series features, (ii)
statistical representations, and (iii) background contextual information, the encoder creates
a rich cross-modality representation space. We integrate this encoder into the TimeFK
framework, enabling LLMs to learn such representations in a unified manner.

2. To reduce noise from language prompts, we introduce a Gaussian fuzzy mapping that
projects LLM hidden representations into a fuzzy set space, preserving semantic richness
while suppressing irrelevant features.

3. To prevent entangled representations caused by prompt interference, we propose a fuzzy-
aware attention decoder. In this decoder, fused cross-modal representations are treated as
attention keys and time series embeddings as values within the attention structure, facilitating
precise, query-driven downstream predictions.

4. We conduct extensive experiments across seven real-world datasets, showing that TimeFK
consistently outperforms state-of-the-art methods on multiple evaluation metrics.

2 RELATED WORK

As shown in Table 1, TSF methods can be broadly categorized into three paradigms: traditional deep
learning approaches (DL for TSF), LLMs tailored for time series tasks (LLMs for TSF), and time
series-enhanced LLMs (TSF for LLMs).

Before the advent of LLMs, deep learning was the dominant TSF approach. Various architectures
were proposed to capture complex temporal patterns. NSformer (Liu et al., 2022) improved the mod-
eling of non-stationary time series by introducing stationarization and de-stationarization modules,
with both theoretical and empirical validation supporting its effectiveness. FEDformer (Zhou et al.,
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2022) incorporated a mixture-of-experts design to enhance trend and seasonal decomposition and
proposed a sparse attention mechanism in the frequency domain to balance efficiency and accuracy.
TimesNet (Wu et al., 2023) decomposed time series into periodic segments and modeled intra- and
inter-period interactions by Inception blocks, facilitating generalized time series modeling. Cross-
former (Zhang & Yan, 2023) captured dependencies across both temporal and variable dimensions
using an attention mechanism. PatchTST (Nie et al., 2023) patched time series into subsequences,
preserving local semantics and enabling long-range temporal modeling. DLinear (Zeng et al., 2023)
introduced a simple one-layer linear model that achieved high accuracy through direct multistep
prediction. TSMixer (Chen et al., 2023) extracted temporal and feature-wise information by stacking
multilayer perceptrons (MLPs) across mixed time-feature dimensions. To address the limitations of
pointwise mapping and the information bottleneck of MLP-based approaches, FreTS (Yi et al., 2023)
applied MLPs in the frequency domain to improve global dependency modeling. iTransformer (Liu
et al., 2024b) leveraged dimension inversion to enhance long-sequence handling, mitigating perfor-
mance degradation and reducing computational overhead.

Recently, the rise of LLMs has significantly advanced TSF, driven by their large-scale prior pa-
rameterization and extensive pretraining on diverse datasets (Bi et al., 2023; Ma et al., 2024; Sun
et al., 2024; Liu et al., 2025; Zhou et al., 2023; Chang et al., 2023; Jin et al., 2024; Pan et al., 2024).
Research on LLMs for TSF falls into two main subcategories: retraining and fine-tuning. Retraining
approaches (Bi et al., 2023; Ma et al., 2024) preserved architectures of LLMs while retraining them
from scratch on integrated public/ private TSF datasets, without relying on pretrained checkpoints.
The goal was to build time series-specific foundation models capable of emergent reasoning. However,
the limited availability of time series data compared to natural language corpora raised concerns about
the feasibility of such approaches. In contrast, the fine-tuning approaches (Zhou et al., 2023; Chang
et al., 2023) built on the similarity between language modeling and TSF - both involve modeling
historical sequences to predict future outcomes, and can be framed as finite-order Markov processes.
These approaches adapted pretrained LLMs to TSF by fine-tuning them on time series data. However,
fine-tuning may cause LLMs to sacrifice their original linguistic abilities, blurring the line between
fine-tuning and retraining.

Instead of modifying the parameters in LLMs, TSF for LLMs approaches preserved linguistic abilities
by freezing LLMs and activating their forecasting potential through carefully designed prompts.
Prompts have been incorporated as auxiliary inputs to help LLMs interpret TSF and can also be
contextualized with time series-related descriptive information or consist of purely textual summaries
representing time series patterns (Jin et al., 2024; Pan et al., 2024). However, these approaches
often suffered from representation entanglement, where the interleaving of numerical and textual
inputs introduces noise and ambiguity. To mitigate this problem, methods such as TimeCMA (Liu
et al., 2025) and TEST (Sun et al., 2024) proposed similarity-based retrieval mechanisms to extract
clearer time series embeddings from external memory, significantly improving forecasting accuracy.
Nonetheless, retrieval-based designs often involved complex architectures and faced inference latency
issues, posing challenges for deployment.

3 PRELIMINARIES

Time Series Let the time series be denoted as X ∈ RL×D, where L represents the length of the
lookback window, and D denotes the number of time series variables.

Prompt Construction We transform the time series X into a set of statistical prompts P ∈ RW×2D,
where each prompt Pi corresponds to a specific variable and consists of W elements that integrate
both numerical and linguistic time series values. As illustrated in Figure 1, two prompt sentences are
generated for each variable. The first sentence encodes the recent observations of each variable within
the lookback window. The second sentence captures the trend, denoted as ∆ =

∑L
t=1 ∆xt, which

is computed as the cumulative sum of its first-order temporal differences. In addition to prompts
derived from the time series, the dataset also includes background information, denoted as B ∈ RK .
This serves as contextual metadata that may assist the model in downstream forecasting tasks.

Problem Definition Given a lookback window X ∈ RL×D, the objective is to learn a predictive
function that utilizes the historical observations X , the corresponding statistical prompts P , and the
auxiliary background B to forecast the future time series X̂ ∈ RT×D over the next T timesteps.
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Figure 1: Overview of the TimeFK framework, comprising three modules: Multi-Modality Encoding,
Cross-Modality Fusing, and Time Series Forecasting.

4 METHOD

To bridge the gap between natural language and time series data, we propose TimeFK, which
conceptualizes LLMs as fuzzy keys for TSF (Figure 1). TimeFK consists of three modules: Multi-
Modality Encoding, Cross-Modality Fusing, and Time Series Forecasting.

Multi-Modality Encoding module consists of three branches: (1) The time series encoding branch
comprises a patched embedding followed by a time series encoder. The time series of each variable
is segmented into patches to generate patch-level token embeddings, which are then passed through
a pre-layer normalization Transformer encoder (Xiong et al., 2020). This results in precise yet
weak representations of the time series. (2) The statistical encoding branch incorporates a frozen
pretrained LLM (GPT-2 (Radford et al., 2019) by default) alongside a trainable dual modality encoder.
Prompts composed of numerical time series values and their corresponding linguistic trend descrip-
tions are first tokenized and then processed by the LLM, yielding semantically robust yet entangled
representations. These representations are further refined by a pre-layer normalization Transformer
encoder to enhance dual-modality feature representations. (3) The background encoding branch
leverages a frozen pretrained LLM and a trainable background encoder to generate disentangled
representations that encapsulate semantic priors. These representations are designed to complement
the numerical time series data by injecting global contextual knowledge.

Next, we introduce the Cross-Modality Fusing module, leveraging a Gaussian fuzzy mapping to
reduce noise from language prompts while retaining semantic priors. This mechanism maps outputs
of the statistical and background encoding branches into a fuzzy set space (Jang, 1993; Zhu et al.,
2024), effectively lowering cross-modality interference and improving robustness.

Finally, a Fuzzy-Aware Attention Decoder is employed to perform Time Series Forecasting. It uses
the fused cross-modal representations as keys to guide the decoding, thereby activating its predictive
capacity and producing accurate future time series predictions.

4.1 MULTI-MODALITY ENCODING

4.1.1 TIME SERIES ENCODING BRANCH

Patched embedding is designed to capture longer-term temporal dependencies, given a multivariate
time series X ∈ RL×D, thereby significantly enhancing forecasting performance. First, the input
sequence X is projected into a learnable latent representation Xe ∈ RH×D, facilitating the modeling
of complex temporal interactions among variables (Liu et al., 2024b). Next, reversible instance
normalization is applied to Xe, transforming it into a normalized representation X̄e with zero mean
and unit standard deviation. This step effectively mitigates distribution shifts commonly observed
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in time series data (Kim et al., 2022). The normalized input is then linearly transformed into the
embedding space using trainable parameters We and be, resulting in X̄e = WeXe + be.

After normalization, a patching operation is applied to X̄e. Each univariate time series is segmented
into patches, which may be either overlapping or non-overlapping. Given a patch length of P
and a stride of S, the patching process produces a sequence of patches, denoted by Xp, where
Xp ∈ RP×C×D. Here, C = ⌊ (L−P )

S ⌋+ 2 denotes the total number of patches. To accommodate this
segmentation, we pad the input sequence by appending S repeated values of the final timestep.

Time Series Encoder consists of a pre-layer normalization (Pre-LN) Transformer, which offers
improved training stability and faster convergence, making it particularly well-suited for TSF (Huang
et al., 2023; Liu et al., 2025). In the i-th encoder layer, the input patched embedding X i

p is first
processed by the first layer normalization LNi

1(·):

X̄ i
p = LNi

1(X i
p) = γi

1 ⊙
X i

p − µi
1

σi
1

+ βi
1, (1)

where γi
1 and βi

1 are learnable scaling and shifting parameters, and µi
1 and σi

1 denote the mean and
standard deviation of X i

p, respectively. The symbol ⊙ represents element-wise multiplication.

The normalized representation X̄ i
p is then passed through a multi-head self-attention mechanism

(MHSA) parameterized by ρ, followed by a residual connection that adds the original input X i
p:

X i+1/2
p = MHSAi

ρ(X̄ i
p) + X i

p,

MHSAi
ρ(X̄ i

p) = ρo(Attniρ(X̄ i
p)), Attniρ(X̄ i

p) = softmax(
(ρqX̄ i

p)(ρkX̄ i
p)

T

√
dk

)(ρvX̄ i
p),

(2)

where ρq, ρk, ρv, and ρo are linear projection matrices, and dk denotes the dimension of the
vectors after the projection ρk. The output X i+1/2

p is subsequently passed through the second layer
normalization LNi

2(·), parameterized by γi
2 and βi

2, followed by a position-wise feed-forward network
(FFN) to further refine the representations:

X̄ i+1/2
p = LNi

2(X i+1/2
p ), X i+1

p = FFNi(X̄ i+1/2
p ) + X i+1/2

p . (3)

In this work, FFNi(·) is implemented as a stack of fully connected layers with ReLU activa-
tion (Schmidt-Hieber, 2020). Before cross-modality fusing, the output of the final encoder layer
(totally NX layers) is projected via a learnable linear transformation to obtain X̃ ∈ RP×C×D.

4.1.2 STATISTICAL ENCODING BRANCH

Pretrained LLMs are employed to extract semantically robust yet entangled representations. In this
study, we adopt GPT-2 as the backbone LLM for generating prompt representations, since decoder-
only LLMs such as GPT-2 are significantly more sample-efficient than encoder-only models when
trained on the same dataset (BehnamGhader et al., 2024). All parameters of GPT-2 (the tokenizer,
positional encoding, and decoder layers) are kept frozen throughout the process.

The tokenizer first maps the statistical prompts P ∈ RW×2D into token embeddings Pt ∈ RQ×D,
where Q denotes the number of tokens in each prompt. These token embeddings are then passed
through the frozen LLM to obtain the contextualized prompt representations Pe ∈ RQ×D×H , where
H is the default hidden dimension of the LLM (768 in GPT-2).

Dual Modality Encoder follows the structure of Pre-LN Transformer encoder, parameterized by θ:

Pj+1/2
e = MHSAj

θ(LNj
1(Pj

e )) + Pj
e , Pj+1

e = FFNj(LNj
2(Pj+1/2

e )) + Pj+1/2
e , (4)

where Pj+1/2
e represents the hidden states after MHSA and residual connection, while Pj+1

e ∈
RQ×D×H denotes the output of the j-th encoder layer.
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Given that not all tokens contribute equally to LLM performance (BehnamGhader et al., 2024; Lin
et al., 2024), and considering that the final token in a prompt often captures the most comprehensive
linguistic information due to the causal self-attention mechanism of decoder-only LLMs, we retain
only the representation of the last token P̃ ∈ RD×H from the final (NP -th) layer output. This not
only preserves critical semantic information but also reduces computational cost.

4.1.3 BACKGROUND ENCODING BRANCH

Background Encoder takes as input the background prompt representations Be ∈ RK×H , which
are obtained by mapping the background prompts B ∈ RK through a frozen LLM, as described in
Section 4.1.2. To further extract disentangled semantic representations, Be are processed by a Pre-LN
Transformer encoder parameterized by ϕ:

Bm+1/2
e = MHSAm

ϕ (LNm
1 (Bm

e )) + Bm
e , Bm+1

e = FFNm(LNm
2 (Bm+1/2

e )) + Bm+1/2
e . (5)

Unlike the statistical encoding branch, background information serves as a global and abstract
summary of the dataset. However, its influence may vary across individual variables. Therefore, to
ensure consistent semantic guidance for each variable during the subsequent cross-modality fusing,
we enforce the background representations to maintain a shared mean across all variables. To achieve
this, the final token output from the last layer (totally NB layers) of the background encoder is
expanded along the D-dimensional variable axis, yielding B̃ ∈ RD×H .

4.2 CROSS-MODALITY FUSING

Previous work utilizing frozen LLMs has typically embedded prompts for hidden representation
fusion/retrieval, resulting in relatively static representations with limited informativeness under a
given prompt. Consequently, prior studies have mainly focused on exploring how prompts can
enhance TSF, which introduces noise. To mitigate this noise, we propose to use a Gaussian fuzzy
mapping mechanism that performs fuzzification on representations generated from the statistical
and background encoding branches to estimate the membership values of features. Specifically, the
outputs P̃ and B̃ are passed through a membership function to compute their degrees of association
with each patch of the time series:

µm(P̃) = fP(exp(−
(P̃ − cP̃)

2

2σ2
P̃

)), µm(B̃) = fB(exp(−
(B̃ − cB̃)

2

2σ2
B̃

)) (6)

where f· : RD×H → RP×D, µm(·) ∈ RP×D denotes the membership values, cP̃ and cB̃ represent
the centers of the Gaussian functions that define the core of each fuzzy set, and σP̃ , σB̃ denote
the standard deviations that control the fuzziness of the Gaussian curves. When P̃ = cP̃ , the
membership degree reaches its maximum, indicating full inclusion in the set. As P̃ deviates from cP̃ ,
the membership value decreases toward zero. The same principle applies to B̃.

Subsequently, cross-modality fusion is applied to integrate the fuzzified statistical and background
encodings with the time series features, forming the key input for the subsequent forecasting decoder.
This fusion is implemented via a convolutional neural network. Specifically, we concatenate the three
sources of information Fe = [µm(P̃)|µm(B̃)|X̃ ],Fe ∈ RP×(C+2)×D, where | denotes channel-wise
concatenation. The final fusion output is computed as Fo = CNNη(Fe), where CNNη is a 1 × 1
convolutional network parameterized by η, responsible for integrating the time series and multi-modal
membership values. The resulting output Fo ∈ RP×D serves as the fused representations.

4.3 TIME SERIES FORECASTING

We design a fuzzy-aware attention decoder for final TSF. The fused representation Fo serves as
the key in a cross-attention mechanism to enhance the decoder’s temporal modeling. In the n-th
layer, the input embedding X̃n first undergoes self-attention via a multi-head attention (MHSA)

6
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module, followed by residual connection and layer normalization, producing X̃n+1/2. It is then
passed through multi-head cross-attention (MHCA) with Fo as key, yielding X̄n+1/2:

X̄n+1/2 = LNn(MHCAn
ξ (X̃n+1/2,Fo) + X̃n+1/2)

MHCAn
ξ (X̃n+1/2,Fo) = ξo(Attnn

ξ (X̃n+1/2,Fo))

Attnnξ (X̃n+1/2,Fo) = softmax(
(ξqX̃n+1/2)(ξkFo)

T

√
dk

)(ξvX̃n+1/2)

(7)

where ξq, ξk, ξv, and ξo are learnable linear projection matrices for query, key, value, and output
transformations, respectively. After MHCA, the representation is further refined via FFN to obtain
the final output X̃n+1 for the n-th decoder layer. The decoder output is then projected through a
linear head to produce the final prediction X̂ ∈ RT×D.

4.4 OVERALL OBJECTIVE FUNCTION

We adopt the Mean Squared Error (MSE) as the training objective to measure the discrepancy
between the predicted values and the ground truth. The overall loss function is defined as L =

1
T×D

∑T
t=1 ||x̂t − xt||22, where T denotes the prediction horizon.

5 EXPERIMENTS

We evaluate TimeFK on seven widely-used time series datasets: Exchange (Lai et al., 2018), Weather1,
ILI2, and four ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2) (Zhou et al., 2021). These benchmarks
cover diverse temporal dynamics and application scenarios (Wu et al., 2023).

We compare TimeFK against 14 strong baselines, categorized into five groups: (1) Transformer-
based deep learning models: iTransformer (Liu et al., 2024b), PatchTST (Nie et al., 2023), Cross-
former (Zhang & Yan, 2023), FEDformer (Zhou et al., 2022), NSformer (Liu et al., 2022) and
PAttn (Tan et al., 2024). (2) CNN-based deep learning models: TimesNet (Wu et al., 2023). (3)MLP-
based deep learning models: DLinear (Zeng et al., 2023), FreTS (Yi et al., 2023) and TSMixer (Chen
et al., 2023). (3) Fine-tuning LLMs for TSF: GPT4TS (Zhou et al., 2023). (4) Prompt-based TSF
for LLMs: TimeLLM (Jin et al., 2024) and S2IPLLM (Pan et al., 2024). (5) Retrieval-based TSF
for LLMs: TimeCMA (Liu et al., 2025). We use two standard evaluation metrics: MSE and Mean
Absolute Error (MAE). To ensure a fair comparison, we set the test batch size to 1 for all models.
Each experiment is conducted at least three times on NVIDIA A100 GPUs.

5.1 MAIN RESULTS

Table 2 summarizes the performance comparison, demonstrating that TimeFK consistently outper-
forms all baseline methods across all datasets. We highlight the following key observations: (1)
Models with LLMs surpass deep learning methods. This validates our core motivation to leverage
LLMs for TSF, as they exhibit stronger generalization and representation capabilities. (2) The Gaus-
sian fuzzy mapping mechanism is crucial for cross-modality fusion. On the four ETT datasets,
TimeFK achieves superior results due to the introduction of the fuzzy key, which enhances its ability
to capture complex cross-modality dependencies and activate TSF capacities. (3) Prompt-based
LLM models outperform Transformer-based deep learning architectures. Specifically, TimeFK
surpasses the best Transformer baseline, iTransformer, with an average improvement of 8.4% in MSE
and 5.2% in MAE, indicating that prompt learning significantly enhances time series embeddings.
(4) Compared to other LLM-based methods, TimeFK achieves an average gain of 13.4% in MSE
and 8.0% in MAE, further demonstrating the effectiveness of Gaussian fuzzy mapping mechanism
in unlocking the forecasting potential of LLMs. The detailed experimental results of Table 2 are
provided in Table 5 of the Appendix.

1https://www.bgc-jena.mpg.de/wetter/
2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 2: Average results for TSF. The lowest MSE and MAE values are highlighted in red, while the
second-lowest values are highlighted in blue.

Methods TimeFK TimeCMA iTransformer PAttn TimeLLM S2IPLLM FreTS GPT4TS TSMixer DLinear PatchTST Crossformer TimesNet FEDformer NSformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.441 0.438 0.463 0.457 0.454 0.448 0.465 0.454 0.450 0.444 0.469 0.444 0.481 0.469 0.443 0.432 0.628 0.571 0.456 0.452 0.469 0.455 0.529 0.522 0.458 0.450 0.475 0.479 0.570 0.537

ETTh2 0.367 0.397 0.406 0.421 0.383 0.407 0.386 0.412 0.385 0.405 0.394 0.417 0.529 0.500 0.387 0.413 1.179 0.857 0.559 0.515 0.387 0.407 0.942 0.684 0.414 0.427 0.422 0.440 0.526 0.516

ETTm1 0.380 0.394 0.412 0.415 0.407 0.410 0.388 0.402 0.391 0.400 0.392 0.396 0.410 0.418 0.389 0.397 0.485 0.475 0.403 0.407 0.387 0.400 0.513 0.495 0.400 0.406 0.450 0.456 0.481 0.456

ETTm2 0.250 0.305 0.301 0.338 0.288 0.332 0.293 0.338 0.283 0.329 0.285 0.331 0.350 0.390 0.285 0.332 0.754 0.644 0.350 0.401 0.281 0.326 0.757 0.611 0.291 0.333 0.299 0.344 0.306 0.347

Exchange 0.344 0.397 0.532 0.481 0.389 0.421 0.385 0.415 0.389 0.421 0.360 0.404 0.376 0.429 0.374 0.408 0.727 0.643 0.330 0.399 0.387 0.416 1.014 0.765 0.454 0.466 0.529 0.506 0.441 0.444

ILI 2.140 0.918 2.608 1.030 2.251 0.953 2.304 0.955 3.558 1.317 - - 3.389 1.269 2.774 1.103 4.788 1.511 4.060 1.459 2.321 0.954 4.838 1.496 2.338 0.947 2.781 1.125 2.695 1.047

Weather 0.248 0.275 0.251 0.283 0.258 0.280 0.255 0.279 0.276 0.294 0.270 0.288 0.251 0.297 0.266 0.285 0.249 0.313 0.265 0.316 0.255 0.278 0.251 0.310 0.269 0.293 0.346 0.392 0.322 0.331

1st Count 12 0 0 0 0 0 0 1 0 1 0 0 0 0 0

Table 3: Average results evaluating the impact of components and branches. The detailed experimental
results are provided in Table 6 of the Appendix.

Methods TimeFK TimeFK TimeFK TimeFK TimeFK TimeFK
w/o LLMs w/o Patching w/o Fuzzy w/o Statistic w/o Background

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.439 0.432 0.452 0.444 0.446 0.442 0.458 0.448 0.439 0.665 0.439 0.665

Exchange 0.344 0.397 0.361 0.404 0.365 0.408 0.347 0.399 0.411 0.561 0.411 0.561

ILI 2.140 0.918 2.600 1.056 2.635 1.066 2.563 1.050 1.017 1.566 1.016 1.565

Weather 0.248 0.275 0.253 0.279 0.255 0.280 0.252 0.279 0.277 0.497 0.279 0.498

5.2 ABLATION STUDY

Ablation Study on Key Components: Ablation studies are conducted to evaluate the individual
contributions of the key components (LLMs, the patched embedding, and the Gaussian fuzzy
mapping) in TimeFK. As shown in Table 3, removing LLMs (“TimeFK w/o LLMs”) consistently
results in noticeable performance degradation across all datasets. For instance, on the ILI dataset,
the MSE increases from 2.140 to 2.600 and MAE from 0.918 to 1.056, indicating that LLMs are
essential for capturing complex and irregular temporal dependencies and significantly enhance the
model’s representational capacity. Similarly, ablating the patched embedding module (“TimeFK
w/o Patching”) leads to marked declines in performance, particularly in datasets with high temporal
variability. On the ILI dataset, MSE rises to 2.635 and MAE to 1.066, confirming that the patched
embedding mechanism effectively preserves local temporal patterns and alleviates sequence length
limitations, thereby enhancing modeling accuracy. Lastly, removing the Gaussian fuzzy mapping
(“TimeFK w/o Fuzzy”) also results in performance drops, albeit to a lesser extent. For example,
on ETTh1, the MSE increases from 0.439 to 0.458, and MAE from 0.432 to 0.448. While its
impact is relatively modest, the fuzzy mapping contributes to modeling uncertainty and soft temporal
boundaries, thus playing a complementary role in improving robustness and generalization. These
ablation results collectively demonstrate that all three components, LLMs, patched embedding, and
Gaussian fuzzy mapping, are integral to the overall performance of TimeFK, with each module
addressing different aspects of temporal representation learning.

Ablation Study on Branches: To further assess the roles of key architectural branches in TimeFK,
we conduct ablation studies by removing the statistical encoding branch (“TimeFK w/o Statistic”)
and the background encoding branch (“TimeFK w/o Background”). As shown in Table 3, excluding
either branch leads to substantial performance degradation across all datasets, particularly in MAE.
Removing the statistical encoding branch causes a sharp MAE increase, e.g., from 0.432 to 0.665 on
ETTh1, while the MSE on Exchange rises from 0.344 to 0.411. The Weather dataset is most affected,
with MAE nearly doubling from 0.275 to 0.497, indicating this branch is crucial for capturing global
trends and distributional shifts, especially in stable or long-range sequences. Similarly, removing the
background encoding branch results in almost identical degradation, with mirrored MSE/MAE drops
across datasets. This suggests a strong interplay between the two branches: the background branch
supports coarse-grained temporal modeling and provides essential contextual cues, particularly in
complex patterns like those in the ILI dataset (MAE increasing from 0.918 to 1.565). These results
highlight that both branches are essential and complementary, jointly enhancing TimeFK’s ability to
generalize across diverse temporal structures.
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Table 4: Average Results on Four Statistical Prompt Designs. Details are provided in Table 7 of the
Appendix.

Methods Prompt 1 Prompt 2 Prompt 3 Prompt 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 0.439 0.432 0.449 0.443 0.448 0.443 0.448 0.443

Exchange 0.344 0.397 0.379 0.416 0.378 0.415 0.376 0.414

ILI 2.140 0.918 2.537 1.038 2.537 1.038 2.537 1.038

Weather 0.248 0.275 0.254 0.279 0.253 0.279 0.288 0.302

5.3 MODEL ANALYSIS

5.3.1 EFFECT OF STATISTICAL PROMPTS

To assess the impact of statistical prompts on model performance, we compare four variants (Prompt
1-4), as shown in Figure 3. Prompt 1 consistently outperforms others across all datasets, achieving the
lowest MSE and MAE, for instance, 0.439/0.432 on ETTh1 and 0.344/0.397 on Exchange, as shown
in Table 4. Its advantage is even more evident on datasets with complex temporal patterns, such as
ILI (MSE: 2.140 vs. ≥2.537 for others). Prompts 2-4 show similar, slightly inferior performance,
e.g., MSEs of 0.379, 0.378, and 0.376 on Exchange, all higher than Prompt 1. This suggests Prompt 1
captures trend-sensitive features more effectively. Since statistical prompts are generated dynamically
during inference, the Gaussian fuzzy mapping mechanism exhibits limited effectiveness in reducing
noise. To better demonstrate the benefits of the Gaussian fuzzy mapping mechanism, we further
conduct an analysis focusing on the background prompts.

5.3.2 EFFECT OF GAUSSIAN FUZZY MAPPING MECHANISM

Figure 2: Comparison of w/ and w/o Gaussian
fuzzy mapping under four background prompts.

We evaluate the Gaussian fuzzy mapping on four
benchmarks (ETTh1, Exchange, ILI, Weather)
under four background prompt variants gen-
erated by ChatGPT. Figure 2 shows MSE
and MAE distributions across horizons, with
and without the mechanism. As seen in Fig-
ure 2 (left), models with fuzzy mapping consis-
tently yield lower MSEs, especially on complex
datasets like Exchange and ILI, with reduced
variance indicating improved robustness. For
example, on Exchange, it markedly lowers both
the mean and spread of MSE. Similar gains ap-
pear in MAE (right), most pronounced on ILI,
highlighting benefits for irregular medical series.
Even on smoother datasets (ETTh1, Weather),
modest error and variance reductions are observed. Overall, Gaussian fuzzy mapping enhances gener-
alization and stability across diverse prompt scenarios, particularly under noisy temporal conditions.

6 CONCLUSION

This paper proposes TimeFK, a novel and effective framework for TSF that leverages LLMs as
fuzzy keys to activate time series predictive capabilities. Extensive experiments validate the crucial
contributions of both the LLMs and the Gaussian fuzzy mapping mechanism in improving forecasting
accuracy. Notably, TimeFK outperforms the state-of-the-art transformer-based model, iTransformer,
with average improvements of 8.4% in MSE and 5.2% in MAE across multiple benchmark datasets.
Furthermore, compared to other LLM-based forecasting approaches, TimeFK achieves an additional
reduction of 13.4% in MSE and 8.0% in MAE, demonstrating its superior performance. These findings
underscore the potential of integrating fuzzy reasoning with multimodal time series representation,
pointing to a promising new direction for future research.
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7 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or proprietary datasets. All
datasets used are publicly available and widely adopted in the time series forecasting literature. We
have carefully followed ethical guidelines, including proper citation and licensing terms, and we
believe our research does not raise ethical concerns.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. Implementation details of the
model, training procedures, and hyperparameter settings are provided in Section 4 and Appendix J.
All datasets used in our experiments are publicly available, with preprocessing steps consistent
with TimesNet (Wu et al., 2023). To further facilitate reproduction, we provide our code and
scripts as anonymous supplementary material at https://anonymous.4open.science/r/
TimeFK-B2DF
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used solely to assist with language refinement, including
grammar correction and typographical error correction. They were not involved in idea generation,
data analysis, or interpretation of results. All substantive contributions, including the conception and
design of the study, execution of experiments, and manuscript writing, were made exclusively by the
authors.

B FULL RESULTS FOR TIME SERIES FORECASTING

To conserve space in the main text, we report the complete results of the long-term forecasting
experiments in Table 5. Notably, S2IPLLM (Pan et al., 2024) produces a NAN prediction on the ILI
dataset, and as such, we omit its experimental result from the report.

Table 5: Full results for time series forecasting. We compare extensive competitive models under
different prediction lengths. The input sequence length is set to 36 for the ILI dataset and 96 for the
others. AVG is averaged from all four prediction lengths. We adopt official codes of baselines and
reproduce on our devices for a fair comparison.

Methods TimeFK TimeCMA iTransformer PAttn TimeLLM S2IPLLM FreTS GPT4TS TSMixer DLinear PatchTST Crossformer TimesNet FEDformer NSformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.379 0.401 0.402 0.420 0.386 0.405 0.398 0.411 0.388 0.403 0.397 0.403 0.400 0.412 0.379 0.394 0.497 0.489 0.386 0.400 0.414 0.419 0.423 0.448 0.384 0.402 0.392 0.429 0.513 0.491
192 0.434 0.431 0.457 0.452 0.441 0.436 0.449 0.444 0.436 0.433 0.454 0.432 0.451 0.443 0.434 0.424 0.584 0.540 0.437 0.432 0.460 0.445 0.471 0.474 0.436 0.429 0.446 0.460 0.534 0.504
336 0.475 0.451 0.494 0.469 0.487 0.458 0.510 0.476 0.476 0.454 0.502 0.456 0.509 0.481 0.476 0.444 0.676 0.595 0.481 0.459 0.501 0.466 0.570 0.546 0.491 0.469 0.504 0.490 0.588 0.535
720 0.477 0.471 0.502 0.487 0.503 0.491 0.502 0.486 0.499 0.486 0.523 0.486 0.563 0.540 0.482 0.467 0.754 0.659 0.519 0.516 0.500 0.488 0.653 0.621 0.521 0.500 0.558 0.536 0.643 0.616E

T
T

h1

AVG 0.441 0.438 0.463 0.457 0.454 0.448 0.465 0.454 0.450 0.444 0.469 0.444 0.481 0.469 0.443 0.432 0.628 0.571 0.456 0.452 0.469 0.455 0.529 0.522 0.458 0.450 0.475 0.479 0.570 0.537

96 0.291 0.344 0.333 0.370 0.297 0.349 0.300 0.352 0.301 0.348 0.320 0.370 0.342 0.397 0.303 0.355 0.874 0.736 0.333 0.387 0.302 0.348 0.745 0.584 0.340 0.374 0.341 0.384 0.476 0.458
192 0.366 0.391 0.422 0.422 0.380 0.400 0.376 0.399 0.381 0.395 0.395 0.411 0.440 0.449 0.385 0.404 1.192 0.881 0.477 0.476 0.388 0.400 0.877 0.656 0.402 0.414 0.413 0.427 0.512 0.493
336 0.407 0.423 0.426 0.439 0.428 0.432 0.420 0.434 0.426 0.431 0.428 0.437 0.538 0.509 0.420 0.435 1.276 0.897 0.594 0.541 0.426 0.433 1.043 0.731 0.452 0.452 0.454 0.464 0.552 0.551
720 0.402 0.430 0.441 0.455 0.427 0.445 0.448 0.462 0.431 0.445 0.432 0.449 0.796 0.644 0.439 0.457 1.373 0.913 0.831 0.657 0.431 0.446 1.104 0.763 0.462 0.468 0.481 0.486 0.562 0.560E

T
T
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AVG 0.367 0.397 0.406 0.421 0.383 0.407 0.386 0.412 0.385 0.405 0.394 0.417 0.529 0.500 0.387 0.413 1.179 0.857 0.559 0.515 0.387 0.407 0.942 0.684 0.414 0.427 0.422 0.440 0.526 0.516

96 0.317 0.357 0.338 0.375 0.334 0.368 0.324 0.365 0.331 0.368 0.331 0.363 0.340 0.375 0.332 0.365 0.432 0.438 0.345 0.372 0.329 0.367 0.404 0.426 0.338 0.375 0.381 0.424 0.386 0.398
192 0.367 0.386 0.386 0.402 0.377 0.391 0.373 0.390 0.377 0.386 0.367 0.380 0.383 0.398 0.367 0.382 0.446 0.451 0.380 0.389 0.367 0.385 0.450 0.451 0.374 0.387 0.429 0.445 0.459 0.444
336 0.406 0.411 0.424 0.422 0.426 0.420 0.395 0.408 0.401 0.407 0.402 0.402 0.420 0.425 0.397 0.403 0.491 0.481 0.413 0.413 0.399 0.410 0.532 0.515 0.410 0.411 0.463 0.463 0.495 0.464
720 0.428 0.421 0.502 0.461 0.491 0.459 0.459 0.446 0.454 0.440 0.467 0.439 0.497 0.474 0.460 0.438 0.572 0.529 0.474 0.453 0.454 0.439 0.666 0.589 0.478 0.450 0.528 0.494 0.585 0.516E

T
T

m
1

AVG 0.380 0.394 0.412 0.415 0.407 0.410 0.388 0.402 0.391 0.400 0.392 0.396 0.410 0.418 0.389 0.397 0.485 0.475 0.403 0.407 0.387 0.400 0.513 0.495 0.400 0.406 0.450 0.456 0.481 0.456

96 0.174 0.256 0.188 0.270 0.180 0.264 0.184 0.268 0.179 0.264 0.180 0.265 0.195 0.285 0.177 0.263 0.244 0.355 0.193 0.292 0.175 0.259 0.287 0.366 0.187 0.267 0.194 0.282 0.192 0.274
192 0.178 0.260 0.261 0.316 0.250 0.309 0.248 0.308 0.243 0.304 0.247 0.307 0.277 0.351 0.243 0.306 0.385 0.471 0.284 0.362 0.241 0.302 0.414 0.492 0.249 0.309 0.264 0.322 0.280 0.339
336 0.245 0.305 0.321 0.354 0.311 0.348 0.315 0.353 0.306 0.345 0.304 0.343 0.370 0.404 0.313 0.351 0.685 0.656 0.369 0.427 0.305 0.343 0.597 0.542 0.321 0.351 0.321 0.357 0.334 0.361
720 0.404 0.399 0.434 0.414 0.412 0.407 0.427 0.422 0.404 0.401 0.408 0.407 0.560 0.519 0.407 0.407 1.704 1.095 0.554 0.522 0.402 0.400 1.730 1.042 0.408 0.403 0.418 0.415 0.417 0.413E

T
T

m
2

AVG 0.250 0.305 0.301 0.338 0.288 0.332 0.293 0.338 0.283 0.329 0.285 0.331 0.350 0.390 0.285 0.332 0.754 0.644 0.350 0.401 0.281 0.326 0.757 0.611 0.291 0.333 0.299 0.344 0.306 0.347

96 0.083 0.203 0.119 0.241 0.095 0.217 0.087 0.205 0.087 0.205 0.081 0.200 0.089 0.217 0.085 0.202 0.199 0.361 0.083 0.209 0.090 0.208 0.590 0.582 0.129 0.259 0.153 0.282 0.125 0.255
192 0.176 0.297 0.220 0.340 0.183 0.306 0.185 0.306 0.187 0.306 0.180 0.302 0.251 0.367 0.172 0.294 0.579 0.601 0.172 0.309 0.180 0.301 0.546 0.562 0.235 0.353 0.280 0.386 0.234 0.346
336 0.319 0.409 0.452 0.498 0.350 0.430 0.335 0.421 0.366 0.438 0.349 0.428 0.367 0.454 0.347 0.424 0.488 0.551 0.302 0.413 0.356 0.432 1.127 0.839 0.389 0.462 0.487 0.513 0.422 0.473
720 0.797 0.677 1.334 0.847 0.930 0.732 0.931 0.726 0.918 0.734 0.829 0.685 0.795 0.677 0.891 0.712 1.642 1.058 0.763 0.665 0.922 0.721 1.792 1.078 1.063 0.790 1.196 0.844 0.981 0.701E
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AVG 0.344 0.397 0.532 0.481 0.389 0.421 0.385 0.415 0.389 0.421 0.360 0.404 0.376 0.429 0.374 0.408 0.727 0.643 0.330 0.399 0.387 0.416 1.014 0.765 0.454 0.466 0.529 0.506 0.441 0.444

24 2.446 0.926 3.326 1.145 2.339 0.927 2.279 0.949 4.300 1.509 - - 3.316 1.268 3.067 1.194 4.530 1.479 4.320 1.551 2.329 0.949 4.809 1.492 2.433 0.936 2.771 1.140 2.583 1.004
36 2.032 0.915 2.749 1.041 2.118 0.931 2.389 0.957 3.465 1.289 - - 3.195 1.214 2.653 1.066 4.336 1.428 4.015 1.457 2.438 0.968 4.831 1.486 2.226 0.904 2.787 1.118 2.770 1.058
48 2.054 0.904 2.186 0.964 2.234 0.961 2.319 0.953 3.232 1.236 - - 3.313 1.250 2.658 1.068 4.908 1.530 3.826 1.399 2.278 0.945 4.608 1.457 2.329 0.968 2.709 1.100 2.718 1.057
60 2.026 0.925 2.169 0.971 2.315 0.994 2.230 0.961 3.235 1.235 - - 3.731 1.346 2.718 1.083 5.377 1.607 4.077 1.429 2.237 0.957 5.103 1.547 2.365 0.982 2.857 1.140 2.709 1.069

IL
I

AVG 2.140 0.918 2.608 1.030 2.251 0.953 2.304 0.955 3.558 1.317 - - 3.389 1.269 2.774 1.103 4.788 1.511 4.060 1.459 2.321 0.954 4.838 1.496 2.338 0.947 2.781 1.125 2.695 1.047

96 0.159 0.202 0.170 0.216 0.173 0.213 0.174 0.216 0.197 0.236 0.191 0.230 0.174 0.229 0.185 0.224 0.165 0.244 0.195 0.254 0.173 0.215 0.158 0.241 0.200 0.242 0.225 0.306 0.207 0.252
192 0.210 0.252 0.215 0.258 0.221 0.254 0.220 0.257 0.242 0.275 0.236 0.267 0.213 0.265 0.230 0.263 0.216 0.291 0.235 0.293 0.219 0.256 0.201 0.281 0.232 0.271 0.346 0.400 0.272 0.296
336 0.270 0.296 0.276 0.306 0.281 0.299 0.276 0.297 0.298 0.312 0.290 0.304 0.266 0.312 0.285 0.301 0.277 0.344 0.281 0.331 0.274 0.295 0.266 0.325 0.283 0.304 0.403 0.437 0.363 0.359
720 0.351 0.349 0.343 0.351 0.357 0.351 0.351 0.346 0.366 0.355 0.363 0.352 0.349 0.381 0.361 0.351 0.338 0.376 0.347 0.385 0.352 0.346 0.378 0.394 0.359 0.354 0.412 0.424 0.448 0.418W

ea
th

er

AVG 0.248 0.275 0.251 0.283 0.258 0.280 0.255 0.279 0.276 0.294 0.270 0.288 0.251 0.297 0.266 0.285 0.249 0.313 0.265 0.316 0.255 0.278 0.251 0.310 0.269 0.293 0.346 0.392 0.322 0.331

1st Count 44 0 0 2 0 5 0 9 1 5 3 3 1 0 0

C FULL RESULTS OF THE ABLATION STUDY ON LLMS, PATCHED
EMBEDDING AND GAUSSIAN FUZZY MAPPING

The detailed ablation study results, assessing the effects of LLMs, patched embedding, and Gaussian
fuzzy mapping, are shown in Table 6, as they could not be included in the main text due to space
constraints.

D FULL RESULTS ON FOUR STATISTICAL PROMPT DESIGNS

From t-L+1 to t, the values 
were xt-L+1,…,xt every f. The 
total trend value was Δ.

From t-L+1 to t, the values 
were xt-L+1,…,xt every f.

From t-L+1 to t, the values 
were xt-L+1,…,xt every f. The 
average value was μ.

From t-L+1 to t, the values 
were xt-L+1,…,xt every f. The 
total number of historical 
hours was T.

Prompt 1: frequency highlighted

Prompt 2: only time series

Prompt 3: calculate average

Prompt 4: given history length 

Figure 3: Four Statistical
Prompt Designs.

To further investigate the influence of statistical prompt engineering on
model performance, we conduct a comparative analysis of four statistical
prompt variants, denoted as Prompt 1 through Prompt 4, as presented in
Figure 3 and Table 7.

Among all variants, Prompt 1 consistently achieves the best performance
across all datasets, yielding the lowest MSE and MAE values. For ex-
ample, on the ETTh1 dataset, Prompt 1 achieves an MSE of 0.439 and
an MAE of 0.432, the best results among all prompt types. A similar
trend is observed on the Exchange dataset, where Prompt 1 attains an
MSE of 0.344 and an MAE of 0.397. The advantage becomes even more
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Table 6: Full results evaluating the impact of components and branches.

Methods TimeFK TimeFK TimeFK TimeFK TimeFK TimeFK
w/o LLMs w/o Patching w/o Fuzzy w/o Statistic w/o Background

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.379 0.394 0.385 0.402 0.385 0.403 0.389 0.405 0.401 0.618 0.401 0.618
192 0.430 0.424 0.434 0.431 0.438 0.434 0.443 0.436 0.432 0.659 0.432 0.659
336 0.469 0.444 0.477 0.453 0.478 0.455 0.483 0.458 0.450 0.688 0.450 0.688
720 0.479 0.467 0.514 0.489 0.482 0.475 0.516 0.494 0.475 0.696 0.474 0.695

AVG 0.439 0.432 0.452 0.444 0.446 0.442 0.458 0.448 0.439 0.665 0.439 0.665

Exchange

96 0.083 0.203 0.086 0.205 0.085 0.205 0.084 0.205 0.208 0.297 0.207 0.296
192 0.176 0.297 0.177 0.300 0.183 0.306 0.177 0.304 0.307 0.431 0.308 0.434
336 0.319 0.409 0.332 0.417 0.358 0.432 0.321 0.411 0.409 0.567 0.409 0.567
720 0.797 0.677 0.848 0.696 0.834 0.688 0.805 0.678 0.720 0.948 0.721 0.949

AVG 0.344 0.397 0.361 0.404 0.365 0.408 0.347 0.399 0.411 0.561 0.411 0.561

ILI

24 2.446 0.926 2.777 1.094 2.710 1.075 2.615 1.057 1.051 1.625 1.052 1.625
36 2.032 0.915 2.471 1.022 2.530 1.038 2.486 1.031 0.994 1.534 0.994 1.533
48 2.054 0.904 2.534 1.039 2.564 1.048 2.505 1.034 0.989 1.525 0.988 1.523
60 2.026 0.925 2.618 1.067 2.736 1.103 2.646 1.079 1.033 1.579 1.032 1.578

AVG 2.140 0.918 2.600 1.056 2.635 1.066 2.563 1.050 1.017 1.566 1.016 1.565

Weather

96 0.159 0.202 0.171 0.214 0.172 0.213 0.166 0.210 0.209 0.407 0.210 0.408
192 0.210 0.252 0.218 0.256 0.220 0.257 0.217 0.257 0.256 0.467 0.257 0.468
336 0.270 0.296 0.273 0.298 0.276 0.298 0.275 0.300 0.297 0.522 0.299 0.524
720 0.351 0.349 0.350 0.349 0.353 0.350 0.350 0.351 0.347 0.591 0.349 0.592

AVG 0.248 0.275 0.253 0.279 0.255 0.280 0.252 0.279 0.277 0.497 0.279 0.498

pronounced on datasets with complex temporal dynamics, such as ILI,
where Prompt 1 reduces the MSE to 2.140, compared to 2.537 for the
other prompts. Prompts 2, 3, and 4 exhibit similar performance trends,
with only marginal differences among them. For instance, on the Ex-
change dataset, the MSE values for Prompts 2, 3, and 4 are 0.379, 0.378,
and 0.376, respectively, all clearly higher than that of Prompt 1. This
consistent performance gap suggests that, while Prompts 2-4 capture certain temporal dependencies,
they may lack the trend-sensitive representations embedded in Prompt 1.

Notably, since statistical prompts are dynamically generated during inference based on the input
time series, especially in terms of values and evolving trends, the effectiveness of different prompts
varies significantly. As a result, the choice of prompt has a substantial impact on forecasting accuracy,
particularly reflected in MSE and MAE.

Table 7: Full Results on four statistical prompt designs

Methods Prompt 1 Prompt 2 Prompt 3 Prompt 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.379 0.394 0.382 0.402 0.382 0.401 0.383 0.402
192 0.430 0.424 0.437 0.433 0.434 0.432 0.434 0.432
336 0.469 0.444 0.487 0.458 0.486 0.458 0.488 0.458
720 0.479 0.467 0.488 0.480 0.488 0.480 0.486 0.478

AVG 0.439 0.432 0.449 0.443 0.448 0.443 0.448 0.443

Exchange

96 0.083 0.203 0.088 0.207 0.085 0.204 0.088 0.207
192 0.176 0.297 0.180 0.304 0.180 0.304 0.179 0.303
336 0.319 0.409 0.378 0.447 0.375 0.445 0.371 0.442
720 0.797 0.677 0.868 0.705 0.871 0.706 0.868 0.704

AVG 0.344 0.397 0.379 0.416 0.378 0.415 0.376 0.414

ILI

24 2.446 0.926 2.654 1.055 2.654 1.055 2.654 1.056
36 2.032 0.915 2.434 1.013 2.434 1.013 2.434 1.013
48 2.054 0.904 2.473 1.024 2.474 1.024 2.474 1.024
60 2.026 0.925 2.585 1.058 2.586 1.058 2.586 1.058

AVG 2.140 0.918 2.537 1.038 2.537 1.038 2.537 1.038

Weather

96 0.159 0.202 0.171 0.213 0.169 0.212 0.168 0.211
192 0.210 0.252 0.219 0.257 0.220 0.257 0.279 0.300
336 0.270 0.296 0.273 0.298 0.274 0.299 0.354 0.349
720 0.351 0.349 0.352 0.349 0.351 0.348 0.351 0.348

AVG 0.248 0.275 0.254 0.279 0.253 0.279 0.288 0.302
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E FULL RESULTS OF IMPACT ON BACKGROUND PROMPTS

We construct four distinct background prompts to investigate the impact of textual context on model
performance. All prompts were generated using ChatGPT. Prompt 1 corresponds to the default
background prompt used in TimeLLM, which describes each dataset as Figure 4. Prompts 2-4 are
semantically equivalent paraphrases generated by LLMs to evaluate model robustness under different
linguistic formulations. These variations are designed to maintain the same factual content while
diversifying the expression style, as shown in Figure 5-7.

ETT: The Electricity Transformer Temperature 
(ETT) is a crucial indicator in the electric 
power long-term deployment. This dataset 
consists of 2 years data from two separated 
counties in China. To explore the granularity 
on the Long sequence time-series forecasting 
(LSTF) problem, different subsets are created, 
{ETTh1, ETTh2} for 1-hour-level and ETTm1 for 
15-minutes-level. Each data point consists of 
the target value ”oil temperature” and 6 power 
load features. The train/val/test is 12/4/4 
months.
Exchange: The collection of the daily exchange 
rates of eight foreign countries including 
Australia, British, Canada, Switzerland, China, 
Japan, New Zealand and Singapore ranging from 
1990 to 2016.
ILI: The influenza-like illness (ILI) dataset 
records data on patients with ILI recorded 
weekly by the Centers for Disease Control and 
Prevention from 2002 to 2021, which describes 
the ratio of ILI patients to the total number 
of patients.
Weather: Weather is recorded every 10 minutes 
for the 2020 whole year, which contains 21 
meteorological indicators, such as air 
temperature, humidity, etc.

Figure 4: Background Prompt 1.

ETT: The Electricity Transformer Temperature 
(ETT) dataset, reflecting key metrics for long-
term electricity management, includes two years 
of data from two counties in China. To examine 
time-series forecasting at different 
granularities, subsets like ETTh1 and ETTh2 
(hourly) and ETTm1 (15-minute intervals) are 
provided. Each entry includes 'oil temperature' 
as the target variable along with six power 
load indicators. The dataset is split into 
training, validation, and testing sets using a 
12/4/4-month ratio.
Exchange: This dataset contains daily foreign 
exchange rates from 1990 to 2016 for eight 
countries: Australia, the UK, Canada, 
Switzerland, China, Japan, New Zealand, and 
Singapore.
ILI: The ILI dataset offers weekly records from 
2002 to 2021, compiled by the CDC, showing the 
proportion of influenza-like illness cases 
among the total number of patients.
Weather: This dataset provides weather data 
collected at 10-minute intervals throughout the 
year 2020, including 21 meteorological 
variables such as temperature, humidity, and 
more.

Figure 5: Background Prompt 2.
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ETT: The Electricity Transformer Temperature 
(ETT) dataset is essential for power grid 
planning. It features two years of hourly data 
from two Chinese counties. To support long-
sequence forecasting, versions like ETTh1 and 
ETTh2 (hourly), and ETTm1 (15-minute intervals) 
are offered. Each entry records the oil 
temperature (target) along with six associated 
power load variables. Data is partitioned into 
12 months for training, 4 months for validation, 
and 4 months for testing.
Exchange: It includes daily currency exchange 
rates from 1990 to 2016 across eight countries—
Australia, the United Kingdom, Canada, 
Switzerland, China, Japan, New Zealand, and 
Singapore.
ILI: Collected by the CDC from 2002 to 2021, 
this dataset contains weekly information on 
influenza-like illness cases, expressed as the 
proportion of ILI cases among all patient 
visits.
Weather: This dataset captures weather 
conditions every 10 minutes throughout 2020, 
encompassing 21 different meteorological 
attributes such as temperature, humidity, and 
more.

Figure 6: Background Prompt 3.

ETT: The Electricity Transformer Temperature (ETT) dataset is 
an important benchmark for long-horizon time-series 
forecasting in energy systems. It comprises two years of 
hourly resolution data collected from two distinct counties 
in China. To accommodate various temporal granularities, 
three subsets are defined: ETTh1 and ETTh2 (hourly data) and 
ETTm1 (15-minute data). Each time step includes a target 
variable—transformer oil temperature—alongside six contextual 
power load features. The dataset is partitioned into training, 
validation, and testing sets in a 12/4/4-month configuration.
Exchange: This dataset consists of daily foreign exchange 
rate data spanning from 1990 to 2016, covering eight major 
currencies: Australian Dollar, British Pound, Canadian Dollar, 
Swiss Franc, Chinese Yuan, Japanese Yen, New Zealand Dollar, 
and Singapore Dollar. It serves as a valuable resource for 
economic and financial time-series modeling.
ILI: The Influenza-Like Illness (ILI) dataset, compiled by 
the U.S. Centers for Disease Control and Prevention (CDC), 
provides weekly reports from 2002 to 2021. It quantifies the 
prevalence of ILI cases as a ratio relative to total patient 
visits, thereby facilitating the study of epidemic trends and 
public health forecasting.
Weather: The weather dataset comprises high-frequency 
meteorological recordings taken at 10-minute intervals over 
the entirety of 2020. It includes 21 environmental variables, 
such as ambient temperature, relative humidity, and other 
atmospheric indicators, providing a comprehensive temporal 
profile for climate-related analyses.

Figure 7: Background Prompt 4.
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To evaluate the effectiveness of the proposed Gaussian fuzzy mapping mechanism, we conduct a
comprehensive analysis on four benchmark datasets (ETTh1, Exchange, ILI, and Weather) under
four distinct background prompt settings. These prompt variants are generated by ChatGPT using the
original background context as input. The results are reported in Table 8 and Table 9, respectively,
where violin plots depict the distribution of prediction errors, measured by MSE and MAE, across
different forecasting horizons and prompt configurations, with and without the Gaussian fuzzy
mapping mechanism.

Table 8: Full results with Gaussian fuzzy mapping mechanism under four background prompts on
four datasets.

Methods Prompt 1 Prompt 2 Prompt 3 Prompt 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.379 0.394 0.379 0.401 0.379 0.401 0.379 0.401
192 0.430 0.424 0.436 0.432 0.436 0.432 0.436 0.432
336 0.469 0.444 0.479 0.452 0.479 0.452 0.479 0.452
720 0.479 0.467 0.497 0.483 0.497 0.483 0.497 0.483

AVG 0.439 0.432 0.448 0.442 0.448 0.442 0.448 0.442

Exchange

96 0.083 0.203 0.086 0.205 0.086 0.205 0.086 0.205
192 0.176 0.297 0.178 0.301 0.178 0.301 0.178 0.301
336 0.319 0.409 0.324 0.412 0.324 0.412 0.324 0.412
720 0.797 0.677 0.803 0.677 0.803 0.677 0.803 0.677

AVG 0.344 0.397 0.348 0.399 0.348 0.399 0.348 0.399

ILI

24 2.446 0.926 2.631 1.055 2.632 1.056 2.654 1.054
36 2.032 0.915 2.066 1.021 2.067 1.021 2.014 1.012
48 2.054 0.904 2.020 1.035 2.020 1.035 2.051 1.023
60 2.026 0.925 2.125 1.068 2.028 1.068 2.059 1.054

AVG 2.140 0.918 2.211 1.045 2.187 1.045 2.195 1.036

Weather

96 0.159 0.202 0.168 0.210 0.169 0.211 0.169 0.211
192 0.210 0.252 0.217 0.255 0.216 0.255 0.217 0.255
336 0.270 0.296 0.276 0.300 0.275 0.300 0.276 0.298
720 0.351 0.349 0.354 0.352 0.354 0.351 0.354 0.351

AVG 0.248 0.275 0.254 0.279 0.254 0.279 0.254 0.279

Table 9: Full results without Gaussian fuzzy mapping mechanism under four background prompts on
four datasets.

Methods Prompt 1 Prompt 2 Prompt 3 Prompt 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETT

96 0.389 0.405 0.382 0.401 0.382 0.401 0.385 0.403
192 0.443 0.436 0.434 0.431 0.434 0.431 0.439 0.435
336 0.483 0.458 0.473 0.454 0.475 0.453 0.495 0.463
720 0.516 0.494 0.482 0.482 0.482 0.476 0.486 0.480

AVG 0.458 0.448 0.443 0.442 0.443 0.440 0.451 0.445

Exchange

96 0.084 0.205 0.088 0.207 0.088 0.207 0.089 0.208
192 0.177 0.304 0.182 0.305 0.182 0.305 0.171 0.295
336 0.321 0.411 0.371 0.442 0.368 0.440 0.344 0.427
720 0.805 0.678 0.880 0.709 0.876 0.707 0.837 0.693

AVG 0.347 0.399 0.380 0.416 0.379 0.415 0.360 0.406

ILI

24 2.615 1.057 2.801 1.099 2.798 1.098 2.799 1.098
36 2.486 1.031 2.492 1.037 2.352 0.994 2.677 1.053
48 2.505 1.034 2.856 1.077 2.930 1.046 2.658 1.069
60 2.646 1.079 2.911 1.912 2.706 1.831 2.839 1.640

AVG 2.563 1.050 2.765 1.281 2.697 1.242 2.743 1.215

Weather

96 0.166 0.210 0.170 0.213 0.170 0.213 0.170 0.214
192 0.217 0.257 0.218 0.255 0.218 0.256 0.220 0.257
336 0.275 0.300 0.275 0.299 0.274 0.299 0.279 0.300
720 0.350 0.351 0.351 0.349 0.354 0.349 0.354 0.349

AVG 0.252 0.279 0.254 0.279 0.254 0.279 0.256 0.280

As shown in Table 8 and Table 9, models augmented with the Gaussian fuzzy mapping mechanism
consistently achieve lower MSE values compared to their non-fuzzy counterparts, particularly on
complex and noisy datasets such as Exchange and ILI. This improvement is evident not only in
terms of mean performance but also in the reduced variance of prediction errors, reflecting enhanced
robustness and stability. For example, on the Exchange dataset, the incorporation of Gaussian fuzzy
mapping mechanism significantly reduces both the central tendency and dispersion of the MSE
distribution, demonstrating its effectiveness in handling high-frequency temporal fluctuations. A
similar trend is observed in Table 8 and Table 9, where fuzzy-enhanced models exhibit lower MAE
values across most datasets. The most notable improvement is found in the ILI dataset, where the
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fuzzy component substantially lowers the prediction error, highlighting its advantage in modeling
irregular and sparse medical time series. Although the performance gains are relatively modest
on smoother datasets such as ETTh1 and Weather, the Gaussian fuzzy mapping mechanism still
contributes to slight reductions in both mean error and variability.

Collectively, these results affirm that integrating the Gaussian fuzzy mapping enhances model
generalization and resilience to error under varying background prompt scenarios. The findings
underscore the importance of fuzzy mechanisms, particularly in scenarios involving uncertain or
partially structured temporal patterns.

F SHOWCASES

To facilitate a clear comparison across different models, we present visual showcases of time series
forecasting results on various datasets, including ETTh1 (Figure 8), ETTh2 (Figure 9), ETTm1
(Figure 10), ETTm2 (Figure 11), Exchange (Figure 12), ILI (Figure 13), and Weather (Figure 14).

TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 8: Visualization of ETTh1 predictions by different models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.

G HYPERPARAMETER SENSITIVITY ON ENCODER DEPTH

G.1 HYPERPARAMETER SENSITIVITY ANALYSIS ON TIME SERIES ENCODER DEPTH

To evaluate the impact of encoder depth on model performance, we conduct a hyperparameter
sensitivity analysis by varying the depth of the time series encoder (NX = 1 to 4) across four
benchmark datasets: ETTh1, Exchange, ILI, and Weather. As shown in Table 10, the model with
encoder depth set to 2 consistently achieves the best or near-best performance across all datasets and
forecasting horizons, as measured by MSE and MAE. Notably, on the ILI dataset, increasing the
depth from 1 to 2 leads to a substantial reduction in average MSE (from 2.562 to 2.140) and MAE
(from 1.045 to 0.918), demonstrating the importance of model capacity in handling complex seasonal
patterns. Similarly, the Exchange dataset shows notable improvements with depth 2, especially for
longer prediction lengths. In contrast, increasing the encoder depth beyond 2 generally does not
yield further improvements and, in some cases, leads to performance degradation, possibly due to
overfitting or optimization instability. These results suggest that an encoder depth of 2 offers a good
balance between representation power and generalization, making it a robust default choice for TSF.
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TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 9: Visualization of ETTh2 predictions by different models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.

TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 10: Visualization of ETTm1 predictions by different models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 11: Visualization of ETTm2 predictions by different models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.

TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 12: Visualization of Exchange predictions by different models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 13: Visualization of ILI predictions by different models under the input-36-predict-24 setting.
The blue lines stand for the ground truth and the orange lines stand for predicted values.

TimeFK TimeCMA TimeLLMPAttniTransformer

S2IPLLM FreTS DLinearTSMixerGPT4TS

PatchTST Crossformer NSformerFEDformerTimesNet

Figure 14: Visualization of Weather predictions by different models under the input-96-predict-96
setting. The blue lines stand for the ground truth and the orange lines stand for predicted values.
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Table 10: Hyperparameter sensitivity on time series encoder depth.

Methods NX

1 2 3 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.382 0.401 0.379 0.394 0.384 0.403 0.385 0.403
192 0.434 0.431 0.430 0.424 0.438 0.434 0.439 0.435
336 0.476 0.453 0.469 0.444 0.489 0.460 0.495 0.463
720 0.480 0.475 0.479 0.467 0.485 0.479 0.487 0.481

AVG 0.443 0.440 0.439 0.432 0.449 0.444 0.452 0.446

Exchange

96 0.088 0.207 0.083 0.203 0.085 0.205 0.089 0.208
192 0.186 0.308 0.176 0.297 0.178 0.302 0.171 0.295
336 0.376 0.445 0.319 0.409 0.373 0.443 0.356 0.433
720 0.875 0.707 0.797 0.677 0.867 0.706 0.838 0.693

AVG 0.381 0.417 0.344 0.397 0.376 0.414 0.363 0.407

ILI

24 2.635 1.056 2.446 0.926 2.662 1.055 2.665 1.056
36 2.468 1.021 2.032 0.915 2.424 1.012 2.417 1.013
48 2.520 1.035 2.054 0.904 2.452 1.021 2.449 1.022
60 2.627 1.068 2.026 0.925 2.565 1.054 2.564 1.056

AVG 2.562 1.045 2.140 0.918 2.526 1.036 2.524 1.037

Weather

96 0.170 0.213 0.159 0.202 0.168 0.211 0.167 0.210
192 0.221 0.257 0.210 0.252 0.220 0.257 0.215 0.255
336 0.273 0.298 0.270 0.296 0.278 0.299 0.275 0.299
720 0.352 0.349 0.351 0.349 0.354 0.349 0.352 0.348

AVG 0.254 0.279 0.248 0.275 0.255 0.279 0.252 0.278

G.2 HYPERPARAMETER SENSITIVITY ANALYSIS ON DUAL MODALITY ENCODER DEPTH

To evaluate the impact of the dual modality encoder depth on model performance, we conduct a
sensitivity analysis by varying the number of encoder layers (NP ) from 1 to 4. The results across
four benchmark datasets (ETTh1, Exchange, ILI, and Weather) are summarized in Table 11, using
MSE and MAE as evaluation metrics.

Overall, the model achieves the best or near-best performance when the encoder is configured with 2
layers. For the ETTh1 dataset, using two layers results in the lowest average MSE (0.439) and MAE
(0.432), outperforming other settings across most forecasting horizons. A similar trend is observed
on the Exchange dataset, where the two-layer configuration achieves significant improvements,
particularly for long-term forecasting (e.g., 336 and 720), with an average MSE of 0.344 and MAE of
0.397. The ILI dataset exhibits the most pronounced gains: the two-layer model reduces the average
MSE from 2.536 (1-layer) to 2.140 and MAE from 1.037 to 0.918. While the Weather dataset shows
relatively stable performance across different configurations, the 2-layer setting still achieves the best
overall average (MSE: 0.248, MAE: 0.275).

These results suggest that a dual modality encoder with two layers provides an optimal balance
between model expressiveness and generalization ability, avoiding the underfitting risk of shallow
architectures and the overfitting or increased complexity introduced by deeper ones. Hence, we adopt
the two-layer encoder setting as the default configuration in our model.

G.3 HYPERPARAMETER SENSITIVITY ANALYSIS ON BACKGROUND ENCODER DEPTH

To investigate the influence of background encoder depth (NB) on model performance, we vary the
number of stacked blocks from 1 to 4 and evaluated the results across four standard datasets: ETTh1,
Exchange, ILI, and Weather. As shown in Table 12, a depth of 2 blocks consistently yields superior
or competitive results across all datasets and forecast horizons.

In the ETTh1 dataset, a 2-layer setting achieves the lowest average MSE (0.439) and MAE (0.432),
outperforming both shallower and deeper configurations. The Exchange dataset shows a similar
pattern, where the 2-layer configuration leads to the most pronounced gains, especially for long-term
forecasting (e.g., 336 and 720 steps), with an average MSE of 0.344 and MAE of 0.397. For the ILI
dataset, where temporal dynamics are highly nonlinear, the 2-layer model significantly reduces error
metrics, improving average MSE from 2.536 to 2.140 and MAE from 1.037 to 0.918. The Weather
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Table 11: Hyperparameter sensitivity on dual modality encoder depth.

Methods NP

1 2 3 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.382 0.402 0.379 0.394 0.383 0.402 0.383 0.402
192 0.435 0.432 0.430 0.424 0.438 0.433 0.434 0.432
336 0.487 0.458 0.469 0.444 0.486 0.458 0.487 0.458
720 0.487 0.479 0.479 0.467 0.487 0.480 0.484 0.478

AVG 0.448 0.443 0.439 0.432 0.449 0.443 0.447 0.443

Exchange

96 0.088 0.207 0.083 0.203 0.085 0.204 0.088 0.207
192 0.181 0.304 0.176 0.297 0.180 0.304 0.179 0.303
336 0.381 0.448 0.319 0.409 0.379 0.447 0.371 0.442
720 0.866 0.704 0.797 0.677 0.868 0.704 0.870 0.706

AVG 0.379 0.416 0.344 0.397 0.378 0.415 0.377 0.414

ILI

24 2.651 1.055 2.446 0.926 2.644 1.054 2.650 1.054
36 2.434 1.013 2.032 0.915 2.434 1.013 2.432 1.013
48 2.475 1.024 2.054 0.904 2.474 1.024 2.474 1.024
60 2.586 1.057 2.026 0.925 2.587 1.058 2.589 1.058

AVG 2.536 1.037 2.140 0.918 2.535 1.037 2.536 1.037

Weather

96 0.171 0.214 0.159 0.202 0.168 0.212 0.168 0.212
192 0.220 0.257 0.210 0.252 0.217 0.255 0.217 0.255
336 0.278 0.299 0.270 0.296 0.274 0.299 0.273 0.298
720 0.353 0.348 0.351 0.349 0.351 0.348 0.351 0.348

AVG 0.255 0.280 0.248 0.275 0.253 0.278 0.252 0.278

dataset exhibits relatively stable performance across all configurations; however, the 2-layer setting
still obtains the lowest average MSE (0.248) and MAE (0.275).

These results suggest that increasing the depth beyond two layers does not consistently improve
performance and may introduce unnecessary complexity. Conversely, using only a single layer may
not capture sufficient modality interaction. Hence, we adopt a two-layer background encoder as the
default configuration in our model due to its balanced effectiveness and efficiency across diverse
tasks.

Table 12: Hyperparameter sensitivity on background encoder depth.

Methods NB

1 2 3 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.382 0.402 0.379 0.394 0.383 0.402 0.383 0.402
192 0.435 0.432 0.430 0.424 0.438 0.433 0.434 0.432
336 0.487 0.458 0.469 0.444 0.486 0.458 0.487 0.458
720 0.486 0.479 0.479 0.467 0.488 0.480 0.485 0.478

AVG 0.447 0.443 0.439 0.432 0.449 0.443 0.447 0.443

Exchange

96 0.088 0.207 0.083 0.203 0.085 0.204 0.088 0.207
192 0.181 0.305 0.176 0.297 0.180 0.304 0.179 0.303
336 0.380 0.448 0.319 0.409 0.379 0.447 0.371 0.442
720 0.866 0.703 0.797 0.677 0.868 0.704 0.871 0.706

AVG 0.379 0.416 0.344 0.397 0.378 0.415 0.377 0.415

ILI

24 2.652 1.055 2.446 0.926 2.643 1.054 2.651 1.055
36 2.433 1.013 2.032 0.915 2.434 1.013 2.432 1.013
48 2.475 1.024 2.054 0.904 2.474 1.024 2.474 1.024
60 2.586 1.057 2.026 0.925 2.587 1.058 2.589 1.058

AVG 2.536 1.037 2.140 0.918 2.535 1.037 2.537 1.037

Weather

96 0.171 0.214 0.159 0.202 0.168 0.212 0.172 0.215
192 0.220 0.256 0.210 0.252 0.217 0.255 0.217 0.255
336 0.278 0.299 0.270 0.296 0.274 0.299 0.273 0.298
720 0.352 0.349 0.351 0.349 0.351 0.347 0.350 0.348

AVG 0.255 0.280 0.248 0.275 0.252 0.278 0.253 0.279
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H HYPERPARAMETER SENSITIVITY ANALYSIS ON DECODER DEPTH

Table 13 presents the results of a hyperparameter sensitivity analysis on decoder depth across four
benchmark datasets (ETTh1, Exchange, ILI, and Weather) and multiple forecast lengths. Each cell
reports the MSE and MAE for decoder depths ranging from 1 to 4. The bolded values indicate the
best performance in each row. The results show that a decoder depth of 1 often yields the best or
competitive results, especially on the ILI and ETTh1 datasets. For example, in the ILI dataset, depth
1 achieves the lowest average MSE (2.140) and MAE (0.918), outperforming deeper configurations.
In contrast, the Exchange dataset benefits slightly from deeper decoders at longer prediction horizons,
while the Weather dataset demonstrates relatively stable performance across depths. These findings
suggest that shallow decoders are often sufficient and may generalize better, while deeper decoders
could be dataset-dependent and require careful tuning.

Table 13: Hyperparameter sensitivity on decoder depth.

Methods Depth

1 2 3 4
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.379 0.394 0.383 0.405 0.384 0.406 0.384 0.405
192 0.430 0.424 0.438 0.434 0.442 0.436 0.444 0.437
336 0.469 0.444 0.489 0.458 0.487 0.458 0.479 0.457
720 0.479 0.467 0.496 0.483 0.493 0.481 0.494 0.482

AVG 0.439 0.432 0.451 0.445 0.452 0.445 0.450 0.445

Exchange

96 0.083 0.203 0.084 0.204 0.086 0.205 0.085 0.206
192 0.176 0.297 0.182 0.304 0.178 0.301 0.179 0.303
336 0.319 0.409 0.322 0.411 0.307 0.401 0.307 0.401
720 0.797 0.677 0.807 0.680 0.815 0.686 0.802 0.679

AVG 0.344 0.397 0.349 0.400 0.346 0.399 0.343 0.397

ILI

24 2.446 0.926 2.678 1.055 2.732 1.064 2.751 1.050
36 2.032 0.915 2.329 0.994 2.359 1.003 2.396 1.013
48 2.054 0.904 2.263 0.983 2.243 0.982 2.262 0.989
60 2.026 0.925 2.364 1.008 2.369 1.016 2.381 1.021

AVG 2.140 0.918 2.408 1.010 2.426 1.016 2.448 1.018

Weather

96 0.159 0.202 0.181 0.222 0.169 0.212 0.170 0.213
192 0.210 0.252 0.217 0.256 0.217 0.256 0.219 0.259
336 0.270 0.296 0.277 0.302 0.276 0.301 0.278 0.304
720 0.351 0.349 0.357 0.354 0.353 0.351 0.353 0.354

AVG 0.248 0.275 0.258 0.283 0.254 0.280 0.255 0.282

I HYPERPARAMETER SENSITIVITY ANALYSIS ON LLM DEPTH

Table 14 presents the performance of LLMs with different depths across four datasets (ETTh1,
Exchange, ILI, and Weather), evaluated using MSE and MAE. As the LLM depth increases, we
observe a general trend of performance improvement, particularly when increasing from 0 to 4 layers.
Specifically, the 4-layer LLM achieves the lowest or near-lowest MSE and MAE in most cases. For
instance, on the ETTh1 dataset, the 4-layer LLM achieves the best average MSE (0.439) and MAE
(0.432) across all prediction lengths. Similar performance gains are also observed on the Exchange
and ILI datasets.

While the 8-layer LLM occasionally shows marginal improvements (e.g., on the 96-length prediction
of the Exchange dataset), the performance gains are limited and come at the cost of significantly
increased model complexity and computation. Therefore, to strike a balance between model perfor-
mance and complexity, we choose the 4-layer LLM as the default configuration. It offers substantial
improvements over shallower models while avoiding the overhead and potential overfitting risks of
deeper networks.

Moreover, the 4-layer LLM demonstrates stable performance across all datasets, indicating better
generalization capability.
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Table 14: Hyperparameter sensitivity on LLM depth.

Methods Depth

0 2 4 8
Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1

96 0.385 0.402 0.387 0.403 0.379 0.394 0.380 0.402
192 0.434 0.431 0.435 0.432 0.430 0.424 0.437 0.432
336 0.477 0.453 0.474 0.453 0.469 0.444 0.480 0.452
720 0.514 0.489 0.478 0.474 0.479 0.467 0.495 0.481

AVG 0.452 0.444 0.444 0.441 0.439 0.432 0.448 0.442

Exchange

96 0.086 0.205 0.088 0.207 0.083 0.203 0.083 0.203
192 0.177 0.300 0.189 0.312 0.176 0.297 0.178 0.301
336 0.332 0.417 0.351 0.426 0.319 0.409 0.326 0.413
720 0.848 0.696 0.832 0.688 0.797 0.677 0.799 0.676

AVG 0.361 0.404 0.365 0.408 0.344 0.397 0.347 0.398

ILI

24 2.777 1.094 2.743 1.092 2.446 0.926 2.807 1.100
36 2.471 1.022 2.464 1.019 2.032 0.915 2.354 0.995
48 2.534 1.039 2.528 1.039 2.054 0.904 2.319 0.987
60 2.618 1.067 2.690 1.082 2.026 0.925 2.503 1.037

AVG 2.600 1.056 2.606 1.058 2.140 0.918 2.496 1.030

Weather

96 0.171 0.214 0.170 0.212 0.159 0.202 0.168 0.210
192 0.218 0.256 0.219 0.256 0.210 0.252 0.221 0.258
336 0.273 0.298 0.274 0.299 0.270 0.296 0.274 0.299
720 0.350 0.349 0.351 0.349 0.351 0.349 0.353 0.351

AVG 0.253 0.279 0.253 0.279 0.248 0.275 0.254 0.280

J HYPERPARAMETER SETTINGS

In TimeFK, we set the number of layers for the LLM to 4, and unified the number of layers for all
encoders to 2 in order to sufficiently encode both linguistic and numerical information. Additionally,
we configured the decoder with a single layer to perform fuzzy-aware attention decoder. The learning
rate was set to 1e-4, following the setting in TimesNet (Wu et al., 2023).

K COMPUTATIONAL COST

To quantify the concern regarding computational overhead introduced by the tri-branch encoding
and fuzzy mapping, we conducted additional experiments on the Weather dataset, which includes 21
variables. In particular, we measured memory usage during inference with a prediction length of 720,
using GPT-2 as the underlying LLM. The results are presented in the table below:

Table 15: Memory usage analysis on the Weather dataset (prediction length 720).

Method TimeFK TimeCMA iTransformer PAttn TimeLLM S2IPLLM FreTS GPT4TS TSMixer DLinear PatchTST Crossformer TimesNet FEDformer NSformer

Memoty Usage (MB) 432.13 566.04 10.84 13.48 677.82 508.93 12.96 266.85 0.73 0.53 18.49 61.85 2288.57 22.37 16.57

These results quantitatively illustrate the memory footprint associated with our proposed design. As
shown in Table 15, our method (TimeFK) introduces moderate memory usage (432.13 MB) during
inference with a prediction length of 720. Although this is higher than some lightweight baselines
such as DLinear (0.53 MB) and iTransformer (10.84 MB), it remains significantly lower than other
LLM-based or attention-heavy models, such as TimeLLM (677.82 MB) and TimesNet (2288.57
MB). Notably, compared to other strong LLM baselines like S2IPLLM (508.93 MB), our method
achieves enhanced modeling capability with acceptable overhead, especially considering the added
expressiveness brought by tri-branch encoding and fuzzy mapping.

Overall, while the use of GPT-2 and the proposed modules do introduce some additional computa-
tional cost, we believe the trade-off is justified by the significant performance gains offered by our
architecture.
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L THE GENERALITY OF TIMEFK

Our framework extracts hidden representations from intermediate layers of LLMs rather than relying
solely on their final outputs. This prevents us from experimenting with closed-source models such as
GPT-4, which do not expose internal layer activations. To further examine generality beyond GPT-2,
we replaced it with two open-source LLM backbones, LlaMA-3.2-1B and Qwen3-0.6B. The detailed
results are reported in the table below.

Methods GPT-2 LlaMA-3.2-1B Qwen3-0.6B
Metric MSE MAE MSE MAE MSE MAE

ETTh1

96 0.379 0.394 0.380 0.401 0.379 0.399
192 0.430 0.424 0.438 0.435 0.438 0.431
336 0.469 0.444 0.475 0.451 0.476 0.452
720 0.479 0.467 0.470 0.470 0.526 0.496

AVG 0.439 0.432 0.441 0.439 0.454 0.445

Exchange

96 0.083 0.203 0.085 0.204 0.083 0.203
192 0.176 0.297 0.191 0.309 0.180 0.302
336 0.319 0.409 0.350 0.428 0.337 0.418
720 0.797 0.677 0.859 0.701 0.885 0.710

AVG 0.344 0.397 0.371 0.410 0.371 0.408

ILI

24 2.446 0.926 2.627 1.041 2.688 1.051
36 2.032 0.915 2.338 0.991 2.341 0.990
48 2.054 0.904 2.295 0.984 2.405 1.008
60 2.026 0.925 2.461 1.032 2.437 1.023

AVG 2.140 0.918 2.430 1.012 2.468 1.018

Weather

96 0.159 0.202 0.180 0.223 0.182 0.225
192 0.210 0.252 0.221 0.259 0.220 0.257
336 0.270 0.296 0.275 0.300 0.280 0.310
720 0.351 0.349 0.355 0.348 0.360 0.350

AVG 0.248 0.275 0.258 0.283 0.261 0.286

These results demonstrate that our framework maintains competitive and consistent performance
across different backbone LLMs, confirming its general applicability beyond GPT-2.

M CODE

Code is available at https://anonymous.4open.science/r/TimeFK-B2DF.
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