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Modeling and simulation of complex fluid flows with dynamics that span multiple
spatio-temporal scales is a fundamental challenge in many scientific and engineer-
ing domains. Full-scale resolving simulations for systems such as highly turbulent
flows are not feasible in the foreseeable future, and reduced-order models must
capture dynamics that involve interactions across scales. In the present work, we
propose a novel framework, Graph-based Learning of Effective Dynamics (Graph-
LED), that leverages graph neural networks (GNNs), as well as an attention-based
autoregressive model, to extract the effective dynamics from a small amount of
simulation data. GNNs represent flow fields on unstructured meshes as graphs
and effectively handle complex geometries and non-uniform grids. The proposed
method combines a GNN based, dimensionality reduction for variable-size un-
structured meshes with an autoregressive temporal attention model that can learn
temporal dependencies automatically. We evaluated the proposed approach on a
suite of fluid dynamics problems, including flow past a cylinder and flow over a
backward-facing step over a range of Reynolds numbers. The results demonstrate
robust and effective forecasting of spatio-temporal physics; in the case of the flow
past a cylinder, both small-scale effects that occur close to the cylinder as well as its
wake are accurately captured.

1. Introduction
Simulating complex systems that exhibit dynamics across multiple spatial and temporal scales re-
mains a key challenge in a wide array of scientific and engineering disciplines. From turbulence [1]
and climatemodeling [2] to ocean dynamics [3] and biological systems [4], accurately capturing the
intricate interplay between various scales is essential to understand, predict, and optimize system
behavior. Traditional high-fidelity simulations, while accurate, often require substantial compu-
tational resources, rendering them impractical for real-time applications or extensive parametric
studies. Consequently, reduced-order modeling (ROM) has emerged as a vital strategy for sim-
plifying these complex systems by constructing lower-dimensional representations that preserve
essential dynamics.

Despite its promise, ROM faces significant hurdles, particularly in scenarioswheremultiple regimes
or scales interact within a single system [5]. Capturing nuanced interactions between different spa-
tial and temporal scales in a unified reduced-order framework requires sophisticatedmodeling tech-
niques that can adapt to varying geometries, resolutions, and dynamic behaviors. Traditional ROM
approaches, such as Proper Orthogonal Decomposition (POD) [6] or Galerkin projections [7, 8],
often struggle with scalability and flexibility when dealing with unstructured meshes or non-linear
dynamics inherent in multi-scale systems.

Graph neural networks (GNNs) present substantial advantages for themodeling of discretized spa-
tiotemporal systems governed by partial differential equations (PDEs)within unstructuredmeshes.
These advantages encompass efficient spatial computation allocation, geometric adaptability, and
end-to-end learning capabilities [9–15]. Nonetheless, the precision of GNN models often dimin-
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ishes when confrontedwith discontinuities and oscillations within flow fields, resulting in a decline
in performance. These nonlinear instabilities become increasingly pronounced with extended roll-
out spans [16, 17]. Therefore, formulating robust and precise strategies to stabilize GNNs under
such challenging flow scenarios is essential to unlocking their potential for real-world applications.

Several approaches have been proposed to stabilize rollouts, most of which are refinements of
teacher-forcing methods [18], incorporating specialized training strategies to mitigate error accu-
mulation in long-span rollouts. One common technique is noise injection, which augments the train-
ing dataset with perturbed samples to improve themodel’s robustness against noise. This approach
is widely adopted for learning complex flows [9–11]. Another method involves feature condition-
ing, where additional neural networks with tailored input features enhance the expressive power
of GNNs [12]. Although this method improves rollout accuracy, it increases computational cost
and lacks clear guidelines for selecting features in complex problems. A variant of teacher-forcing
uses multiple previous steps as input, enabling the model to use a longer history for more accurate
predictions [9, 16]. Recent studies have demonstrated the benefits of optimizing the number of pre-
vious steps for improved accuracy [9]. However, this approach is computationally expensive, as it
requires direct operations on a large number of nodes per step, leading to significant memory de-
mands during gradient calculations and storage. A fundamental limitation of these teacher-forcing
methods is the inconsistency between training and testing. Training relies on one-step predictions,
whereas testing involves autoregressive multistep rollouts, exacerbating error accumulation and
limiting long-term stability.

Sequence neural networks have recently emerged as powerful tools for simulating dynamical sys-
tems governed by PDEs, including long- and short-term memory (LSTM) networks [19, 20] and
attention-based models [21]. Similar to teacher-forcing methods, these models use previous states
to predict future ones. However, unlike teacher-forcing, sequence models do not rely on a small
number of past steps for predictions. Instead, they leverage long-span dependencies by incorporat-
ing unique mechanisms, such as LSTM cells and hidden states [22] or attention mechanisms [23],
enablingmore general and robust forecasting. Although these innovations overcome the limitations
of short-span dependencies, they often require significant memory to store long-term spatiotempo-
ral sequences. Consequently, dimension reduction techniques are commonly employed to ensure
efficient and effective training [24–33]. For example, sequential networks combined with dimen-
sion reduction methods, such as convolutional neural networks or proper orthogonal decomposi-
tion, have been successfully applied to simulate unstable, convection dominated and reacting flows
of varying complexity [20, 21, 34–38]. Despite their promise, there remains a lack of robust frame-
works that integrate GNNswith sequential learning architectures to handle unstructured flowdata,
particularly for moving or variable-size meshes. This work addresses this gap.

In this work, we propose a novel learning architecture that integrates a GNN-based autoencoder
with a temporal attention model to efficiently predict spatio-temporal physical systems discretized
on unstructured meshes. While GNNs have already been successfully employed to encode data or
parameters in the context of simulations [39–42], using the encoded structure to forecast the evolu-
tion of high-dimensional, multi-scale systems of interest has not yet been explored. The Graph-LED
framework comprises twomain components: spatial dimension reduction and temporal forecasting.
Spatial dimension reduction is achieved using a mesh-based GNN encoder-decoder, which aggre-
gates local information of solution fields into node-level representations throughmultiple GNN lay-
ers. Our approach uses GNNs, enabling effective dimension reduction and recovery while preserv-
ing mesh information. Moreover, regions with different information and node density are readily
incorporated into the framework. Temporal prediction is performed using an attention mechanism
that facilitates dynamic learning and forecasting in a consistent autoregressive manner, eliminating
the need for noise injection to stabilize rollouts. The proposed framework is validated on two in-
compressible flow scenarios with complex mesh configurations: flow past a cylinder at a Reynolds
number of 696 and flow over a backward-facing step at Re = 5000. These cases feature multiscale
flow characteristics, demonstrating the framework’s ability to effectively handle intricate unstruc-
tured meshes and capture the complex dynamics of challenging physical systems.
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Figure 1: Overview of Graph-LED: A high-dimensional initial state U0 is mapped to a low-
dimensional latent representation Z0 via a GNN Encoder. Subsequently this latent representation
is propagated for n steps using a Transformer. The GNN Decoder then maps the forecasted low-
dimensional state Zn back to the high-dimensional state of interest Un.

2. Methodology
In this section, we are presenting the Graph-LED framework. An overview of the framework can
be found in Figure 1. Afterwards, we are introducing the high-dimensional nonlinear system of
interest in Section 2.1. Section 2.2 shows how the state of such a system can be naturally represented
by a graph. Section 2.3 explains the Graph-LED framework in detail, including the architecture
choices (Section 2.3.1), the interpolation tool (Section 2.3.2) and the dimension reduction via GNN
(Section 2.3.3). Section 2.3.4 details the temporal modeling in the low dimensional space.

2.1. Navier-Stokes Equations
In this section, we define the governing PDEs discussed throughout this paper. We note that while
within this paper we target fluid dynamics as our application, the framework presented can also be
applied to other PDEs of interest.
Let Ω ⊂ R2 denote the spatial domain and I ≡ (0, τ ] the time domain, where τ ∈ R>0 is the end
time. For a two-dimensional Cartesian coordinate system, the spatial coordinate is x = [x, y], and
the spatial gradient operator is ∇(∗) :=

[
∂(∗)
∂x , ∂(∗)

∂y

]
. Here, v : Ω × I → R2 denotes the velocity

vector, typically expressed as v = [u, v]. Subsequently, the time-dependent Navier-Stokes (NS)
equations are given by:

∂ρ

∂t
+∇ · (ρv) = 0, in Ω× I, (1)

and
∂

∂t
(ρv) +∇ · (ρvv) = ∇ · (µ∇v)−∇p+∇ ·

(
µ∇vT)− 2

3
∇ (µ∇ · v) , in Ω× I, (2)

where ρ : Ω× I → 1 is the constant normalized density, p : Ω× I → R is the pressure, and µ is the
viscosity.
The vorticity w : Ω× I → R of the flow field can be computed as

w :=
∂v

∂x
− ∂u

∂y
(3)

The Reynolds number, which is often used to characterize a fluid flow, is defined as:

Re :=
ρ|U |lref

µ
, (4)

where lref is the reference length and U the flow speed.

2.2. Discretization and graph representation
To compute approximate solutions of the NS equations presented above, we use the finite-volume
(FV) method for spatial discretization [43]. Let E denote an unstructured (flexible grid with ir-
regularly arranged elements) FV mesh, defined as a collection of non-overlapping cells that cover
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Figure 2: Left: Visualization of a FV mesh that can be naturally represented by a Graph. Right:
Definition of graph nodes uj as cells and graph edges eij as connection between two adjacent cells

the domain Ω. These cells are ordered as E = {Ω1, . . . ,ΩN}. For any two adjacent cells, Ωi and
Ωj , their shared metrics, such as relative displacement and the area of their shared boundary, are
represented by a characteristic vector ei,j ∈ RNe. At any given time, each cell Ωi is associated with
a solution vector ui ∈ RNu, which approximates the continuous solution evaluated at the center
of Ωi. As shown in Fig. 2, we can use an undirected graph to describe a snapshot of a mesh-based
solution as

G = (U,A, E). (5)
U = [u1, . . . ,uN ] ∈ RNu×N is the vector of features of the node of the graph where subscripts
represent nodes. A ∈ RN×N is the graph adjacency matrix with binary entries, if (A)i,j = 1, there
is an edge connection between node i and node j, which indicates that cellΩi,Ωj are adjacent to each
other. We can obtain the total number of edges via the adjacency matrix as NE =

∑N
i

∑i
j(A)i,j .

E = {ei,j | (A)i,j = 1} stores all the edge features of NE .

Remark 1 In the context of graph representation, the edge is an abstract concept, not a geometric object. We
call two nodes in a graph connected via an edge. However, in a mesh, an edge is often referred to as the line
connecting two vertices. Furthermore, graph representation is not only applicable to FV meshes, it can also
represent other mesh formats used for finite element or finite difference.

We apply a numerical integral method (e.g., Euler or Runge-Kutta) together with the spatial dis-
cretization of FV [44]. Given time points of interest T = {t0, t1, . . . , tNt

| tj+1 − tj = ∆t j =
0, . . . , Nt − 1} ⊂ I and initial condition U∗

0, the sequence of the solution is

UF = {U∗
1, . . . ,U

∗
Nt

| U∗
j+1 = F(U∗

j ; ∆t, δt) j = 0, . . . , Nt − 1}, (6)

where j is for tj . And F : RNu×N × R× R → RNu×N is the forward solver to advance the solution
to the next time step of interest, where δt is the actual numerical integral step.

To resolve all scales of interest, N can be very large [43]. To save computational costs and facili-
tate many-query tasks, we seek to approximate UF

i ≈ UFr
i , which will be detailed in the following

sections.

2.3. Learning effective dynamics across spatiotemporal scales
Our framework consists of twomain parts: We initially employ aGNNas an encoder-decoder frame-
work, which transforms high-dimensional states into a low-dimensional latent space, as elaborated
in Section 2.3.1. Subsequently, the encoder and decoder derived are used to train a transformer
model to predict dynamics within low-dimensional space, as discussed in Section 2.3.4.

2.3.1. GNN architecture

We utilize multilayer perceptrons (MLP), which are fully connected feedforward neural networks.
These networks facilitate the mapping of vectors from dimension Nin to Nout, denoted as mlp :
RNin → RNout and u 7→ mlp(u). Layer normalization (LNM) is employed to perform an affine
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Figure 3: Interpolation to new coordinates: Based on the three colored nodes, we reconstruct the
node values at new nodes via nearest neighbor interpolation, i.e. weighting the contribution of each
colored node according to their distance from the new node. Finally we are able to construct a new
larger or smaller graph.

transformation on a vector u using learnable parameters [45], indicated as lnm : RNin → RNin

and u 7→ lnm(u). Subsequently, we present the GNN layer as described in (7), which is adapted
from [9]. This layer processes an input graph (G1) and produces an output graph (G2): G1 7→
G2 = gnn(G1). Within a graph, any given node consolidates the features of its neighboring nodes
in a two-step process. The first step is to update the edge feature vector: an MLP (mlpe) takes the
input that concatenates the center node feature (u1

i , where the superscript shows to which graph it
belongs to), the neighbor nodes’ (j ∈ N (i)) and edge features (u1

j , e
1
i,j), and outputs the new edge

feature (e2i,j). The second step is to update the node feature vector. Another MLP (mlpn) takes the
input, which concatenates the central node feature (u1

i ), and the mean updated edge features of
all neighbors ( 1

|N (i)|
∑

j∈N (i) e
2
i,j) to update the center node feature u2

i . In addition, the residual
connection and layer normalization (lnme, lnmn) are applied for both steps. These two steps can be
expressed by the function of a GNN layer: G1 = (U1,A, E1), G2 = (U2,A, E2), gnn : G1 7→ G2,

E1 = {e1i,j}, U1 = [u1
1, . . . ,u

1
N ],

E2 =
{
e2i,j

∣∣ e2i,j = e1i,j + lnme ◦ mlpe([u
1
i ,u

1
j , e

1
i,j ])

}
,

U2 =
[
u2
1, . . . ,u

2
N

∣∣u2
i = u1

i + lnmn ◦ mlpn([u
1
i ,

1

|N (i)|
∑

j∈N (i)

e2i,j ])
]
.

(7)

Ng GNN layers are stacked as a compound function gnnsNg
:= gnn1 ◦ . . . ◦ gnnNg

.

2.3.2. Coordinates assignment and interpolation

We associate every node in a graph G (see Equation 5) with a coordinate, and X1 = {x1, ...,xN1}
denotes the set of all node coordinates. For the graph feature vector U = [u1, . . . ,u|X1|], we can
perform a regular interpolation operation given a new set of coordinates X2 = {x1, ...,x|X2|},

Z = [z1, . . . , z|X2|] = IX1

X2
(U), U′ = [u′

1, . . . ,u
′
|X1|] = IX2

X1
(Z), (8)

where I is a general interpolation method, IX1

X2
: RNu×|X1| → RNu×|X2| and IX2

X1
: RNu×|X2| →

RNu×|X1|. In this paper, we apply the nearest-neighbor interpolation method [46]. A visualiza-
tion of this process during the up-sampling in the decoding can be found in Figure 3 and further
explanation in Appendix B.

Remark 2 Graphs generally stay in the non-Euclidean space, and the node’s position definition varies from
problem to problem. The graph representation of meshes naturally provides the Euclidean coordinates of cells
that can be used here to make GNNs mimic the encoder-decoder dimension reduction of CNNs.

2.3.3. Dimension reduction and up-sampling via GNN

As all the components of the model have been introduced, we proceed to present the graph-
mesh reducer designed for dimension reduction. We construct this encoder, as delineated in
Encoder : (G0,X1,X2,wEncoder) 7→ Zwithin (9). The process begins with the application of anMLP
(mlp0,mlp1) to transform node (u0

i ) and edge features (e0i,j) into their respective hidden features
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(U1, E1), which are subsequently normalized using LNM (lnm0, lnm1). These hidden node and
edge features (U1, E1) constitute the hidden graph (G1). Thereafter, several GNN layers (gnnNg

)
are employed to derive an alternative hidden graph (G2). Once again, the MLP (mlp2) and LNM
(lnm2) are utilized to manipulate the node feature (u2

i ) of G2, resulting in the generation of a new
feature vector (U3). Given the two sets of coordinates, one (X1) is associated with the input U0,
and another (X2) is associated with the output vector Z. We perform interpolation to obtain the
final reduced vector Z.

G0 =
(
U0 = [u0

1, . . . ,u
0
|X1|],A, E0 = {e0i,j}

)
,

U1 = [lnm0 ◦mlp0(u
0
1), . . . , lnm0 ◦mlp0(u

0
|X1|)],

E1 = {e1i,j | e1i,j = lnm1 ◦mlp1(e
0
i,j)},

G1 = (U1,A, E1),

G2 =
(
U2 = [u2

1, . . . ,u
2
|X1|],A, E2 = {e2i,j}

)
= gnnsNg

(G1),

U3 = [lnm2 ◦mlp2(u
2
1), . . . , lnm2 ◦mlp2(u

2
|X1|)],

Z = [z1, ..., z|X2|] = IX1

X2
(U3),

(9)

where wEncoder are all trainable in the Encoder.

Remark 3 Using GNN layers, each node contains not only its information, but also its neighbors. Moreover,
with a proper number of GNN layers, we could leave out a portion of the original nodes and only keep a small
number of nodes (|X2| ≪ |X1|) which still contain the original graph information. The MLPs are flexible to
control the dimension of the feature vector layer-wise. These are analogous to the concept of hidden channel
number associated with height/width/length in CNNs.

The graph-mesh up-sampler (Decoder) performs the reverse task to map a reduced vector (Z) to a
high-dimension vector (U) ( see (10)). Given the coordinates (X1,X2) associated with the output
(U) and the input (Z). The hidden vector (U0) is obtained by up-sampling (IX2

X1
). Then another

hidden vector (U1) is processed by U0 through MLP (mlp0) and LNM (lnm0). Given the edge
feature vectors (E0), we useMLP (mlp1) and LNM (lnm1) to obtain the hidden edge feature vectors
(E1). Then U1 and E1 compose the hidden graph G1. After several GNN layers are obtained, G2

is obtained, we use MLP (mlp2) to map the features of the hidden nodes U2 to the final output U.
These sequential steps can be summarized as Decoder : (Z, E0 = {e0i,j},X1,X2,wDecoder) 7→ U,

U0 = [u0
1, . . . ,u

0
|X1|] = IX2

X1
(Z),

U1 = [lnm0 ◦mlp0(u
0
1), . . . , lnm0 ◦mlp0(u

0
|X1|)],

E1 = {e1i,j | e1i,j = lnm1 ◦mlp1(e
0
i,j)},

G1 = (U1,A, E1),

G2 =
(
U2 = [u2

1, . . . ,u
2
|X1|],A, E2 = {e2i,j}

)
= gnnsNg

(G1),

U = [mlp2(u
2
1), . . . ,mlp2(u

2
|X1|)],

(10)

where wDecoder denotes all trainable parameters in the decoder.

Remark 4 In this study, a solution snapshot at time t constitutes a solution vector associated with a compu-
tational mesh. The mesh information can be used to assemble E0 to facilitate graph neural networks (GNNs)
in reconstructing this solution vector. Additionally, it is important to note that the coordinates are employed
solely for interpolation purposes, thereby preserving the method’s shift invariance. Both aspects resemble
similarity to a convolutional neural network (CNN) decoder, which inherently exploits the structured mesh
information provided.

More details on training for the GNN encoder and decoder can be found in Appendix A.

2.3.4. Temporal model

The value, key, and query functions represent core components within an attention mechanism
[23]. The value function facilitates the mapping of an initial vector to a resultant vector V : RN1

Z →

6



RN2
Z ,Z 7→ V(Z), where N1

Z typically constitutes a Nh-fold multiple of N2
Z. Meanwhile, the query

and key functions are characterized by uniform input and output dimensionalities.

Q : RNZ → RN ′
Z , Z 7→ Q(Z),

K : RNZ → RN ′
Z , Z 7→ K(Z).

(11)

Given a pair of query and key functions, the unnormalized attention function maps two vectors of
the same dimension to a positive scalar A : RNZ × RNZ → R>0,

A(Z1,Z2) = exp
(
Q(Z1) · K(Z2)

)
= exp

(∑
i

Q(Z1)i K(Z2)i

)
, (12)

where Z1 is usually called the query vector and Z2 is the key vector.

For a sequence of vectors S = {Zk}Nsl

k=1 ⊂ RNZ , the Nh-head attention model maps any element
vector of the sequence to a new vector with the same dimension denoted by mhatSNh

: S → RNZ ,
∀Zi ∈ S,Zi 7→ Vi,

ahi,j =
Ah(Zi,Zj)∑Nsl

k=1 Ah(Zi,Zk)
, Ah ∈ {A1, . . . ,ANh}, h = 1, . . . , Nh,

Vh
i =

Nsl∑
j=1

ahi,jVh(Zj), Vh ∈ {V1, . . . ,VNh}, h = 1, . . . , Nh,

Vi = [V1
i , . . . ,V

Nh
i ],

(13)

where ahi,j denotes the h-th head attention of vectors Zi,Zj , andVi ∈ RNZ is output vector from the
input vector Zi.

Remark 5 The formulation of query, key, and value functions is conceptually straightforward. These func-
tions can derive from multi-layer perceptrons (MLPs) or alternative neural network constructs, provided
that they maintain the vector dot-product operation [23]. Our multi-head attention model architecture ad-
heres rigorously to the GPT-2 framework [47], which is appropriate for autoregressive predictions in dynamic
systems.

Autoregressive, parametric sequence modeling: The initial vector (Z0) forms the starting set
(S0). The new reduced vector (Zj+1) is predicted by choosing the last current vector (Zj) in
the sequence (Sj) as input of the head attention model Nh (mhat

Sj

Nh
). We use a sliding win-

dow of length Nsw to keep the model only generating a new vector based on a constant number
of previous vectors. Specifically, we drop out the older vectors outside the window, but always
keep the parameter-dependent vector. This auto-regression can be mathematically expressed as
Fr : (Z0,wFr

) → {Z1, . . . ,ZNt
},

S0 = {Z0},

repeat :


Sj =

{{Z0, . . . ,Zj} if j < Nsw − 1,

{Zj+2−Nsw
, . . . ,Zj} if j ≥ Nsw − 1,

Zj+1 = mhat
Sj

Nh
(Zj),

Sj+1 =

{{Z0, . . . ,Zj+1} if j + 1 < Nsw − 1,

{Zj+3−Nsw , . . . ,Zj+1} if j + 1 ≥ Nsw − 1,

(14)

where wFr is the involved trainable weights of all the neural networks.

Remark 6 If the total length of interest for the prediction is short, the model can look back at all the previous
vectors, leading the vector-vector attention matrix to be a lower triangular matrix; otherwise, the vector-vector
attention matrix is a block diagonal matrix. The goal of setting the sliding window is to reduce computational
costs due to the quadratic complexity of attention [23].

Further details regarding the training for the introduced GNN encoder and decoder can be found
in Section C.
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3. Results

3.1. Cylinder flow

Figure 4: The system is reduced from 27,127 points to 1,024 points.

Our first test case is the 2-D flowpast a cylinder atRe = 696where the reference length is lref = 1. In
this work, our aim is to develop a surrogate model to predict the solution given any initial condition
that lies in the solution manifold. Training (4500 snapshots) and testing (500 snapshots) data are
generated using the OpenFOAM simulator [44], from which an unstructured mesh with different
resolutions is used to discretize the domain (Fig. 4). The actual numerical integral step (δt) is 0.0025,
and the Graph-LED is trained to directly evolve the system in a larger step of ∆t = 1.

Figure 5: Vorticity ( ∂v
∂x − ∂u

∂y ) forecasted by Graph-LED (left), OpenFOAM (middle) and the error
(right) from t = 0, 50, 100 (from top row to bottom row).

Given a testing initial condition, the predictions using the proposed Graph-LED and OpenFOAM
are plotted in Fig. 5. The predicted vorticity fields are in good agreement with the OpenFOAM
predictions but can be generated with a large speedup (900X). We note that the flow field in the
wake is accuractly captured. When we examine the flow field near the cylinder (Fig. 8 in Appendix
G), the pressure gradient over the cylinder and the wall shear stress (WSS) are well predicted by
Graph-LED compared to OpenFOAM. Lastly, Graph-LED shows remarkable accuracy in capturing
lift and drag coefficients (Fig. 9 in Appendix G), closely matching the results obtained from Open-
FOAM, indicating that fine-scale high-frequency signals are effectively resolved. We compared the
performance of Graph-LED with two other deep-learning baselines in Section F.

3.2. Flow over backward-facing step
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Figure 6: The system is reduced from 20,480 points to 2,048 points.
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Figure 7: Vorticity ( ∂v
∂x − ∂u

∂y ) forecasted by Graph-LED (left), OpenFOAM (middle) and the error
(right) from t = 0, 0.5, 1, 1.5, 2 (from top row to bottom row).

As a second case we consider the turbulent flow over a backward-facing step at Re = 5000, a clas-
sical problem in which previous work [48, 49] can only model the rectangular domain after the
backward-facing step. However, we are interested in predicting not only the recirculation region
after the step, but also the region in the pipe, that is, the entire domain (Fig. 6). The complete data
set contains 10,000 snapshots with a time-step size of∆t = 0.05, where 5000 snapshots are used for
training and the rest are used for testing. The integral time step for the numerical simulation with
OpenFOAM is δt = 2× 10−4.

Given an instant snapshot as an initial condition, the prediction of vorticity is plotted in Fig. 7.
Graph-LED demonstrated reasonably good performance in forecasting the sequence over one flow-
through time, achieving a significant speedup of around 100X.

Graph-LED displays an outstanding capability to predict the mean and variance of vorticity over
time (Fig. 10 and Fig. 11 in the Appendix G), effectively capturing the intricate dynamics of the
systemwith high precision. One of the most striking aspects of its predictive power lies in its ability
to accurately represent the spatial evolution of the vorticity profile. Initially, at the leftmost part
of the domain, the profile begins in a symmetric state. As the analysis extends across the spatial
domain, the vorticity profile undergoes a gradual transformation, transitioning into an asymmetric
structure in the middle regions. Subsequently, as the spatial location approaches the rightmost end
of the domain, the profile regains its symmetry. This ability to trace and replicate the nuanced tran-
sitions between symmetry and asymmetry highlights Graph-LED’s strength in modeling not only
temporal changes but also spatial variations, offering a profound insight into the complex physical
phenomena that govern the dynamics of the flow field.

4. Conclusions

We introduced an innovative framework that integrates GNNs with attention-based autoregres-
sive models to address the complexities of modeling multiscale spatiotemporal dynamics in un-
structured mesh data. By leveraging GNNs for spatial dimension reduction and temporal attention
mechanisms for dynamic forecasting, the proposed method achieves significant improvements in
accuracy, efficiency, and scalability. The framework’s robustness was demonstrated through fluid
dynamics scenarios such as flow past a cylinder and flow over a backward-facing step, where it
accurately captured intricate details like small-scale effects and high-frequency signals while signif-
icantly reducing computational costs.

The findings highlight the potential of the Graph-LED approach to model and predict physical sys-
tems with multiple spatio-temporal scales of interest, bridging a critical gap in the simulation of
multiscale systems. Future work could explore integrating adaptive refinement strategies and ad-
dressing limitations such as error propagation in longer-term predictions.
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A. GNN Architecture - Training Details

The success of Encoder and Decoder is inherently linked to the proper network weight vectors that
ensure accurate recovery of the high-dimension vectorU. To this end, we letΞ = {µ1, . . . ,µNs

} ⊂ D
be the collection of PDE encoder / encoder training parameters, and G∗

i,j = (U∗
i,j ,Ai, Ei) denotes

the graph for µi at time tj where U∗
i,j is from (6), Ei,Ai,X i

1,X i
2 are from the mesh Eµi

of µi. The
optimal weights w∗

Encoder,w
∗
Decoder can be obtained via solving stochastic optimization with Adam

method [50],

argmin
wEncoder,wDecoder

Ns∑
i=1

Nt∑
j=1

∣∣∣∣∣∣U∗
i,j −Decoder

((
Encoder(G∗

i,j ,X i
1,X i

1,wEncoder)
)
, Ei,X 1

i ,X 2
i ,wDecoder

)∣∣∣∣∣∣
2
.

(15)

Remark 7 For each scalar field in the training data, we use a normalization, where mean and variance are
calculated from all of the training datasets.

B. Nearest-neighbor interpolation

Weperform feature interpolation between the source and target point clouds in our framework [41].
This method leverages the search for the nearest neighbor k to propagate featuresU, defined at the
source points X1, to the target points X2, to obtain Z. For each target point, feature values were cal-
culated as the weighted average of features from its k-nearest neighbors among the source points,
with weights inversely proportional to the Euclidean distances in the spatial domain. This interpo-
lation method ensures smooth and spatially coherent feature transfer, enabling effective integration
of geometric and feature information across scales in our model.

C. Temporal model - Training Details

To mitigate the additional cost of training the dynamic model (Fr), the training data are ex-
actly the same as the data used to train the spatial models (Encoder,Decoder). To this end, we
used the trained encoder (w∗

Encoder) to generate the reduced vectors for training. And Z∗
i,j =

Encoder(G∗
i,j ,X 1

i ,X 2
i ,w

∗
Encoder) is for the µi ∈ Ξ and time point tj . The training is formulated

as

w∗
Fr

= argmin
wFr

Ns∑
i=1

∣∣∣∣∣∣Z∗
i,j −

(
Fr(µi,Z

∗
i,0,wFr

)
)
j

∣∣∣∣∣∣
2
, (16)

where (S)j denotes the j-th elements of the ordered set S.

Remark 8 The decoupled training of the spatial and temporal models has two advantages. The first is to
reduce memory consumption for dynamic training. It allows the attention model to be trained only on the
reduced vectors instead of the high-dimensional vectors. More importantly, the gradient of the loss function
with respect to neural network weights becomes less memory-consumptive. Thus, the second advantage is that
it enables a true auto-regressive training style consistent with the online evaluation instead of teacher forcing
[9, 12].

D. Evaluations Details

Given a parameter µi, initial stateUi,0, and relevant quantities (Ai, Ei,X 1
i ,X 2

i ) from the mesh, the
Encoder model (Encoder) firstly generate the initial reduced state vector (Zi,0), together with the
parameter, the dynamic model (Fr) directly generates the prediction of reduced vectors and the
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Decoder (Decoder) recovers the high-dimensional solution vectors,

Gi,0 = (U,Ai, Ei),

Zi,0 = Encoder(Gi,0,X 1
i ,X 2

i ,w
∗
Encoder),

{Zi,1, . . . ,Zi,Nt} = Fr(µi,Zi,0,w
∗
Fr
),

UFr
i = {Ui,1, . . . ,Ui,Nt

| Ui,j = Decoder(Zi,j , Ei,X 1
i ,X 2

i ,w
∗
Decoder)},

(17)

where we obtain the approximation of the numerical solution UFh
i ≈ UFr

i via neural networks with
much lower cost.

Remark 9 The dynamics evolves directly in the reduced vector space. We can apply the Decoder model to
recover the high-dimensional snapshots in a parallel way at the end of the evolution. Alternatively, we can
store the reduced vectors using less memory than the original snapshots.

E. Hyperparameters of Graph-LED
For the cylinder case, we used 3 GNN layers for the encoder and 3 GNN layers for the decoder.
All MLPs are three-layered, with 128 neurons in each level. For the Transformer [47], we used a
two-layer model with eight heads and a context length of 32, and all MLPs are three-layer with 128
hidden units. In the backward-facing step case, we have 5 GNN layers for the encoder and 5 GNN
layers for the decoder. All MLPs are simply three layers with hidden units of 128. The Transformer
is identical to the cylinder case, but the context length was reduced to 8.
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F. Comparison with two baselines
For the cylinder case, we compared our Graph-LED framework with two state-of-the-art methods:
MeshGraphNet [9] and NNGraphNet [12, 51]. In the following we have listed a comparison of
the results including the Fréchet inception distance (FID), the continuous rank probability score
(CRPS), and the errors of velocity, pressure, turbulent kinetic energy, and vorticity. All errors and
metrics were computed as averages over a prediction of 100 time steps.

For all scalar error variables, our method outperforms the deep learning baselines with 10 times
less error. Similarly for the non-Euclidean processes such as FID and CRPS, here our model
also works significantly better. We attribute the significantly better error metrics of Graph-LED
to the encoding to a latent space that is then advanced in time using a transformer. Thus, the
Graph-architecture is not used for the latent dynamics which is in our test case advantageous due
to the highly unstructured mesh that consists of cells with significantly varying size. Moreover,
the Transformer architecture can capture long-range dependencies and is thus advantageous for
temporal modeling. The poor performance of NNGraphNet is due to instabilities occurring at
later prediction time steps as the GNN-based temporal predictions are less stable than the used
Transformer. This issue could potentially be addressed by using a more tailored noise injection
method. For MeshGraphNet the predictions continued to be stable for the investigated time frame.
With regards to speedup compared to a full high-dimensional simulation, all three methods
are capable of achieving a high speedup, with Graph-LED and MeshGraphNet outperforming
NNGraphNet. The memory required is lowest for Graph-LED as we can store the states using their
encoded representation.

To ensure a fair comparison, we used the sameGNNarchitecture that was employed for Graph-LED
for MeshGraphNet and the NNGraphNet architecture as published in [12].

Graph-LED MeshGraphNet
(w. noise injection)

NNGraphNet
(w. noise injection)

eu 0.011801029 0.36597002 8.178367
ev 0.024475042 0.84774095 47.916534
ep 0.015479553 0.70415086 14.178546

evorticity 0.028494475 0.79599255 25.201374
eTKE 0.009462313 0.5839962 9858.174
FID 0.007336787 673.4697655 2860731.926
CRPS 1.59538563 3.716492 76.2174

Memory per State 2MB 40MB 40MB
Speedup during Predictions ≈ 900x ≈ 900x ≈ 450x

Table 1: The error is calculated based on the relative root mean squared error (RRMSE), and TKE
stands for turbulent kinetic energy [52], FID is for Frechet inception distance based on vorticity [53],
CRPS [54] is for continuous ranked probability score based on vorticity. The noise injection during
training for both baselines is two percent of the standard deviation of each scalar field [9].
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G. Additional Results
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Figure 8: Pressure gradient and wall shear stress (τθ = µ(∂(v·n)∂n )|θ) on the cylinder forecasted over
time by Graph-LED and OpenFOAM.
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Figure 9: Lift and drag coefficients of the cylinder forecasted over time by Graph-LED and Open-
FOAM.
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Figure 10: Mean of vorticity over time at different vertical lines over the domain predicted by Open-
FOAM and Graph-LED.
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Figure 11: Standard deviation (std) of vorticity over time at different vertical lines over the domain
predicted by OpenFOAM and Graph-LED.
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