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ABSTRACT

Training deep neural networks remains costly in terms of data, time, and energy,
limiting their deployment in large-scale and resource-constrained settings. To
address this, we propose Batch Pruning by Activation Stability (B-PAS), a dynamic
plug-in strategy that accelerates training by adaptively removing data as batches
that contribute less to learning. B-PAS monitors the stability of activation feature
maps across epochs and prunes batches whose activation variance shows minimal
change, indicating diminishing learning utility. Applied to ResNet-18, ResNet-
50, and the Convolutional vision Transformer (CvT) on CIFAR-10, CIFAR-100,
SVHN, and ImageNet-1K, B-PAS reduces training batch usage by up to 57% with
no loss in accuracy, and by 47% while slightly improving accuracy. Moreover,
it achieves as far as 61% savings in GPU node-hours, outperforming prior state-
of-the-art pruning methods with up to 29% higher data savings and 21% greater
GPU node-hours savings. These results highlight activation stability as a powerful
internal signal for efficient training by removing batches, offering a practical and
sustainable path toward data and energy-efficient deep learning.

1 INTRODUCTION

Deep learning has emerged as a powerful paradigm for solving complex tasks across a variety of
domains. These models, while highly effective, are inherently resource and time-intensive, frequently
consuming significant GPU hours and memory bandwidth during both training and inference phases.
They utilize large amounts of computation even on redundant or less informative data, leading to
inefficiencies in resource-constrained environments. Among deep learning models, Convolutional
Neural Networks (CNNs) have achieved remarkable success in a wide range of computer vision tasks,
including image classification, object detection, and segmentation (Krizhevsky et al., 2012} |Simonyan
& Zisserman), 2014; He et al.l 2016} [2017; Law & Deng|, |2018). However, these performance gains
often come at the cost of increased computational demands. State-of-the-art CNN architectures
typically require large-scale datasets such as ImageNet (Krizhevsky et al.,|2012) for effective training
and involve millions of parameters, making them expensive to train and deploy. This poses a
significant barrier for practitioners with limited computational resources. Reducing training costs
without sacrificing performance remains a longstanding challenge in deep learning.

A straightforward approach to address this challenge is to reduce the amount of training data.
Techniques such as dataset distillation (Nguyen et al.,|2021; Zhao & Bilen, 2023; Wang et al., 2022)
and coreset selection (Har-Peled & Mazumdar, 2004; Park et al., [2022; | Xia et al., [2022) aim to
synthesize or select a compact, informative subset of the original dataset. While effective in reducing
data volume, these methods often introduce nontrivial computational overhead and may result in
degraded model performance. Weighted sampling methods (Zhao & Zhang|, 2015} |Csiba & Richtarikl
2018} |Johnson & Guestrin, 2018)) improve convergence by increasing the sampling frequency of
informative samples, but their performance is highly sensitive to the choice of model and dataset.

Another line of research focuses on reducing the number of training iterations through data pruning.
Static pruning methods estimate sample utility scores and remove low-utility samples before training
begins (Toneva et al.l 2018; [Paul et al., 2021)), but often incur high preprocessing costs and lack
adaptability during training. Dynamic pruning approaches mitigate these issues by adjusting the
pruning process on the fly. For example, InfoBatch (Qin et al.}2024)) dynamically prunes low-utility
samples using a soft-pruning strategy combined with expectation rescaling to maintain unbiased
gradients. Similarly, He et al.|(2024) leverages prediction uncertainty and training dynamics to prune
up to 25% of data from large-scale datasets such as ImageNet without sacrificing accuracy. However,
these approaches often rely on complex heuristics.



Under review as a conference paper at ICLR 2026

Early stopping is a widely used strategy for reducing data usage by terminating training once
performance plateaus (Duvenaud et al., 2016} Mahsereci et al.,|2017; Bonet et al., [2021)). However,
most existing approaches rely on gradient-based signals that often fail to generalize across modern
optimizers or require carefully tuned hyperparameters and specialized frameworks. More recently,
Ahmad et al.| (2024)) proposed an early stopping criterion based on the stability of convolutional
activations, highlighting the potential of internal network dynamics as reliable indicators of training
progress. This line of work builds on the broader concept of activation stability, which is closely linked
to the phenomenon of Neural Collapse (Papyan et al., 2020), wherein class-specific representations
become increasingly aligned and activation patterns stabilize as training converges. Together, these
findings suggest that activation stability offers a promising direction for analyzing data utility through
internal model dynamics.

While prior data pruning approaches such as InfoBatch (Qin et al., 2024) rely on per-sample loss
statistics, gradient rescaling, or fixed heuristics, often incurring additional computation or requiring
explicit loss tracking, our work introduces a different perspective: Can the stability of internal
activations serve as a signal for assessing the informativeness of batches during training, thereby
enabling effective and dynamic pruning of redundant batches? We answer this affirmatively by
introducing a lightweight, plug-and-play method that dynamically prunes low-utility batches based on
the stability of activation variances across network layers. Unlike strategies that depend on difficulty
scores, auxiliary models, or manually crafted rules, our approach is non-intrusive, as it operates on
activation statistics already available from the forward pass, thereby introducing negligible overhead.
The pruning is performed on-the-fly during training, without pretraining phases, validation labels,
or static schedules. Our framework continuously monitors the mean standard deviation of flattened
activations across layers for each batch across consecutive epochs and prunes batches if the change
in this statistic is negligible. For the demonstration, applied to convolutional neural networks, this
activation-driven pruning framework reduces redundant data usage across epochs while preserving
training effectiveness and generality, offering a practical and efficient solution that establishes a
foundation for extending stability-based pruning to broader deep learning architectures. Our key
contributions are as follows:

Activation Stability-Guided Dynamic Batch Pruning. We introduce a lightweight, model-internal
pruning strategy, ‘Batch Pruning by Activation Stability’ (B-PAS) that dynamically identifies and
removes low-utility batches during training by leveraging the stability of activation feature maps.
Specifically, we track the mean standard deviation of activations across convolutional layers and
consecutive epochs to assess whether a batch continues to contribute meaningful learning gradients.
Batches exhibiting negligible change in activation variance are deemed redundant and pruned on-the-
fly, without relying on auxiliary networks or handcrafted difficulty metrics. The pruning behavior is
controlled by a tunable threshold hyperparameter §, enabling adaptability across datasets and model
architectures.

Comprehensive Evaluation on Benchmark Models. We evaluate B-PAS on ResNet-18, ResNet-50,
and CvT (Wu et al., 2021)) across CIFAR-10, CIFAR-100 (Krizhevsky et al. [ajb), SVHN (Netzer
et al., 2011), and ImageNet-1K (Krizhevsky et al, [2012), with extensive threshold sweeps (45 §
settings on CIFAR-10 and eight on ImageNet-1K). Results show that B-PAS prunes up to 57% of
training batches without accuracy loss, and up to 47% while slightly improving accuracy, while
reducing computational cost by as much as 61% in GPU node-hours. These findings highlight both
the robustness and tunability of activation stability as a pruning signal, delivering substantial training
efficiency gains across scales and architectures.

Data Savings Index (DSI). We introduce DSI, a new metric that quantifies the cumulative fraction of
training data saved during learning. DSI provides a direct measure of data efficiency, with higher
values indicating greater reductions in training cost and computational resources.

2 BATCH-PRUNING BY ACTIVATION STABILITY (B-PAS)

In this section, we introduce the concept of a plug-in to CNN architectures: Batch Pruning by
Activation Stability (B-PAS), detailing its formulation and adaptation for image applications. Figure/I]
illustrates the working mechanism of a conventional CNN (labeled ‘A’) alongside the proposed
plug-in (labeled ‘B’).
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Figure 1: Overview of the proposed Batch Pruning by Activation Stability (B-PAS) plug-in integrated
into a prevalent Convolutional Neural Network (CNN) training pipeline. (A) The conventional
CNN architecture processes input images in batches through convolutional, ReLU activation, and
pooling layers, followed by a fully connected classifier. (B) The B-PAS module monitors the standard
deviation of ReLU-activated convolutional outputs for each batch across epochs. For each epoch,
the standard deviation is recorded per convolutional layer (columns) and aggregated across layers
to compute the mean standard deviation for each batch (rows). These per-batch means are then
compared across consecutive epochs to assess activation stability. If the change (A X) for a batch B,
falls below a dynamic threshold §(7), the batch is deemed to have low learning utility and is pruned
from subsequent training. By updating the dataset at the end of each epoch using this feedback,
the process dynamically focuses training on batches that continue to provide meaningful gradient
information, thereby improving efficiency without compromising accuracy.

2.1

Building on the observation from Neural Collapse (Papyan et al.,

ACTIVATION STABILITY

2020) that activation patterns

stabilize as training converges, we adopt the idea of (Ahmad et al.| 2024), which links data variation
across CNN layers to near-optimal learning capacity. Extending this principle to the batch level, we
observe that as training progresses, certain batches show diminishing changes in activation variance
across consecutive epochs, signaling little additional learning. To capture this effect, we use the
widely adopted Rectified Linear Unit (ReLU) 2018), where the variance of ReLU-activated
outputs provides a meaningful measure of feature stability. When this variance remains nearly
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unchanged across epochs, the corresponding batch is deemed converged, as its contribution to weight
updates has effectively stabilized.

We compute variance after ReLU since it not only introduces non-linearity but also suppresses inactive
neurons, ensuring that variance reflects sparse, meaningful features rather than noisy pre-activation
values. Thus, monitoring the standard deviation of post-ReLU activations provides a reliable estimate
of batch learning utility: once changes become negligible, the batch is pruned. This enables the
model to focus computation on informative batches while discarding redundant ones, improving
efficiency without harming performance.

In Figure[I{A), the ‘Convolution Operations’ module illustrates the ReLU-activated convolutional
feature maps of input images, organized batch-wise across training epochs. At each convolutional
layer, training images are processed in batches denoted by By, ..., B,,, where B,,, refers to the final
batch in epoch . For instance, if epoch ¢ contains 400 batches, then B,,;, = Bjgo, indicating that
the 400" batch is the last batch of that epoch. Each batch consists of multiple images, which are
represented as tensors containing numerical activation values. To quantify activation variability, we
compute the standard deviation of these values by first flattening the output tensors of each ReLU-

activated convolutional layer. The standard deviation is then computed using o = \/ + Zgzl (tx—p)?,

where t;; denotes each individual value from the flattened tensor (for k = 1,..., N), u is the
mean of these values, IV is the total number of values in the flattened tensor, and o represents the
resulting standard deviation. This computation is performed independently for each batch and each
convolutional layer.

In Figure EKB), each epoch table (i.e., Epochs ¢ —1, 7, and i+ 1) presents the standard deviation of
the ReLU-activated outputs from the convolutional layers. In each table, rows correspond to data
batches (e.g., Bi, ..., By,), and columns represent individual convolutional layers, except the final
column. The last column contains the mean standard deviation for each batch, computed across all
convolutional layers. For example, the row corresponding to batch B,,, includes standard deviations
Oln;»---,00n,;, Wwhere 0y 5, denotes the standard deviation of the output from the I-th convolutional
layer for batch B,,,, and [ is the total number of convolutional layers. The mean standard deviation
for the final batch B,,, in epoch i is denoted as X;(o1,p,, - - - , 0 n, ), indicating the mean standard
deviation across all [ convolutional layers.

These mean standard deviations are used to track the variance behavior of each batch over time.
Beginning with epoch one, the mean standard deviation is computed for every batch. From epoch
two onward, the current epoch’s mean is compared against the previous epoch’s mean for each
batch. If the change is negligible, the batch is considered to have converged and may be pruned from
subsequent training epochs. This pruning process continues iteratively for the remaining epochs.

2.2 BATCH PRUNING

The decision to prune a batch is based on the stability of its mean activation standard deviation across
consecutive epochs. As illustrated in Figure B), we consider three epochs: ¢ —1, ¢, and 7+ 1. If the
absolute difference between these means across consecutive epochs falls below a dynamic threshold
(%), the batch is deemed to have converged and is excluded from subsequent training.

To illustrate, consider the standard deviations of batch B, across the [ convolutional lay-
ers as Oin,,-..,0ln,. Ihe mean standard deviation for this batch at epoch ¢ is denoted by
Xi(01.m;5--+,00n,), and at epoch i —1 by X; 1(01 4;,-..,01n,). The change in mean standard
deviation/variance for the batch B,,, is computed as:
AX = ’XZ'(O'L”“ ceey O—l,ni)_Xifl(Jl,n,;a ey Jl,ni) S 5(2)

If AX for the batch B, falls below the threshold (i), the batch is pruned and excluded from training
in epoch 7+ 1. This criterion is applied to all batches at the end of each epoch. The pruning decisions
update the dataset by retaining only the informative batches, resulting in a reduced set of training
data for the next epoch and a progressively more efficient training process. As training progresses,
the number of retained batches decreases monotonically. Formally, for any epoch ¢, the number of
batches n; satisfies n; <n; ;. Because the pruning is dynamic, the composition of the final batch may
change across epochs. For instance, for epoch ¢, let the last batch be B,,; and the second last B,,,—1;
similarly, in epoch 7 —1, they are B,,, , and B,,, ,—1. Without pruning, these batches are identical,
whereas pruning one batch in epoch ¢ —1 shifts the indexing so that in epoch i, B,,, =B,,, ,—1.
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2.3 DYNAMIC THRESHOLD FOR PRUNING

To determine the negligible difference

between activation variances across .-

epochs, we introduce a tolerance hy-
perparameter ¢ to formalize pruning.
Instead of requiring exact invariance,
0 captures variance saturation with a
small non-zero margin.

We empirically analyze the effect of
different § values on pruning dynam-
ics. Very small § leads to overly con-
servative pruning, discarding batches
only when variance changes are nearly
imperceptible, thus retaining most
batches. Conversely, large ¢ induces
aggressive pruning, prematurely re-
moving informative batches and risk-
ing early training collapse.

Number of Batches
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Figure 2: Pruning dynamics under different J settings for

To balance this trade-off, we adopt ResNet-50 on ImageNet-1K (200 epochs). Lower thresholds
a dynamic schedule: (i) = 6, (€€, 0 € [107%,5x107°]) lead to conservative pruning,

e a= %ln(g—e), where §, and

olds (e.g.

retaining most batches until late epochs, while higher thresh-
,0 € [5x1075,5x10~4]) cause aggressive pruning

d are the initial and final threshold and premature training termination. The dynamic schedule
values, i is the current epoch, and I (§, = 5x1075, 6, = 5x1075) provides a balanced trajectory,
is the total number of epochs. This steadily reducing data.

schedule is conservative in early train-

ing, when features are broadly learned, and more aggressive in later stages, when learning stabilizes.

At epoch i, batches with AX < §(¢) are pruned.

Figure [2]illustrates these dynamics using eight
sets of 0 values on ImageNet-1K with ResNet-
50. The horizontal line shows no pruning, while
the sharp drop at epoch 2 depicts extreme aggres-
siveness (all batches removed). Lower ranges
(e.g., 0 € [1076,5x 1075]) yield delayed, con-
servative pruning, whereas higher ranges (e.g.,
§ € [5x1075,5x10~*4]) prune aggressively and
often terminate training early. A balanced con-
figuration of 6, = 5x107% and 6, = 5x107°
achieves steady pruning without sacrificing sta-
bility. Nonetheless, § remains a tunable hyper-
parameter, adaptable to dataset complexity, ar-
chitecture, and resource budgets.

3 EXPERIMENT

We evaluate B-PAS as a plug-in module on
ResNet-18, ResNet-50, and the Convolutional
vision Transformer (CvT) to assess robustness
and generality. In the networks, we add Batch
Normalization layer, which normalizes per-
batch variance and has a strong impact on prun-
ing dynamics. Experiments span CIFAR-10,
CIFAR-100, SVHN (32 x 32), and ImageNet-
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Figure 3: Empirical analysis of B-PAS on CIFAR-
10 with ResNet-18 across 45 § settings. Smaller
thresholds have less data savings with higher ac-
curacy, larger thresholds save more data at the
cost of accuracy, and intermediate values (e.g.,
§ € [107%,5 x 10~5]) provide the best trade-off.

1K (~1.3M images, 224 x 224). Unless specified, we use § € [107°,5 x 1075] for CIFAR-10/100
and SVHN, and § € [5 x 10765 x 10~°] for ImageNet-1K, corresponding to empirically validated
balanced pruning regimes. We report validation accuracy and GPU node-hours, but since hardware
and system factors confound GPU time, we also introduce the Data Savings Index (DSI), which
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quantifies skipped data across epochs and batches as a continuous measure of efficiency. To ensure
well-defined variance tracking, batches are fixed once at initialization (rather than regenerated each
epoch) while intra-batch shuffling is applied to preserve stochasticity and avoid overfitting. Full
experimental details are provided in Appendix [A.T]

GPU node-hours. It as a measure of computa-

tional cost, defined as GPU node-hours = g x h & 6:=1077
. . = . .° bt ® 5.=5x 1074
where ¢ is the number of GPUs used during B 78" ® B.210-5
training and /2 is the total training time (in hours). £ =5 x 105
The percentage of node-hours saved is reported & 26 - ¥ 8s=5 x 10~7
relative to the full dataset baseline. < A 8.=5 x 107
= 8:=5 x 107°
Data Savings Index (DSI). To directly quan- & 60- A ® §.=5x 1075
tify the reduction in training data usage, we in- @ A o 8= X 10:f1
troduce the Data Savings Index: DSI = 1 — 2404 66=fo>i510
26017711:, where n; is the number of batches X | L :;5 x 10~4
retained in epoch ¢, ng is the total number of E 60 - Lo 65=10f1
batches before training begins, ; is the epoch . 0-=107"
at which training stops, and e is the scheduled > 40-® ° 623& 10-5
number of epochs in the absence of pruning or 1 2 3 4 5 6 7 8
early stopping (es < ep). The DSI value lies Eight Different 6 Settings

in [0, 1], with higher values indicating greater Figure 4: Empirical analysis of B-PAS on
savings in data usage. For example, if a model is ImageNet-1K with ResNet-50 across eight § set-
scheduled to train flor. 5 epochs with 200 batches tings. Smaller thresholds retain most data with
per epoch, but training stops at epoch 3 after  pioper accuracy but lower savings, larger thresh-
processing 200, 190, and 180 batches, the DST )45 oryne aggressively and harm accuracy, while

; 20031904180 _ -
is 1 — 5500 = 043, meaning that 43% {0 mediate values (e.g.,6 € [5x107%,5x1075])

of the potential training data is saved. achieve the best trade-off.

3.1 RESULT ANALYSIS

Empirical Analysis on CIFAR-10. We first evaluate B-PAS using ResNet-18 on CIFAR-10 over 200
epochs across forty-five threshold (0) settings. As shown in Figure[3] we define five groups of starting
thresholds (d,), each paired with multiple end thresholds (). Specifically, for 6, = 5x107° and 6, =
10~°, we consider three and six values of &., respectively, while for the remaining groups we test 12
values. The 6, values are {1072, 5x1074,1074,9x107>,8x107°,7x107°,6x107°,5x 1075, 4x
107°,3 x 107°,2 x 107°,107°}. For the §; = 5 x 10~ group, only d, = {1073,5 x 10~4,10~4}
are included; for 6, = 1075, we use . = {1073,5 x 1074,1074,5 x 107°,4 x 1075,3 x 1075}.

The results reveal a clear pattern in accuracy and DSI percentage. Larger threshold groups (e.g.,
85 = 5 x 1075) yield very high data savings but also sacrifice accuracy. Conversely, smaller threshold
groups (e.g., §, = 10~ 7) retain nearly all data, resulting in high accuracy but reduced pruning benefits.
Values in intermediate groups (e.g., 65 = 1075) provide a balanced trade-off. In particular, the 29th
setting with 6 € [107%,5 x 1075] achieves the highest accuracy while saving data by 25%. Thus, for
CIFAR-10 and similar 32 x 32 datasets, §, = 1076 and §, = 5 x 107 represent a strong default
configuration, as further validated in Table E}

Empirical Analysis on ImageNet-1K. Guided by the CIFAR-10 analysis, we evaluate B-PAS with
ResNet-50 on ImageNet-1K over 200 epochs across eight threshold settings. As illustrated in Figure[d]
we observe the same trend: smaller thresholds preserve accuracy but maintain low DSI and GPU
node-hours savings, while larger thresholds lead to aggressive pruning and accuracy degradation. For
example, § € [107¢,5 x 107°] yields the highest accuracy but also lowest data and GPU node-hours
savings. In contrast, § € [5 x 1075, 5 x 10~%] causes early and aggressive pruning, often terminating
training around epoch 100, which results in very low accuracy. This behavior aligns with the pruning
dynamics shown in Figure [2} smaller thresholds delay pruning, retaining most batches until late
epochs, while larger thresholds trigger sharp drops of batches earlier in training. The most balanced
results are obtained for § € [5 x 10755 x 107°], as supported by both Figure [2| and Figure
This setting achieves near-maximum accuracy with DSI over 45% and saved GPU node-hours by
48%, indicating efficient pruning without compromising performance. The detailed tabular form
of these analysis is provided in Appendix [A.3] An additional observation is that DSI and GPU
Node-hour savings follow the same trend across experiments, confirming that data usage is tightly
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coupled to training cost. Unlike node-hours, however, DSI provides a more comprehensive and
system independent measure by capturing saved data across epochs.

Comparison with SOTA Method.

We compare B-PAS with the state-of-the-art prun-
ing approach InfoBatch (Qin et al., 2024) on
CIFAR-10, CIFAR-100, and ImageNet-1K (Ta-
bles[I]and [2)). InfoBatch has previously demon-
strated superiority over 14 static and three dy-
namic pruning baselines, establishing it as a strong
reference point. On CIFAR-10 and CIFAR-100
(Table[I)), B-PAS achieves accuracy comparable
to the full dataset and InfoBatch across multiple
pruning ratios. For example, in CIFAR-100 with
ResNet-50, B-PAS saves 30% of the data while
maintaining 80.6% accuracy, closely matching In-
foBatch at the 30% pruning ratio (DSI = 18%).
To further assess pruning behavior, we introduce
a random pruning baseline: we track the num-
ber of batches flagged by activation stability but
prune the same number of batches chosen at ran-
dom. Unlike B-PAS, random pruning consistently
degrades accuracy, underscoring that activation

Table 1: Comparison of B-PAS with InfoBatch
and random pruning on CIFAR-10/100 using
ResNet-18/50. B-PAS matches or exceeds Info-
Batch across different pruning ratios while main-
taining accuracy as the full dataset, showing its
competitiveness on small-scale datasets.

Approach CIFAR-10 CIFAR-100
in% =DSI Acc DSI Acc

ResNet-18 0 95.60+0.2 0 78.20+0.3

+Random 25 94.60+0.3 24 75.36+0.4

+InfoBatch (30%) 22 95.60+0.1 19 78.20+0.1
+InfoBatch (50%) 37 95.10+0.3 32 78.1040.1
+InfoBatch (70%) 53 94.70+0.4 47 76.50+0.4

+B-PAS 25 95.60+0.1 24 78.20+0.1
ResNet-50 0 95.66+0.1 0 80.60-£0.5
+Random 33 94.50+0.3 30 75.77+0.4

+InfoBatch (30%) 21 95.66+0.1 18 80.60+0.1
+InfoBatch (50%) 36 95.20+0.3 32 80.0540.1
+InfoBatch (70%) 52 94.99+0.4 45 79.37+0.4

stability identifies non-informative batches rather
than simply reducing training data. These results
demonstrate that B-PAS is competitive on small-scale datasets, with modest but reliable savings due to
the limited learning utility in low-resolution tasks. In contrast, the advantage of B-PAS becomes more
pronounced on ImageNet-1K. As shown in Table[2] InfoBatch achieves 28% data savings and 40%
GPU node-hour reduction while maintaining full dataset baseline accuracy (78.07%). By comparison,
B-PAS delivers substantially larger gains: with § € [107°,1074], it saves 57% of the data and 61% of
node-hours at the same accuracy, and with more conservative thresholds (6 € [5 X 1076, 5 X 1075]),
it further improves accuracy to 78.43% while still achieving 47% data savings and 48% node-hour
reduction. These results highlight that activation stability—driven pruning not only matches InfoBatch
in accuracy preservation but also provides significantly greater efficiency on large-scale training.

+B-PAS 33 95.66£0.1 30 80.60+0.5

This demonstrates that activation stabil-
ity provides a scalable pruning signal in
large-scale training, where the learning
utility of data is more significant. Fi-
nally, just as InfoBatch evaluates multi-
ple pruning ratios (30%, 50%, 70%), B-
PAS naturally supports different prun-
ing regimes through the choice of ¢

Table 2: Comparison of B-PAS and InfoBatch on ImageNet-
1K with ResNet-50. B-PAS achieves stronger efficiency,
saving data usage by 57% and node-hours to 61% while
preserving accuracy as the full dataset. More conservative §
values yield further accuracy gains (78.43%) with moderate
savings, highlighting the scalability of activation stability
signals in large-scale training.

values. Smaller § ranges yield conser- Approach ImageNet-1K
vative pruning with lower DSI, while in % =- Saved hrs DSI  Acc
larggr valu(elsftritgger more aggres;i;e ResNet-50 0 0 78.0710.1
Rexibiliy allows B-PAS to adapt prun. *1nf0Batch (40%) 4 28780701
ing aggressiveness without requiring +B-PAS (5€[1077, 10_4]) 61 57 78.07+0.1
+B-PAS (0€ [5x107%,5x1075]) 48 47 78.43+0.1

handcrafted schedules or explicit loss
tracking, underscoring its practical utility in both small- and large-scale settings.

Cross-Architecture and Dataset Robustness. Table [3]evaluates the generalization of B-PAS across
diverse architectures (ResNet-18, ResNet-50, and CvT) and datasets (CIFAR-10, CIFAR-100, SVHN,
and ImageNet-1K). Several consistent trends emerge.

First, across CNN architectures, B-PAS preserves full dataset baseline accuracy while significantly
reducing data usage and training cost. For example, on ImageNet-1K with ResNet-50, B-PAS achieves
78.43% accuracy (slightly higher than full dataset) while saving data usage by 47% and node-hours
by 48%. Similar savings are observed on smaller datasets, with up to 33% data usage savings
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on CIFAR-10 and 33% node-hours reduction on SVHN. These results demonstrate that activation
stability provides a reliable pruning signal across scales and architectures within the CNN family.

Extending beyond CNNs,
we evaluate B-PAS on CvT-
13. Pruning is performed
by tracking stage-wise ac-
tivations: after each CvT
stage, token sequences are
projected back to spatial for-
mat to compute variance
on the multi-scale feature
maps. Using a more aggres-
sive threshold range (§; =
1074, 6, = 1073), B-
PAS achieves a substantially

Table 3: Cross-architecture and dataset robustness of B-PAS on CIFAR-
10/100, SVHN, and ImageNet-1K with ResNet-18/50 and CvT. B-PAS
preserves accuracy across models while reducing data usage and GPU
node-hours.

CIFAR-10 CIFAR-100 SVHN ImageNet-1K
R-18 R-50 R-18 R-50 R-18 R-50 R-18 R-50 CvT
Full Dataset 95.6095.66 78.2 80.6 95.9096.27 70.05 78.07 79.65

B-PAS 95.6095.66 78.2 80.6 95.9796.27 71.5 78.4379.10
DSI(%) 25 33 24 30 19 30 37 47 35
Saved hrs(%) 23 29 22 29 18 33 61 48 35

higher DSI of 35% with only a modest accuracy drop (79.10% vs. 79.65%). This behavior reflects
the slower and noisier activation dynamics in transformers, where stability emerges later than in
CNNs. Because our CvT runs use 200 epochs, shorter than the 300+ epochs typically required for
full convergence on ImageNet-1K, the delayed stabilization naturally limits pruning under milder
thresholds. These results indicate that activation stability in CvT is slower to develop, and both longer
training and more aggressive ¢ schedules unlock significantly stronger pruning efficiency.

3.2 ABLATION STUDIES

To better understand the behavior of B-PAS, we perform controlled ablation studies across learning
rates, normalization layers, training epochs, pruning granularity, and optimizers. These studies
highlight both the robustness of the method and the factors influencing its efficiency.

Effect of Learning Rate. Table [4] shows the impact of different learning rates on ImageNet-1K
with ResNet-50. For 256 batch size, we consider learning rates of 0.2, 0.01, and 0.1. While all
settings achieve comparable DST (45%-47%), accuracy varies significantly: 74.29% at LR = 0.01,
77.27% at LR = 0.2, and 78.43% at LR = 0.1. These results suggest that excessively small learning
rates hinder convergence, while overly large ones reduce generalization. Importantly, the pruning
dynamics of B-PAS remain stable across learning rates, showing that activation stability is largely
agnostic to optimizer step size.

Table 4: B-PAS under dif- Table 5: Effect of Table 6: Effect of train- Table 7: B-PAS
ferent learning rates (LR). Batch Normalization ing epochs on B-PAS  pruning granular-
- I Net-1k. i
LR DSI(%) Acc(%) ~ 2LB-PAS on ‘mageTTet Ly.
02 45 7727 DSI(%) Acc(%) Epochs DSI(%) Acc(%) Pruning Acc(%)
0.&)1 46 74:29 -BN 19.72 89.87 90 12 78.07  Sample 70.87
0.1 47 7843 +BN 25 95.60 200 47 7843  Batch 78.43

Impact of Batch Normalization. Table [5]compares CIFAR-10 results with ResNet-18 with and
without Batch Normalization (BN). Since BN normalizes feature statistics per batch, it strongly
affects B-PAS. Without BN, activation trajectories are unstable, requiring more aggressive thresholds
(e.g., 6s = 5 x 107°, §, = 1073) to obtain reasonable DSI (19.72%); with the default § values,
pruning is minimal (DSI = 2%). Also, removing BN results in an accuracy drop. In contrast, with
BN, the default thresholds yield effective pruning (DSI = 25%) while improving accuracy to 95.60%.
These results show that BN not only stabilizes activations but also enhances the discriminative signal
used by B-PAS, enabling more reliable identification of redundant batches. More analysis is provided

in Appendix

Effect of Training Epochs. Table[6]compares ImageNet-1K with ResNet-50 performance at 90 and
200 epochs. With 90 epochs, pruning remains limited (DSI = 12%) due to insufficient stabilization,
whereas at 200 epochs DSI rises to 47% with improved accuracy (78.43%). This highlights that
longer training naturally allows greater pruning, where data savings become more critical and B-PAS
proves most effective.

Pruning Granularity: Batch vs. Sample Level. Table [/| compares pruning at the sample and
batch levels for ImageNet-1K on ResNet-50. For sample-level pruning, the accuracy reduces to
70.87%, compared to 78.43% for batch-level pruning. This discrepancy arises because sample-
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level pruning may disproportionately eliminate certain classes, leading to class imbalance and
degraded generalization. In contrast, batch-level pruning preserves class diversity while still removing
redundant information, confirming its superiority as the granularity choice for B-PAS.

Optimizer Robustness. Finally, Table (8| explores differ- Table 8: B-PAS preserves accu-
ent optimizers on CIFAR-10 with ResNet-18. Across SGD, racy while achieving similar DSI
Adam, and AdaGrad (Ruder, 2016), B-PAS maintains accu- across optimizers on CIFAR-10 with
racy identical to baseline training, with DSI ranging from ResNet-18, demonstrating robustness
22% to 25%. These results highlight that the pruning crite- to optimization dynamics.

rion is robust to different optimization dynamics, even when SGD Adam AdaGrad

a second-order adaptive optimizer (Adam) alters activation
trajectories. This reinforces that B-PAS generalizes across  Full Dataset95.60 93.36  92.93
diverse optimization regimes without requiring re-tuning. B-PAS 95.6093.34 92.93

DSI(%) 25 24 22

4 RELATED WORK

This work is related to three major research directions in efficient deep learning: static data pruning,
dynamic data pruning, and dataset distillation. Static pruning methods select training subsets prior
to training using criteria like geometric diversity (Sener & Savarese, [2017; |Agarwal et al., [2020),
uncertainty (Coleman et al.,[2019; |Gal et al.,|2017)), or learning difficulty (Toneva et al.,2018}; |Paul
et al.l 2021). Gradient-based approaches (e.g., GraNd, EL2N (Paul et al., [2021)) and decision-
boundary methods like DeepFool (Ducoffe & Preciosol |2018])) assess sample importance more directly.
Other strategies include bilevel optimization (Killamsetty et al., 2021)), submodular selection (Iyer
et al., | 2021), ensemble heuristics (Xia et al., [2022)), and diversity-aware methods (Welling), [2009a}
Zheng et al.,|2023). These techniques often require full dataset access and heavy pre-computation,
limiting scalability. Dynamic pruning eliminates low-utility samples during training via online
signals. Bandit-based methods (Raju et al.,[2021)), soft pruning with gradient rescaling (Infobatch |Qin
et al.| (2024)), and uncertainty-driven pruning (He et al., 2024) have shown success but often involve
complex heuristics and tuning. Dataset distillation synthesizes compact training sets via gradient
(Zhao & Bilen, [2023} |Liu et al.l 2023;|Cui et al.,|2023} |Yang et al., [2023)), distribution (Wang et al.,
2022;|Sajedi et al., 2023)), or trajectory matching (Cazenavette et al., [2022;|Du et al., 2023} |Guo et al.,
2024), yet faces challenges in scaling to high-resolution data and large models.

5 DISCUSSION AND CONCLUSION

Recent work, such as InfoBatch (Qin et al.;2024)) advances data pruning through temporary, sample-
level pruning with gradient rescaling to preserve unbiased gradient estimates. While effective, this
approach requires maintaining per-sample loss statistics and revisiting all data in subsequent epochs,
limiting efficiency in large-scale training. In contrast, our proposed B-PAS performs permanent,
batch-level pruning based on activation stability, eliminating the need for gradient rescaling or
repeated access to discarded data. This design yields substantial reductions in data usage, training
time, and GPU node-hours while leveraging internal activation dynamics rather than loss signals.
A natural concern with data pruning is the potential introduction of bias by disproportionately
discarding informative samples or underrepresented classes. B-PAS prunes at the batch level using
activation stability, which is agnostic to class labels and per-sample loss statistics. Pruning decisions
are thus guided purely by model-internal dynamics rather than sample difficulty or distribution.
Empirically, across CIFAR-10/100, SVHN, and ImageNet-1K, accuracy is consistently preserved,
and in some cases improved—relative to full-dataset training, confirming that B-PAS does not
introduce measurable prediction bias. Finally, our empirical analysis of pruning dynamics reveals
that batches progressively lose learning utility over epochs as their activation variance stabilizes
(Visualization in Appendix[A.3)). By discarding such batches, B-PAS avoids redundant computation
while focusing training on informative data. If this stabilization did not reflect diminishing utility,
pruning would have harmed performance; instead, results demonstrate that activation stability is
a robust signal for scalable, efficient, and unbiased pruning. We conclude that B-PAS provides
a practical, plug-and-play approach to data-efficient deep learning, with particular promise for
large-scale training where efficiency gains are most impactful.

While most of our experiments focus on CNNs, we also evaluate B-PAS on CvT and in the text domain
with GPT-2 Large (in Appendix [A.3)), demonstrating its broader applicability beyond convolutional
models. It is acknowledged that a current limitation is the use of empirically chosen threshold
schedules; developing data-driven, adaptive thresholding mechanisms is an important direction for
future work.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 MODEL SPECIFICATIONS

ResNet-18 and ResNet-50. For CNN backbones, we adopt standard ResNet architectures with
residual connections following (He et al.l[2016). ResNet-18 is constructed using BasicBlock units
(expansion factor 1) with layer configuration [2, 2, 2, 2], while ResNet-50 uses Bott leneck units
(expansion factor 4) with configuration [3, 4, 6, 3]. Both models begin with a 7 x 7 convolution and
max pooling, followed by four residual stages, global average pooling, dropout (0.2), and a fully
connected classifier. Batch Normalization is applied after each convolution, and ReLLU serves as
the activation. For activation tracking, we monitor outputs after each of the four residual stages
(layer1—4).

Convolutional vision Transformer (CvT). We also evaluate B-PAS on CvT-13 (Wu et al., [2021)),
which integrates convolutional projections within transformer blocks. CvT-13 consists of three stages
(Table O): (i) a 64-dim embedding with depth 1 and 1 attention head; (ii) a 192-dim embedding
with depth 2 and 3 heads; and (iii) a 384-dim embedding with depth 10 and 6 heads. Each stage
applies convolutional embedding, convolutional multi-head self-attention with depthwise projections,
and MLP blocks with GELU activation. Activations are tracked at the stage outputs, where token
sequences are reshaped back into spatial (B, C, H, W) format for variance computation. The network
ends with layer normalization, global average pooling over tokens, and a linear classifier.

Table 9: Model specifications for architectures used in our experiments.

Model Building Block  Depth Embedding / Channels

ResNet-18  BasicBlock  [2,2,2,2] [64, 128, 256, 512]
ResNet-50  Bottleneck  [3, 4, 6, 3][256, 512, 1024, 2048]
CvT-13  Conv-Attn + MLP [1, 2, 10] [64, 192, 384]

A.1.2 DATASET SPECIFICATIONS

Table[10] provides the number of training and validation samples used for each dataset. CIFAR-10
and CIFAR-100 each include 50,000 training and 10,000 validation images. SVHN contains a
larger validation set relative to its training size, with 73,257 training and 26,032 validation samples.
ImageNet-1K, being significantly larger, includes over one million training images and 50,300
validation samples, reflecting its role as a large-scale benchmark. All images are augmented with
commonly adopted transformations, i.e., normalization, random crop, and horizontal flip if not stated
otherwise.

Table 10: Dataset Splits for Training and Validation

Dataset Training Samples Validation Samples

CIFAR10 50,000 10,000
CIFAR100 50,000 10,000
SVHN 73,257 26,032
ImageNet-1K 1,230,867 50,300

A.1.3 HYPERPARAMETERS

Table[TT| summarizes the hyperparameters used across datasets and architectures. Unless otherwise
noted, all models are trained with SGD optimizer, using momentum of 0.9. For ImageNet with
ResNets, we adopt Mult i StepLR scheduling, while other CNN datasets use cosine annealing. CvT
models are trained with AdamW. For ImageNet training, we use 4 GPUs in parallel; hence both the
batch size and learning rate are scaled linearly by the number of GPUs (i.e., 256 x 4 total batch size
and base learning rate 0.1 x 4 = 0.4).
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Table 11: Training hyperparameters across datasets and architectures.

Dataset / Model EpochsBatch Size LR Weight Decay  Scheduler

CIFAR-10 (ResNets) 200 128 0.05 5x 10~ CosineAnnealing
CIFAR-100 (ResNets) 200 128 0.10 5x 10~* CosineAnnealing

SVHN (ResNets) 200 128 0.10 5x 1074 CosineAnnealing
ImageNet (ResNets) 200  256x4 0.40 1x107* MultiStepLR
ImageNet (CvT) 200 128x4 1x 1073 0.05 CosineAnnealing

A.1.4 HARDWARE SPECIFICATIONS

Table [I2] and [13] summarizes the computational setups. ImageNet experiments were performed on a
high-performance cluster with dual 32-core Intel Xeon Platinum CPUs and 4 x A100 GPUs connected
via NVLink. CIFAR-10/100 and SVHN experiments were conducted on a local workstation with an
AMD Ryzen 9 CPU and a single Titan RTX GPU.

Table 12: Hardware specifications for CIFAR-10/100 and SVHN experiments.

Component Specification

CPU AMD Ryzen 9 7900X, 12 cores / 24 threads, 4.7 GHz base
GPU NVIDIA Titan RTX, 24 GB GDDR6
RAM Corsair Vengeance, 128 GB DDRS5, 6000 MHz

Table 13: Hardware specifications for ImageNet experiments.

Component Specification

CPU Dual Intel Xeon Platinum 8358 (Ice Lake), 32 cores each
GPU 4 x NVIDIA A100 (Ampere) with NVLink interconnect
RAM 512 GB

A.1.5 SOFTWARE SPECIFICATIONS

Table[14] outlines the software environment used

for all experiments. Python 3.8.18 served as Table 14: Software Specifications
the core programming language. Key libraries
included PyTorch and Torchvision for model
development, along with Matplotlib, NumPy,
Scikit-learn, Seaborn, Pandas, and Pillow (PIL) Python Version3.8.18

Component Details

for data handling and visualization. CIFAR- Libraries torch, torchvision, matplotlib, numpy,
10/100 and SVHN experiments were conducted scikit-learn, seaborn, pandas, pillow (PIL)
Platform Jupyter Notebook

in Jupyter Notebook, facilitating interactive de-
velopment and reproducibility. Additionally, Im-
ageNet experiments were conducted as python scripts.

A.2 MORE RELATED WORK

Bartoldson et al.| (2020) analyze weight pruning by defining stability as the accuracy drop after
removing parameters, a diagnostic notion operating entirely in parameter space while keeping the
data fixed. In contrast, B-PAS functions in data space, tracking temporal activation variance across
epochs as an online signal for permanently pruning batches, a direction unexplored in prior pruning
work. Similarly, (Ganguli & Chong| (2024) use activation frequency to prune neurons in small
fully connected networks, focusing on static model sparsification rather than data reduction. While
activation patterns have been used to assess weight importance or characterize network behavior, no
prior method leverages activation stability over time to directly remove training data.
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Table 15: Results for Group of 6, = 5 x 107°

s 0.  DSI(%)ACC (%)

5x107°1x10=3% 75 89.65
5%x 10755 x 10~* 75 90.24
5x107°1x10~% 68 91.65

A.3 MORE RESULTS

Detailed CIFAR-10 Results. Table provide the tabular counterpart of Figure[3] reporting the
full results of our CIFAR-10 analysis across forty-five (d, d.) configurations. Each table corresponds
to one starting threshold group, with multiple end thresholds. These results clearly illustrate the
trade-off between pruning aggressiveness and accuracy:

* Larger 0, values (Tables[I5HI6) trigger early and aggressive pruning, yielding substantial
data savings but lower accuracy.

* Smaller d, values (Table [I9) retain most data, preserving accuracy at the cost of reduced
pruning benefits.

¢ Intermediate settings (Tables[I7H18]) achieve the most favorable balance, with the setting
§ € [107%,5x 10~°] (Table[18) delivering the highest accuracy while saving 25% of training
data.

Together, these tables complement Figure [3|by providing a detailed numerical view of pruning dynam-
ics, confirming that the thresholds govern an effective trade-off between efficiency and generalization.

Table 17: Results for Group of , = 5 x 1076

s 0.  DSI(%)ACC (%)

5x 10761 x10=3 57 92.28
5%x 10765 x 10~ 55 92.97

Table 16: Results for Group of §, = 1 x 107

0s de  DSI(%) ACC (%) 5x10761x 10 45  94.46
1x107°1x 1073 63 91.28 5x107%9 x 1075 45 94.20
1x107%5x107% 59 92.28 5x 10768 x 107° 43 94.28
1x107°1x107* 52  93.61 5x 10767 x 107> 40  94.81
1x107%5x 1075 47 94.31 5x 10756 x 107% 41 94.71
1x107°4x107° 43 94.49 5x 10795 x107° 40  94.59
1x107°3x107° 43 94.58 5x107%4 x 1075 37  94.79

5%x 10763 x 107% 31 95.02
5x10762x 107 28  95.05
5x 10761 x107° 23 95.44

Detailed ImageNet Results. Table 20| provides the tabular version of Figure {] reporting results of
B-PAS with ResNet-50 on ImageNet-1K across eight threshold settings. The table includes accuracy,
Data Savings Index (DSI), training time, node-hours, and early stopping behavior, offering a more
granular perspective on pruning dynamics.

A clear trade-off emerges between data savings and accuracy. Larger thresholds such as § €
[5x 10755 x 10~*] trigger aggressive pruning, with training terminating around epoch 100 and
accuracy dropping to 76.1%, despite saving 73% node-hours. Conversely, smaller thresholds (e.g.,
§ € [107%,5 x 10~°]) achieve slightly better accuracy compared to full dataset (78.63%) but achieve
only moderate efficiency gains (37% node-hours saved).

Intermediate thresholds provide the most balanced trade-off: for instance, § € [5 x 107¢,5 x 107°]
yields 78.43% accuracy with 47% DSI and 48% node-hours saved. GPU node-hours is calculated
by (Training Time (in seconds)/3600)*4 (number of GPUs). The node-hours saved percentage is
calculated from the full dataset’s node-hours (87.98). Importantly, DSI and node-hour savings follow
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Table 18: Results for Group of §; = 1 X 106 Table 19: Results for Group of §; = 1 X 10-7

S 5. DSI(%)ACC (%) Ss 5.  DSI (%)ACC (%)
1x107%1x 1073 47 93.24 1x10771x 1073 34 94.47
1x10765x107* 42  94.13 1x10775x107* 31 94.94
1x107%1 x107% 31 95.18 1x1077"1x10"% 18 95.49
1x107%9%x107° 29  95.04 1x10779x107° 19 95.46
1x10768x 1075 30  94.99 1x10778x 1075 19 95.50
1x107%7x107° 29  95.07 1x10777x107°% 18 95.33
1x10756x107° 26 9544 1x10776 x10~° 15 95.52
1x107%5 %1075 25  95.60 1x10775x107° 14 95.43
1x10764x107° 22 9547 1x10774x107° 12 95.57
1x10763x107°> 22 9528 1x10773x107% 11 95.55
1x10762x107° 16  95.54 1x10772%x107° 9 95.60
1x107%1x10"° 15 9549 1x10771x107% 5 95.60

consistent trends, reinforcing that pruning efficiency directly translates to a reduction in training costs.
Early stopping occurs primarily under aggressive pruning settings, confirming that pruning not only
reduces data usage but can also shorten training trajectories.

Table 20: Detailed ImageNet Results with node-hours, DSI, and Early Stopping.

O d.  DSI(%)Acc(%)Early Stop Epoch Training Time(s) Node-hrs Node-hrs Saved(%)
1x1077 5x107* 38 7846 178 46409.41 51.57 41
1x107% 5x107° 33 78.63 - 49855.24 55.39 37
5x 1077 5x107* 46 7855 175 41460.80 46.07 48
5x 1076 5x107° 47 7843 - 40919.18 45.47 48
5x107® 5x107* 74  76.10 102 21067.36 23.41 73
1x107° 5x107* 62 77.85 143 29016.79 32.24 63
1x107° 1x107* 57 78.07 179 30841.92 34.27 61
1x107% 5x107° 57 78.07 179 30828.36 34.25 61
5x 1076 5x107® 37 71.50 - 29638.31 32.93 62

Full Dataset - 0 78.07 - 79183.84 87.98 0

Fast and Reliable § Selection Using a Small Subset of Training Data. The tables 21| and
show that §5 and . can be tuned quickly and reliably using only a small portion of the training set.
Across both CIFAR-10 with ResNet-18 and ImageNet-1K with ResNet-50, the relative ordering of
pruning strength and accuracy remains consistent between full data runs and ten percent subset runs.
Larger thresholds such as , = 10~° consistently yield higher DSI, while smaller thresholds such as
§s = 10~ 7 produce more conservative pruning, precisely matching the full training patterns. These
partial runs are extremely lightweight, requiring only a few minutes for CIFAR-10 and roughly one
hour for ImageNet-1K on four A-100 GPUs. As a result, selecting 0 is fast, inexpensive, and does not
diminish the overall efficiency gains of B PAS.

Once a good § schedule is identified for a dataset family, it transfers well to related settings. The
values tuned on CIFAR-10 transfer directly to CIFAR-100 and SVHN without further adjustment,
preserving the expected DSI and accuracy behavior in low-resolution CNNs. Similarly, values tuned
on ImageNet-1K with ResNet-50 generalize to ImageNet-like datasets and other CNN variants.
Although transformers exhibit slower and noisier activation stabilization, they can also be handled
with a small subset of data, as demonstrated by our experiments with CvT-13 and GPT large. These
findings show that § hyperparameters can be tuned rapidly on small data slices and reused across
models, making B PAS practical and scalable for new architectures and datasets.

Extended Comparison with SOTA. Table [23| summarizes the performance of representative data
selection and pruning techniques on CIFAR-10 and CIFAR-100. Classical core-set and influence-
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Table 21: Pattern of d,—J. schedules on pruning (DSI) and accuracy under full-data vs. 10% of
training data monitoring in CIFAR-10.

Os 0. DSI (Full) Acc (Full) DSI (10% data)Acc (10% data)
5x 10755 x 1074 7452 90.24 0.5655 79.0
107° 5x107° 46.83 94.31 0.2528 81.8
5x 10755 x107% 39.78 94.59 0.1683 82.2
106 5% 107° 25.06 95.60 0.1244 82.8
107 5x107° 14.26 95.43 0.1030 82.1

Table 22: Patttern of 65—, schedules under full-data vs. 10% of training data monitoring in ImageNet-
1K.

5, 5.  DSI (Full) Acc (Full) Time (Full) DSI (10%) Acc (10%) Time (10%)

1077 5x107% 3848 0.7846  46409.41 34.71 0.5057 5274.02
5x 10765 x 107°  47.21 0.7843  40919.18 43.16 50.4 4793.08
1075 5x 1075 5734 0.7807  30828.36 51.78 50.14 4206.86

based methods (e.g., Herding, Influence, K-Center) provide moderate gains, while more recent
gradient- and uncertainty-based approaches (e.g., GraNd, EL2N, DP, UCB) achieve higher accuracy,
especially on CIFAR-100. InfoBatch represents the prior state of the art, reaching 95.6% on CIFAR-
10 and 78.2% on CIFAR-100. B-PAS matches these best-reported results, maintaining a better DSI
despite using a fundamentally different criterion based on temporal activation stability rather than
loss, gradient, or uncertainty-driven scoring. This highlights that activation variance dynamics can
provide an equally strong or complementary signal for identifying redundant training data.

In addition, we compare the results from a recent large-scale pruning method: Large-scale Dataset
Pruning with Dynamic Uncertainty (He et al.},2024)). Their method achieves a 25% lossless pruning
ratio on ImageNet-1K. By comparison, B-PAS removes up to 57% of the data while matching baseline
accuracy and reducing GPU-hours by 61%, indicating substantially greater pruning capacity and
compute savings on the same large-scale benchmark.

Cross-Task Robustness. Table 24]reports the results of applying B-PAS during GPT-2 Large fine-
tuning on the Alpaca instruction tuning dataset. Because this experiment involves a short 10-epoch
fine-tuning run on a transformer-based LLM, we adopt a more aggressive pruning threshold range
(05 = 1073, 5. = 10~2) to compensate for the smoother activation dynamics of transformers. As
expected, activation stabilization occurs later in training, resulting in a lower Data Saving Index
(DSI) compared to our large-scale vision experiments; nevertheless, B-PAS prunes 23% of batches.
Crucially, pruning does not harm model performance: loss and perplexity remain unchanged or
slightly improved. At the same time, total training time is reduced by about an hour on 2xA100
GPUs. These findings demonstrate that B-PAS is compatible with transformer-based language models
and provides measurable efficiency gains even in smaller fine-tuning settings.

Nature of Pruned Batches and Class Distribution. To examine whether B-PAS disproportionately
removes “easy”’ examples, we conducted a difficulty analysis using two standard metrics from the
pruning and curriculum learning literature: confidence (higher = easier) and misclassification rate
(lower = easier). Confidence is computed as the maximum softmax probability for each sample,
with higher values indicating that the model already finds the example easy. Misclassification rate
reflects whether the model predicted the sample incorrectly at an early epoch, with lower values
corresponding to easier examples. After pruning, these per-sample values are averaged over all
samples contained within pruned batches and kept batches, so the reported means reflect the average
difficulty of each group. As shown in Table [25] pruned batches have lower confidence (0.60 vs. 0.65)
and higher misclassification rates (0.40 vs. 0.35) compared to kept batches. If B-PAS were pruning
easy samples, we would expect the opposite behavior. Instead, both metrics indicate that pruned
batches are not easier, and the means are very close, demonstrating that B-PAS does not introduce
difficulty bias and prunes based solely on activation stability rather than sample easiness.
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Table 23: Comparison of pruning methods on CIFAR-10 and CIFAR-100.

Method CIFAR-10 Acc. (%) CIFAR-100 Acc. (%)
Herding (Welling, [2009b) 92.2 73.1
Influence (Koh & Liang} [2017) 93.1 74.4
K-Center (Sener & Savarese, [2017) 94.7 74.1
DeepFool (Ducofte & Preciosol 2018)) 95.1 74.2
Forgetting (Toneva et al.,|2018) 94.7 75.3
EL2N-2 (Toneva et al.|[2018) 94.4 74.1
EL2N-20 (Toneva et al., 2018 95.3 77.2
Least Confidence (Coleman et al., 2019) 95.0 74.2
Margin (Coleman et al., 2019) 94.9 74.0
CD (Agarwal et al., 2020) 95.0 74.2
Craig (Mirzasoleiman et al., [2020) 94.8 74.4
GraNd-4 (Paul et al.,[2021) 95.3 74.6
Glister (Killamsetty et al.| [2021)) 95.2 74.6
DP (Yang et al.,[2022) 94.9 77.2
e-greedy (Raju et al.,[2021) 95.2 76.4
UCB (Raju et al.| 2021)) 95.3 77.3
InfoBatch (Qin et al.,[2024) 95.6 78.2
B-PAS (Ours) 95.6 78.2

Table 24: Comparison of full-data training and B-PAS on loss, perplexity, training time, and pruning
statistics for GPT2-large.

Method Loss Perplexity Avg. Epoch Time (s) Total Time (s) Pruned Batch (%) DSI (%)

Full Data0.2207  1.25 5359.88 54420.13 - -
B-PAS 0.2201 1.25 5039.11 51211.29 23.00 6

Furthermore, to assess whether permanent pruning introduces class imbalance, we compared the
class distribution of the dataset before training and after 100 epochs of B-PAS. As shown in Table [26]
the proportions remain effectively unchanged, with all deviations within 0.1%. This stability occurs
because B-PAS removes entire batches, and each batch contains a naturally mixed set of classes due to
the initial random shuffling. Consequently, pruning at the batch level does not preferentially remove
any particular class. Combined with the difficulty analysis, these results demonstrate that B-PAS
does not introduce class bias and does not prune based on sample easiness. Instead, pruning is driven
solely by the activation-stability criterion, ensuring that the retained dataset remains representative of
the original distribution with respect to both class balance and example difficulty.

A.4 MORE ABLATION STUDIES

Extended Impact Analysis of Normalization.

Across normalization schemes in Table pruning thresholds, and

architectures, the results consistently show that B-PAS remains ef- Typle 27: Effect of differ-
fective even when normalization is absent, as long as the ¢ schedule et normalization strategies on
is calibrated to the activation dynamics of the model. On CIFAR-10  pSJ and accuracy.

with ResNet-18, BatchNorm yields the smoothest activation tra-
jectories and therefore the highest data savings (25.06% DSI), but
LayerNorm alone still enables meaningful pruning (13.2% DSI)
with strong accuracy (93.99%). In contrast, removing normalization ~Layer 13.293.99
entirely severely destabilizes activation variance, leading to only 2% Layer+Batch 21.9°94.97
DSI and a substantial accuracy drop, which aligns with the known 1;2&% 2?8 6 gggg
behavior of unnormalized ResNets. . '

The d-range ablation further confirms this trend in Table[29] Without
BatchNorm, larger thresholds (e.g., §; = 5 x 1072, §, = 10~3) are required to counteract noisier

Normalizer DSI (%)Acc (%)
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Table 25: Comparison of average difficulty metrics between pruned and kept batches. Pruned batches
exhibit lower confidence and higher misclassification rates, indicating they are not disproportionately
composed of “easy” examples.

Metric Pruned Mean Kept Mean
Confidence 0.60 0.65
Misclassification Rate 0.40 0.35

Table 26: Class distribution before training and after 100 epochs of B-PAS. The differences are within
+0.1%, indicating no class imbalance introduced by pruning.

Class (%) plane car bird cat deer dog frog horse ship truck

Initial 10.0010.0010.0010.0010.0010.0010.0010.0010.0010.00
After 100 Epochs 10.0510.01 9.99 10.0410.08 9.91 9.92 9.91 10.0510.04

activation dynamics, enabling 19.72% pruning at the cost of accuracy. More conservative thresholds
(e.g., 65 = 1075, 6, = 5 x 107°) yield minimal pruning (2%), reflecting the higher instability of
unnormalized features. When BatchNorm is restored, the same thresholds (107 to 5 x 10~°) enable
substantially higher DSI (25.06%) with top performance (95.60%), demonstrating that stable feature
statistics directly expand the “prunable” region detected by B-PAS.

Finally, Table @] shows experiments on LeNet-5, a normalization-
free architecture. It shows that B-PAS is not dependent on normal-  Typle 28: Comparison of Full
ization layers. With a tuned § schedule (55 = 107%, d. = 107°), the  Daga training and B-PAS on
method prunes 31% of the data and maintains accuracy within 0.5%  CIFAR-10 (LeNet-5).

of the baseline. This confirms that B-PAS is compatible with models

lacking normalization, but the threshold schedule must reflect the Method DSI (%)Acc (%)
architecture’s intrinsic activation stability regime.

Full Dat - 71.0
Effect of Batch Size. The batch size ablation in Table [30] shows Bl_lPASa a 31.07 705

that DSI increases consistently as batch size grows, reflecting the
fact that larger batches yield smoother and more stable activation
trajectories across epochs, which allows B-PAS to prune earlier and
more aggressively. Accuracy remains nearly unchanged across all settings, indicating that the method
is robust to batch-size variation and does not introduce batch-size-dependent bias. Although larger
batches improve the magnitude of achievable data savings, the core behavior of activation stabilization
and accuracy preservation remains consistent, demonstrating that B-PAS functions reliably under
standard training configurations.

Different Approaches to Quantify Activation Stability. The ab-
lation in Table [31] compares several alternative activation stability Taple 30: Effect of batch
metrics. Kurtosis yields moderate pruning but remains highly sen- jze on pruning effectiveness
sitive to early-epoch fluctuations, resulting in conservative DSI. En-  and accuracy on CIFAR-10
tropy exhibits the opposite behavior: its larger dynamic range causes (ResNet-18).

overly aggressive pruning, leading to substantial accuracy degrada-

tion. Using the maximum standard deviation amplifies layer-wise .

noise and I%roduces unstable pruning behavior Witrl)l limitedysavings. Batch SizeDSI (%) Acc (%)

In contrast, the proposed mean standard deviation provides a stable 32 20.25  94.86
and well-behaved signal, achieving a balanced trade-off between 64 2326  94.93
pruning strength and accuracy. These results indicate that mean 128 25.06  95.60
standard deviation is the most reliable activation stability quantifier 256 2697 95.10

among the tested alternatives.

A.5 VISUALIZATIONS

Fi gureillustrates the evolution of mean standard deviation changes (A X) across epochs for selected
batches for CIFAR-10 with ResNet-18. The change is initially large but decreases steadily, eventually
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Table 29: Effect of pruning thresholds and BatchNorm on B-PAS.

O, d. BatchNormDSI (%) Accuracy (%)
5% 107° 1073 without BN 19.72 89.87
10-6 5 x 107° without BN  2.00 90.39

10-¢ 5x 1075 withBN  25.06 95.60

Table 31: Comparison of different activation stability quantification for pruning.

QuantificationDSI (%) Acc (%)

kurtosis 2222 95.00
entropy 74.89  89.64
max std 13.45 95.41
mean std 25.06 95.60

saturating as training progresses. Once the change falls below the threshold, the corresponding
batches are pruned. Figure [6]reports the number of batches pruned per epoch. Pruning does not occur
in early epochs, when activation changes remain high, but becomes increasingly aggressive in later
stages as changes stabilize.

Additionally, Figure [7] and [§] shows the relationship between threshold growth and the number of
remaining batches per epoch (CIFAR-10, ResNet-18). As training progresses, the threshold value
becomes larger resulting into more batch pruning.
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Figure 5: Evolution of mean standard deviation (AX) for representative batches across epochs.
Large initial fluctuations gradually saturate, and once below the pruning threshold, the corresponding
batches are pruned.

A.6 LLM USAGE

In this research, large language models (LLMs) have been utilized to assist in verifying grammatical

correctness. All contents were developed and verified by the authors.

21



Under review as a conference paper at ICLR 2026
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Figure 6: Number of batches pruned per epoch. No pruning occurs in early epochs, while pruning
accelerates in later epochs as more batches stabilize, leading to substantial reductions in training cost.
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Figure 7: Exponential Threshold Evolution Over Epochs.
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Figure 8: Remaining Batches per Epoch
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