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ABSTRACT

Training deep neural networks remains costly in terms of data, time, and energy,
limiting their deployment in large-scale and resource-constrained settings. To
address this, we propose Batch Pruning by Activation Stability (B-PAS), a dynamic
plug-in strategy that accelerates training by adaptively removing data as batches
that contribute less to learning. B-PAS monitors the stability of activation feature
maps across epochs and prunes batches whose activation variance shows minimal
change, indicating diminishing learning utility. Applied to ResNet-18, ResNet-
50, and the Convolutional vision Transformer (CvT) on CIFAR-10, CIFAR-100,
SVHN, and ImageNet-1K, B-PAS reduces training batch usage by up to 57% with
no loss in accuracy, and by 47% while slightly improving accuracy. Moreover,
it achieves as far as 61% savings in GPU node-hours, outperforming prior state-
of-the-art pruning methods with up to 29% higher data savings and 21% greater
GPU node-hours savings. These results highlight activation stability as a powerful
internal signal for efficient training by removing batches, offering a practical and
sustainable path toward data and energy-efficient deep learning.

1 INTRODUCTION

Deep learning has emerged as a powerful paradigm for solving complex tasks across a variety of
domains. These models, while highly effective, are inherently resource and time-intensive, frequently
consuming significant GPU hours and memory bandwidth during both training and inference phases.
They utilize large amounts of computation even on redundant or less informative data, leading to
inefficiencies in resource-constrained environments. Among deep learning models, Convolutional
Neural Networks (CNNs) have achieved remarkable success in a wide range of computer vision tasks,
including image classification, object detection, and segmentation (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016; 2017; Law & Deng, 2018). However, these performance gains
often come at the cost of increased computational demands. State-of-the-art CNN architectures
typically require large-scale datasets such as ImageNet (Krizhevsky et al., 2012) for effective training
and involve millions of parameters, making them expensive to train and deploy. This poses a
significant barrier for practitioners with limited computational resources. Reducing training costs
without sacrificing performance remains a longstanding challenge in deep learning.

A straightforward approach to address this challenge is to reduce the amount of training data.
Techniques such as dataset distillation (Nguyen et al., 2021; Zhao & Bilen, 2023; Wang et al., 2022)
and coreset selection (Har-Peled & Mazumdar, 2004; Park et al., 2022; Xia et al., 2022) aim to
synthesize or select a compact, informative subset of the original dataset. While effective in reducing
data volume, these methods often introduce nontrivial computational overhead and may result in
degraded model performance. Weighted sampling methods (Zhao & Zhang, 2015; Csiba & Richtárik,
2018; Johnson & Guestrin, 2018) improve convergence by increasing the sampling frequency of
informative samples, but their performance is highly sensitive to the choice of model and dataset.

Another line of research focuses on reducing the number of training iterations through data pruning.
Static pruning methods estimate sample utility scores and remove low-utility samples before training
begins (Toneva et al., 2018; Paul et al., 2021), but often incur high preprocessing costs and lack
adaptability during training. Dynamic pruning approaches mitigate these issues by adjusting the
pruning process on the fly. For example, InfoBatch (Qin et al., 2024) dynamically prunes low-utility
samples using a soft-pruning strategy combined with expectation rescaling to maintain unbiased
gradients. Similarly, He et al. (2024) leverages prediction uncertainty and training dynamics to prune
up to 25% of data from large-scale datasets such as ImageNet without sacrificing accuracy. However,
these approaches often rely on complex heuristics.
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Early stopping is a widely used strategy for reducing data usage by terminating training once
performance plateaus (Duvenaud et al., 2016; Mahsereci et al., 2017; Bonet et al., 2021). However,
most existing approaches rely on gradient-based signals that often fail to generalize across modern
optimizers or require carefully tuned hyperparameters and specialized frameworks. More recently,
Ahmad et al. (2024) proposed an early stopping criterion based on the stability of convolutional
activations, highlighting the potential of internal network dynamics as reliable indicators of training
progress. This line of work builds on the broader concept of activation stability, which is closely linked
to the phenomenon of Neural Collapse (Papyan et al., 2020), wherein class-specific representations
become increasingly aligned and activation patterns stabilize as training converges. Together, these
findings suggest that activation stability offers a promising direction for analyzing data utility through
internal model dynamics.

While prior data pruning approaches such as InfoBatch (Qin et al., 2024) rely on per-sample loss
statistics, gradient rescaling, or fixed heuristics, often incurring additional computation or requiring
explicit loss tracking, our work introduces a different perspective: Can the stability of internal
activations serve as a signal for assessing the informativeness of batches during training, thereby
enabling effective and dynamic pruning of redundant batches? We answer this affirmatively by
introducing a lightweight, plug-and-play method that dynamically prunes low-utility batches based on
the stability of activation variances across network layers. Unlike strategies that depend on difficulty
scores, auxiliary models, or manually crafted rules, our approach is non-intrusive, as it operates on
activation statistics already available from the forward pass, thereby introducing negligible overhead.
The pruning is performed on-the-fly during training, without pretraining phases, validation labels,
or static schedules. Our framework continuously monitors the mean standard deviation of flattened
activations across layers for each batch across consecutive epochs and prunes batches if the change
in this statistic is negligible. For the demonstration, applied to convolutional neural networks, this
activation-driven pruning framework reduces redundant data usage across epochs while preserving
training effectiveness and generality, offering a practical and efficient solution that establishes a
foundation for extending stability-based pruning to broader deep learning architectures. Our key
contributions are as follows:

Activation Stability-Guided Dynamic Batch Pruning. We introduce a lightweight, model-internal
pruning strategy, ‘Batch Pruning by Activation Stability’ (B-PAS) that dynamically identifies and
removes low-utility batches during training by leveraging the stability of activation feature maps.
Specifically, we track the mean standard deviation of activations across convolutional layers and
consecutive epochs to assess whether a batch continues to contribute meaningful learning gradients.
Batches exhibiting negligible change in activation variance are deemed redundant and pruned on-the-
fly, without relying on auxiliary networks or handcrafted difficulty metrics. The pruning behavior is
controlled by a tunable threshold hyperparameter δ, enabling adaptability across datasets and model
architectures.

Comprehensive Evaluation on Benchmark Models. We evaluate B-PAS on ResNet-18, ResNet-50,
and CvT (Wu et al., 2021) across CIFAR-10, CIFAR-100 (Krizhevsky et al., a;b), SVHN (Netzer
et al., 2011), and ImageNet-1K (Krizhevsky et al., 2012), with extensive threshold sweeps (45 δ
settings on CIFAR-10 and eight on ImageNet-1K). Results show that B-PAS prunes up to 57% of
training batches without accuracy loss, and up to 47% while slightly improving accuracy, while
reducing computational cost by as much as 61% in GPU node-hours. These findings highlight both
the robustness and tunability of activation stability as a pruning signal, delivering substantial training
efficiency gains across scales and architectures.

Data Savings Index (DSI). We introduce DSI, a new metric that quantifies the cumulative fraction of
training data saved during learning. DSI provides a direct measure of data efficiency, with higher
values indicating greater reductions in training cost and computational resources.

2 BATCH-PRUNING BY ACTIVATION STABILITY (B-PAS)

In this section, we introduce the concept of a plug-in to CNN architectures: Batch Pruning by
Activation Stability (B-PAS), detailing its formulation and adaptation for image applications. Figure 1
illustrates the working mechanism of a conventional CNN (labeled ‘A’) alongside the proposed
plug-in (labeled ‘B’).
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Figure 1: Overview of the proposed Batch Pruning by Activation Stability (B-PAS) plug-in integrated
into a prevalent Convolutional Neural Network (CNN) training pipeline. (A) The conventional
CNN architecture processes input images in batches through convolutional, ReLU activation, and
pooling layers, followed by a fully connected classifier. (B) The B-PAS module monitors the standard
deviation of ReLU-activated convolutional outputs for each batch across epochs. For each epoch,
the standard deviation is recorded per convolutional layer (columns) and aggregated across layers
to compute the mean standard deviation for each batch (rows). These per-batch means are then
compared across consecutive epochs to assess activation stability. If the change (∆X̄) for a batch Bni

falls below a dynamic threshold δ(i), the batch is deemed to have low learning utility and is pruned
from subsequent training. By updating the dataset at the end of each epoch using this feedback,
the process dynamically focuses training on batches that continue to provide meaningful gradient
information, thereby improving efficiency without compromising accuracy.

2.1 ACTIVATION STABILITY

Building on the observation from Neural Collapse (Papyan et al., 2020) that activation patterns
stabilize as training converges, we adopt the idea of (Ahmad et al., 2024), which links data variation
across CNN layers to near-optimal learning capacity. Extending this principle to the batch level, we
observe that as training progresses, certain batches show diminishing changes in activation variance
across consecutive epochs, signaling little additional learning. To capture this effect, we use the
widely adopted Rectified Linear Unit (ReLU) (Agarap, 2018), where the variance of ReLU-activated
outputs provides a meaningful measure of feature stability. When this variance remains nearly
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unchanged across epochs, the corresponding batch is deemed converged, as its contribution to weight
updates has effectively stabilized.

We compute variance after ReLU since it not only introduces non-linearity but also suppresses inactive
neurons, ensuring that variance reflects sparse, meaningful features rather than noisy pre-activation
values. Thus, monitoring the standard deviation of post-ReLU activations provides a reliable estimate
of batch learning utility: once changes become negligible, the batch is pruned. This enables the
model to focus computation on informative batches while discarding redundant ones, improving
efficiency without harming performance.

In Figure 1(A), the ‘Convolution Operations’ module illustrates the ReLU-activated convolutional
feature maps of input images, organized batch-wise across training epochs. At each convolutional
layer, training images are processed in batches denoted by B1, . . . , Bni , where Bni refers to the final
batch in epoch i. For instance, if epoch i contains 400 batches, then Bni = B400, indicating that
the 400th batch is the last batch of that epoch. Each batch consists of multiple images, which are
represented as tensors containing numerical activation values. To quantify activation variability, we
compute the standard deviation of these values by first flattening the output tensors of each ReLU-

activated convolutional layer. The standard deviation is then computed using σ=
√

1
N

∑N
k=1(tk−µ)2,

where tk denotes each individual value from the flattened tensor (for k = 1, . . . , N ), µ is the
mean of these values, N is the total number of values in the flattened tensor, and σ represents the
resulting standard deviation. This computation is performed independently for each batch and each
convolutional layer.

In Figure 1(B), each epoch table (i.e., Epochs i−1, i, and i+1) presents the standard deviation of
the ReLU-activated outputs from the convolutional layers. In each table, rows correspond to data
batches (e.g., B1, . . . , Bni

), and columns represent individual convolutional layers, except the final
column. The last column contains the mean standard deviation for each batch, computed across all
convolutional layers. For example, the row corresponding to batch Bni

includes standard deviations
σ1,ni

, . . . , σl,ni
, where σl,ni

denotes the standard deviation of the output from the l-th convolutional
layer for batch Bni

, and l is the total number of convolutional layers. The mean standard deviation
for the final batch Bni

in epoch i is denoted as X̄i(σ1,ni
, . . . , σl,ni

), indicating the mean standard
deviation across all l convolutional layers.

These mean standard deviations are used to track the variance behavior of each batch over time.
Beginning with epoch one, the mean standard deviation is computed for every batch. From epoch
two onward, the current epoch’s mean is compared against the previous epoch’s mean for each
batch. If the change is negligible, the batch is considered to have converged and may be pruned from
subsequent training epochs. This pruning process continues iteratively for the remaining epochs.

2.2 BATCH PRUNING

The decision to prune a batch is based on the stability of its mean activation standard deviation across
consecutive epochs. As illustrated in Figure 1(B), we consider three epochs: i−1, i, and i+1. If the
absolute difference between these means across consecutive epochs falls below a dynamic threshold
δ(i), the batch is deemed to have converged and is excluded from subsequent training.

To illustrate, consider the standard deviations of batch Bni
across the l convolutional lay-

ers as σ1,ni
, . . . , σl,ni

. The mean standard deviation for this batch at epoch i is denoted by
X̄i(σ1,ni , . . . , σl,ni), and at epoch i−1 by X̄i−1(σ1,ni , . . . , σl,ni). The change in mean standard
deviation/variance for the batch Bni is computed as:

∆X̄ =
∣∣X̄i(σ1,ni , . . . , σl,ni)−X̄i−1(σ1,ni , . . . , σl,ni)

∣∣ ≤ δ(i)

If ∆X̄ for the batch Bni falls below the threshold δ(i), the batch is pruned and excluded from training
in epoch i+1. This criterion is applied to all batches at the end of each epoch. The pruning decisions
update the dataset by retaining only the informative batches, resulting in a reduced set of training
data for the next epoch and a progressively more efficient training process. As training progresses,
the number of retained batches decreases monotonically. Formally, for any epoch i, the number of
batches ni satisfies ni≤ni−1. Because the pruning is dynamic, the composition of the final batch may
change across epochs. For instance, for epoch i, let the last batch be Bni

and the second last Bni
−1;

similarly, in epoch i−1, they are Bni−1
and Bni−1

−1. Without pruning, these batches are identical,
whereas pruning one batch in epoch i−1 shifts the indexing so that in epoch i, Bni =Bni−1−1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 DYNAMIC THRESHOLD FOR PRUNING
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Figure 2: Pruning dynamics under different δ settings for
ResNet-50 on ImageNet-1K (200 epochs). Lower thresholds
(e.g., δ ∈ [10−6, 5×10−5]) lead to conservative pruning,
retaining most batches until late epochs, while higher thresh-
olds (e.g., δ ∈ [5×10−5, 5×10−4]) cause aggressive pruning
and premature training termination. The dynamic schedule
(δs = 5×10−6, δe = 5×10−5) provides a balanced trajectory,
steadily reducing data.

To determine the negligible difference
between activation variances across
epochs, we introduce a tolerance hy-
perparameter δ to formalize pruning.
Instead of requiring exact invariance,
δ captures variance saturation with a
small non-zero margin.

We empirically analyze the effect of
different δ values on pruning dynam-
ics. Very small δ leads to overly con-
servative pruning, discarding batches
only when variance changes are nearly
imperceptible, thus retaining most
batches. Conversely, large δ induces
aggressive pruning, prematurely re-
moving informative batches and risk-
ing early training collapse.

To balance this trade-off, we adopt
a dynamic schedule: δ(i) = δs ·
eαi, α = 1

I ln
(

δe
δs

)
, where δs and

δe are the initial and final threshold
values, i is the current epoch, and I
is the total number of epochs. This
schedule is conservative in early train-
ing, when features are broadly learned, and more aggressive in later stages, when learning stabilizes.
At epoch i, batches with ∆X̄ < δ(i) are pruned.
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Figure 3: Empirical analysis of B-PAS on CIFAR-
10 with ResNet-18 across 45 δ settings. Smaller
thresholds have less data savings with higher ac-
curacy, larger thresholds save more data at the
cost of accuracy, and intermediate values (e.g.,
δ ∈ [10−6, 5× 10−5]) provide the best trade-off.

Figure 2 illustrates these dynamics using eight
sets of δ values on ImageNet-1K with ResNet-
50. The horizontal line shows no pruning, while
the sharp drop at epoch 2 depicts extreme aggres-
siveness (all batches removed). Lower ranges
(e.g., δ ∈ [10−6, 5×10−5]) yield delayed, con-
servative pruning, whereas higher ranges (e.g.,
δ ∈ [5×10−5, 5×10−4]) prune aggressively and
often terminate training early. A balanced con-
figuration of δs = 5×10−6 and δe = 5×10−5

achieves steady pruning without sacrificing sta-
bility. Nonetheless, δ remains a tunable hyper-
parameter, adaptable to dataset complexity, ar-
chitecture, and resource budgets.

3 EXPERIMENT

We evaluate B-PAS as a plug-in module on
ResNet-18, ResNet-50, and the Convolutional
vision Transformer (CvT) to assess robustness
and generality. In the networks, we add Batch
Normalization layer, which normalizes per-
batch variance and has a strong impact on prun-
ing dynamics. Experiments span CIFAR-10,
CIFAR-100, SVHN (32 × 32), and ImageNet-
1K (∼1.3M images, 224× 224). Unless specified, we use δ ∈ [10−6, 5× 10−5] for CIFAR-10/100
and SVHN, and δ ∈ [5× 10−6, 5× 10−5] for ImageNet-1K, corresponding to empirically validated
balanced pruning regimes. We report validation accuracy and GPU node-hours, but since hardware
and system factors confound GPU time, we also introduce the Data Savings Index (DSI), which
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quantifies skipped data across epochs and batches as a continuous measure of efficiency. To ensure
well-defined variance tracking, batches are fixed once at initialization (rather than regenerated each
epoch) while intra-batch shuffling is applied to preserve stochasticity and avoid overfitting. Full
experimental details are provided in Appendix A.1.
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Figure 4: Empirical analysis of B-PAS on
ImageNet-1K with ResNet-50 across eight δ set-
tings. Smaller thresholds retain most data with
higher accuracy but lower savings, larger thresh-
olds prune aggressively and harm accuracy, while
intermediate values (e.g., δ ∈ [5×10−6, 5×10−5])
achieve the best trade-off.

GPU node-hours. It as a measure of computa-
tional cost, defined as GPU node-hours = g×h
where g is the number of GPUs used during
training and h is the total training time (in hours).
The percentage of node-hours saved is reported
relative to the full dataset baseline.

Data Savings Index (DSI). To directly quan-
tify the reduction in training data usage, we in-
troduce the Data Savings Index: DSI = 1 −∑es

i=1 ni

e0·n0
, where ni is the number of batches

retained in epoch i, n0 is the total number of
batches before training begins, es is the epoch
at which training stops, and e0 is the scheduled
number of epochs in the absence of pruning or
early stopping (es ≤ e0). The DSI value lies
in [0, 1], with higher values indicating greater
savings in data usage. For example, if a model is
scheduled to train for 5 epochs with 200 batches
per epoch, but training stops at epoch 3 after
processing 200, 190, and 180 batches, the DSI
is 1 − 200+190+180

5×200 = 0.43, meaning that 43%
of the potential training data is saved.

3.1 RESULT ANALYSIS

Empirical Analysis on CIFAR-10. We first evaluate B-PAS using ResNet-18 on CIFAR-10 over 200
epochs across forty-five threshold (δ) settings. As shown in Figure 3, we define five groups of starting
thresholds (δs), each paired with multiple end thresholds (δe). Specifically, for δs = 5×10−5 and δs =
10−5, we consider three and six values of δe, respectively, while for the remaining groups we test 12
values. The δe values are {10−3, 5×10−4, 10−4, 9×10−5, 8×10−5, 7×10−5, 6×10−5, 5×10−5, 4×
10−5, 3× 10−5, 2× 10−5, 10−5}. For the δs = 5× 10−5 group, only δe = {10−3, 5× 10−4, 10−4}
are included; for δs = 10−5, we use δe = {10−3, 5× 10−4, 10−4, 5× 10−5, 4× 10−5, 3× 10−5}.

The results reveal a clear pattern in accuracy and DSI percentage. Larger threshold groups (e.g.,
δs = 5×10−5) yield very high data savings but also sacrifice accuracy. Conversely, smaller threshold
groups (e.g., δs = 10−7) retain nearly all data, resulting in high accuracy but reduced pruning benefits.
Values in intermediate groups (e.g., δs = 10−6) provide a balanced trade-off. In particular, the 29th
setting with δ ∈ [10−6, 5× 10−5] achieves the highest accuracy while saving data by 25%. Thus, for
CIFAR-10 and similar 32 × 32 datasets, δs = 10−6 and δe = 5 × 10−5 represent a strong default
configuration, as further validated in Table 3.

Empirical Analysis on ImageNet-1K. Guided by the CIFAR-10 analysis, we evaluate B-PAS with
ResNet-50 on ImageNet-1K over 200 epochs across eight threshold settings. As illustrated in Figure 4,
we observe the same trend: smaller thresholds preserve accuracy but maintain low DSI and GPU
node-hours savings, while larger thresholds lead to aggressive pruning and accuracy degradation. For
example, δ ∈ [10−6, 5× 10−5] yields the highest accuracy but also lowest data and GPU node-hours
savings. In contrast, δ ∈ [5× 10−5, 5× 10−4] causes early and aggressive pruning, often terminating
training around epoch 100, which results in very low accuracy. This behavior aligns with the pruning
dynamics shown in Figure 2: smaller thresholds delay pruning, retaining most batches until late
epochs, while larger thresholds trigger sharp drops of batches earlier in training. The most balanced
results are obtained for δ ∈ [5 × 10−6, 5 × 10−5], as supported by both Figure 2 and Figure 4.
This setting achieves near-maximum accuracy with DSI over 45% and saved GPU node-hours by
48%, indicating efficient pruning without compromising performance. The detailed tabular form
of these analysis is provided in Appendix A.3. An additional observation is that DSI and GPU
Node-hour savings follow the same trend across experiments, confirming that data usage is tightly
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coupled to training cost. Unlike node-hours, however, DSI provides a more comprehensive and
system independent measure by capturing saved data across epochs.

Comparison with SOTA Method. Table 1: Comparison of B-PAS with InfoBatch
and random pruning on CIFAR-10/100 using
ResNet-18/50. B-PAS matches or exceeds Info-
Batch across different pruning ratios while main-
taining accuracy as the full dataset, showing its
competitiveness on small-scale datasets.
Approach CIFAR-10 CIFAR-100

in % ⇒ DSI Acc DSI Acc

ResNet-18 0 95.60±0.2 0 78.20±0.3
+Random 25 94.60±0.3 24 75.36±0.4
+InfoBatch (30%) 22 95.60±0.1 19 78.20±0.1
+InfoBatch (50%) 37 95.10±0.3 32 78.10±0.1
+InfoBatch (70%) 53 94.70±0.4 47 76.50±0.4
+B-PAS 25 95.60±0.1 24 78.20±0.1
ResNet-50 0 95.66±0.1 0 80.60±0.5
+Random 33 94.50±0.3 30 75.77±0.4
+InfoBatch (30%) 21 95.66±0.1 18 80.60±0.1
+InfoBatch (50%) 36 95.20±0.3 32 80.05±0.1
+InfoBatch (70%) 52 94.99±0.4 45 79.37±0.4
+B-PAS 33 95.66±0.1 30 80.60±0.5

We compare B-PAS with the state-of-the-art prun-
ing approach InfoBatch (Qin et al., 2024) on
CIFAR-10, CIFAR-100, and ImageNet-1K (Ta-
bles 1 and 2). InfoBatch has previously demon-
strated superiority over 14 static and three dy-
namic pruning baselines, establishing it as a strong
reference point. On CIFAR-10 and CIFAR-100
(Table 1), B-PAS achieves accuracy comparable
to the full dataset and InfoBatch across multiple
pruning ratios. For example, in CIFAR-100 with
ResNet-50, B-PAS saves 30% of the data while
maintaining 80.6% accuracy, closely matching In-
foBatch at the 30% pruning ratio (DSI = 18%).
To further assess pruning behavior, we introduce
a random pruning baseline: we track the num-
ber of batches flagged by activation stability but
prune the same number of batches chosen at ran-
dom. Unlike B-PAS, random pruning consistently
degrades accuracy, underscoring that activation
stability identifies non-informative batches rather
than simply reducing training data. These results
demonstrate that B-PAS is competitive on small-scale datasets, with modest but reliable savings due to
the limited learning utility in low-resolution tasks. In contrast, the advantage of B-PAS becomes more
pronounced on ImageNet-1K. As shown in Table 2, InfoBatch achieves 28% data savings and 40%
GPU node-hour reduction while maintaining full dataset baseline accuracy (78.07%). By comparison,
B-PAS delivers substantially larger gains: with δ ∈ [10−5, 10−4], it saves 57% of the data and 61% of
node-hours at the same accuracy, and with more conservative thresholds (δ ∈ [5× 10−6, 5× 10−5]),
it further improves accuracy to 78.43% while still achieving 47% data savings and 48% node-hour
reduction. These results highlight that activation stability–driven pruning not only matches InfoBatch
in accuracy preservation but also provides significantly greater efficiency on large-scale training.

Table 2: Comparison of B-PAS and InfoBatch on ImageNet-
1K with ResNet-50. B-PAS achieves stronger efficiency,
saving data usage by 57% and node-hours to 61% while
preserving accuracy as the full dataset. More conservative δ
values yield further accuracy gains (78.43%) with moderate
savings, highlighting the scalability of activation stability
signals in large-scale training.
Approach ImageNet-1K

in % ⇒ Saved hrs DSI Acc

ResNet-50 0 0 78.07±0.1
+InfoBatch (40%) 40 28 78.07±0.1
+B-PAS (δ∈ [10−5, 10−4]) 61 57 78.07±0.1
+B-PAS (δ∈ [5×10−6, 5×10−5]) 48 47 78.43±0.1

This demonstrates that activation stabil-
ity provides a scalable pruning signal in
large-scale training, where the learning
utility of data is more significant. Fi-
nally, just as InfoBatch evaluates multi-
ple pruning ratios (30%, 50%, 70%), B-
PAS naturally supports different prun-
ing regimes through the choice of δ
values. Smaller δ ranges yield conser-
vative pruning with lower DSI, while
larger values trigger more aggressive
pruning and faster convergence. This
flexibility allows B-PAS to adapt prun-
ing aggressiveness without requiring
handcrafted schedules or explicit loss
tracking, underscoring its practical utility in both small- and large-scale settings.

Cross-Architecture and Dataset Robustness. Table 3 evaluates the generalization of B-PAS across
diverse architectures (ResNet-18, ResNet-50, and CvT) and datasets (CIFAR-10, CIFAR-100, SVHN,
and ImageNet-1K). Several consistent trends emerge.

First, across CNN architectures, B-PAS preserves full dataset baseline accuracy while significantly
reducing data usage and training cost. For example, on ImageNet-1K with ResNet-50, B-PAS achieves
78.43% accuracy (slightly higher than full dataset) while saving data usage by 47% and node-hours
by 48%. Similar savings are observed on smaller datasets, with up to 33% data usage savings
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on CIFAR-10 and 33% node-hours reduction on SVHN. These results demonstrate that activation
stability provides a reliable pruning signal across scales and architectures within the CNN family.

Table 3: Cross-architecture and dataset robustness of B-PAS on CIFAR-
10/100, SVHN, and ImageNet-1K with ResNet-18/50 and CvT. B-PAS
preserves accuracy across models while reducing data usage and GPU
node-hours.

CIFAR-10 CIFAR-100 SVHN ImageNet-1K

R-18 R-50 R-18 R-50 R-18 R-50 R-18 R-50 CvT

Full Dataset 95.60 95.66 78.2 80.6 95.90 96.27 70.05 78.07 79.65
B-PAS 95.60 95.66 78.2 80.6 95.97 96.27 71.5 78.43 79.10

DSI(%) 25 33 24 30 19 30 37 47 35

Saved hrs(%) 23 29 22 29 18 33 61 48 35

Extending beyond CNNs,
we evaluate B-PAS on CvT-
13. Pruning is performed
by tracking stage-wise ac-
tivations: after each CvT
stage, token sequences are
projected back to spatial for-
mat to compute variance
on the multi-scale feature
maps. Using a more aggres-
sive threshold range (δs =
10−4, δe = 10−3), B-
PAS achieves a substantially
higher DSI of 35% with only a modest accuracy drop (79.10% vs. 79.65%). This behavior reflects
the slower and noisier activation dynamics in transformers, where stability emerges later than in
CNNs. Because our CvT runs use 200 epochs, shorter than the 300+ epochs typically required for
full convergence on ImageNet-1K, the delayed stabilization naturally limits pruning under milder
thresholds. These results indicate that activation stability in CvT is slower to develop, and both longer
training and more aggressive δ schedules unlock significantly stronger pruning efficiency.

3.2 ABLATION STUDIES
To better understand the behavior of B-PAS, we perform controlled ablation studies across learning
rates, normalization layers, training epochs, pruning granularity, and optimizers. These studies
highlight both the robustness of the method and the factors influencing its efficiency.

Effect of Learning Rate. Table 4 shows the impact of different learning rates on ImageNet-1K
with ResNet-50. For 256 batch size, we consider learning rates of 0.2, 0.01, and 0.1. While all
settings achieve comparable DSI (45%–47%), accuracy varies significantly: 74.29% at LR = 0.01,
77.27% at LR = 0.2, and 78.43% at LR = 0.1. These results suggest that excessively small learning
rates hinder convergence, while overly large ones reduce generalization. Importantly, the pruning
dynamics of B-PAS remain stable across learning rates, showing that activation stability is largely
agnostic to optimizer step size.
Table 4: B-PAS under dif-
ferent learning rates (LR).

LR DSI(%)Acc(%)

0.2 45 77.27
0.01 46 74.29
0.1 47 78.43

Table 5: Effect of
Batch Normalization
on B-PAS.

DSI(%)Acc(%)

-BN 19.72 89.87
+BN 25 95.60

Table 6: Effect of train-
ing epochs on B-PAS
on ImageNet-1k.
EpochsDSI(%)Acc(%)

90 12 78.07
200 47 78.43

Table 7: B-PAS
pruning granular-
ity.
PruningAcc(%)

Sample 70.87
Batch 78.43

Impact of Batch Normalization. Table 5 compares CIFAR-10 results with ResNet-18 with and
without Batch Normalization (BN). Since BN normalizes feature statistics per batch, it strongly
affects B-PAS. Without BN, activation trajectories are unstable, requiring more aggressive thresholds
(e.g., δs = 5 × 10−5, δe = 10−3) to obtain reasonable DSI (19.72%); with the default δ values,
pruning is minimal (DSI = 2%). Also, removing BN results in an accuracy drop. In contrast, with
BN, the default thresholds yield effective pruning (DSI = 25%) while improving accuracy to 95.60%.
These results show that BN not only stabilizes activations but also enhances the discriminative signal
used by B-PAS, enabling more reliable identification of redundant batches. More analysis is provided
in Appendix A.4.

Effect of Training Epochs. Table 6 compares ImageNet-1K with ResNet-50 performance at 90 and
200 epochs. With 90 epochs, pruning remains limited (DSI = 12%) due to insufficient stabilization,
whereas at 200 epochs DSI rises to 47% with improved accuracy (78.43%). This highlights that
longer training naturally allows greater pruning, where data savings become more critical and B-PAS
proves most effective.

Pruning Granularity: Batch vs. Sample Level. Table 7 compares pruning at the sample and
batch levels for ImageNet-1K on ResNet-50. For sample-level pruning, the accuracy reduces to
70.87%, compared to 78.43% for batch-level pruning. This discrepancy arises because sample-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

level pruning may disproportionately eliminate certain classes, leading to class imbalance and
degraded generalization. In contrast, batch-level pruning preserves class diversity while still removing
redundant information, confirming its superiority as the granularity choice for B-PAS.

Table 8: B-PAS preserves accu-
racy while achieving similar DSI
across optimizers on CIFAR-10 with
ResNet-18, demonstrating robustness
to optimization dynamics.

SGD AdamAdaGrad

Full Dataset95.60 93.36 92.93
B-PAS 95.60 93.34 92.93

DSI (%) 25 24 22

Optimizer Robustness. Finally, Table 8 explores differ-
ent optimizers on CIFAR-10 with ResNet-18. Across SGD,
Adam, and AdaGrad (Ruder, 2016), B-PAS maintains accu-
racy identical to baseline training, with DSI ranging from
22% to 25%. These results highlight that the pruning crite-
rion is robust to different optimization dynamics, even when
a second-order adaptive optimizer (Adam) alters activation
trajectories. This reinforces that B-PAS generalizes across
diverse optimization regimes without requiring re-tuning.

4 RELATED WORK
This work is related to three major research directions in efficient deep learning: static data pruning,
dynamic data pruning, and dataset distillation. Static pruning methods select training subsets prior
to training using criteria like geometric diversity (Sener & Savarese, 2017; Agarwal et al., 2020),
uncertainty (Coleman et al., 2019; Gal et al., 2017), or learning difficulty (Toneva et al., 2018; Paul
et al., 2021). Gradient-based approaches (e.g., GraNd, EL2N (Paul et al., 2021)) and decision-
boundary methods like DeepFool (Ducoffe & Precioso, 2018) assess sample importance more directly.
Other strategies include bilevel optimization (Killamsetty et al., 2021), submodular selection (Iyer
et al., 2021), ensemble heuristics (Xia et al., 2022), and diversity-aware methods (Welling, 2009a;
Zheng et al., 2023). These techniques often require full dataset access and heavy pre-computation,
limiting scalability. Dynamic pruning eliminates low-utility samples during training via online
signals. Bandit-based methods (Raju et al., 2021), soft pruning with gradient rescaling (Infobatch Qin
et al. (2024)), and uncertainty-driven pruning (He et al., 2024) have shown success but often involve
complex heuristics and tuning. Dataset distillation synthesizes compact training sets via gradient
(Zhao & Bilen, 2023; Liu et al., 2023; Cui et al., 2023; Yang et al., 2023), distribution (Wang et al.,
2022; Sajedi et al., 2023), or trajectory matching (Cazenavette et al., 2022; Du et al., 2023; Guo et al.,
2024), yet faces challenges in scaling to high-resolution data and large models.

5 DISCUSSION AND CONCLUSION
Recent work, such as InfoBatch (Qin et al., 2024) advances data pruning through temporary, sample-
level pruning with gradient rescaling to preserve unbiased gradient estimates. While effective, this
approach requires maintaining per-sample loss statistics and revisiting all data in subsequent epochs,
limiting efficiency in large-scale training. In contrast, our proposed B-PAS performs permanent,
batch-level pruning based on activation stability, eliminating the need for gradient rescaling or
repeated access to discarded data. This design yields substantial reductions in data usage, training
time, and GPU node-hours while leveraging internal activation dynamics rather than loss signals.
A natural concern with data pruning is the potential introduction of bias by disproportionately
discarding informative samples or underrepresented classes. B-PAS prunes at the batch level using
activation stability, which is agnostic to class labels and per-sample loss statistics. Pruning decisions
are thus guided purely by model-internal dynamics rather than sample difficulty or distribution.
Empirically, across CIFAR-10/100, SVHN, and ImageNet-1K, accuracy is consistently preserved,
and in some cases improved—relative to full-dataset training, confirming that B-PAS does not
introduce measurable prediction bias. Finally, our empirical analysis of pruning dynamics reveals
that batches progressively lose learning utility over epochs as their activation variance stabilizes
(Visualization in Appendix A.5). By discarding such batches, B-PAS avoids redundant computation
while focusing training on informative data. If this stabilization did not reflect diminishing utility,
pruning would have harmed performance; instead, results demonstrate that activation stability is
a robust signal for scalable, efficient, and unbiased pruning. We conclude that B-PAS provides
a practical, plug-and-play approach to data-efficient deep learning, with particular promise for
large-scale training where efficiency gains are most impactful.

While most of our experiments focus on CNNs, we also evaluate B-PAS on CvT and in the text domain
with GPT-2 Large (in Appendix A.3), demonstrating its broader applicability beyond convolutional
models. It is acknowledged that a current limitation is the use of empirically chosen threshold
schedules; developing data-driven, adaptive thresholding mechanisms is an important direction for
future work.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 MODEL SPECIFICATIONS

ResNet-18 and ResNet-50. For CNN backbones, we adopt standard ResNet architectures with
residual connections following (He et al., 2016). ResNet-18 is constructed using BasicBlock units
(expansion factor 1) with layer configuration [2, 2, 2, 2], while ResNet-50 uses Bottleneck units
(expansion factor 4) with configuration [3, 4, 6, 3]. Both models begin with a 7× 7 convolution and
max pooling, followed by four residual stages, global average pooling, dropout (0.2), and a fully
connected classifier. Batch Normalization is applied after each convolution, and ReLU serves as
the activation. For activation tracking, we monitor outputs after each of the four residual stages
(layer1–4).

Convolutional vision Transformer (CvT). We also evaluate B-PAS on CvT-13 (Wu et al., 2021),
which integrates convolutional projections within transformer blocks. CvT-13 consists of three stages
(Table 9): (i) a 64-dim embedding with depth 1 and 1 attention head; (ii) a 192-dim embedding
with depth 2 and 3 heads; and (iii) a 384-dim embedding with depth 10 and 6 heads. Each stage
applies convolutional embedding, convolutional multi-head self-attention with depthwise projections,
and MLP blocks with GELU activation. Activations are tracked at the stage outputs, where token
sequences are reshaped back into spatial (B,C,H,W ) format for variance computation. The network
ends with layer normalization, global average pooling over tokens, and a linear classifier.

Table 9: Model specifications for architectures used in our experiments.

Model Building Block Depth Embedding / Channels

ResNet-18 BasicBlock [2, 2, 2, 2] [64, 128, 256, 512]
ResNet-50 Bottleneck [3, 4, 6, 3][256, 512, 1024, 2048]
CvT-13 Conv-Attn + MLP [1, 2, 10] [64, 192, 384]

A.1.2 DATASET SPECIFICATIONS

Table 10 provides the number of training and validation samples used for each dataset. CIFAR-10
and CIFAR-100 each include 50,000 training and 10,000 validation images. SVHN contains a
larger validation set relative to its training size, with 73,257 training and 26,032 validation samples.
ImageNet-1K, being significantly larger, includes over one million training images and 50,300
validation samples, reflecting its role as a large-scale benchmark. All images are augmented with
commonly adopted transformations, i.e., normalization, random crop, and horizontal flip if not stated
otherwise.

Table 10: Dataset Splits for Training and Validation

Dataset Training SamplesValidation Samples

CIFAR10 50,000 10,000
CIFAR100 50,000 10,000
SVHN 73,257 26,032
ImageNet-1K 1,230,867 50,300

A.1.3 HYPERPARAMETERS

Table 11 summarizes the hyperparameters used across datasets and architectures. Unless otherwise
noted, all models are trained with SGD optimizer, using momentum of 0.9. For ImageNet with
ResNets, we adopt MultiStepLR scheduling, while other CNN datasets use cosine annealing. CvT
models are trained with AdamW. For ImageNet training, we use 4 GPUs in parallel; hence both the
batch size and learning rate are scaled linearly by the number of GPUs (i.e., 256× 4 total batch size
and base learning rate 0.1× 4 = 0.4).
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Table 11: Training hyperparameters across datasets and architectures.

Dataset / Model EpochsBatch Size LR Weight Decay Scheduler

CIFAR-10 (ResNets) 200 128 0.05 5× 10−4 CosineAnnealing
CIFAR-100 (ResNets) 200 128 0.10 5× 10−4 CosineAnnealing
SVHN (ResNets) 200 128 0.10 5× 10−4 CosineAnnealing
ImageNet (ResNets) 200 256×4 0.40 1× 10−4 MultiStepLR
ImageNet (CvT) 200 128×4 1× 10−3 0.05 CosineAnnealing

A.1.4 HARDWARE SPECIFICATIONS

Table 12 and 13 summarizes the computational setups. ImageNet experiments were performed on a
high-performance cluster with dual 32-core Intel Xeon Platinum CPUs and 4× A100 GPUs connected
via NVLink. CIFAR-10/100 and SVHN experiments were conducted on a local workstation with an
AMD Ryzen 9 CPU and a single Titan RTX GPU.

Table 12: Hardware specifications for CIFAR-10/100 and SVHN experiments.

ComponentSpecification

CPU AMD Ryzen 9 7900X, 12 cores / 24 threads, 4.7 GHz base
GPU NVIDIA Titan RTX, 24 GB GDDR6
RAM Corsair Vengeance, 128 GB DDR5, 6000 MHz

Table 13: Hardware specifications for ImageNet experiments.

ComponentSpecification

CPU Dual Intel Xeon Platinum 8358 (Ice Lake), 32 cores each
GPU 4 × NVIDIA A100 (Ampere) with NVLink interconnect
RAM 512 GB

A.1.5 SOFTWARE SPECIFICATIONS

Table 14: Software Specifications

Component Details

Python Version3.8.18
Libraries torch, torchvision, matplotlib, numpy,

scikit-learn, seaborn, pandas, pillow (PIL)
Platform Jupyter Notebook

Table 14 outlines the software environment used
for all experiments. Python 3.8.18 served as
the core programming language. Key libraries
included PyTorch and Torchvision for model
development, along with Matplotlib, NumPy,
Scikit-learn, Seaborn, Pandas, and Pillow (PIL)
for data handling and visualization. CIFAR-
10/100 and SVHN experiments were conducted
in Jupyter Notebook, facilitating interactive de-
velopment and reproducibility. Additionally, Im-
ageNet experiments were conducted as python scripts.

A.2 MORE RELATED WORK

Bartoldson et al. (2020) analyze weight pruning by defining stability as the accuracy drop after
removing parameters, a diagnostic notion operating entirely in parameter space while keeping the
data fixed. In contrast, B-PAS functions in data space, tracking temporal activation variance across
epochs as an online signal for permanently pruning batches, a direction unexplored in prior pruning
work. Similarly, Ganguli & Chong (2024) use activation frequency to prune neurons in small
fully connected networks, focusing on static model sparsification rather than data reduction. While
activation patterns have been used to assess weight importance or characterize network behavior, no
prior method leverages activation stability over time to directly remove training data.
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Table 15: Results for Group of δs = 5× 10−5

δs δe DSI (%)ACC (%)

5× 10−5 1× 10−3 75 89.65
5× 10−5 5× 10−4 75 90.24
5× 10−5 1× 10−4 68 91.65

A.3 MORE RESULTS

Detailed CIFAR-10 Results. Table 15–19 provide the tabular counterpart of Figure 3, reporting the
full results of our CIFAR-10 analysis across forty-five (δs, δe) configurations. Each table corresponds
to one starting threshold group, with multiple end thresholds. These results clearly illustrate the
trade-off between pruning aggressiveness and accuracy:

• Larger δs values (Tables 15–16) trigger early and aggressive pruning, yielding substantial
data savings but lower accuracy.

• Smaller δs values (Table 19) retain most data, preserving accuracy at the cost of reduced
pruning benefits.

• Intermediate settings (Tables 17–18) achieve the most favorable balance, with the setting
δ ∈ [10−6, 5×10−5] (Table 18) delivering the highest accuracy while saving 25% of training
data.

Together, these tables complement Figure 3 by providing a detailed numerical view of pruning dynam-
ics, confirming that the thresholds govern an effective trade-off between efficiency and generalization.

Table 16: Results for Group of δs = 1× 10−5

δs δe DSI(%)ACC (%)

1× 10−51× 10−3 63 91.28
1× 10−55× 10−4 59 92.28
1× 10−51× 10−4 52 93.61
1× 10−55× 10−5 47 94.31
1× 10−54× 10−5 43 94.49
1× 10−5 3× 10−5 43 94.58

Table 17: Results for Group of δs = 5× 10−6

δs δe DSI(%)ACC (%)

5× 10−6 1× 10−3 57 92.28
5× 10−6 5× 10−4 55 92.97
5× 10−6 1× 10−4 45 94.46
5× 10−6 9× 10−5 45 94.20
5× 10−6 8× 10−5 43 94.28
5× 10−6 7× 10−5 40 94.81
5× 10−6 6× 10−5 41 94.71
5× 10−6 5× 10−5 40 94.59
5× 10−6 4× 10−5 37 94.79
5× 10−6 3× 10−5 31 95.02
5× 10−6 2× 10−5 28 95.05
5× 10−6 1× 10−5 23 95.44

Detailed ImageNet Results. Table 20 provides the tabular version of Figure 4, reporting results of
B-PAS with ResNet-50 on ImageNet-1K across eight threshold settings. The table includes accuracy,
Data Savings Index (DSI), training time, node-hours, and early stopping behavior, offering a more
granular perspective on pruning dynamics.

A clear trade-off emerges between data savings and accuracy. Larger thresholds such as δ ∈
[5 × 10−5, 5 × 10−4] trigger aggressive pruning, with training terminating around epoch 100 and
accuracy dropping to 76.1%, despite saving 73% node-hours. Conversely, smaller thresholds (e.g.,
δ ∈ [10−6, 5× 10−5]) achieve slightly better accuracy compared to full dataset (78.63%) but achieve
only moderate efficiency gains (37% node-hours saved).

Intermediate thresholds provide the most balanced trade-off: for instance, δ ∈ [5× 10−6, 5× 10−5]
yields 78.43% accuracy with 47% DSI and 48% node-hours saved. GPU node-hours is calculated
by (Training Time (in seconds)/3600)*4 (number of GPUs). The node-hours saved percentage is
calculated from the full dataset’s node-hours (87.98). Importantly, DSI and node-hour savings follow
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Table 18: Results for Group of δs = 1× 10−6

δs δe DSI(%)ACC (%)

1× 10−61× 10−3 47 93.24
1× 10−65× 10−4 42 94.13
1× 10−61× 10−4 31 95.18
1× 10−69× 10−5 29 95.04
1× 10−68× 10−5 30 94.99
1× 10−6 7× 10−5 29 95.07
1× 10−6 6× 10−5 26 95.44
1× 10−6 5× 10−5 25 95.60
1× 10−6 4× 10−5 22 95.47
1× 10−6 3× 10−5 22 95.28
1× 10−6 2× 10−5 16 95.54
1× 10−6 1× 10−5 15 95.49

Table 19: Results for Group of δs = 1× 10−7

δs δe DSI (%)ACC (%)

1× 10−7 1× 10−3 34 94.47
1× 10−7 5× 10−4 31 94.94
1× 10−7 1× 10−4 18 95.49
1× 10−7 9× 10−5 19 95.46
1× 10−7 8× 10−5 19 95.50
1× 10−7 7× 10−5 18 95.33
1× 10−7 6× 10−5 15 95.52
1× 10−7 5× 10−5 14 95.43
1× 10−7 4× 10−5 12 95.57
1× 10−7 3× 10−5 11 95.55
1× 10−7 2× 10−5 9 95.60
1× 10−7 1× 10−5 5 95.60

consistent trends, reinforcing that pruning efficiency directly translates to a reduction in training costs.
Early stopping occurs primarily under aggressive pruning settings, confirming that pruning not only
reduces data usage but can also shorten training trajectories.

Table 20: Detailed ImageNet Results with node-hours, DSI, and Early Stopping.

δs δe DSI(%)Acc(%)Early Stop EpochTraining Time(s)Node-hrsNode-hrs Saved(%)

1× 10−7 5× 10−4 38 78.46 178 46409.41 51.57 41
1× 10−6 5× 10−5 33 78.63 – 49855.24 55.39 37
5× 10−7 5× 10−4 46 78.55 175 41460.80 46.07 48
5× 10−6 5× 10−5 47 78.43 – 40919.18 45.47 48
5× 10−5 5× 10−4 74 76.10 102 21067.36 23.41 73
1× 10−5 5× 10−4 62 77.85 143 29016.79 32.24 63
1× 10−5 1× 10−4 57 78.07 179 30841.92 34.27 61
1× 10−5 5× 10−5 57 78.07 179 30828.36 34.25 61
5× 10−6 5× 10−5 37 71.50 – 29638.31 32.93 62

Full Dataset – 0 78.07 – 79183.84 87.98 0

Fast and Reliable δ Selection Using a Small Subset of Training Data. The tables 21 and 22
show that δs and δe can be tuned quickly and reliably using only a small portion of the training set.
Across both CIFAR-10 with ResNet-18 and ImageNet-1K with ResNet-50, the relative ordering of
pruning strength and accuracy remains consistent between full data runs and ten percent subset runs.
Larger thresholds such as δs = 10−5 consistently yield higher DSI, while smaller thresholds such as
δs = 10−7 produce more conservative pruning, precisely matching the full training patterns. These
partial runs are extremely lightweight, requiring only a few minutes for CIFAR-10 and roughly one
hour for ImageNet-1K on four A-100 GPUs. As a result, selecting δ is fast, inexpensive, and does not
diminish the overall efficiency gains of B PAS.

Once a good δ schedule is identified for a dataset family, it transfers well to related settings. The
values tuned on CIFAR-10 transfer directly to CIFAR-100 and SVHN without further adjustment,
preserving the expected DSI and accuracy behavior in low-resolution CNNs. Similarly, values tuned
on ImageNet-1K with ResNet-50 generalize to ImageNet-like datasets and other CNN variants.
Although transformers exhibit slower and noisier activation stabilization, they can also be handled
with a small subset of data, as demonstrated by our experiments with CvT-13 and GPT large. These
findings show that δ hyperparameters can be tuned rapidly on small data slices and reused across
models, making B PAS practical and scalable for new architectures and datasets.

Extended Comparison with SOTA. Table 23 summarizes the performance of representative data
selection and pruning techniques on CIFAR-10 and CIFAR-100. Classical core-set and influence-
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Table 21: Pattern of δs–δe schedules on pruning (DSI) and accuracy under full-data vs. 10% of
training data monitoring in CIFAR-10.

δs δe DSI (Full)Acc (Full)DSI (10% data)Acc (10% data)

5× 10−55× 10−4 74.52 90.24 0.5655 79.0
10−5 5× 10−5 46.83 94.31 0.2528 81.8
5× 10−65× 10−5 39.78 94.59 0.1683 82.2
10−6 5× 10−5 25.06 95.60 0.1244 82.8
10−7 5× 10−5 14.26 95.43 0.1030 82.1

Table 22: Patttern of δs–δe schedules under full-data vs. 10% of training data monitoring in ImageNet-
1K.

δs δe DSI (Full)Acc (Full)Time (Full)DSI (10%)Acc (10%)Time (10%)

10−7 5× 10−4 38.48 0.7846 46409.41 34.71 0.5057 5274.02
5× 10−6 5× 10−5 47.21 0.7843 40919.18 43.16 50.4 4793.08
10−5 5× 10−5 57.34 0.7807 30828.36 51.78 50.14 4206.86

based methods (e.g., Herding, Influence, K-Center) provide moderate gains, while more recent
gradient- and uncertainty-based approaches (e.g., GraNd, EL2N, DP, UCB) achieve higher accuracy,
especially on CIFAR-100. InfoBatch represents the prior state of the art, reaching 95.6% on CIFAR-
10 and 78.2% on CIFAR-100. B-PAS matches these best-reported results, maintaining a better DSI
despite using a fundamentally different criterion based on temporal activation stability rather than
loss, gradient, or uncertainty-driven scoring. This highlights that activation variance dynamics can
provide an equally strong or complementary signal for identifying redundant training data.

In addition, we compare the results from a recent large-scale pruning method: Large-scale Dataset
Pruning with Dynamic Uncertainty (He et al., 2024). Their method achieves a 25% lossless pruning
ratio on ImageNet-1K. By comparison, B-PAS removes up to 57% of the data while matching baseline
accuracy and reducing GPU-hours by 61%, indicating substantially greater pruning capacity and
compute savings on the same large-scale benchmark.

Cross-Task Robustness. Table 24 reports the results of applying B-PAS during GPT-2 Large fine-
tuning on the Alpaca instruction tuning dataset. Because this experiment involves a short 10-epoch
fine-tuning run on a transformer-based LLM, we adopt a more aggressive pruning threshold range
(δs = 10−3, δe = 10−2) to compensate for the smoother activation dynamics of transformers. As
expected, activation stabilization occurs later in training, resulting in a lower Data Saving Index
(DSI) compared to our large-scale vision experiments; nevertheless, B-PAS prunes 23% of batches.
Crucially, pruning does not harm model performance: loss and perplexity remain unchanged or
slightly improved. At the same time, total training time is reduced by about an hour on 2×A100
GPUs. These findings demonstrate that B-PAS is compatible with transformer-based language models
and provides measurable efficiency gains even in smaller fine-tuning settings.

Nature of Pruned Batches and Class Distribution. To examine whether B-PAS disproportionately
removes “easy” examples, we conducted a difficulty analysis using two standard metrics from the
pruning and curriculum learning literature: confidence (higher = easier) and misclassification rate
(lower = easier). Confidence is computed as the maximum softmax probability for each sample,
with higher values indicating that the model already finds the example easy. Misclassification rate
reflects whether the model predicted the sample incorrectly at an early epoch, with lower values
corresponding to easier examples. After pruning, these per-sample values are averaged over all
samples contained within pruned batches and kept batches, so the reported means reflect the average
difficulty of each group. As shown in Table 25, pruned batches have lower confidence (0.60 vs. 0.65)
and higher misclassification rates (0.40 vs. 0.35) compared to kept batches. If B-PAS were pruning
easy samples, we would expect the opposite behavior. Instead, both metrics indicate that pruned
batches are not easier, and the means are very close, demonstrating that B-PAS does not introduce
difficulty bias and prunes based solely on activation stability rather than sample easiness.
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Table 23: Comparison of pruning methods on CIFAR-10 and CIFAR-100.

Method CIFAR-10 Acc. (%)CIFAR-100 Acc. (%)
Herding (Welling, 2009b) 92.2 73.1
Influence (Koh & Liang, 2017) 93.1 74.4
K-Center (Sener & Savarese, 2017) 94.7 74.1
DeepFool (Ducoffe & Precioso, 2018) 95.1 74.2
Forgetting (Toneva et al., 2018) 94.7 75.3
EL2N-2 (Toneva et al., 2018) 94.4 74.1
EL2N-20 (Toneva et al., 2018) 95.3 77.2
Least Confidence (Coleman et al., 2019) 95.0 74.2
Margin (Coleman et al., 2019) 94.9 74.0
CD (Agarwal et al., 2020) 95.0 74.2
Craig (Mirzasoleiman et al., 2020) 94.8 74.4
GraNd-4 (Paul et al., 2021) 95.3 74.6
Glister (Killamsetty et al., 2021) 95.2 74.6
DP (Yang et al., 2022) 94.9 77.2
ε-greedy (Raju et al., 2021) 95.2 76.4
UCB (Raju et al., 2021) 95.3 77.3
InfoBatch (Qin et al., 2024) 95.6 78.2
B-PAS (Ours) 95.6 78.2

Table 24: Comparison of full-data training and B-PAS on loss, perplexity, training time, and pruning
statistics for GPT2-large.

Method Loss PerplexityAvg. Epoch Time (s)Total Time (s)Pruned Batch (%)DSI (%)
Full Data0.2207 1.25 5359.88 54420.13 – –
B-PAS 0.2201 1.25 5039.11 51211.29 23.00 6

Furthermore, to assess whether permanent pruning introduces class imbalance, we compared the
class distribution of the dataset before training and after 100 epochs of B-PAS. As shown in Table 26,
the proportions remain effectively unchanged, with all deviations within 0.1%. This stability occurs
because B-PAS removes entire batches, and each batch contains a naturally mixed set of classes due to
the initial random shuffling. Consequently, pruning at the batch level does not preferentially remove
any particular class. Combined with the difficulty analysis, these results demonstrate that B-PAS
does not introduce class bias and does not prune based on sample easiness. Instead, pruning is driven
solely by the activation-stability criterion, ensuring that the retained dataset remains representative of
the original distribution with respect to both class balance and example difficulty.

A.4 MORE ABLATION STUDIES

Extended Impact Analysis of Normalization.

Table 27: Effect of differ-
ent normalization strategies on
DSI and accuracy.

Normalizer DSI (%)Acc (%)

Layer 13.2 93.99
Layer + Batch 21.9 94.97
None 2.0 90.39
Batch 25.06 95.60

Across normalization schemes in Table 27, pruning thresholds, and
architectures, the results consistently show that B-PAS remains ef-
fective even when normalization is absent, as long as the δ schedule
is calibrated to the activation dynamics of the model. On CIFAR-10
with ResNet-18, BatchNorm yields the smoothest activation tra-
jectories and therefore the highest data savings (25.06% DSI), but
LayerNorm alone still enables meaningful pruning (13.2% DSI)
with strong accuracy (93.99%). In contrast, removing normalization
entirely severely destabilizes activation variance, leading to only 2%
DSI and a substantial accuracy drop, which aligns with the known
behavior of unnormalized ResNets.

The δ-range ablation further confirms this trend in Table 29. Without
BatchNorm, larger thresholds (e.g., δs = 5 × 10−5, δe = 10−3) are required to counteract noisier
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Table 25: Comparison of average difficulty metrics between pruned and kept batches. Pruned batches
exhibit lower confidence and higher misclassification rates, indicating they are not disproportionately
composed of “easy” examples.

Metric Pruned MeanKept Mean
Confidence 0.60 0.65
Misclassification Rate 0.40 0.35

Table 26: Class distribution before training and after 100 epochs of B-PAS. The differences are within
±0.1%, indicating no class imbalance introduced by pruning.

Class (%) plane car bird cat deer dog frog horse ship truck

Initial 10.0010.0010.0010.0010.0010.0010.0010.0010.0010.00
After 100 Epochs10.0510.01 9.99 10.0410.08 9.91 9.92 9.91 10.0510.04

activation dynamics, enabling 19.72% pruning at the cost of accuracy. More conservative thresholds
(e.g., δs = 10−6, δe = 5 × 10−5) yield minimal pruning (2%), reflecting the higher instability of
unnormalized features. When BatchNorm is restored, the same thresholds (10−6 to 5× 10−5) enable
substantially higher DSI (25.06%) with top performance (95.60%), demonstrating that stable feature
statistics directly expand the “prunable” region detected by B-PAS.

Table 28: Comparison of Full
Data training and B-PAS on
CIFAR-10 (LeNet-5).

Method DSI (%)Acc (%)
Full Data – 71.0
B-PAS 31.07 70.5

Finally, Table 28 shows experiments on LeNet-5, a normalization-
free architecture. It shows that B-PAS is not dependent on normal-
ization layers. With a tuned δ schedule (δs = 10−4, δe = 10−3), the
method prunes 31% of the data and maintains accuracy within 0.5%
of the baseline. This confirms that B-PAS is compatible with models
lacking normalization, but the threshold schedule must reflect the
architecture’s intrinsic activation stability regime.

Effect of Batch Size. The batch size ablation in Table 30 shows
that DSI increases consistently as batch size grows, reflecting the
fact that larger batches yield smoother and more stable activation
trajectories across epochs, which allows B-PAS to prune earlier and
more aggressively. Accuracy remains nearly unchanged across all settings, indicating that the method
is robust to batch-size variation and does not introduce batch-size-dependent bias. Although larger
batches improve the magnitude of achievable data savings, the core behavior of activation stabilization
and accuracy preservation remains consistent, demonstrating that B-PAS functions reliably under
standard training configurations.

Table 30: Effect of batch
size on pruning effectiveness
and accuracy on CIFAR-10
(ResNet-18).

Batch SizeDSI (%)Acc (%)
32 20.25 94.86
64 23.26 94.93
128 25.06 95.60
256 26.97 95.10

Different Approaches to Quantify Activation Stability. The ab-
lation in Table 31 compares several alternative activation stability
metrics. Kurtosis yields moderate pruning but remains highly sen-
sitive to early-epoch fluctuations, resulting in conservative DSI. En-
tropy exhibits the opposite behavior: its larger dynamic range causes
overly aggressive pruning, leading to substantial accuracy degrada-
tion. Using the maximum standard deviation amplifies layer-wise
noise and produces unstable pruning behavior with limited savings.
In contrast, the proposed mean standard deviation provides a stable
and well-behaved signal, achieving a balanced trade-off between
pruning strength and accuracy. These results indicate that mean
standard deviation is the most reliable activation stability quantifier
among the tested alternatives.

A.5 VISUALIZATIONS

Figure 5 illustrates the evolution of mean standard deviation changes (∆X̄) across epochs for selected
batches for CIFAR-10 with ResNet-18. The change is initially large but decreases steadily, eventually
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Table 29: Effect of pruning thresholds and BatchNorm on B-PAS.

δs δe BatchNormDSI (%)Accuracy (%)

5× 10−5 10−3 without BN 19.72 89.87
10−6 5× 10−5 without BN 2.00 90.39
10−6 5× 10−5 with BN 25.06 95.60

Table 31: Comparison of different activation stability quantification for pruning.

QuantificationDSI (%)Acc (%)
kurtosis 22.22 95.00
entropy 74.89 89.64
max std 13.45 95.41
mean std 25.06 95.60

saturating as training progresses. Once the change falls below the threshold, the corresponding
batches are pruned. Figure 6 reports the number of batches pruned per epoch. Pruning does not occur
in early epochs, when activation changes remain high, but becomes increasingly aggressive in later
stages as changes stabilize.

Additionally, Figure 7 and 8 shows the relationship between threshold growth and the number of
remaining batches per epoch (CIFAR-10, ResNet-18). As training progresses, the threshold value
becomes larger resulting into more batch pruning.
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Figure 5: Evolution of mean standard deviation (∆X̄) for representative batches across epochs.
Large initial fluctuations gradually saturate, and once below the pruning threshold, the corresponding
batches are pruned.

A.6 LLM USAGE

In this research, large language models (LLMs) have been utilized to assist in verifying grammatical
correctness. All contents were developed and verified by the authors.
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Figure 6: Number of batches pruned per epoch. No pruning occurs in early epochs, while pruning
accelerates in later epochs as more batches stabilize, leading to substantial reductions in training cost.
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Figure 7: Exponential Threshold Evolution Over Epochs.
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Figure 8: Remaining Batches per Epoch
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