
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BATCH PRUNING BY ACTIVATION STABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Training deep neural networks remains costly in terms of data, time, and energy,
limiting their deployment in large-scale and resource-constrained settings. To
address this, we propose Batch Pruning by Activation Stability (B-PAS), a dynamic
plug-in strategy that accelerates training by adaptively removing data as batches
that contribute less to learning. B-PAS monitors the stability of activation feature
maps across epochs and prunes batches whose activation variance shows minimal
change, indicating diminishing learning utility. Applied to ResNet-18, ResNet-
50, and the Convolutional vision Transformer (CvT) on CIFAR-10, CIFAR-100,
SVHN, and ImageNet-1K, B-PAS reduces training batch usage by up to 57% with
no loss in accuracy, and by 47% while slightly improving accuracy. Moreover,
it achieves as far as 61% savings in GPU node-hours, outperforming prior state-
of-the-art pruning methods with up to 29% higher data savings and 21% greater
GPU node-hours savings. These results highlight activation stability as a powerful
internal signal for efficient training by removing batches, offering a practical and
sustainable path toward data and energy-efficient deep learning.

1 INTRODUCTION

Deep learning has emerged as a powerful paradigm for solving complex tasks across a variety of
domains. These models, while highly effective, are inherently resource and time-intensive, frequently
consuming significant GPU hours and memory bandwidth during both training and inference phases.
They utilize large amounts of computation even on redundant or less informative data, leading to
inefficiencies in resource-constrained environments. Among deep learning models, Convolutional
Neural Networks (CNNs) have achieved remarkable success in a wide range of computer vision tasks,
including image classification, object detection, and segmentation (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2014; He et al., 2016; 2017; Law & Deng, 2018). However, these performance gains
often come at the cost of increased computational demands. State-of-the-art CNN architectures
typically require large-scale datasets such as ImageNet (Krizhevsky et al., 2012) for effective training
and involve millions of parameters, making them expensive to train and deploy. This poses a
significant barrier for practitioners with limited computational resources. Reducing training costs
without sacrificing performance remains a longstanding challenge in deep learning.

A straightforward approach to address this challenge is to reduce the amount of training data.
Techniques such as dataset distillation (Nguyen et al., 2021; Zhao & Bilen, 2023; Wang et al., 2022)
and coreset selection (Har-Peled & Mazumdar, 2004; Park et al., 2022; Xia et al., 2022) aim to
synthesize or select a compact, informative subset of the original dataset. While effective in reducing
data volume, these methods often introduce nontrivial computational overhead and may result in
degraded model performance. Weighted sampling methods (Zhao & Zhang, 2015; Csiba & Richtárik,
2018; Johnson & Guestrin, 2018) improve convergence by increasing the sampling frequency of
informative samples, but their performance is highly sensitive to the choice of model and dataset.

Another line of research focuses on reducing the number of training iterations through data pruning.
Static pruning methods estimate sample utility scores and remove low-utility samples before training
begins (Toneva et al., 2018; Paul et al., 2021), but often incur high preprocessing costs and lack
adaptability during training. Dynamic pruning approaches mitigate these issues by adjusting the
pruning process on the fly. For example, InfoBatch (Qin et al., 2024) dynamically prunes low-utility
samples using a soft-pruning strategy combined with expectation rescaling to maintain unbiased
gradients. Similarly, He et al. (2024) leverages prediction uncertainty and training dynamics to prune
up to 25% of data from large-scale datasets such as ImageNet without sacrificing accuracy. However,
these approaches often rely on complex heuristics.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Early stopping is a widely used strategy for reducing data usage by terminating training once
performance plateaus (Duvenaud et al., 2016; Mahsereci et al., 2017; Bonet et al., 2021). However,
most existing approaches rely on gradient-based signals that often fail to generalize across modern
optimizers or require carefully tuned hyperparameters and specialized frameworks. More recently,
Ahmad et al. (2024) proposed an early stopping criterion based on the stability of convolutional
activations, highlighting the potential of internal network dynamics as reliable indicators of training
progress. This line of work builds on the broader concept of activation stability, which is closely linked
to the phenomenon of Neural Collapse (Papyan et al., 2020), wherein class-specific representations
become increasingly aligned and activation patterns stabilize as training converges. Together, these
findings suggest that activation stability offers a promising direction for analyzing data utility through
internal model dynamics.

While prior data pruning approaches such as InfoBatch (Qin et al., 2024) rely on per-sample loss
statistics, gradient rescaling, or fixed heuristics, often incurring additional computation or requiring
explicit loss tracking, our work introduces a different perspective: Can the stability of internal
activations serve as a signal for assessing the informativeness of batches during training, thereby
enabling effective and dynamic pruning of redundant batches? We answer this affirmatively by
introducing a lightweight, plug-and-play method that dynamically prunes low-utility batches based on
the stability of activation variances across network layers. Unlike strategies that depend on difficulty
scores, auxiliary models, or manually crafted rules, our approach is non-intrusive, as it operates on
activation statistics already available from the forward pass, thereby introducing negligible overhead.
The pruning is performed on-the-fly during training, without pretraining phases, validation labels,
or static schedules. Our framework continuously monitors the mean standard deviation of flattened
activations across layers for each batch across consecutive epochs and prunes batches if the change
in this statistic is negligible. For the demonstration, applied to convolutional neural networks, this
activation-driven pruning framework reduces redundant data usage across epochs while preserving
training effectiveness and generality, offering a practical and efficient solution that establishes a
foundation for extending stability-based pruning to broader deep learning architectures. Our key
contributions are as follows:

Activation Stability-Guided Dynamic Batch Pruning. We introduce a lightweight, model-internal
pruning strategy, ‘Batch Pruning by Activation Stability’ (B-PAS) that dynamically identifies and
removes low-utility batches during training by leveraging the stability of activation feature maps.
Specifically, we track the mean standard deviation of activations across convolutional layers and
consecutive epochs to assess whether a batch continues to contribute meaningful learning gradients.
Batches exhibiting negligible change in activation variance are deemed redundant and pruned on-the-
fly, without relying on auxiliary networks or handcrafted difficulty metrics. The pruning behavior is
controlled by a tunable threshold hyperparameter δ, enabling adaptability across datasets and model
architectures.

Comprehensive Evaluation on Benchmark Models. We evaluate B-PAS on ResNet-18, ResNet-50,
and CvT (Wu et al., 2021) across CIFAR-10, CIFAR-100 (Krizhevsky et al., a;b), SVHN (Netzer
et al., 2011), and ImageNet-1K (Krizhevsky et al., 2012), with extensive threshold sweeps (45 δ
settings on CIFAR-10 and eight on ImageNet-1K). Results show that B-PAS prunes up to 57% of
training batches without accuracy loss, and up to 47% while slightly improving accuracy, while
reducing computational cost by as much as 61% in GPU node-hours. These findings highlight both
the robustness and tunability of activation stability as a pruning signal, delivering substantial training
efficiency gains across scales and architectures.

Data Savings Index (DSI). We introduce DSI, a new metric that quantifies the cumulative fraction of
training data saved during learning. DSI provides a direct measure of data efficiency, with higher
values indicating greater reductions in training cost and computational resources.

2 BATCH-PRUNING BY ACTIVATION STABILITY (B-PAS)

In this section, we introduce the concept of a plug-in to CNN architectures: Batch Pruning by
Activation Stability (B-PAS), detailing its formulation and adaptation for image applications. Figure 1
illustrates the working mechanism of a conventional CNN (labeled ‘A’) alongside the proposed
plug-in (labeled ‘B’).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

....

Pooling

Fully Connected Layers

0.3

0.7

0.9
.....

....

....

....

....

Cat

Dog

Fish
....

Input

Convolution 1
+

ReLU

kernel

Pooling

Flatten

Output

Softmax
Activation

Convolution
+

ReLU...

Convolution Operations

Yes

No

Prune Batch:
t1,..,tN t1,..,tN t1,..,tN

...
t1,..,tN t1,..,tN t1,..,tN

...

1

Flattened Output Tensors

Training

Plug-in

Epoch Epoch Epoch

...
Keep Batch:

feedback

A

B

....

Dataset

#Batches

....

Conv
1 Conv

....

....

....

....

...... ()

Batch

()

()

()

Mean of Std. per
Batch

Conv
1 Conv

....

....

....

....

....

....

...... ()

Batch

()

()

()

()

Mean of Std. per
Batch

....

Conv
1 Conv

....

....

....

....

....

....

...... ()

Batch

()

()

()

()

Mean of Std. per
Batch

in epoch #Batches in current epoch,
, is less than or equal to

previous epoch

#Batches in current epoch,
, is less than or equal to
previous epoch

#Batches in current epoch,
, is less than or equal toprevious epoch

..................

....

......

....

......

......

Figure 1: Overview of the proposed Batch Pruning by Activation Stability (B-PAS) plug-in integrated
into a prevalent Convolutional Neural Network (CNN) training pipeline. (A) The conventional
CNN architecture processes input images in batches through convolutional, ReLU activation, and
pooling layers, followed by a fully connected classifier. (B) The B-PAS module monitors the standard
deviation of ReLU-activated convolutional outputs for each batch across epochs. For each epoch,
the standard deviation is recorded per convolutional layer (columns) and aggregated across layers
to compute the mean standard deviation for each batch (rows). These per-batch means are then
compared across consecutive epochs to assess activation stability. If the change (∆X̄) for a batch Bni

falls below a dynamic threshold δ(i), the batch is deemed to have low learning utility and is pruned
from subsequent training. By updating the dataset at the end of each epoch using this feedback,
the process dynamically focuses training on batches that continue to provide meaningful gradient
information, thereby improving efficiency without compromising accuracy.

2.1 ACTIVATION STABILITY

Building on the observation from Neural Collapse (Papyan et al., 2020) that activation patterns
stabilize as training converges, we adopt the idea of (Ahmad et al., 2024), which links data variation
across CNN layers to near-optimal learning capacity. Extending this principle to the batch level, we
observe that as training progresses, certain batches show diminishing changes in activation variance
across consecutive epochs, signaling little additional learning. To capture this effect, we use the
widely adopted Rectified Linear Unit (ReLU) (Agarap, 2018), where the variance of ReLU-activated
outputs provides a meaningful measure of feature stability. When this variance remains nearly

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

unchanged across epochs, the corresponding batch is deemed converged, as its contribution to weight
updates has effectively stabilized.

We compute variance after ReLU since it not only introduces non-linearity but also suppresses inactive
neurons, ensuring that variance reflects sparse, meaningful features rather than noisy pre-activation
values. Thus, monitoring the standard deviation of post-ReLU activations provides a reliable estimate
of batch learning utility: once changes become negligible, the batch is pruned. This enables the
model to focus computation on informative batches while discarding redundant ones, improving
efficiency without harming performance.

In Figure 1(A), the ‘Convolution Operations’ module illustrates the ReLU-activated convolutional
feature maps of input images, organized batch-wise across training epochs. At each convolutional
layer, training images are processed in batches denoted by B1, . . . , Bni , where Bni refers to the final
batch in epoch i. For instance, if epoch i contains 400 batches, then Bni = B400, indicating that
the 400th batch is the last batch of that epoch. Each batch consists of multiple images, which are
represented as tensors containing numerical activation values. To quantify activation variability, we
compute the standard deviation of these values by first flattening the output tensors of each ReLU-

activated convolutional layer. The standard deviation is then computed using σ=
√

1
N

∑N
k=1(tk−µ)2,

where tk denotes each individual value from the flattened tensor (for k = 1, . . . , N), µ is the
mean of these values, N is the total number of values in the flattened tensor, and σ represents the
resulting standard deviation. This computation is performed independently for each batch and each
convolutional layer.

In Figure 1(B), each epoch table (i.e., Epochs i−1, i, and i+1) presents the standard deviation of
the ReLU-activated outputs from the convolutional layers. In each table, rows correspond to data
batches (e.g., B1, . . . , Bni

), and columns represent individual convolutional layers, except the final
column. The last column contains the mean standard deviation for each batch, computed across all
convolutional layers. For example, the row corresponding to batch Bni

includes standard deviations
σ1,ni

, . . . , σl,ni
, where σl,ni

denotes the standard deviation of the output from the l-th convolutional
layer for batch Bni

, and l is the total number of convolutional layers. The mean standard deviation
for the final batch Bni

in epoch i is denoted as X̄i(σ1,ni
, . . . , σl,ni

), indicating the mean standard
deviation across all l convolutional layers.

These mean standard deviations are used to track the variance behavior of each batch over time.
Beginning with epoch one, the mean standard deviation is computed for every batch. From epoch
two onward, the current epoch’s mean is compared against the previous epoch’s mean for each
batch. If the change is negligible, the batch is considered to have converged and may be pruned from
subsequent training epochs. This pruning process continues iteratively for the remaining epochs.

2.2 BATCH PRUNING

The decision to prune a batch is based on the stability of its mean activation standard deviation across
consecutive epochs. As illustrated in Figure 1(B), we consider three epochs: i−1, i, and i+1. If the
absolute difference between these means across consecutive epochs falls below a dynamic threshold
δ(i), the batch is deemed to have converged and is excluded from subsequent training.

To illustrate, consider the standard deviations of batch Bni
across the l convolutional lay-

ers as σ1,ni
, . . . , σl,ni

. The mean standard deviation for this batch at epoch i is denoted by
X̄i(σ1,ni , . . . , σl,ni), and at epoch i−1 by X̄i−1(σ1,ni , . . . , σl,ni). The change in mean standard
deviation/variance for the batch Bni is computed as:

∆X̄ =
∣∣X̄i(σ1,ni , . . . , σl,ni)−X̄i−1(σ1,ni , . . . , σl,ni)

∣∣ ≤ δ(i)

If ∆X̄ for the batch Bni falls below the threshold δ(i), the batch is pruned and excluded from training
in epoch i+1. This criterion is applied to all batches at the end of each epoch. The pruning decisions
update the dataset by retaining only the informative batches, resulting in a reduced set of training
data for the next epoch and a progressively more efficient training process. As training progresses,
the number of retained batches decreases monotonically. Formally, for any epoch i, the number of
batches ni satisfies ni≤ni−1. Because the pruning is dynamic, the composition of the final batch may
change across epochs. For instance, for epoch i, let the last batch be Bni

and the second last Bni
−1;

similarly, in epoch i−1, they are Bni−1
and Bni−1

−1. Without pruning, these batches are identical,
whereas pruning one batch in epoch i−1 shifts the indexing so that in epoch i, Bni =Bni−1−1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 DYNAMIC THRESHOLD FOR PRUNING

50 100 150 200
Epoch

0

250

500

750

1000

1250

N
um

be
r

of
 B

at
ch

es

 = 10 7

 = 5 × 10 4

 = 10 6

 = 5 × 10 5

No pruning

 = 5 × 10 7

 = 5 × 10 4

 = 5 × 10 6

 = 5 × 10 5

Harsh pruning

 = 5 × 10 5

 = 5 × 10 4

 = 10 5

 = 10 4

 = 10 5

 = 5 × 10 5

 = 10 5

 = 5 × 10 4

Figure 2: Pruning dynamics under different δ settings for
ResNet-50 on ImageNet-1K (200 epochs). Lower thresholds
(e.g., δ ∈ [10−6, 5×10−5]) lead to conservative pruning,
retaining most batches until late epochs, while higher thresh-
olds (e.g., δ ∈ [5×10−5, 5×10−4]) cause aggressive pruning
and premature training termination. The dynamic schedule
(δs = 5×10−6, δe = 5×10−5) provides a balanced trajectory,
steadily reducing data.

To determine the negligible difference
between activation variances across
epochs, we introduce a tolerance hy-
perparameter δ to formalize pruning.
Instead of requiring exact invariance,
δ captures variance saturation with a
small non-zero margin.

We empirically analyze the effect of
different δ values on pruning dynam-
ics. Very small δ leads to overly con-
servative pruning, discarding batches
only when variance changes are nearly
imperceptible, thus retaining most
batches. Conversely, large δ induces
aggressive pruning, prematurely re-
moving informative batches and risk-
ing early training collapse.

To balance this trade-off, we adopt
a dynamic schedule: δ(i) = δs ·
eαi, α = 1

I ln
(

δe
δs

)
, where δs and

δe are the initial and final threshold
values, i is the current epoch, and I
is the total number of epochs. This
schedule is conservative in early train-
ing, when features are broadly learned, and more aggressive in later stages, when learning stabilizes.
At epoch i, batches with ∆X̄ < δ(i) are pruned.

90.0

92.5

95.0

Ac
cu

ra
cy

 (%
)

1 5 9 13 17 21 25 29 33 37 41 45
Forty-five Different Settings

0

25

50

75

100

D
SI

 (%
)

 = 5 × 10 5

 = 10 5
 = 5 × 10 6

 = 10 6
 = 10 7

Figure 3: Empirical analysis of B-PAS on CIFAR-
10 with ResNet-18 across 45 δ settings. Smaller
thresholds have less data savings with higher ac-
curacy, larger thresholds save more data at the
cost of accuracy, and intermediate values (e.g.,
δ ∈ [10−6, 5× 10−5]) provide the best trade-off.

Figure 2 illustrates these dynamics using eight
sets of δ values on ImageNet-1K with ResNet-
50. The horizontal line shows no pruning, while
the sharp drop at epoch 2 depicts extreme aggres-
siveness (all batches removed). Lower ranges
(e.g., δ ∈ [10−6, 5×10−5]) yield delayed, con-
servative pruning, whereas higher ranges (e.g.,
δ ∈ [5×10−5, 5×10−4]) prune aggressively and
often terminate training early. A balanced con-
figuration of δs = 5×10−6 and δe = 5×10−5

achieves steady pruning without sacrificing sta-
bility. Nonetheless, δ remains a tunable hyper-
parameter, adaptable to dataset complexity, ar-
chitecture, and resource budgets.

3 EXPERIMENT

We evaluate B-PAS as a plug-in module on
ResNet-18, ResNet-50, and the Convolutional
vision Transformer (CvT) to assess robustness
and generality. In the networks, we add Batch
Normalization layer, which normalizes per-
batch variance and has a strong impact on prun-
ing dynamics. Experiments span CIFAR-10,
CIFAR-100, SVHN (32 × 32), and ImageNet-
1K (∼1.3M images, 224× 224). Unless specified, we use δ ∈ [10−6, 5× 10−5] for CIFAR-10/100
and SVHN, and δ ∈ [5× 10−6, 5× 10−5] for ImageNet-1K, corresponding to empirically validated
balanced pruning regimes. We report validation accuracy and GPU node-hours, but since hardware
and system factors confound GPU time, we also introduce the Data Savings Index (DSI), which

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

quantifies skipped data across epochs and batches as a continuous measure of efficiency. To ensure
well-defined variance tracking, batches are fixed once at initialization (rather than regenerated each
epoch) while intra-batch shuffling is applied to preserve stochasticity and avoid overfitting. Full
experimental details are provided in Appendix A.1.

76

78

Ac
cu

ra
cy

 (%
)

40

60

D
SI

 (%
)

=10 7

=5 × 10 4

=10 6

=5 × 10 5

=5 × 10 7

=5 × 10 4

=5 × 10 6

=5 × 10 5

=5 × 10 5

=5 × 10 4

=10 5

=5 × 10 4

=10 5

=10 4

=10 5

=5 × 10 5

1 2 3 4 5 6 7 8
Eight Different Settings

40

60

Sa
ve

d
hr

s
(%

)
Figure 4: Empirical analysis of B-PAS on
ImageNet-1K with ResNet-50 across eight δ set-
tings. Smaller thresholds retain most data with
higher accuracy but lower savings, larger thresh-
olds prune aggressively and harm accuracy, while
intermediate values (e.g., δ ∈ [5×10−6, 5×10−5])
achieve the best trade-off.

GPU node-hours. It as a measure of computa-
tional cost, defined as GPU node-hours = g×h
where g is the number of GPUs used during
training and h is the total training time (in hours).
The percentage of node-hours saved is reported
relative to the full dataset baseline.

Data Savings Index (DSI). To directly quan-
tify the reduction in training data usage, we in-
troduce the Data Savings Index: DSI = 1 −∑es

i=1 ni

e0·n0
, where ni is the number of batches

retained in epoch i, n0 is the total number of
batches before training begins, es is the epoch
at which training stops, and e0 is the scheduled
number of epochs in the absence of pruning or
early stopping (es ≤ e0). The DSI value lies
in [0, 1], with higher values indicating greater
savings in data usage. For example, if a model is
scheduled to train for 5 epochs with 200 batches
per epoch, but training stops at epoch 3 after
processing 200, 190, and 180 batches, the DSI
is 1 − 200+190+180

5×200 = 0.43, meaning that 43%
of the potential training data is saved.

3.1 RESULT ANALYSIS

Empirical Analysis on CIFAR-10. We first evaluate B-PAS using ResNet-18 on CIFAR-10 over 200
epochs across forty-five threshold (δ) settings. As shown in Figure 3, we define five groups of starting
thresholds (δs), each paired with multiple end thresholds (δe). Specifically, for δs = 5×10−5 and δs =
10−5, we consider three and six values of δe, respectively, while for the remaining groups we test 12
values. The δe values are {10−3, 5×10−4, 10−4, 9×10−5, 8×10−5, 7×10−5, 6×10−5, 5×10−5, 4×
10−5, 3× 10−5, 2× 10−5, 10−5}. For the δs = 5× 10−5 group, only δe = {10−3, 5× 10−4, 10−4}
are included; for δs = 10−5, we use δe = {10−3, 5× 10−4, 10−4, 5× 10−5, 4× 10−5, 3× 10−5}.

The results reveal a clear pattern in accuracy and DSI percentage. Larger threshold groups (e.g.,
δs = 5×10−5) yield very high data savings but also sacrifice accuracy. Conversely, smaller threshold
groups (e.g., δs = 10−7) retain nearly all data, resulting in high accuracy but reduced pruning benefits.
Values in intermediate groups (e.g., δs = 10−6) provide a balanced trade-off. In particular, the 29th
setting with δ ∈ [10−6, 5× 10−5] achieves the highest accuracy while saving data by 25%. Thus, for
CIFAR-10 and similar 32 × 32 datasets, δs = 10−6 and δe = 5 × 10−5 represent a strong default
configuration, as further validated in Table 3.

Empirical Analysis on ImageNet-1K. Guided by the CIFAR-10 analysis, we evaluate B-PAS with
ResNet-50 on ImageNet-1K over 200 epochs across eight threshold settings. As illustrated in Figure 4,
we observe the same trend: smaller thresholds preserve accuracy but maintain low DSI and GPU
node-hours savings, while larger thresholds lead to aggressive pruning and accuracy degradation. For
example, δ ∈ [10−6, 5× 10−5] yields the highest accuracy but also lowest data and GPU node-hours
savings. In contrast, δ ∈ [5× 10−5, 5× 10−4] causes early and aggressive pruning, often terminating
training around epoch 100, which results in very low accuracy. This behavior aligns with the pruning
dynamics shown in Figure 2: smaller thresholds delay pruning, retaining most batches until late
epochs, while larger thresholds trigger sharp drops of batches earlier in training. The most balanced
results are obtained for δ ∈ [5 × 10−6, 5 × 10−5], as supported by both Figure 2 and Figure 4.
This setting achieves near-maximum accuracy with DSI over 45% and saved GPU node-hours by
48%, indicating efficient pruning without compromising performance. The detailed tabular form
of these analysis is provided in Appendix A.3. An additional observation is that DSI and GPU
Node-hour savings follow the same trend across experiments, confirming that data usage is tightly

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

coupled to training cost. Unlike node-hours, however, DSI provides a more comprehensive and
system independent measure by capturing saved data across epochs.

Comparison with SOTA Method. Table 1: Comparison of B-PAS with InfoBatch
and random pruning on CIFAR-10/100 using
ResNet-18/50. B-PAS matches or exceeds Info-
Batch across different pruning ratios while main-
taining accuracy as the full dataset, showing its
competitiveness on small-scale datasets.
Approach CIFAR-10 CIFAR-100

in % ⇒ DSI Acc DSI Acc

ResNet-18 0 95.60±0.2 0 78.20±0.3
+Random 25 94.60±0.3 24 75.36±0.4
+InfoBatch (30%) 22 95.60±0.1 19 78.20±0.1
+InfoBatch (50%) 37 95.10±0.3 32 78.10±0.1
+InfoBatch (70%) 53 94.70±0.4 47 76.50±0.4
+B-PAS 25 95.60±0.1 24 78.20±0.1
ResNet-50 0 95.66±0.1 0 80.60±0.5
+Random 33 94.50±0.3 30 75.77±0.4
+InfoBatch (30%) 21 95.66±0.1 18 80.60±0.1
+InfoBatch (50%) 36 95.20±0.3 32 80.05±0.1
+InfoBatch (70%) 52 94.99±0.4 45 79.37±0.4
+B-PAS 33 95.66±0.1 30 80.60±0.5

We compare B-PAS with the state-of-the-art prun-
ing approach InfoBatch (Qin et al., 2024) on
CIFAR-10, CIFAR-100, and ImageNet-1K (Ta-
bles 1 and 2). InfoBatch has previously demon-
strated superiority over 14 static and three dy-
namic pruning baselines, establishing it as a strong
reference point. On CIFAR-10 and CIFAR-100
(Table 1), B-PAS achieves accuracy comparable
to the full dataset and InfoBatch across multiple
pruning ratios. For example, in CIFAR-100 with
ResNet-50, B-PAS saves 30% of the data while
maintaining 80.6% accuracy, closely matching In-
foBatch at the 30% pruning ratio (DSI = 18%).
To further assess pruning behavior, we introduce
a random pruning baseline: we track the num-
ber of batches flagged by activation stability but
prune the same number of batches chosen at ran-
dom. Unlike B-PAS, random pruning consistently
degrades accuracy, underscoring that activation
stability identifies non-informative batches rather
than simply reducing training data. These results
demonstrate that B-PAS is competitive on small-scale datasets, with modest but reliable savings due to
the limited learning utility in low-resolution tasks. In contrast, the advantage of B-PAS becomes more
pronounced on ImageNet-1K. As shown in Table 2, InfoBatch achieves 28% data savings and 40%
GPU node-hour reduction while maintaining full dataset baseline accuracy (78.07%). By comparison,
B-PAS delivers substantially larger gains: with δ ∈ [10−5, 10−4], it saves 57% of the data and 61% of
node-hours at the same accuracy, and with more conservative thresholds (δ ∈ [5× 10−6, 5× 10−5]),
it further improves accuracy to 78.43% while still achieving 47% data savings and 48% node-hour
reduction. These results highlight that activation stability–driven pruning not only matches InfoBatch
in accuracy preservation but also provides significantly greater efficiency on large-scale training.

Table 2: Comparison of B-PAS and InfoBatch on ImageNet-
1K with ResNet-50. B-PAS achieves stronger efficiency,
saving data usage by 57% and node-hours to 61% while
preserving accuracy as the full dataset. More conservative δ
values yield further accuracy gains (78.43%) with moderate
savings, highlighting the scalability of activation stability
signals in large-scale training.
Approach ImageNet-1K

in % ⇒ Saved hrs DSI Acc

ResNet-50 0 0 78.07±0.1
+InfoBatch (40%) 40 28 78.07±0.1
+B-PAS (δ∈ [10−5, 10−4]) 61 57 78.07±0.1
+B-PAS (δ∈ [5×10−6, 5×10−5]) 48 47 78.43±0.1

This demonstrates that activation stabil-
ity provides a scalable pruning signal in
large-scale training, where the learning
utility of data is more significant. Fi-
nally, just as InfoBatch evaluates multi-
ple pruning ratios (30%, 50%, 70%), B-
PAS naturally supports different prun-
ing regimes through the choice of δ
values. Smaller δ ranges yield conser-
vative pruning with lower DSI, while
larger values trigger more aggressive
pruning and faster convergence. This
flexibility allows B-PAS to adapt prun-
ing aggressiveness without requiring
handcrafted schedules or explicit loss
tracking, underscoring its practical utility in both small- and large-scale settings.

Cross-Architecture and Dataset Robustness. Table 3 evaluates the generalization of B-PAS across
diverse architectures (ResNet-18, ResNet-50, and CvT) and datasets (CIFAR-10, CIFAR-100, SVHN,
and ImageNet-1K). Several consistent trends emerge.

First, across CNN architectures, B-PAS preserves full dataset baseline accuracy while significantly
reducing data usage and training cost. For example, on ImageNet-1K with ResNet-50, B-PAS achieves
78.43% accuracy (slightly higher than full dataset) while saving data usage by 47% and node-hours
by 48%. Similar savings are observed on smaller datasets, with up to 33% data usage savings

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

on CIFAR-10 and 33% node-hours reduction on SVHN. These results demonstrate that activation
stability provides a reliable pruning signal across scales and architectures within the CNN family.

Table 3: Cross-architecture and dataset robustness of B-PAS on CIFAR-
10/100, SVHN, and ImageNet-1K with ResNet-18/50 and CvT. B-PAS
preserves accuracy across models while reducing data usage and GPU
node-hours.

CIFAR-10 CIFAR-100 SVHN ImageNet-1K

R-18 R-50 R-18 R-50 R-18 R-50 R-18 R-50 CvT

Full Dataset 95.60 95.66 78.2 80.6 95.90 96.27 70.05 78.07 79.65
B-PAS 95.60 95.66 78.2 80.6 95.97 96.27 71.5 78.43 79.10

DSI(%) 25 33 24 30 19 30 37 47 35

Saved hrs(%) 23 29 22 29 18 33 61 48 35

Extending beyond CNNs,
we evaluate B-PAS on CvT-
13. Pruning is performed
by tracking stage-wise ac-
tivations: after each CvT
stage, token sequences are
projected back to spatial for-
mat to compute variance
on the multi-scale feature
maps. Using a more aggres-
sive threshold range (δs =
10−4, δe = 10−3), B-
PAS achieves a substantially
higher DSI of 35% with only a modest accuracy drop (79.10% vs. 79.65%). This behavior reflects
the slower and noisier activation dynamics in transformers, where stability emerges later than in
CNNs. Because our CvT runs use 200 epochs, shorter than the 300+ epochs typically required for
full convergence on ImageNet-1K, the delayed stabilization naturally limits pruning under milder
thresholds. These results indicate that activation stability in CvT is slower to develop, and both longer
training and more aggressive δ schedules unlock significantly stronger pruning efficiency.

3.2 ABLATION STUDIES
To better understand the behavior of B-PAS, we perform controlled ablation studies across learning
rates, normalization layers, training epochs, pruning granularity, and optimizers. These studies
highlight both the robustness of the method and the factors influencing its efficiency.

Effect of Learning Rate. Table 4 shows the impact of different learning rates on ImageNet-1K
with ResNet-50. For 256 batch size, we consider learning rates of 0.2, 0.01, and 0.1. While all
settings achieve comparable DSI (45%–47%), accuracy varies significantly: 74.29% at LR = 0.01,
77.27% at LR = 0.2, and 78.43% at LR = 0.1. These results suggest that excessively small learning
rates hinder convergence, while overly large ones reduce generalization. Importantly, the pruning
dynamics of B-PAS remain stable across learning rates, showing that activation stability is largely
agnostic to optimizer step size.
Table 4: B-PAS under dif-
ferent learning rates (LR).

LR DSI(%)Acc(%)

0.2 45 77.27
0.01 46 74.29
0.1 47 78.43

Table 5: Effect of
Batch Normalization
on B-PAS.

DSI(%)Acc(%)

-BN 19.72 89.87
+BN 25 95.60

Table 6: Effect of train-
ing epochs on B-PAS
on ImageNet-1k.
EpochsDSI(%)Acc(%)

90 12 78.07
200 47 78.43

Table 7: B-PAS
pruning granular-
ity.
PruningAcc(%)

Sample 70.87
Batch 78.43

Impact of Batch Normalization. Table 5 compares CIFAR-10 results with ResNet-18 with and
without Batch Normalization (BN). Since BN normalizes feature statistics per batch, it strongly
affects B-PAS. Without BN, activation trajectories are unstable, requiring more aggressive thresholds
(e.g., δs = 5 × 10−5, δe = 10−3) to obtain reasonable DSI (19.72%); with the default δ values,
pruning is minimal (DSI = 2%). Also, removing BN results in an accuracy drop. In contrast, with
BN, the default thresholds yield effective pruning (DSI = 25%) while improving accuracy to 95.60%.
These results show that BN not only stabilizes activations but also enhances the discriminative signal
used by B-PAS, enabling more reliable identification of redundant batches. More analysis is provided
in Appendix A.4.

Effect of Training Epochs. Table 6 compares ImageNet-1K with ResNet-50 performance at 90 and
200 epochs. With 90 epochs, pruning remains limited (DSI = 12%) due to insufficient stabilization,
whereas at 200 epochs DSI rises to 47% with improved accuracy (78.43%). This highlights that
longer training naturally allows greater pruning, where data savings become more critical and B-PAS
proves most effective.

Pruning Granularity: Batch vs. Sample Level. Table 7 compares pruning at the sample and
batch levels for ImageNet-1K on ResNet-50. For sample-level pruning, the accuracy reduces to
70.87%, compared to 78.43% for batch-level pruning. This discrepancy arises because sample-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

level pruning may disproportionately eliminate certain classes, leading to class imbalance and
degraded generalization. In contrast, batch-level pruning preserves class diversity while still removing
redundant information, confirming its superiority as the granularity choice for B-PAS.

Table 8: B-PAS preserves accu-
racy while achieving similar DSI
across optimizers on CIFAR-10 with
ResNet-18, demonstrating robustness
to optimization dynamics.

SGD AdamAdaGrad

Full Dataset95.60 93.36 92.93
B-PAS 95.60 93.34 92.93

DSI (%) 25 24 22

Optimizer Robustness. Finally, Table 8 explores differ-
ent optimizers on CIFAR-10 with ResNet-18. Across SGD,
Adam, and AdaGrad (Ruder, 2016), B-PAS maintains accu-
racy identical to baseline training, with DSI ranging from
22% to 25%. These results highlight that the pruning crite-
rion is robust to different optimization dynamics, even when
a second-order adaptive optimizer (Adam) alters activation
trajectories. This reinforces that B-PAS generalizes across
diverse optimization regimes without requiring re-tuning.

4 RELATED WORK
This work is related to three major research directions in efficient deep learning: static data pruning,
dynamic data pruning, and dataset distillation. Static pruning methods select training subsets prior
to training using criteria like geometric diversity (Sener & Savarese, 2017; Agarwal et al., 2020),
uncertainty (Coleman et al., 2019; Gal et al., 2017), or learning difficulty (Toneva et al., 2018; Paul
et al., 2021). Gradient-based approaches (e.g., GraNd, EL2N (Paul et al., 2021)) and decision-
boundary methods like DeepFool (Ducoffe & Precioso, 2018) assess sample importance more directly.
Other strategies include bilevel optimization (Killamsetty et al., 2021), submodular selection (Iyer
et al., 2021), ensemble heuristics (Xia et al., 2022), and diversity-aware methods (Welling, 2009a;
Zheng et al., 2023). These techniques often require full dataset access and heavy pre-computation,
limiting scalability. Dynamic pruning eliminates low-utility samples during training via online
signals. Bandit-based methods (Raju et al., 2021), soft pruning with gradient rescaling (Infobatch Qin
et al. (2024)), and uncertainty-driven pruning (He et al., 2024) have shown success but often involve
complex heuristics and tuning. Dataset distillation synthesizes compact training sets via gradient
(Zhao & Bilen, 2023; Liu et al., 2023; Cui et al., 2023; Yang et al., 2023), distribution (Wang et al.,
2022; Sajedi et al., 2023), or trajectory matching (Cazenavette et al., 2022; Du et al., 2023; Guo et al.,
2024), yet faces challenges in scaling to high-resolution data and large models.

5 DISCUSSION AND CONCLUSION
Recent work, such as InfoBatch (Qin et al., 2024) advances data pruning through temporary, sample-
level pruning with gradient rescaling to preserve unbiased gradient estimates. While effective, this
approach requires maintaining per-sample loss statistics and revisiting all data in subsequent epochs,
limiting efficiency in large-scale training. In contrast, our proposed B-PAS performs permanent,
batch-level pruning based on activation stability, eliminating the need for gradient rescaling or
repeated access to discarded data. This design yields substantial reductions in data usage, training
time, and GPU node-hours while leveraging internal activation dynamics rather than loss signals.
A natural concern with data pruning is the potential introduction of bias by disproportionately
discarding informative samples or underrepresented classes. B-PAS prunes at the batch level using
activation stability, which is agnostic to class labels and per-sample loss statistics. Pruning decisions
are thus guided purely by model-internal dynamics rather than sample difficulty or distribution.
Empirically, across CIFAR-10/100, SVHN, and ImageNet-1K, accuracy is consistently preserved,
and in some cases improved—relative to full-dataset training, confirming that B-PAS does not
introduce measurable prediction bias. Finally, our empirical analysis of pruning dynamics reveals
that batches progressively lose learning utility over epochs as their activation variance stabilizes
(Visualization in Appendix A.5). By discarding such batches, B-PAS avoids redundant computation
while focusing training on informative data. If this stabilization did not reflect diminishing utility,
pruning would have harmed performance; instead, results demonstrate that activation stability is
a robust signal for scalable, efficient, and unbiased pruning. We conclude that B-PAS provides
a practical, plug-and-play approach to data-efficient deep learning, with particular promise for
large-scale training where efficiency gains are most impactful.

While most of our experiments focus on CNNs, we also evaluate B-PAS on CvT and in the text domain
with GPT-2 Large (in Appendix A.3), demonstrating its broader applicability beyond convolutional
models. It is acknowledged that a current limitation is the use of empirically chosen threshold
schedules; developing data-driven, adaptive thresholding mechanisms is an important direction for
future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint arXiv:1803.08375,
2018.

Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan Arora. Contextual diversity for active
learning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XVI 16, pp. 137–153. Springer, 2020.

Sahan Ahmad, Gabriel Trahan, and Aminul Islam. When do convolutional neural networks stop
learning? arXiv preprint arXiv:2403.02473, 2024.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. Advances in neural information processing systems, 33:
20852–20864, 2020.

David Bonet, Antonio Ortega, Javier Ruiz-Hidalgo, and Sarath Shekkizhar. Channel-wise early
stopping without a validation set via nnk polytope interpolation. In 2021 Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 351–358.
IEEE, 2021.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4750–4759, June 2022.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019.

Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. Journal of Machine
Learning Research, 19(27):1–21, 2018.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to ImageNet-
1K with constant memory. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
6565–6590. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
cui23e.html.

Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3749–3758, June 2023.

Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
based approach. arXiv preprint arXiv:1802.09841, 2018.

David Duvenaud, Dougal Maclaurin, and Ryan Adams. Early stopping as nonparametric variational
inference. In Artificial intelligence and statistics, pp. 1070–1077. PMLR, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1183–
1192. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/gal17a.
html.

Tushar Ganguli and Edwin KP Chong. Activation-based pruning of neural networks. Algorithms, 17
(1):48, 2024.

Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
dataset distillation via difficulty-aligned trajectory matching, 2024. URL https://arxiv.
org/abs/2310.05773.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

10

https://proceedings.mlr.press/v202/cui23e.html
https://proceedings.mlr.press/v202/cui23e.html
https://proceedings.mlr.press/v70/gal17a.html
https://proceedings.mlr.press/v70/gal17a.html
https://arxiv.org/abs/2310.05773
https://arxiv.org/abs/2310.05773

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Muyang He, Shuo Yang, Tiejun Huang, and Bo Zhao. Large-scale dataset pruning with dynamic
uncertainty. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7713–7722, 2024.

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
information measures with applications in machine learning. In Vitaly Feldman, Katrina Ligett, and
Sivan Sabato (eds.), Proceedings of the 32nd International Conference on Algorithmic Learning
Theory, volume 132 of Proceedings of Machine Learning Research, pp. 722–754. PMLR, 16–19
Mar 2021. URL https://proceedings.mlr.press/v132/iyer21a.html.

Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate impor-
tance sampling. Advances in Neural Information Processing Systems, 31, 2018.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(9):8110–8118, May 2021. doi: 10.1609/aaai.v35i9.16988.
URL https://ojs.aaai.org/index.php/AAAI/article/view/16988.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). a. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). b. URL http://www.cs.toronto.edu/˜kriz/cifar.html.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of the
European conference on computer vision (ECCV), pp. 734–750, 2018.

Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient dataset
distillation by representative matching. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 17314–17324, October 2023.

Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping without a
validation set. arXiv preprint arXiv:1703.09580, 2017.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
wide convolutional networks. Advances in Neural Information Processing Systems, 34:5186–5198,
2021.

Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, 2020.

11

https://proceedings.mlr.press/v132/iyer21a.html
https://ojs.aaai.org/index.php/AAAI/article/view/16988
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongmin Park, Dimitris Papailiopoulos, and Kangwook Lee. Active learning is a strong baseline for
data subset selection. In Has it Trained Yet? NeurIPS 2022 Workshop, 2022.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in neural information processing systems, 34:
20596–20607, 2021.

Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Daquan Zhou, Lei Shang,
Baigui Sun, Xuansong Xie, Yang You, et al. Infobatch: Lossless training speed up by unbiased
dynamic data pruning. In The Twelfth International Conference on Learning Representations,
2024.

Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. Accelerating deep learning with dynamic data
pruning. arXiv preprint arXiv:2111.12621, 2021.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z. Liu, Yuri A. Lawryshyn, and Konstantinos N.
Plataniotis. Datadam: Efficient dataset distillation with attention matching. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 17097–17107, October
2023.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2018.

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12196–12205, 2022.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pp. 1121–1128, New York, NY, USA, 2009a.
Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553517.
URL https://doi.org/10.1145/1553374.1553517.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th annual international
conference on machine learning, pp. 1121–1128, 2009b.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 22–31, 2021.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal
method of data selection for real-world data-efficient deep learning. In The Eleventh International
Conference on Learning Representations, 2022.

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You,
and Jianxin Li. Does graph distillation see like vision dataset counterpart? In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 53201–53226. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/a6efa49c54bedf4411f1bcd32f15937a-Paper-Conference.pdf.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
training data by examining generalization influence. arXiv preprint arXiv:2205.09329, 2022.

12

https://doi.org/10.1145/1553374.1553517
https://proceedings.neurips.cc/paper_files/paper/2023/file/a6efa49c54bedf4411f1bcd32f15937a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a6efa49c54bedf4411f1bcd32f15937a-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 6514–6523, 2023.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss
minimization. In international conference on machine learning, pp. 1–9. PMLR, 2015.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high
pruning rates, 2023. URL https://arxiv.org/abs/2210.15809.

13

https://arxiv.org/abs/2210.15809

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 EXPERIMENTAL SETUP

A.1.1 MODEL SPECIFICATIONS

ResNet-18 and ResNet-50. For CNN backbones, we adopt standard ResNet architectures with
residual connections following (He et al., 2016). ResNet-18 is constructed using BasicBlock units
(expansion factor 1) with layer configuration [2, 2, 2, 2], while ResNet-50 uses Bottleneck units
(expansion factor 4) with configuration [3, 4, 6, 3]. Both models begin with a 7× 7 convolution and
max pooling, followed by four residual stages, global average pooling, dropout (0.2), and a fully
connected classifier. Batch Normalization is applied after each convolution, and ReLU serves as
the activation. For activation tracking, we monitor outputs after each of the four residual stages
(layer1–4).

Convolutional vision Transformer (CvT). We also evaluate B-PAS on CvT-13 (Wu et al., 2021),
which integrates convolutional projections within transformer blocks. CvT-13 consists of three stages
(Table 9): (i) a 64-dim embedding with depth 1 and 1 attention head; (ii) a 192-dim embedding
with depth 2 and 3 heads; and (iii) a 384-dim embedding with depth 10 and 6 heads. Each stage
applies convolutional embedding, convolutional multi-head self-attention with depthwise projections,
and MLP blocks with GELU activation. Activations are tracked at the stage outputs, where token
sequences are reshaped back into spatial (B,C,H,W) format for variance computation. The network
ends with layer normalization, global average pooling over tokens, and a linear classifier.

Table 9: Model specifications for architectures used in our experiments.

Model Building Block Depth Embedding / Channels

ResNet-18 BasicBlock [2, 2, 2, 2] [64, 128, 256, 512]
ResNet-50 Bottleneck [3, 4, 6, 3][256, 512, 1024, 2048]
CvT-13 Conv-Attn + MLP [1, 2, 10] [64, 192, 384]

A.1.2 DATASET SPECIFICATIONS

Table 10 provides the number of training and validation samples used for each dataset. CIFAR-10
and CIFAR-100 each include 50,000 training and 10,000 validation images. SVHN contains a
larger validation set relative to its training size, with 73,257 training and 26,032 validation samples.
ImageNet-1K, being significantly larger, includes over one million training images and 50,300
validation samples, reflecting its role as a large-scale benchmark. All images are augmented with
commonly adopted transformations, i.e., normalization, random crop, and horizontal flip if not stated
otherwise.

Table 10: Dataset Splits for Training and Validation

Dataset Training SamplesValidation Samples

CIFAR10 50,000 10,000
CIFAR100 50,000 10,000
SVHN 73,257 26,032
ImageNet-1K 1,230,867 50,300

A.1.3 HYPERPARAMETERS

Table 11 summarizes the hyperparameters used across datasets and architectures. Unless otherwise
noted, all models are trained with SGD optimizer, using momentum of 0.9. For ImageNet with
ResNets, we adopt MultiStepLR scheduling, while other CNN datasets use cosine annealing. CvT
models are trained with AdamW. For ImageNet training, we use 4 GPUs in parallel; hence both the
batch size and learning rate are scaled linearly by the number of GPUs (i.e., 256× 4 total batch size
and base learning rate 0.1× 4 = 0.4).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 11: Training hyperparameters across datasets and architectures.

Dataset / Model EpochsBatch Size LR Weight Decay Scheduler

CIFAR-10 (ResNets) 200 128 0.05 5× 10−4 CosineAnnealing
CIFAR-100 (ResNets) 200 128 0.10 5× 10−4 CosineAnnealing
SVHN (ResNets) 200 128 0.10 5× 10−4 CosineAnnealing
ImageNet (ResNets) 200 256×4 0.40 1× 10−4 MultiStepLR
ImageNet (CvT) 200 128×4 1× 10−3 0.05 CosineAnnealing

A.1.4 HARDWARE SPECIFICATIONS

Table 12 and 13 summarizes the computational setups. ImageNet experiments were performed on a
high-performance cluster with dual 32-core Intel Xeon Platinum CPUs and 4× A100 GPUs connected
via NVLink. CIFAR-10/100 and SVHN experiments were conducted on a local workstation with an
AMD Ryzen 9 CPU and a single Titan RTX GPU.

Table 12: Hardware specifications for CIFAR-10/100 and SVHN experiments.

ComponentSpecification

CPU AMD Ryzen 9 7900X, 12 cores / 24 threads, 4.7 GHz base
GPU NVIDIA Titan RTX, 24 GB GDDR6
RAM Corsair Vengeance, 128 GB DDR5, 6000 MHz

Table 13: Hardware specifications for ImageNet experiments.

ComponentSpecification

CPU Dual Intel Xeon Platinum 8358 (Ice Lake), 32 cores each
GPU 4 × NVIDIA A100 (Ampere) with NVLink interconnect
RAM 512 GB

A.1.5 SOFTWARE SPECIFICATIONS

Table 14: Software Specifications

Component Details

Python Version3.8.18
Libraries torch, torchvision, matplotlib, numpy,

scikit-learn, seaborn, pandas, pillow (PIL)
Platform Jupyter Notebook

Table 14 outlines the software environment used
for all experiments. Python 3.8.18 served as
the core programming language. Key libraries
included PyTorch and Torchvision for model
development, along with Matplotlib, NumPy,
Scikit-learn, Seaborn, Pandas, and Pillow (PIL)
for data handling and visualization. CIFAR-
10/100 and SVHN experiments were conducted
in Jupyter Notebook, facilitating interactive de-
velopment and reproducibility. Additionally, Im-
ageNet experiments were conducted as python scripts.

A.2 MORE RELATED WORK

Bartoldson et al. (2020) analyze weight pruning by defining stability as the accuracy drop after
removing parameters, a diagnostic notion operating entirely in parameter space while keeping the
data fixed. In contrast, B-PAS functions in data space, tracking temporal activation variance across
epochs as an online signal for permanently pruning batches, a direction unexplored in prior pruning
work. Similarly, Ganguli & Chong (2024) use activation frequency to prune neurons in small
fully connected networks, focusing on static model sparsification rather than data reduction. While
activation patterns have been used to assess weight importance or characterize network behavior, no
prior method leverages activation stability over time to directly remove training data.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 15: Results for Group of δs = 5× 10−5

δs δe DSI (%)ACC (%)

5× 10−5 1× 10−3 75 89.65
5× 10−5 5× 10−4 75 90.24
5× 10−5 1× 10−4 68 91.65

A.3 MORE RESULTS

Detailed CIFAR-10 Results. Table 15–19 provide the tabular counterpart of Figure 3, reporting the
full results of our CIFAR-10 analysis across forty-five (δs, δe) configurations. Each table corresponds
to one starting threshold group, with multiple end thresholds. These results clearly illustrate the
trade-off between pruning aggressiveness and accuracy:

• Larger δs values (Tables 15–16) trigger early and aggressive pruning, yielding substantial
data savings but lower accuracy.

• Smaller δs values (Table 19) retain most data, preserving accuracy at the cost of reduced
pruning benefits.

• Intermediate settings (Tables 17–18) achieve the most favorable balance, with the setting
δ ∈ [10−6, 5×10−5] (Table 18) delivering the highest accuracy while saving 25% of training
data.

Together, these tables complement Figure 3 by providing a detailed numerical view of pruning dynam-
ics, confirming that the thresholds govern an effective trade-off between efficiency and generalization.

Table 16: Results for Group of δs = 1× 10−5

δs δe DSI(%)ACC (%)

1× 10−51× 10−3 63 91.28
1× 10−55× 10−4 59 92.28
1× 10−51× 10−4 52 93.61
1× 10−55× 10−5 47 94.31
1× 10−54× 10−5 43 94.49
1× 10−5 3× 10−5 43 94.58

Table 17: Results for Group of δs = 5× 10−6

δs δe DSI(%)ACC (%)

5× 10−6 1× 10−3 57 92.28
5× 10−6 5× 10−4 55 92.97
5× 10−6 1× 10−4 45 94.46
5× 10−6 9× 10−5 45 94.20
5× 10−6 8× 10−5 43 94.28
5× 10−6 7× 10−5 40 94.81
5× 10−6 6× 10−5 41 94.71
5× 10−6 5× 10−5 40 94.59
5× 10−6 4× 10−5 37 94.79
5× 10−6 3× 10−5 31 95.02
5× 10−6 2× 10−5 28 95.05
5× 10−6 1× 10−5 23 95.44

Detailed ImageNet Results. Table 20 provides the tabular version of Figure 4, reporting results of
B-PAS with ResNet-50 on ImageNet-1K across eight threshold settings. The table includes accuracy,
Data Savings Index (DSI), training time, node-hours, and early stopping behavior, offering a more
granular perspective on pruning dynamics.

A clear trade-off emerges between data savings and accuracy. Larger thresholds such as δ ∈
[5 × 10−5, 5 × 10−4] trigger aggressive pruning, with training terminating around epoch 100 and
accuracy dropping to 76.1%, despite saving 73% node-hours. Conversely, smaller thresholds (e.g.,
δ ∈ [10−6, 5× 10−5]) achieve slightly better accuracy compared to full dataset (78.63%) but achieve
only moderate efficiency gains (37% node-hours saved).

Intermediate thresholds provide the most balanced trade-off: for instance, δ ∈ [5× 10−6, 5× 10−5]
yields 78.43% accuracy with 47% DSI and 48% node-hours saved. GPU node-hours is calculated
by (Training Time (in seconds)/3600)*4 (number of GPUs). The node-hours saved percentage is
calculated from the full dataset’s node-hours (87.98). Importantly, DSI and node-hour savings follow

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 18: Results for Group of δs = 1× 10−6

δs δe DSI(%)ACC (%)

1× 10−61× 10−3 47 93.24
1× 10−65× 10−4 42 94.13
1× 10−61× 10−4 31 95.18
1× 10−69× 10−5 29 95.04
1× 10−68× 10−5 30 94.99
1× 10−6 7× 10−5 29 95.07
1× 10−6 6× 10−5 26 95.44
1× 10−6 5× 10−5 25 95.60
1× 10−6 4× 10−5 22 95.47
1× 10−6 3× 10−5 22 95.28
1× 10−6 2× 10−5 16 95.54
1× 10−6 1× 10−5 15 95.49

Table 19: Results for Group of δs = 1× 10−7

δs δe DSI (%)ACC (%)

1× 10−7 1× 10−3 34 94.47
1× 10−7 5× 10−4 31 94.94
1× 10−7 1× 10−4 18 95.49
1× 10−7 9× 10−5 19 95.46
1× 10−7 8× 10−5 19 95.50
1× 10−7 7× 10−5 18 95.33
1× 10−7 6× 10−5 15 95.52
1× 10−7 5× 10−5 14 95.43
1× 10−7 4× 10−5 12 95.57
1× 10−7 3× 10−5 11 95.55
1× 10−7 2× 10−5 9 95.60
1× 10−7 1× 10−5 5 95.60

consistent trends, reinforcing that pruning efficiency directly translates to a reduction in training costs.
Early stopping occurs primarily under aggressive pruning settings, confirming that pruning not only
reduces data usage but can also shorten training trajectories.

Table 20: Detailed ImageNet Results with node-hours, DSI, and Early Stopping.

δs δe DSI(%)Acc(%)Early Stop EpochTraining Time(s)Node-hrsNode-hrs Saved(%)

1× 10−7 5× 10−4 38 78.46 178 46409.41 51.57 41
1× 10−6 5× 10−5 33 78.63 – 49855.24 55.39 37
5× 10−7 5× 10−4 46 78.55 175 41460.80 46.07 48
5× 10−6 5× 10−5 47 78.43 – 40919.18 45.47 48
5× 10−5 5× 10−4 74 76.10 102 21067.36 23.41 73
1× 10−5 5× 10−4 62 77.85 143 29016.79 32.24 63
1× 10−5 1× 10−4 57 78.07 179 30841.92 34.27 61
1× 10−5 5× 10−5 57 78.07 179 30828.36 34.25 61
5× 10−6 5× 10−5 37 71.50 – 29638.31 32.93 62

Full Dataset – 0 78.07 – 79183.84 87.98 0

Fast and Reliable δ Selection Using a Small Subset of Training Data. The tables 21 and 22
show that δs and δe can be tuned quickly and reliably using only a small portion of the training set.
Across both CIFAR-10 with ResNet-18 and ImageNet-1K with ResNet-50, the relative ordering of
pruning strength and accuracy remains consistent between full data runs and ten percent subset runs.
Larger thresholds such as δs = 10−5 consistently yield higher DSI, while smaller thresholds such as
δs = 10−7 produce more conservative pruning, precisely matching the full training patterns. These
partial runs are extremely lightweight, requiring only a few minutes for CIFAR-10 and roughly one
hour for ImageNet-1K on four A-100 GPUs. As a result, selecting δ is fast, inexpensive, and does not
diminish the overall efficiency gains of B PAS.

Once a good δ schedule is identified for a dataset family, it transfers well to related settings. The
values tuned on CIFAR-10 transfer directly to CIFAR-100 and SVHN without further adjustment,
preserving the expected DSI and accuracy behavior in low-resolution CNNs. Similarly, values tuned
on ImageNet-1K with ResNet-50 generalize to ImageNet-like datasets and other CNN variants.
Although transformers exhibit slower and noisier activation stabilization, they can also be handled
with a small subset of data, as demonstrated by our experiments with CvT-13 and GPT large. These
findings show that δ hyperparameters can be tuned rapidly on small data slices and reused across
models, making B PAS practical and scalable for new architectures and datasets.

Extended Comparison with SOTA. Table 23 summarizes the performance of representative data
selection and pruning techniques on CIFAR-10 and CIFAR-100. Classical core-set and influence-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 21: Pattern of δs–δe schedules on pruning (DSI) and accuracy under full-data vs. 10% of
training data monitoring in CIFAR-10.

δs δe DSI (Full)Acc (Full)DSI (10% data)Acc (10% data)

5× 10−55× 10−4 74.52 90.24 0.5655 79.0
10−5 5× 10−5 46.83 94.31 0.2528 81.8
5× 10−65× 10−5 39.78 94.59 0.1683 82.2
10−6 5× 10−5 25.06 95.60 0.1244 82.8
10−7 5× 10−5 14.26 95.43 0.1030 82.1

Table 22: Patttern of δs–δe schedules under full-data vs. 10% of training data monitoring in ImageNet-
1K.

δs δe DSI (Full)Acc (Full)Time (Full)DSI (10%)Acc (10%)Time (10%)

10−7 5× 10−4 38.48 0.7846 46409.41 34.71 0.5057 5274.02
5× 10−6 5× 10−5 47.21 0.7843 40919.18 43.16 50.4 4793.08
10−5 5× 10−5 57.34 0.7807 30828.36 51.78 50.14 4206.86

based methods (e.g., Herding, Influence, K-Center) provide moderate gains, while more recent
gradient- and uncertainty-based approaches (e.g., GraNd, EL2N, DP, UCB) achieve higher accuracy,
especially on CIFAR-100. InfoBatch represents the prior state of the art, reaching 95.6% on CIFAR-
10 and 78.2% on CIFAR-100. B-PAS matches these best-reported results, maintaining a better DSI
despite using a fundamentally different criterion based on temporal activation stability rather than
loss, gradient, or uncertainty-driven scoring. This highlights that activation variance dynamics can
provide an equally strong or complementary signal for identifying redundant training data.

In addition, we compare the results from a recent large-scale pruning method: Large-scale Dataset
Pruning with Dynamic Uncertainty (He et al., 2024). Their method achieves a 25% lossless pruning
ratio on ImageNet-1K. By comparison, B-PAS removes up to 57% of the data while matching baseline
accuracy and reducing GPU-hours by 61%, indicating substantially greater pruning capacity and
compute savings on the same large-scale benchmark.

Cross-Task Robustness. Table 24 reports the results of applying B-PAS during GPT-2 Large fine-
tuning on the Alpaca instruction tuning dataset. Because this experiment involves a short 10-epoch
fine-tuning run on a transformer-based LLM, we adopt a more aggressive pruning threshold range
(δs = 10−3, δe = 10−2) to compensate for the smoother activation dynamics of transformers. As
expected, activation stabilization occurs later in training, resulting in a lower Data Saving Index
(DSI) compared to our large-scale vision experiments; nevertheless, B-PAS prunes 23% of batches.
Crucially, pruning does not harm model performance: loss and perplexity remain unchanged or
slightly improved. At the same time, total training time is reduced by about an hour on 2×A100
GPUs. These findings demonstrate that B-PAS is compatible with transformer-based language models
and provides measurable efficiency gains even in smaller fine-tuning settings.

Nature of Pruned Batches and Class Distribution. To examine whether B-PAS disproportionately
removes “easy” examples, we conducted a difficulty analysis using two standard metrics from the
pruning and curriculum learning literature: confidence (higher = easier) and misclassification rate
(lower = easier). Confidence is computed as the maximum softmax probability for each sample,
with higher values indicating that the model already finds the example easy. Misclassification rate
reflects whether the model predicted the sample incorrectly at an early epoch, with lower values
corresponding to easier examples. After pruning, these per-sample values are averaged over all
samples contained within pruned batches and kept batches, so the reported means reflect the average
difficulty of each group. As shown in Table 25, pruned batches have lower confidence (0.60 vs. 0.65)
and higher misclassification rates (0.40 vs. 0.35) compared to kept batches. If B-PAS were pruning
easy samples, we would expect the opposite behavior. Instead, both metrics indicate that pruned
batches are not easier, and the means are very close, demonstrating that B-PAS does not introduce
difficulty bias and prunes based solely on activation stability rather than sample easiness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 23: Comparison of pruning methods on CIFAR-10 and CIFAR-100.

Method CIFAR-10 Acc. (%)CIFAR-100 Acc. (%)
Herding (Welling, 2009b) 92.2 73.1
Influence (Koh & Liang, 2017) 93.1 74.4
K-Center (Sener & Savarese, 2017) 94.7 74.1
DeepFool (Ducoffe & Precioso, 2018) 95.1 74.2
Forgetting (Toneva et al., 2018) 94.7 75.3
EL2N-2 (Toneva et al., 2018) 94.4 74.1
EL2N-20 (Toneva et al., 2018) 95.3 77.2
Least Confidence (Coleman et al., 2019) 95.0 74.2
Margin (Coleman et al., 2019) 94.9 74.0
CD (Agarwal et al., 2020) 95.0 74.2
Craig (Mirzasoleiman et al., 2020) 94.8 74.4
GraNd-4 (Paul et al., 2021) 95.3 74.6
Glister (Killamsetty et al., 2021) 95.2 74.6
DP (Yang et al., 2022) 94.9 77.2
ε-greedy (Raju et al., 2021) 95.2 76.4
UCB (Raju et al., 2021) 95.3 77.3
InfoBatch (Qin et al., 2024) 95.6 78.2
B-PAS (Ours) 95.6 78.2

Table 24: Comparison of full-data training and B-PAS on loss, perplexity, training time, and pruning
statistics for GPT2-large.

Method Loss PerplexityAvg. Epoch Time (s)Total Time (s)Pruned Batch (%)DSI (%)
Full Data0.2207 1.25 5359.88 54420.13 – –
B-PAS 0.2201 1.25 5039.11 51211.29 23.00 6

Furthermore, to assess whether permanent pruning introduces class imbalance, we compared the
class distribution of the dataset before training and after 100 epochs of B-PAS. As shown in Table 26,
the proportions remain effectively unchanged, with all deviations within 0.1%. This stability occurs
because B-PAS removes entire batches, and each batch contains a naturally mixed set of classes due to
the initial random shuffling. Consequently, pruning at the batch level does not preferentially remove
any particular class. Combined with the difficulty analysis, these results demonstrate that B-PAS
does not introduce class bias and does not prune based on sample easiness. Instead, pruning is driven
solely by the activation-stability criterion, ensuring that the retained dataset remains representative of
the original distribution with respect to both class balance and example difficulty.

A.4 MORE ABLATION STUDIES

Extended Impact Analysis of Normalization.

Table 27: Effect of differ-
ent normalization strategies on
DSI and accuracy.

Normalizer DSI (%)Acc (%)

Layer 13.2 93.99
Layer + Batch 21.9 94.97
None 2.0 90.39
Batch 25.06 95.60

Across normalization schemes in Table 27, pruning thresholds, and
architectures, the results consistently show that B-PAS remains ef-
fective even when normalization is absent, as long as the δ schedule
is calibrated to the activation dynamics of the model. On CIFAR-10
with ResNet-18, BatchNorm yields the smoothest activation tra-
jectories and therefore the highest data savings (25.06% DSI), but
LayerNorm alone still enables meaningful pruning (13.2% DSI)
with strong accuracy (93.99%). In contrast, removing normalization
entirely severely destabilizes activation variance, leading to only 2%
DSI and a substantial accuracy drop, which aligns with the known
behavior of unnormalized ResNets.

The δ-range ablation further confirms this trend in Table 29. Without
BatchNorm, larger thresholds (e.g., δs = 5 × 10−5, δe = 10−3) are required to counteract noisier

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 25: Comparison of average difficulty metrics between pruned and kept batches. Pruned batches
exhibit lower confidence and higher misclassification rates, indicating they are not disproportionately
composed of “easy” examples.

Metric Pruned MeanKept Mean
Confidence 0.60 0.65
Misclassification Rate 0.40 0.35

Table 26: Class distribution before training and after 100 epochs of B-PAS. The differences are within
±0.1%, indicating no class imbalance introduced by pruning.

Class (%) plane car bird cat deer dog frog horse ship truck

Initial 10.0010.0010.0010.0010.0010.0010.0010.0010.0010.00
After 100 Epochs10.0510.01 9.99 10.0410.08 9.91 9.92 9.91 10.0510.04

activation dynamics, enabling 19.72% pruning at the cost of accuracy. More conservative thresholds
(e.g., δs = 10−6, δe = 5 × 10−5) yield minimal pruning (2%), reflecting the higher instability of
unnormalized features. When BatchNorm is restored, the same thresholds (10−6 to 5× 10−5) enable
substantially higher DSI (25.06%) with top performance (95.60%), demonstrating that stable feature
statistics directly expand the “prunable” region detected by B-PAS.

Table 28: Comparison of Full
Data training and B-PAS on
CIFAR-10 (LeNet-5).

Method DSI (%)Acc (%)
Full Data – 71.0
B-PAS 31.07 70.5

Finally, Table 28 shows experiments on LeNet-5, a normalization-
free architecture. It shows that B-PAS is not dependent on normal-
ization layers. With a tuned δ schedule (δs = 10−4, δe = 10−3), the
method prunes 31% of the data and maintains accuracy within 0.5%
of the baseline. This confirms that B-PAS is compatible with models
lacking normalization, but the threshold schedule must reflect the
architecture’s intrinsic activation stability regime.

Effect of Batch Size. The batch size ablation in Table 30 shows
that DSI increases consistently as batch size grows, reflecting the
fact that larger batches yield smoother and more stable activation
trajectories across epochs, which allows B-PAS to prune earlier and
more aggressively. Accuracy remains nearly unchanged across all settings, indicating that the method
is robust to batch-size variation and does not introduce batch-size-dependent bias. Although larger
batches improve the magnitude of achievable data savings, the core behavior of activation stabilization
and accuracy preservation remains consistent, demonstrating that B-PAS functions reliably under
standard training configurations.

Table 30: Effect of batch
size on pruning effectiveness
and accuracy on CIFAR-10
(ResNet-18).

Batch SizeDSI (%)Acc (%)
32 20.25 94.86
64 23.26 94.93
128 25.06 95.60
256 26.97 95.10

Different Approaches to Quantify Activation Stability. The ab-
lation in Table 31 compares several alternative activation stability
metrics. Kurtosis yields moderate pruning but remains highly sen-
sitive to early-epoch fluctuations, resulting in conservative DSI. En-
tropy exhibits the opposite behavior: its larger dynamic range causes
overly aggressive pruning, leading to substantial accuracy degrada-
tion. Using the maximum standard deviation amplifies layer-wise
noise and produces unstable pruning behavior with limited savings.
In contrast, the proposed mean standard deviation provides a stable
and well-behaved signal, achieving a balanced trade-off between
pruning strength and accuracy. These results indicate that mean
standard deviation is the most reliable activation stability quantifier
among the tested alternatives.

A.5 VISUALIZATIONS

Figure 5 illustrates the evolution of mean standard deviation changes (∆X̄) across epochs for selected
batches for CIFAR-10 with ResNet-18. The change is initially large but decreases steadily, eventually

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 29: Effect of pruning thresholds and BatchNorm on B-PAS.

δs δe BatchNormDSI (%)Accuracy (%)

5× 10−5 10−3 without BN 19.72 89.87
10−6 5× 10−5 without BN 2.00 90.39
10−6 5× 10−5 with BN 25.06 95.60

Table 31: Comparison of different activation stability quantification for pruning.

QuantificationDSI (%)Acc (%)
kurtosis 22.22 95.00
entropy 74.89 89.64
max std 13.45 95.41
mean std 25.06 95.60

saturating as training progresses. Once the change falls below the threshold, the corresponding
batches are pruned. Figure 6 reports the number of batches pruned per epoch. Pruning does not occur
in early epochs, when activation changes remain high, but becomes increasingly aggressive in later
stages as changes stabilize.

Additionally, Figure 7 and 8 shows the relationship between threshold growth and the number of
remaining batches per epoch (CIFAR-10, ResNet-18). As training progresses, the threshold value
becomes larger resulting into more batch pruning.

0 25 50 75 100 125 150 175 200
Epoch

50

100

150

200

250

300

350

400

Nu
m

be
r o

f B
at

ch
es

Remaining Batches per Epoch

0 25 50 75 100 125 150 175 200
Epoch

0

2

4

6

8

10

Nu
m

be
r o

f B
at

ch
es

 D
ro

pp
ed

Batches Dropped per Epoch

50 100 150 200 250 300 350 400
Number of Batches

5

10

15

20

Ep
oc

h
Ti

m
e

(s
ec

on
ds

)

Training Time vs Remaining Batches

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

d
De

vi
at

io
n

Std Deviation Trend for Sample Batches (X = Pruned)
Batch 0
Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7
Batch 8
Batch 9

Figure 5: Evolution of mean standard deviation (∆X̄) for representative batches across epochs.
Large initial fluctuations gradually saturate, and once below the pruning threshold, the corresponding
batches are pruned.

A.6 LLM USAGE

In this research, large language models (LLMs) have been utilized to assist in verifying grammatical
correctness. All contents were developed and verified by the authors.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epoch

50

100

150

200

250

300

350

400

Nu
m

be
r o

f B
at

ch
es

Remaining Batches per Epoch

0 25 50 75 100 125 150 175 200
Epoch

0

2

4

6

8

10
Nu

m
be

r o
f B

at
ch

es
 D

ro
pp

ed

Batches Dropped per Epoch

50 100 150 200 250 300 350 400
Number of Batches

5

10

15

20

Ep
oc

h
Ti

m
e

(s
ec

on
ds

)

Training Time vs Remaining Batches

0 25 50 75 100 125 150 175 200
Epoch

0.2

0.4

0.6

0.8

1.0

M
ea

n
St

d
De

vi
at

io
n

Std Deviation Trend for Sample Batches (X = Pruned)
Batch 0
Batch 1
Batch 2
Batch 3
Batch 4
Batch 5
Batch 6
Batch 7
Batch 8
Batch 9

Figure 6: Number of batches pruned per epoch. No pruning occurs in early epochs, while pruning
accelerates in later epochs as more batches stabilize, leading to substantial reductions in training cost.

0 25 50 75 100 125 150 175 200
Epoch

10 6

10 5

Th
re

sh
ol

d
Va

lu
e

Exponential Threshold Evolution Over Epochs

0 25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f B
at

ch
es

Remaining Batches per Epoch

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f B
at

ch
es

 D
ro

pp
ed

Batches Dropped per Epoch

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Pr
un

ed
 P

er
ce

nt
ag

e
(%

)

Cumulative Pruned Percentage Over Epochs

10 6 10 5

Threshold Value

0

50

100

150

200

250

300

350

400

Re
m

ai
ni

ng
 B

at
ch

es

Threshold vs Remaining Batches

0 25 50 75 100 125 150 175 200
Epoch

10 6

10 5

Th
re

sh
ol

d
Va

lu
e

(lo
g

sc
al

e)

Exponential Threshold Growth Pattern

Figure 7: Exponential Threshold Evolution Over Epochs.

0 25 50 75 100 125 150 175 200
Epoch

10 6

10 5

Th
re

sh
ol

d
Va

lu
e

Exponential Threshold Evolution Over Epochs

0 25 50 75 100 125 150 175 200
Epoch

0

50

100

150

200

250

300

350

400

Nu
m

be
r o

f B
at

ch
es

Remaining Batches per Epoch

0 25 50 75 100 125 150 175 200
Epoch

0

1

2

3

4

5

6

7

8

Nu
m

be
r o

f B
at

ch
es

 D
ro

pp
ed

Batches Dropped per Epoch

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

Pr
un

ed
 P

er
ce

nt
ag

e
(%

)

Cumulative Pruned Percentage Over Epochs

10 6 10 5

Threshold Value

0

50

100

150

200

250

300

350

400

Re
m

ai
ni

ng
 B

at
ch

es

Threshold vs Remaining Batches

0 25 50 75 100 125 150 175 200
Epoch

10 6

10 5

Th
re

sh
ol

d
Va

lu
e

(lo
g

sc
al

e)

Exponential Threshold Growth Pattern

Figure 8: Remaining Batches per Epoch

22

	Introduction
	Batch-Pruning by Activation Stability (B-PAS)
	Activation Stability
	Batch Pruning
	Dynamic Threshold for Pruning

	Experiment
	Result Analysis
	Ablation Studies

	Related Work
	Discussion and Conclusion
	Appendix
	Experimental Setup
	Model Specifications
	Dataset Specifications
	Hyperparameters
	Hardware Specifications
	Software Specifications

	More Related Work
	More Results
	More Ablation Studies
	Visualizations
	LLM Usage

