

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

BATCH PRUNING BY ACTIVATION STABILITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Training deep neural networks remains costly in terms of data, time, and energy, limiting their deployment in large-scale and resource-constrained settings. To address this, we propose Batch Pruning by Activation Stability (B-PAS), a dynamic plug-in strategy that accelerates training by adaptively removing data as batches that contribute less to learning. B-PAS monitors the stability of activation feature maps across epochs and prunes batches whose activation variance shows minimal change, indicating diminishing learning utility. Applied to ResNet-18, ResNet-50, and the Convolutional vision Transformer (CvT) on CIFAR-10, CIFAR-100, SVHN, and ImageNet-1K, B-PAS reduces training batch usage by up to 57% with no loss in accuracy, and by 47% while slightly improving accuracy. Moreover, it achieves as far as 61% savings in GPU node-hours, outperforming prior state-of-the-art pruning methods with up to 29% higher data savings and 21% greater GPU node-hours savings. These results highlight activation stability as a powerful internal signal for efficient training by removing batches, offering a practical and sustainable path toward data and energy-efficient deep learning.

1 INTRODUCTION

Deep learning has emerged as a powerful paradigm for solving complex tasks across a variety of domains. These models, while highly effective, are inherently resource and time-intensive, frequently consuming significant GPU hours and memory bandwidth during both training and inference phases. They utilize large amounts of computation even on redundant or less informative data, leading to inefficiencies in resource-constrained environments. Among deep learning models, Convolutional Neural Networks (CNNs) have achieved remarkable success in a wide range of computer vision tasks, including image classification, object detection, and segmentation (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2016; 2017; Law & Deng, 2018). However, these performance gains often come at the cost of increased computational demands. State-of-the-art CNN architectures typically require large-scale datasets such as ImageNet (Krizhevsky et al., 2012) for effective training and involve millions of parameters, making them expensive to train and deploy. This poses a significant barrier for practitioners with limited computational resources. Reducing training costs without sacrificing performance remains a longstanding challenge in deep learning.

A straightforward approach to address this challenge is to reduce the amount of training data. Techniques such as dataset distillation (Nguyen et al., 2021; Zhao & Bilen, 2023; Wang et al., 2022) and coresnet selection (Har-Peled & Mazumdar, 2004; Park et al., 2022; Xia et al., 2022) aim to synthesize or select a compact, informative subset of the original dataset. While effective in reducing data volume, these methods often introduce nontrivial computational overhead and may result in degraded model performance. Weighted sampling methods (Zhao & Zhang, 2015; Csiba & Richtárik, 2018; Johnson & Guestrin, 2018) improve convergence by increasing the sampling frequency of informative samples, but their performance is highly sensitive to the choice of model and dataset.

Another line of research focuses on reducing the number of training iterations through data pruning. Static pruning methods estimate sample utility scores and remove low-utility samples before training begins (Toneva et al., 2018; Paul et al., 2021), but often incur high preprocessing costs and lack adaptability during training. Dynamic pruning approaches mitigate these issues by adjusting the pruning process on the fly. For example, InfoBatch (Qin et al., 2024) dynamically prunes low-utility samples using a soft-pruning strategy combined with expectation rescaling to maintain unbiased gradients. Similarly, He et al. (2024) leverages prediction uncertainty and training dynamics to prune up to 25% of data from large-scale datasets such as ImageNet without sacrificing accuracy. However, these approaches often rely on complex heuristics.

054 Early stopping is a widely used strategy for reducing data usage by terminating training once
 055 performance plateaus (Duvenaud et al., 2016; Mahsereci et al., 2017; Bonet et al., 2021). However,
 056 most existing approaches rely on gradient-based signals that often fail to generalize across modern
 057 optimizers or require carefully tuned hyperparameters and specialized frameworks. More recently,
 058 Ahmad et al. (2024) proposed an early stopping criterion based on the stability of convolutional
 059 activations, highlighting the potential of internal network dynamics as reliable indicators of training
 060 progress. This line of work builds on the broader concept of activation stability, which is closely linked
 061 to the phenomenon of Neural Collapse (Papyan et al., 2020), wherein class-specific representations
 062 become increasingly aligned and activation patterns stabilize as training converges. Together, these
 063 findings suggest that activation stability offers a promising direction for analyzing data utility through
 064 internal model dynamics.

065 While prior data pruning approaches such as InfoBatch (Qin et al., 2024) rely on per-sample loss
 066 statistics, gradient rescaling, or fixed heuristics, often incurring additional computation or requiring
 067 explicit loss tracking, our work introduces a different perspective: *Can the stability of internal
 068 activations serve as a signal for assessing the informativeness of batches during training, thereby
 069 enabling effective and dynamic pruning of redundant batches?* We answer this affirmatively by
 070 introducing a lightweight, plug-and-play method that dynamically prunes low-utility batches based on
 071 the stability of activation variances across network layers. Unlike strategies that depend on difficulty
 072 scores, auxiliary models, or manually crafted rules, our approach is non-intrusive, as it operates on
 073 activation statistics already available from the forward pass, thereby introducing negligible overhead.
 074 The pruning is performed on-the-fly during training, without pretraining phases, validation labels,
 075 or static schedules. Our framework continuously monitors the mean standard deviation of flattened
 076 activations across layers for each batch across consecutive epochs and prunes batches if the change
 077 in this statistic is negligible. For the demonstration, applied to convolutional neural networks, this
 078 activation-driven pruning framework reduces redundant data usage across epochs while preserving
 079 training effectiveness and generality, offering a practical and efficient solution that establishes a
 080 foundation for extending stability-based pruning to broader deep learning architectures. Our key
 081 contributions are as follows:

082 **Activation Stability-Guided Dynamic Batch Pruning.** We introduce a lightweight, model-internal
 083 pruning strategy, ‘Batch Pruning by Activation Stability’ (*B-PAS*) that dynamically identifies and
 084 removes low-utility batches during training by leveraging the stability of activation feature maps.
 085 Specifically, we track the mean standard deviation of activations across convolutional layers and
 086 consecutive epochs to assess whether a batch continues to contribute meaningful learning gradients.
 087 Batches exhibiting negligible change in activation variance are deemed redundant and pruned on-the-
 088 fly, without relying on auxiliary networks or handcrafted difficulty metrics. The pruning behavior is
 089 controlled by a tunable threshold hyperparameter δ , enabling adaptability across datasets and model
 090 architectures.

091 **Comprehensive Evaluation on Benchmark Models.** We evaluate *B-PAS* on ResNet-18, ResNet-50,
 092 and CvT (Wu et al., 2021) across CIFAR-10, CIFAR-100 (Krizhevsky et al., a;b), SVHN (Netzer
 093 et al., 2011), and ImageNet-1K (Krizhevsky et al., 2012), with extensive threshold sweeps (45 δ
 094 settings on CIFAR-10 and eight on ImageNet-1K). Results show that *B-PAS* prunes up to 57% of
 095 training batches without accuracy loss, and up to 47% while slightly improving accuracy, while
 096 reducing computational cost by as much as 61% in GPU node-hours. These findings highlight both
 097 the robustness and tunability of activation stability as a pruning signal, delivering substantial training
 098 efficiency gains across scales and architectures.

099 **Data Savings Index (DSI).** We introduce DSI, a new metric that quantifies the cumulative fraction of
 100 training data saved during learning. DSI provides a direct measure of data efficiency, with higher
 101 values indicating greater reductions in training cost and computational resources.

102 2 BATCH-PRUNING BY ACTIVATION STABILITY (*B-PAS*)

103 In this section, we introduce the concept of a plug-in to CNN architectures: Batch Pruning by
 104 Activation Stability (*B-PAS*), detailing its formulation and adaptation for image applications. Figure 1
 105 illustrates the working mechanism of a conventional CNN (labeled ‘A’) alongside the proposed
 106 plug-in (labeled ‘B’).

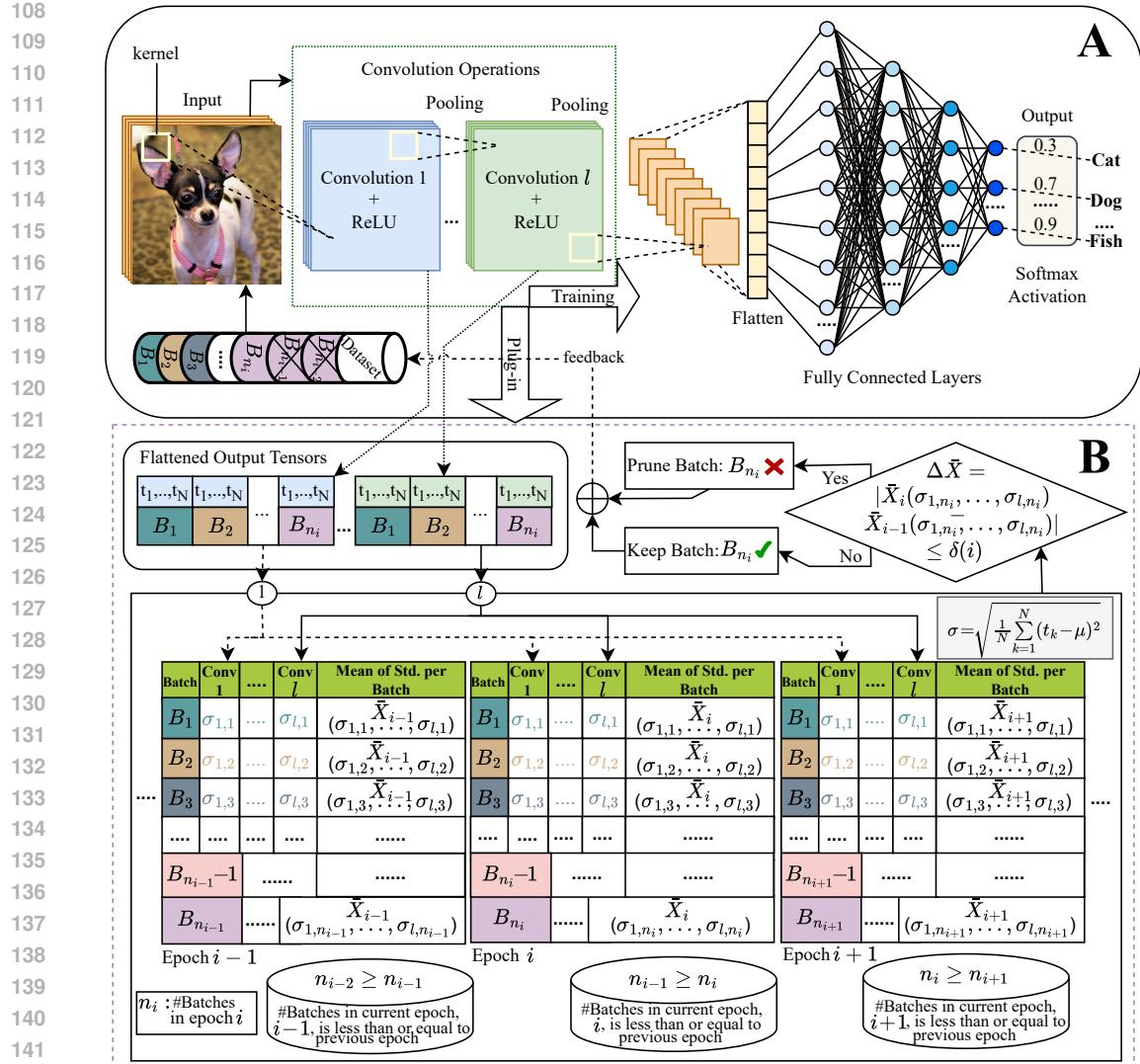


Figure 1: Overview of the proposed Batch Pruning by Activation Stability (B-PAS) plug-in integrated into a prevalent Convolutional Neural Network (CNN) training pipeline. (A) The conventional CNN architecture processes input images in batches through convolutional, ReLU activation, and pooling layers, followed by a fully connected classifier. (B) The B-PAS module monitors the standard deviation of ReLU-activated convolutional outputs for each batch across epochs. For each epoch, the standard deviation is recorded per convolutional layer (columns) and aggregated across layers to compute the mean standard deviation for each batch (rows). These per-batch means are then compared across consecutive epochs to assess activation stability. If the change ($\Delta \bar{X}$) for a batch B_{n_i} falls below a dynamic threshold $\delta(i)$, the batch is deemed to have low learning utility and is pruned from subsequent training. By updating the dataset at the end of each epoch using this feedback, the process dynamically focuses training on batches that continue to provide meaningful gradient information, thereby improving efficiency without compromising accuracy.

2.1 ACTIVATION STABILITY

Building on the observation from Neural Collapse (Papyan et al., 2020) that activation patterns stabilize as training converges, we adopt the idea of (Ahmad et al., 2024), which links data variation across CNN layers to near-optimal learning capacity. Extending this principle to the batch level, we observe that as training progresses, certain batches show diminishing changes in activation variance across consecutive epochs, signaling little additional learning. To capture this effect, we use the widely adopted Rectified Linear Unit (ReLU) (Agarap, 2018), where the variance of ReLU-activated outputs provides a meaningful measure of feature stability. When this variance remains nearly

162 unchanged across epochs, the corresponding batch is deemed converged, as its contribution to weight
 163 updates has effectively stabilized.

164 We compute variance after ReLU since it not only introduces non-linearity but also suppresses inactive
 165 neurons, ensuring that variance reflects sparse, meaningful features rather than noisy pre-activation
 166 values. Thus, monitoring the standard deviation of post-ReLU activations provides a reliable estimate
 167 of batch learning utility: once changes become negligible, the batch is pruned. This enables the
 168 model to focus computation on informative batches while discarding redundant ones, improving
 169 efficiency without harming performance.

170 In Figure 1(A), the ‘Convolution Operations’ module illustrates the ReLU-activated convolutional
 171 feature maps of input images, organized batch-wise across training epochs. At each convolutional
 172 layer, training images are processed in batches denoted by B_1, \dots, B_{n_i} , where B_{n_i} refers to the final
 173 batch in epoch i . For instance, if epoch i contains 400 batches, then $B_{n_i} = B_{400}$, indicating that
 174 the 400th batch is the last batch of that epoch. Each batch consists of multiple images, which are
 175 represented as tensors containing numerical activation values. To quantify activation variability, we
 176 compute the standard deviation of these values by first flattening the output tensors of each ReLU-
 177 activated convolutional layer. The standard deviation is then computed using $\sigma = \sqrt{\frac{1}{N} \sum_{k=1}^N (t_k - \mu)^2}$,
 178 where t_k denotes each individual value from the flattened tensor (for $k = 1, \dots, N$), μ is the
 179 mean of these values, N is the total number of values in the flattened tensor, and σ represents the
 180 resulting standard deviation. This computation is performed independently for each batch and each
 181 convolutional layer.

182 In Figure 1(B), each epoch table (i.e., Epochs $i-1$, i , and $i+1$) presents the standard deviation of
 183 the ReLU-activated outputs from the convolutional layers. In each table, rows correspond to data
 184 batches (e.g., B_1, \dots, B_{n_i}), and columns represent individual convolutional layers, except the final
 185 column. The last column contains the mean standard deviation for each batch, computed across all
 186 convolutional layers. For example, the row corresponding to batch B_{n_i} includes standard deviations
 187 $\sigma_{1,n_i}, \dots, \sigma_{l,n_i}$, where σ_{l,n_i} denotes the standard deviation of the output from the l -th convolutional
 188 layer for batch B_{n_i} , and l is the total number of convolutional layers. The mean standard deviation
 189 for the final batch B_{n_i} in epoch i is denoted as $\bar{X}_i(\sigma_{1,n_i}, \dots, \sigma_{l,n_i})$, indicating the mean standard
 190 deviation across all l convolutional layers.

191 These mean standard deviations are used to track the variance behavior of each batch over time.
 192 Beginning with epoch one, the mean standard deviation is computed for every batch. From epoch
 193 two onward, the current epoch’s mean is compared against the previous epoch’s mean for each
 194 batch. If the change is negligible, the batch is considered to have converged and may be pruned from
 195 subsequent training epochs. This pruning process continues iteratively for the remaining epochs.

197 2.2 BATCH PRUNING

198 The decision to prune a batch is based on the stability of its mean activation standard deviation across
 199 consecutive epochs. As illustrated in Figure 1(B), we consider three epochs: $i-1$, i , and $i+1$. If the
 200 absolute difference between these means across consecutive epochs falls below a dynamic threshold
 201 $\delta(i)$, the batch is deemed to have converged and is excluded from subsequent training.

202 To illustrate, consider the standard deviations of batch B_{n_i} across the l convolutional layers as
 203 $\sigma_{1,n_i}, \dots, \sigma_{l,n_i}$. The mean standard deviation for this batch at epoch i is denoted by
 204 $\bar{X}_i(\sigma_{1,n_i}, \dots, \sigma_{l,n_i})$, and at epoch $i-1$ by $\bar{X}_{i-1}(\sigma_{1,n_i}, \dots, \sigma_{l,n_i})$. The change in mean standard
 205 deviation/variance for the batch B_{n_i} is computed as:

$$206 \Delta\bar{X} = |\bar{X}_i(\sigma_{1,n_i}, \dots, \sigma_{l,n_i}) - \bar{X}_{i-1}(\sigma_{1,n_i}, \dots, \sigma_{l,n_i})| \leq \delta(i)$$

207 If $\Delta\bar{X}$ for the batch B_{n_i} falls below the threshold $\delta(i)$, the batch is pruned and excluded from training
 208 in epoch $i+1$. This criterion is applied to all batches at the end of each epoch. The pruning decisions
 209 update the dataset by retaining only the informative batches, resulting in a reduced set of training
 210 data for the next epoch and a progressively more efficient training process. As training progresses,
 211 the number of retained batches decreases monotonically. Formally, for any epoch i , the number of
 212 batches n_i satisfies $n_i \leq n_{i-1}$. Because the pruning is dynamic, the composition of the final batch may
 213 change across epochs. For instance, for epoch i , let the last batch be B_{n_i} and the second last B_{n_i-1} ;
 214 similarly, in epoch $i-1$, they are $B_{n_{i-1}}$ and $B_{n_{i-1}-1}$. Without pruning, these batches are identical,
 215 whereas pruning one batch in epoch $i-1$ shifts the indexing so that in epoch i , $B_{n_i} = B_{n_{i-1}-1}$.

216 2.3 DYNAMIC THRESHOLD FOR PRUNING
217

218 To determine the negligible difference
219 between activation variances across
220 epochs, we introduce a tolerance hy-
221 perparameter δ to formalize pruning.
222 Instead of requiring exact invariance,
223 δ captures variance saturation with a
224 small non-zero margin.

225 We empirically analyze the effect of
226 different δ values on pruning dyna-
227 mics. Very small δ leads to overly con-
228 servative pruning, discarding batches
229 only when variance changes are nearly
230 imperceptible, thus retaining most
231 batches. Conversely, large δ induces
232 aggressive pruning, prematurely re-
233 moving informative batches and risk-
234 ing early training collapse.

235 To balance this trade-off, we adopt
236 a dynamic schedule: $\delta(i) = \delta_s \cdot$
237 $e^{\alpha i}$, $\alpha = \frac{1}{I} \ln\left(\frac{\delta_e}{\delta_s}\right)$, where δ_s and
238 δ_e are the initial and final threshold
239 values, i is the current epoch, and I
240 is the total number of epochs. This
241 schedule is conservative in early train-
242 ing, when features are broadly learned, and more aggressive in later stages, when learning stabilizes.
243 At epoch i , batches with $\Delta\bar{X} < \delta(i)$ are pruned.

244 Figure 2 illustrates these dynamics using eight
245 sets of δ values on ImageNet-1K with ResNet-
246 50. The horizontal line shows no pruning, while
247 the sharp drop at epoch 2 depicts extreme ag-
248 gressiveness (all batches removed). Lower ranges
249 (e.g., $\delta \in [10^{-6}, 5 \times 10^{-5}]$) yield delayed,
250 conservative pruning, whereas higher ranges (e.g.,
251 $\delta \in [5 \times 10^{-5}, 5 \times 10^{-4}]$) prune aggressively and
252 often terminate training early. A balanced con-
253 figuration of $\delta_s = 5 \times 10^{-6}$ and $\delta_e = 5 \times 10^{-5}$
254 achieves steady pruning without sacrificing
255 stability. Nonetheless, δ remains a tunable hy-
256 perparameter, adaptable to dataset complexity, ar-
257 chitecture, and resource budgets.

258 3 EXPERIMENT

259 We evaluate *B-PAS* as a plug-in module on
260 ResNet-18, ResNet-50, and the Convolutional
261 vision Transformer (CvT) to assess robustness
262 and generality. In the networks, we add Batch
263 Normalization layer, which normalizes per-
264 batch variance and has a strong impact on prun-
265 ing dynamics. Experiments span CIFAR-10,
266 CIFAR-100, SVHN (32 × 32), and ImageNet-
267 1K (~1.3M images, 224 × 224). Unless specified, we use $\delta \in [10^{-6}, 5 \times 10^{-5}]$ for CIFAR-10/100
268 and SVHN, and $\delta \in [5 \times 10^{-6}, 5 \times 10^{-5}]$ for ImageNet-1K, corresponding to empirically validated
269 balanced pruning regimes. We report validation accuracy and GPU node-hours, but since hardware
and system factors confound GPU time, we also introduce the Data Savings Index (DSI), which

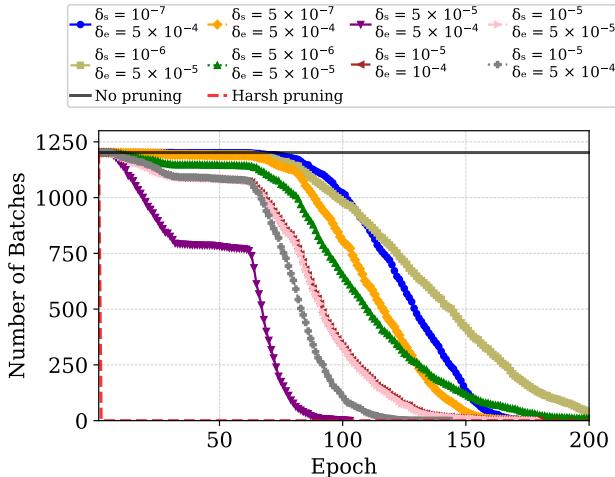


Figure 2: Pruning dynamics under different δ settings for ResNet-50 on ImageNet-1K (200 epochs). Lower thresholds (e.g., $\delta \in [10^{-6}, 5 \times 10^{-5}]$) lead to conservative pruning, retaining most batches until late epochs, while higher thresholds (e.g., $\delta \in [5 \times 10^{-5}, 5 \times 10^{-4}]$) cause aggressive pruning and premature training termination. The dynamic schedule ($\delta_s = 5 \times 10^{-6}$, $\delta_e = 5 \times 10^{-5}$) provides a balanced trajectory, steadily reducing data.

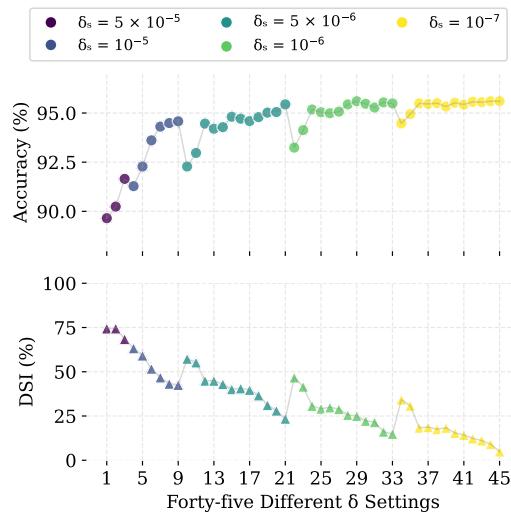


Figure 3: Empirical analysis of *B-PAS* on CIFAR-10 with ResNet-18 across 45 δ settings. Smaller thresholds have less data savings with higher accuracy, larger thresholds save more data at the cost of accuracy, and intermediate values (e.g., $\delta \in [10^{-6}, 5 \times 10^{-5}]$) provide the best trade-off.

270 quantifies skipped data across epochs and batches as a continuous measure of efficiency. To ensure
 271 well-defined variance tracking, batches are fixed once at initialization (rather than regenerated each
 272 epoch) while intra-batch shuffling is applied to preserve stochasticity and avoid overfitting. Full
 273 experimental details are provided in Appendix A.1.

274 **GPU node-hours.** It is a measure of computational
 275 cost, defined as GPU node-hours = $g \times h$
 276 where g is the number of GPUs used during
 277 training and h is the total training time (in hours).
 278 The percentage of node-hours saved is reported
 279 relative to the full dataset baseline.

280 **Data Savings Index (DSI).** To directly quanti-
 281 fy the reduction in training data usage, we in-
 282 troduce the Data Savings Index: $DSI = 1 - \frac{\sum_{i=1}^{e_s} n_i}{e_0 \cdot n_0}$, where n_i is the number of batches
 283 retained in epoch i , n_0 is the total number of
 284 batches before training begins, e_s is the epoch
 285 at which training stops, and e_0 is the scheduled
 286 number of epochs in the absence of pruning or
 287 early stopping ($e_s \leq e_0$). The DSI value lies
 288 in $[0, 1]$, with higher values indicating greater
 289 savings in data usage. For example, if a model is
 290 scheduled to train for 5 epochs with 200 batches
 291 per epoch, but training stops at epoch 3 after
 292 processing 200, 190, and 180 batches, the DSI
 293 is $1 - \frac{200+190+180}{5 \times 200} = 0.43$, meaning that 43%
 294 of the potential training data is saved.
 295

296 3.1 RESULT ANALYSIS

297 **Empirical Analysis on CIFAR-10.** We first evaluate *B-PAS* using ResNet-18 on CIFAR-10 over 200
 298 epochs across forty-five threshold (δ) settings. As shown in Figure 3, we define five groups of starting
 299 thresholds (δ_s), each paired with multiple end thresholds (δ_e). Specifically, for $\delta_s = 5 \times 10^{-5}$ and $\delta_s =$
 300 10^{-5} , we consider three and six values of δ_e , respectively, while for the remaining groups we test 12
 301 values. The δ_e values are $\{10^{-3}, 5 \times 10^{-4}, 10^{-4}, 9 \times 10^{-5}, 8 \times 10^{-5}, 7 \times 10^{-5}, 6 \times 10^{-5}, 5 \times 10^{-5}, 4 \times$
 302 $10^{-5}, 3 \times 10^{-5}, 2 \times 10^{-5}, 10^{-5}\}$. For the $\delta_s = 5 \times 10^{-5}$ group, only $\delta_e = \{10^{-3}, 5 \times 10^{-4}, 10^{-4}\}$
 303 are included; for $\delta_s = 10^{-5}$, we use $\delta_e = \{10^{-3}, 5 \times 10^{-4}, 10^{-4}, 5 \times 10^{-5}, 4 \times 10^{-5}, 3 \times 10^{-5}\}$.
 304

305 The results reveal a clear pattern in accuracy and DSI percentage. Larger threshold groups (e.g.,
 306 $\delta_s = 5 \times 10^{-5}$) yield very high data savings but also sacrifice accuracy. Conversely, smaller threshold
 307 groups (e.g., $\delta_s = 10^{-7}$) retain nearly all data, resulting in high accuracy but reduced pruning benefits.
 308 Values in intermediate groups (e.g., $\delta_s = 10^{-6}$) provide a balanced trade-off. In particular, the 29th
 309 setting with $\delta \in [10^{-6}, 5 \times 10^{-5}]$ achieves the highest accuracy while saving data by 25%. Thus, for
 310 CIFAR-10 and similar 32×32 datasets, $\delta_s = 10^{-6}$ and $\delta_e = 5 \times 10^{-5}$ represent a strong default
 311 configuration, as further validated in Table 3.

312 **Empirical Analysis on ImageNet-1K.** Guided by the CIFAR-10 analysis, we evaluate *B-PAS* with
 313 ResNet-50 on ImageNet-1K over 200 epochs across eight threshold settings. As illustrated in Figure 4,
 314 we observe the same trend: smaller thresholds preserve accuracy but maintain low DSI and GPU
 315 node-hours savings, while larger thresholds lead to aggressive pruning and accuracy degradation. For
 316 example, $\delta \in [10^{-6}, 5 \times 10^{-5}]$ yields the highest accuracy but also lowest data and GPU node-hours
 317 savings. In contrast, $\delta \in [5 \times 10^{-5}, 5 \times 10^{-4}]$ causes early and aggressive pruning, often terminating
 318 training around epoch 100, which results in very low accuracy. This behavior aligns with the pruning
 319 dynamics shown in Figure 2: smaller thresholds delay pruning, retaining most batches until late
 320 epochs, while larger thresholds trigger sharp drops of batches earlier in training. The most balanced
 321 results are obtained for $\delta \in [5 \times 10^{-6}, 5 \times 10^{-5}]$, as supported by both Figure 2 and Figure 4.
 322 This setting achieves near-maximum accuracy with DSI over 45% and saved GPU node-hours by
 323 48%, indicating efficient pruning without compromising performance. The detailed tabular form
 of these analysis is provided in Appendix A.3. An additional observation is that DSI and GPU
 Node-hour savings follow the same trend across experiments, confirming that data usage is tightly

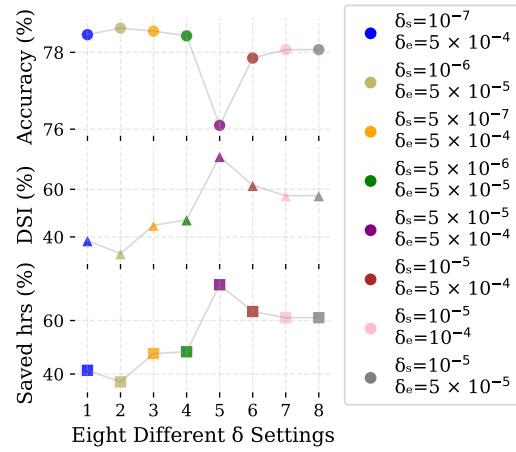


Figure 4: Empirical analysis of *B-PAS* on ImageNet-1K with ResNet-50 across eight δ settings. Smaller thresholds retain most data with higher accuracy but lower savings, larger thresholds prune aggressively and harm accuracy, while intermediate values (e.g., $\delta \in [5 \times 10^{-6}, 5 \times 10^{-5}]$) achieve the best trade-off.

coupled to training cost. Unlike node-hours, however, DSI provides a more comprehensive and system independent measure by capturing saved data across epochs.

Comparison with SOTA Method.

We compare *B-PAS* with the state-of-the-art pruning approach InfoBatch (Qin et al., 2024) on CIFAR-10, CIFAR-100, and ImageNet-1K (Tables 1 and 2). InfoBatch has previously demonstrated superiority over 14 static and three dynamic pruning baselines, establishing it as a strong reference point. On CIFAR-10 and CIFAR-100 (Table 1), *B-PAS* achieves accuracy comparable to the full dataset and InfoBatch across multiple pruning ratios. For example, in CIFAR-100 with ResNet-50, *B-PAS* saves 30% of the data while maintaining 80.6% accuracy, closely matching InfoBatch at the 30% pruning ratio (DSI = 18%). To further assess pruning behavior, we introduce a random pruning baseline: we track the number of batches flagged by activation stability but prune the same number of batches chosen at random. Unlike *B-PAS*, random pruning consistently degrades accuracy, underscoring that activation stability identifies non-informative batches rather than simply reducing training data. These results demonstrate that *B-PAS* is competitive on small-scale datasets, with modest but reliable savings due to the limited learning utility in low-resolution tasks. In contrast, the advantage of *B-PAS* becomes more pronounced on ImageNet-1K. As shown in Table 2, InfoBatch achieves 28% data savings and 40% GPU node-hour reduction while maintaining full dataset baseline accuracy (78.07%). By comparison, *B-PAS* delivers substantially larger gains: with $\delta \in [10^{-5}, 10^{-4}]$, it saves 57% of the data and 61% of node-hours at the same accuracy, and with more conservative thresholds ($\delta \in [5 \times 10^{-6}, 5 \times 10^{-5}]$), it further improves accuracy to 78.43% while still achieving 47% data savings and 48% node-hour reduction. These results highlight that activation stability–driven pruning not only matches InfoBatch in accuracy preservation but also provides significantly greater efficiency on large-scale training.

This demonstrates that activation stability provides a scalable pruning signal in large-scale training, where the learning utility of data is more significant. Finally, just as InfoBatch evaluates multiple pruning ratios (30%, 50%, 70%), *B-PAS* naturally supports different pruning regimes through the choice of δ values. Smaller δ ranges yield conservative pruning with lower DSI, while larger values trigger more aggressive pruning and faster convergence. This flexibility allows *B-PAS* to adapt pruning aggressiveness without requiring handcrafted schedules or explicit loss tracking, underscoring its practical utility in both small- and large-scale settings.

Cross-Architecture and Dataset Robustness. Table 3 evaluates the generalization of *B-PAS* across diverse architectures (ResNet-18, ResNet-50, and CvT) and datasets (CIFAR-10, CIFAR-100, SVHN, and ImageNet-1K). Several consistent trends emerge.

First, across CNN architectures, *B-PAS* preserves full dataset baseline accuracy while significantly reducing data usage and training cost. For example, on ImageNet-1K with ResNet-50, *B-PAS* achieves 78.43% accuracy (slightly higher than full dataset) while saving data usage by 47% and node-hours by 48%. Similar savings are observed on smaller datasets, with up to 33% data usage savings

Table 1: Comparison of *B-PAS* with InfoBatch and random pruning on CIFAR-10/100 using ResNet-18/50. *B-PAS* matches or exceeds InfoBatch across different pruning ratios while maintaining accuracy as the full dataset, showing its competitiveness on small-scale datasets.

Approach	CIFAR-10		CIFAR-100		
	in % \Rightarrow	DSI	Acc	DSI	Acc
ResNet-18	0	95.60 \pm 0.2	0	78.20 \pm 0.3	
+Random	25	94.60 \pm 0.3	24	75.36 \pm 0.4	
+InfoBatch (30%)	22	95.60 \pm 0.1	19	78.20 \pm 0.1	
+InfoBatch (50%)	37	95.10 \pm 0.3	32	78.10 \pm 0.1	
+InfoBatch (70%)	53	94.70 \pm 0.4	47	76.50 \pm 0.4	
+ <i>B-PAS</i>	25	95.60 \pm 0.1	24	78.20 \pm 0.1	
ResNet-50	0	95.66 \pm 0.1	0	80.60 \pm 0.5	
+Random	33	94.50 \pm 0.3	30	75.77 \pm 0.4	
+InfoBatch (30%)	21	95.66 \pm 0.1	18	80.60 \pm 0.1	
+InfoBatch (50%)	36	95.20 \pm 0.3	32	80.05 \pm 0.1	
+InfoBatch (70%)	52	94.99 \pm 0.4	45	79.37 \pm 0.4	
+ <i>B-PAS</i>	33	95.66 \pm 0.1	30	80.60 \pm 0.5	

Table 2: Comparison of *B-PAS* and InfoBatch on ImageNet-1K with ResNet-50. *B-PAS* achieves stronger efficiency, saving data usage by 57% and node-hours to 61% while preserving accuracy as the full dataset. More conservative δ values yield further accuracy gains (78.43%) with moderate savings, highlighting the scalability of activation stability signals in large-scale training.

Approach	ImageNet-1K			
	in % \Rightarrow	Saved hrs	DSI	Acc
ResNet-50		0	0	78.07 \pm 0.1
+InfoBatch (40%)		40	28	78.07 \pm 0.1
+ <i>B-PAS</i> ($\delta \in [10^{-5}, 10^{-4}]$)		61	57	78.07 \pm 0.1
+ <i>B-PAS</i> ($\delta \in [5 \times 10^{-6}, 5 \times 10^{-5}]$)		48	47	78.43 \pm 0.1

378 on CIFAR-10 and 33% node-hours reduction on SVHN. These results demonstrate that activation
 379 stability provides a reliable pruning signal across scales and architectures within the CNN family.
 380

381 Extending beyond CNNs,
 382 we evaluate *B-PAS* on CvT-
 383 13. Pruning is performed
 384 by tracking stage-wise ac-
 385 tivations: after each CvT
 386 stage, token sequences are
 387 projected back to spatial for-
 388 mat to compute variance
 389 on the multi-scale feature
 390 maps. Using a more aggres-
 391 sive threshold range ($\delta_s = 10^{-4}$,
 392 $\delta_e = 10^{-3}$), *B-PAS* achieves a substantially
 393 higher DSI of 35% with only a modest accuracy drop (79.10% vs. 79.65%). This behavior reflects
 394 the slower and noisier activation dynamics in transformers, where stability emerges later than in
 395 CNNs. Because our CvT runs use 200 epochs, shorter than the 300+ epochs typically required for
 396 full convergence on ImageNet-1K, the delayed stabilization naturally limits pruning under milder
 397 thresholds. These results indicate that activation stability in CvT is slower to develop, and both longer
 398 training and more aggressive δ schedules unlock significantly stronger pruning efficiency.

399 3.2 ABLATION STUDIES

400 To better understand the behavior of *B-PAS*, we perform controlled ablation studies across learning
 401 rates, normalization layers, training epochs, pruning granularity, and optimizers. These studies
 402 highlight both the robustness of the method and the factors influencing its efficiency.

403 **Effect of Learning Rate.** Table 4 shows the impact of different learning rates on ImageNet-1K
 404 with ResNet-50. For 256 batch size, we consider learning rates of 0.2, 0.01, and 0.1. While all
 405 settings achieve comparable DSI (45%–47%), accuracy varies significantly: 74.29% at LR = 0.01,
 406 77.27% at LR = 0.2, and 78.43% at LR = 0.1. These results suggest that excessively small learning
 407 rates hinder convergence, while overly large ones reduce generalization. Importantly, the pruning
 408 dynamics of *B-PAS* remain stable across learning rates, showing that activation stability is largely
 409 agnostic to optimizer step size.

410 Table 4: *B-PAS* under dif-
 411 ferent learning rates (LR).

LR	DSI(%)	Acc(%)
0.2	45	77.27
0.01	46	74.29
0.1	47	78.43

Table 3: Cross-architecture and dataset robustness of *B-PAS* on CIFAR-10/100, SVHN, and ImageNet-1K with ResNet-18/50 and CvT. *B-PAS* preserves accuracy across models while reducing data usage and GPU node-hours.

	CIFAR-10		CIFAR-100		SVHN		ImageNet-1K		
	R-18	R-50	R-18	R-50	R-18	R-50	R-18	R-50	CvT
Full Dataset	95.60	95.66	78.2	80.6	95.90	96.27	70.05	78.07	79.65
<i>B-PAS</i>	95.60	95.66	78.2	80.6	95.97	96.27	71.5	78.43	79.10
DSI(%)	25	33	24	30	19	30	37	47	35
Saved hrs(%)	23	29	22	29	18	33	61	48	35

Table 5: Effect of
 Batch Normalization
 on *B-PAS*.

	DSI(%)	Acc(%)
-BN	19.72	89.87
+BN	25	95.60

Table 6: Effect of train-
 ing epochs on *B-PAS*
 on ImageNet-1k.

Epochs	DSI(%)	Acc(%)
90	12	78.07
200	47	78.43

Table 7: *B-PAS*
 pruning granular-
 ity.

	Pruning	Acc(%)
Sample	70.87	
Batch	78.43	

416 **Impact of Batch Normalization.** Table 5 compares CIFAR-10 results with ResNet-18 with and
 417 without Batch Normalization (BN). Since BN normalizes feature statistics per batch, it strongly
 418 affects *B-PAS*. Without BN, activation trajectories are unstable, requiring more aggressive thresholds
 419 (e.g., $\delta_s = 5 \times 10^{-5}$, $\delta_e = 10^{-3}$) to obtain reasonable DSI (19.72%); with the default δ values,
 420 pruning is minimal (DSI = 2%). Also, removing BN results in an accuracy drop. In contrast, with
 421 BN, the default thresholds yield effective pruning (DSI = 25%) while improving accuracy to 95.60%.
 422 These results show that BN not only stabilizes activations but also enhances the discriminative signal
 423 used by *B-PAS*, enabling more reliable identification of redundant batches. More analysis is provided
 424 in Appendix A.4.

425 **Effect of Training Epochs.** Table 6 compares ImageNet-1K with ResNet-50 performance at 90 and
 426 200 epochs. With 90 epochs, pruning remains limited (DSI = 12%) due to insufficient stabilization,
 427 whereas at 200 epochs DSI rises to 47% with improved accuracy (78.43%). This highlights that
 428 longer training naturally allows greater pruning, where data savings become more critical and *B-PAS*
 429 proves most effective.

430 **Pruning Granularity: Batch vs. Sample Level.** Table 7 compares pruning at the sample and
 431 batch levels for ImageNet-1K on ResNet-50. For sample-level pruning, the accuracy reduces to
 70.87%, compared to 78.43% for batch-level pruning. This discrepancy arises because sample-

432 level pruning may disproportionately eliminate certain classes, leading to class imbalance and
 433 degraded generalization. In contrast, batch-level pruning preserves class diversity while still removing
 434 redundant information, confirming its superiority as the granularity choice for *B-PAS*.
 435

436 **Optimizer Robustness.** Finally, Table 8 explores differ-
 437 ent optimizers on CIFAR-10 with ResNet-18. Across SGD,
 438 Adam, and AdaGrad (Ruder, 2016), *B-PAS* maintains accu-
 439 racy identical to baseline training, with DSI ranging from
 440 22% to 25%. These results highlight that the pruning crite-
 441 rion is robust to different optimization dynamics, even when
 442 a second-order adaptive optimizer (Adam) alters activation
 443 trajectories. This reinforces that *B-PAS* generalizes across
 444 diverse optimization regimes without requiring re-tuning.
 445

4 RELATED WORK

446 This work is related to three major research directions in efficient deep learning: static data pruning,
 447 dynamic data pruning, and dataset distillation. **Static pruning** methods select training subsets prior
 448 to training using criteria like geometric diversity (Sener & Savarese, 2017; Agarwal et al., 2020),
 449 uncertainty (Coleman et al., 2019; Gal et al., 2017), or learning difficulty (Toneva et al., 2018; Paul
 450 et al., 2021). Gradient-based approaches (e.g., GraNd, EL2N (Paul et al., 2021)) and decision-
 451 boundary methods like DeepFool (Ducoffe & Precioso, 2018) assess sample importance more directly.
 452 Other strategies include bilevel optimization (Killamsetty et al., 2021), submodular selection (Iyer
 453 et al., 2021), ensemble heuristics (Xia et al., 2022), and diversity-aware methods (Welling, 2009a;
 454 Zheng et al., 2023). These techniques often require full dataset access and heavy pre-computation,
 455 limiting scalability. **Dynamic pruning** eliminates low-utility samples during training via online
 456 signals. Bandit-based methods (Raju et al., 2021), soft pruning with gradient rescaling (Infobatch Qin
 457 et al. (2024)), and uncertainty-driven pruning (He et al., 2024) have shown success but often involve
 458 complex heuristics and tuning. **Dataset distillation** synthesizes compact training sets via gradient
 459 (Zhao & Bilen, 2023; Liu et al., 2023; Cui et al., 2023; Yang et al., 2023), distribution (Wang et al.,
 460 2022; Sajedi et al., 2023), or trajectory matching (Cazenavette et al., 2022; Du et al., 2023; Guo et al.,
 2024), yet faces challenges in scaling to high-resolution data and large models.

5 DISCUSSION AND CONCLUSION

461 Recent work, such as InfoBatch (Qin et al., 2024) advances data pruning through temporary, sample-
 462 level pruning with gradient rescaling to preserve unbiased gradient estimates. While effective, this
 463 approach requires maintaining per-sample loss statistics and revisiting all data in subsequent epochs,
 464 limiting efficiency in large-scale training. In contrast, our proposed *B-PAS* performs permanent,
 465 batch-level pruning based on activation stability, eliminating the need for gradient rescaling or
 466 repeated access to discarded data. This design yields substantial reductions in data usage, training
 467 time, and GPU node-hours while leveraging internal activation dynamics rather than loss signals.
 468 A natural concern with data pruning is the potential introduction of bias by disproportionately
 469 discarding informative samples or underrepresented classes. *B-PAS* prunes at the batch level using
 470 activation stability, which is agnostic to class labels and per-sample loss statistics. Pruning decisions
 471 are thus guided purely by model-internal dynamics rather than sample difficulty or distribution.
 472 Empirically, across CIFAR-10/100, SVHN, and ImageNet-1K, accuracy is consistently preserved,
 473 and in some cases improved—relative to full-dataset training, confirming that *B-PAS* does not
 474 introduce measurable prediction bias. Finally, our empirical analysis of pruning dynamics reveals
 475 that batches progressively lose learning utility over epochs as their activation variance stabilizes
 476 (Visualization in Appendix A.5). By discarding such batches, *B-PAS* avoids redundant computation
 477 while focusing training on informative data. If this stabilization did not reflect diminishing utility,
 478 pruning would have harmed performance; instead, results demonstrate that activation stability is
 479 a robust signal for scalable, efficient, and unbiased pruning. We conclude that *B-PAS* provides
 480 a practical, plug-and-play approach to data-efficient deep learning, with particular promise for
 481 large-scale training where efficiency gains are most impactful.

482 While most of our experiments focus on CNNs, we also evaluate *B-PAS* on CvT and in the text domain
 483 with GPT-2 Large (in Appendix A.3), demonstrating its broader applicability beyond convolutional
 484 models. It is acknowledged that a current limitation is the use of empirically chosen threshold
 485 schedules; developing data-driven, adaptive thresholding mechanisms is an important direction for
 future work.

Table 8: *B-PAS* preserves accuracy while achieving similar DSI across optimizers on CIFAR-10 with ResNet-18, demonstrating robustness to optimization dynamics.

	SGD	Adam	AdaGrad
Full Dataset	95.60	93.36	92.93
<i>B-PAS</i>	95.60	93.34	92.93
DSI (%)	25	24	22

486 REFERENCES
487

488 Abien Fred Agarap. Deep learning using rectified linear units (relu). *arXiv preprint arXiv:1803.08375*,
489 2018.

490 Sharat Agarwal, Himanshu Arora, Saket Anand, and Chetan Arora. Contextual diversity for active
491 learning. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
492 23–28, 2020, Proceedings, Part XVI 16*, pp. 137–153. Springer, 2020.

493 Sahan Ahmad, Gabriel Trahan, and Aminul Islam. When do convolutional neural networks stop
494 learning? *arXiv preprint arXiv:2403.02473*, 2024.

495 Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
496 tradeoff in neural network pruning. *Advances in neural information processing systems*, 33:
497 20852–20864, 2020.

498 David Bonet, Antonio Ortega, Javier Ruiz-Hidalgo, and Sarath Shekkizhar. Channel-wise early
499 stopping without a validation set via nnk polytope interpolation. In *2021 Asia-Pacific Signal and
500 Information Processing Association Annual Summit and Conference (APSIPA ASC)*, pp. 351–358.
501 IEEE, 2021.

502 George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
503 distillation by matching training trajectories. In *Proceedings of the IEEE/CVF Conference on
504 Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 4750–4759, June 2022.

505 Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
506 Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
507 learning. *arXiv preprint arXiv:1906.11829*, 2019.

508 Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. *Journal of Machine
509 Learning Research*, 19(27):1–21, 2018.

510 Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to ImageNet-
511 1K with constant memory. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
512 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International
513 Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp.
514 6565–6590. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/cui23e.html>.

515 Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
516 accumulated trajectory error to improve dataset distillation. In *Proceedings of the IEEE/CVF
517 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3749–3758, June 2023.

518 Melanie Ducoffe and Frederic Precioso. Adversarial active learning for deep networks: a margin
519 based approach. *arXiv preprint arXiv:1802.09841*, 2018.

520 David Duvenaud, Dougal Maclaurin, and Ryan Adams. Early stopping as nonparametric variational
521 inference. In *Artificial intelligence and statistics*, pp. 1070–1077. PMLR, 2016.

522 Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
523 In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference
524 on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1183–
525 1192. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/gal17a.html>.

526 Tushar Ganguli and Edwin KP Chong. Activation-based pruning of neural networks. *Algorithms*, 17
527 (1):48, 2024.

528 Ziyao Guo, Kai Wang, George Cazenavette, Hui Li, Kaipeng Zhang, and Yang You. Towards lossless
529 dataset distillation via difficulty-aligned trajectory matching, 2024. URL <https://arxiv.org/abs/2310.05773>.

530 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
531 *Proceedings of the thirty-sixth annual ACM symposium on Theory of computing*, pp. 291–300,
532 2004.

540 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 541 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 542 pp. 770–778, 2016.

543 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the*
 544 *IEEE international conference on computer vision*, pp. 2961–2969, 2017.

545 Muyang He, Shuo Yang, Tiejun Huang, and Bo Zhao. Large-scale dataset pruning with dynamic
 546 uncertainty. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 547 *Recognition*, pp. 7713–7722, 2024.

548 Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Himanshu Asanani. Submodular combinatorial
 549 information measures with applications in machine learning. In Vitaly Feldman, Katrina Ligett, and
 550 Sivan Sabato (eds.), *Proceedings of the 32nd International Conference on Algorithmic Learning*
 551 *Theory*, volume 132 of *Proceedings of Machine Learning Research*, pp. 722–754. PMLR, 16–19
 552 Mar 2021. URL <https://proceedings.mlr.press/v132/iyer21a.html>.

553 Tyler B Johnson and Carlos Guestrin. Training deep models faster with robust, approximate impor-
 554 tance sampling. *Advances in Neural Information Processing Systems*, 31, 2018.

555 Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
 556 Generalization based data subset selection for efficient and robust learning. *Proceedings of the AAAI*
 557 *Conference on Artificial Intelligence*, 35(9):8110–8118, May 2021. doi: 10.1609/aaai.v35i9.16988.
 558 URL <https://ojs.aaai.org/index.php/AAAI/article/view/16988>.

559 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 560 *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.

561 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
 562 research). a. URL <http://www.cs.toronto.edu/~kriz/cifar.html>.

563 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
 564 research). b. URL <http://www.cs.toronto.edu/~kriz/cifar.html>.

565 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
 566 neural networks. *Advances in neural information processing systems*, 25, 2012.

567 Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In *Proceedings of the*
 568 *European conference on computer vision (ECCV)*, pp. 734–750, 2018.

569 Yanqing Liu, Jianyang Gu, Kai Wang, Zheng Zhu, Wei Jiang, and Yang You. Dream: Efficient dataset
 570 distillation by representative matching. In *Proceedings of the IEEE/CVF International Conference*
 571 *on Computer Vision (ICCV)*, pp. 17314–17324, October 2023.

572 Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. Early stopping without a
 573 validation set. *arXiv preprint arXiv:1703.09580*, 2017.

574 Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
 575 machine learning models. In *International Conference on Machine Learning*, pp. 6950–6960.
 576 PMLR, 2020.

577 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
 578 Reading digits in natural images with unsupervised feature learning. In *NIPS workshop on deep*
 579 *learning and unsupervised feature learning*, volume 2011, pp. 4. Granada, 2011.

580 Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely
 581 wide convolutional networks. *Advances in Neural Information Processing Systems*, 34:5186–5198,
 582 2021.

583 Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 584 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 585 24652–24663, 2020.

594 Dongmin Park, Dimitris Papailiopoulos, and Kangwook Lee. Active learning is a strong baseline for
 595 data subset selection. In *Has it Trained Yet? NeurIPS 2022 Workshop*, 2022.

596

597 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
 598 important examples early in training. *Advances in neural information processing systems*, 34:
 599 20596–20607, 2021.

600 Ziheng Qin, Kai Wang, Zangwei Zheng, Jianyang Gu, Xiangyu Peng, Daquan Zhou, Lei Shang,
 601 Baigui Sun, Xuansong Xie, Yang You, et al. Infobatch: Lossless training speed up by unbiased
 602 dynamic data pruning. In *The Twelfth International Conference on Learning Representations*,
 603 2024.

604 Ravi S Raju, Kyle Daruwalla, and Mikko Lipasti. Accelerating deep learning with dynamic data
 605 pruning. *arXiv preprint arXiv:2111.12621*, 2021.

606

607 Sebastian Ruder. An overview of gradient descent optimization algorithms. *arXiv preprint
 608 arXiv:1609.04747*, 2016.

609

610 Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z. Liu, Yuri A. Lawryshyn, and Konstantinos N.
 611 Plataniotis. Datadam: Efficient dataset distillation with attention matching. In *Proceedings of
 612 the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 17097–17107, October
 613 2023.

614 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 615 approach. *arXiv preprint arXiv:1708.00489*, 2017.

616

617 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 618 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

619

620 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
 621 Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
 622 *arXiv preprint arXiv:1812.05159*, 2018.

623

624 Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
 625 Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
 626 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 627 12196–12205, 2022.

628

629 Max Welling. Herding dynamical weights to learn. In *Proceedings of the 26th Annual International
 630 Conference on Machine Learning*, ICML '09, pp. 1121–1128, New York, NY, USA, 2009a.
 631 Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553517.
 632 URL <https://doi.org/10.1145/1553374.1553517>.

633

634 Max Welling. Herding dynamical weights to learn. In *Proceedings of the 26th annual international
 635 conference on machine learning*, pp. 1121–1128, 2009b.

636

637 Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
 638 Introducing convolutions to vision transformers. In *Proceedings of the IEEE/CVF international
 639 conference on computer vision*, pp. 22–31, 2021.

640

641 Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coresnet: A universal
 642 method of data selection for real-world data-efficient deep learning. In *The Eleventh International
 643 Conference on Learning Representations*, 2022.

644

645 Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You,
 646 and Jianxin Li. Does graph distillation see like vision dataset counterpart? In A. Oh,
 647 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
 648 ral Information Processing Systems*, volume 36, pp. 53201–53226. Curran Associates, Inc.,
 649 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/a6efa49c54bedf4411f1bcd32f15937a-Paper-Conference.pdf.

650

651 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning: Reducing
 652 training data by examining generalization influence. *arXiv preprint arXiv:2205.09329*, 2022.

648 Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In *Proceedings of the*
649 *IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 6514–6523, 2023.
650

651 Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss
652 minimization. In *international conference on machine learning*, pp. 1–9. PMLR, 2015.

653 Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coresset selection for high
654 pruning rates, 2023. URL <https://arxiv.org/abs/2210.15809>.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
A APPENDIX704
705
A.1 EXPERIMENTAL SETUP706
707
A.1.1 MODEL SPECIFICATIONS708
709
ResNet-18 and ResNet-50. For CNN backbones, we adopt standard ResNet architectures with
710 residual connections following (He et al., 2016). ResNet-18 is constructed using `BasicBlock` units
711 (expansion factor 1) with layer configuration [2, 2, 2, 2], while ResNet-50 uses `Bottleneck` units
712 (expansion factor 4) with configuration [3, 4, 6, 3]. Both models begin with a 7×7 convolution and
713 max pooling, followed by four residual stages, global average pooling, dropout (0.2), and a fully
714 connected classifier. Batch Normalization is applied after each convolution, and ReLU serves as
715 the activation. For activation tracking, we monitor outputs after each of the four residual stages
716 (layer1–4).717
Convolutional vision Transformer (CvT). We also evaluate *B-PAS* on CvT-13 (Wu et al., 2021),
718 which integrates convolutional projections within transformer blocks. CvT-13 consists of three stages
719 (Table 9): (i) a 64-dim embedding with depth 1 and 1 attention head; (ii) a 192-dim embedding
720 with depth 2 and 3 heads; and (iii) a 384-dim embedding with depth 10 and 6 heads. Each stage
721 applies convolutional embedding, convolutional multi-head self-attention with depthwise projections,
722 and MLP blocks with GELU activation. Activations are tracked at the stage outputs, where token
723 sequences are reshaped back into spatial (B, C, H, W) format for variance computation. The network
724 ends with layer normalization, global average pooling over tokens, and a linear classifier.725
726
727
728
729
730
731
732
Table 9: Model specifications for architectures used in our experiments.733
734
735
736
737
738
739

Model	Building Block	Depth	Embedding / Channels
ResNet-18	BasicBlock	[2, 2, 2, 2]	[64, 128, 256, 512]
ResNet-50	Bottleneck	[3, 4, 6, 3]	[256, 512, 1024, 2048]
CvT-13	Conv-Attn + MLP	[1, 2, 10]	[64, 192, 384]

740
741
742
743
A.1.2 DATASET SPECIFICATIONS744
745
746
747
748
749
750
Table 10 provides the number of training and validation samples used for each dataset. CIFAR-10
751 and CIFAR-100 each include 50,000 training and 10,000 validation images. SVHN contains a
752 larger validation set relative to its training size, with 73,257 training and 26,032 validation samples.
753 ImageNet-1K, being significantly larger, includes over one million training images and 50,300
754 validation samples, reflecting its role as a large-scale benchmark. All images are augmented with
755 commonly adopted transformations, i.e., normalization, random crop, and horizontal flip if not stated
756 otherwise.757
758
759
760
761
762
763
764
Table 10: Dataset Splits for Training and Validation765
766
767
768
769
770
771

Dataset	Training Samples	Validation Samples
CIFAR10	50,000	10,000
CIFAR100	50,000	10,000
SVHN	73,257	26,032
ImageNet-1K	1,230,867	50,300

775
776
777
778
A.1.3 HYPERPARAMETERS779
780
781
782
783
784
785
786
787
788
789
790
Table 11 summarizes the hyperparameters used across datasets and architectures. Unless otherwise
791 noted, all models are trained with SGD optimizer, using momentum of 0.9. For ImageNet with
792 ResNets, we adopt `MultiStepLR` scheduling, while other CNN datasets use cosine annealing. CvT
793 models are trained with `AdamW`. For ImageNet training, we use 4 GPUs in parallel; hence both the
794 batch size and learning rate are scaled linearly by the number of GPUs (i.e., 256×4 total batch size
795 and base learning rate $0.1 \times 4 = 0.4$).

756 Table 11: Training hyperparameters across datasets and architectures.
757

758 Dataset / Model	759 Epochs	760 Batch Size	761 LR	762 Weight Decay	763 Scheduler
CIFAR-10 (ResNets)	200	128	0.05	5×10^{-4}	CosineAnnealing
CIFAR-100 (ResNets)	200	128	0.10	5×10^{-4}	CosineAnnealing
SVHN (ResNets)	200	128	0.10	5×10^{-4}	CosineAnnealing
ImageNet (ResNets)	200	256×4	0.40	1×10^{-4}	MultiStepLR
ImageNet (CvT)	200	128×4	1×10^{-3}	0.05	CosineAnnealing

764
765 A.1.4 HARDWARE SPECIFICATIONS
766767 Table 12 and 13 summarizes the computational setups. ImageNet experiments were performed on a
768 high-performance cluster with dual 32-core Intel Xeon Platinum CPUs and 4× A100 GPUs connected
769 via NVLink. CIFAR-10/100 and SVHN experiments were conducted on a local workstation with an
770 AMD Ryzen 9 CPU and a single Titan RTX GPU.
771772 Table 12: Hardware specifications for CIFAR-10/100 and SVHN experiments.
773

775 Component Specification	
CPU	AMD Ryzen 9 7900X, 12 cores / 24 threads, 4.7 GHz base
GPU	NVIDIA Titan RTX, 24 GB GDDR6
RAM	Corsair Vengeance, 128 GB DDR5, 6000 MHz

780 Table 13: Hardware specifications for ImageNet experiments.
781

782 Component Specification	
CPU	Dual Intel Xeon Platinum 8358 (Ice Lake), 32 cores each
GPU	4 × NVIDIA A100 (Ampere) with NVLink interconnect
RAM	512 GB

787
788 A.1.5 SOFTWARE SPECIFICATIONS
789790 Table 14 outlines the software environment used
791 for all experiments. Python 3.8.18 served as
792 the core programming language. Key libraries
793 included PyTorch and Torchvision for model
794 development, along with Matplotlib, NumPy,
795 Scikit-learn, Seaborn, Pandas, and Pillow (PIL)
796 for data handling and visualization. CIFAR-
797 10/100 and SVHN experiments were conducted
798 in Jupyter Notebook, facilitating interactive de-
799 velopment and reproducibility. Additionally, Im-
800 ageNet experiments were conducted as python scripts.
801802 A.2 MORE RELATED WORK
803804 Bartoldson et al. (2020) analyze weight pruning by defining stability as the accuracy drop after
805 removing parameters, a diagnostic notion operating entirely in parameter space while keeping the
806 data fixed. In contrast, B-PAS functions in data space, tracking temporal activation variance across
807 epochs as an online signal for permanently pruning batches, a direction unexplored in prior pruning
808 work. Similarly, Ganguli & Chong (2024) use activation frequency to prune neurons in small
809 fully connected networks, focusing on static model sparsification rather than data reduction. While
activation patterns have been used to assess weight importance or characterize network behavior, no
prior method leverages activation stability over time to directly remove training data.
810799 Table 14: Software Specifications
800

801 Component	802 Details
Python	Version 3.8.18
Libraries	torch, torchvision, matplotlib, numpy, scikit-learn, seaborn, pandas, pillow (PIL)
Platform	Jupyter Notebook

810 Table 15: Results for Group of $\delta_s = 5 \times 10^{-5}$
811

δ_s	δ_e	DSI (%)	ACC (%)
5×10^{-5}	1×10^{-3}	75	89.65
5×10^{-5}	5×10^{-4}	75	90.24
5×10^{-5}	1×10^{-4}	68	91.65

812
813
814
815
816
817
818 A.3 MORE RESULTS
819820
821
822
823
Detailed CIFAR-10 Results. Table 15–19 provide the tabular counterpart of Figure 3, reporting the
full results of our CIFAR-10 analysis across forty-five (δ_s, δ_e) configurations. Each table corresponds
to one starting threshold group, with multiple end thresholds. These results clearly illustrate the
trade-off between pruning aggressiveness and accuracy:824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
• Larger δ_s values (Tables 15–16) trigger early and aggressive pruning, yielding substantial
data savings but lower accuracy.
• Smaller δ_s values (Table 19) retain most data, preserving accuracy at the cost of reduced
pruning benefits.
• Intermediate settings (Tables 17–18) achieve the most favorable balance, with the setting
 $\delta \in [10^{-6}, 5 \times 10^{-5}]$ (Table 18) delivering the highest accuracy while saving 25% of training
data.

Together, these tables complement Figure 3 by providing a detailed numerical view of pruning dynamics, confirming that the thresholds govern an effective trade-off between efficiency and generalization.

Table 17: Results for Group of $\delta_s = 5 \times 10^{-6}$ Table 16: Results for Group of $\delta_s = 1 \times 10^{-5}$

δ_s	δ_e	DSI(%)	ACC (%)
1×10^{-5}	1×10^{-3}	63	91.28
1×10^{-5}	5×10^{-4}	59	92.28
1×10^{-5}	1×10^{-4}	52	93.61
1×10^{-5}	5×10^{-5}	47	94.31
1×10^{-5}	4×10^{-5}	43	94.49
1×10^{-5}	3×10^{-5}	43	94.58

δ_s	δ_e	DSI(%)	ACC (%)
5×10^{-6}	1×10^{-3}	57	92.28
5×10^{-6}	5×10^{-4}	55	92.97
5×10^{-6}	1×10^{-4}	45	94.46
5×10^{-6}	9×10^{-5}	45	94.20
5×10^{-6}	8×10^{-5}	43	94.28
5×10^{-6}	7×10^{-5}	40	94.81
5×10^{-6}	6×10^{-5}	41	94.71
5×10^{-6}	5×10^{-5}	40	94.59
5×10^{-6}	4×10^{-5}	37	94.79
5×10^{-6}	3×10^{-5}	31	95.02
5×10^{-6}	2×10^{-5}	28	95.05
5×10^{-6}	1×10^{-5}	23	95.44

Detailed ImageNet Results. Table 20 provides the tabular version of Figure 4, reporting results of *B-PAS* with ResNet-50 on ImageNet-1K across eight threshold settings. The table includes accuracy, Data Savings Index (DSI), training time, node-hours, and early stopping behavior, offering a more granular perspective on pruning dynamics.A clear trade-off emerges between data savings and accuracy. Larger thresholds such as $\delta \in [5 \times 10^{-5}, 5 \times 10^{-4}]$ trigger aggressive pruning, with training terminating around epoch 100 and accuracy dropping to 76.1%, despite saving 73% node-hours. Conversely, smaller thresholds (e.g., $\delta \in [10^{-6}, 5 \times 10^{-5}]$) achieve slightly better accuracy compared to full dataset (78.63%) but achieve only moderate efficiency gains (37% node-hours saved).Intermediate thresholds provide the most balanced trade-off: for instance, $\delta \in [5 \times 10^{-6}, 5 \times 10^{-5}]$ yields 78.43% accuracy with 47% DSI and 48% node-hours saved. GPU node-hours is calculated by (Training Time (in seconds)/3600)*4 (number of GPUs). The node-hours saved percentage is calculated from the full dataset’s node-hours (87.98). Importantly, DSI and node-hour savings follow

864 Table 18: Results for Group of $\delta_s = 1 \times 10^{-6}$
865

δ_s	δ_e	DSI(%)	ACC (%)
1×10^{-6}	1×10^{-3}	47	93.24
1×10^{-6}	5×10^{-4}	42	94.13
1×10^{-6}	1×10^{-4}	31	95.18
1×10^{-6}	9×10^{-5}	29	95.04
1×10^{-6}	8×10^{-5}	30	94.99
1×10^{-6}	7×10^{-5}	29	95.07
1×10^{-6}	6×10^{-5}	26	95.44
1×10^{-6}	5×10^{-5}	25	95.60
1×10^{-6}	4×10^{-5}	22	95.47
1×10^{-6}	3×10^{-5}	22	95.28
1×10^{-6}	2×10^{-5}	16	95.54
1×10^{-6}	1×10^{-5}	15	95.49

866 Table 19: Results for Group of $\delta_s = 1 \times 10^{-7}$
867

δ_s	δ_e	DSI (%)	ACC (%)
1×10^{-7}	1×10^{-3}	34	94.47
1×10^{-7}	5×10^{-4}	31	94.94
1×10^{-7}	1×10^{-4}	18	95.49
1×10^{-7}	9×10^{-5}	19	95.46
1×10^{-7}	8×10^{-5}	19	95.50
1×10^{-7}	7×10^{-5}	18	95.33
1×10^{-7}	6×10^{-5}	15	95.52
1×10^{-7}	5×10^{-5}	14	95.43
1×10^{-7}	4×10^{-5}	12	95.57
1×10^{-7}	3×10^{-5}	11	95.55
1×10^{-7}	2×10^{-5}	9	95.60
1×10^{-7}	1×10^{-5}	5	95.60

880
881 consistent trends, reinforcing that pruning efficiency directly translates to a reduction in training costs.
882 Early stopping occurs primarily under aggressive pruning settings, confirming that pruning not only
883 reduces data usage but can also shorten training trajectories.

884 Table 20: Detailed ImageNet Results with node-hours, DSI, and Early Stopping.
885

δ_s	δ_e	DSI(%)	Acc(%)	Early Stop Epoch	Training Time(s)	Node-hrs	Node-hrs Saved(%)
1×10^{-7}	5×10^{-4}	38	78.46	178	46409.41	51.57	41
1×10^{-6}	5×10^{-5}	33	78.63	–	49855.24	55.39	37
5×10^{-7}	5×10^{-4}	46	78.55	175	41460.80	46.07	48
5×10^{-6}	5×10^{-5}	47	78.43	–	40919.18	45.47	48
5×10^{-5}	5×10^{-4}	74	76.10	102	21067.36	23.41	73
1×10^{-5}	5×10^{-4}	62	77.85	143	29016.79	32.24	63
1×10^{-5}	1×10^{-4}	57	78.07	179	30841.92	34.27	61
1×10^{-5}	5×10^{-5}	57	78.07	179	30828.36	34.25	61
5×10^{-6}	5×10^{-5}	37	71.50	–	29638.31	32.93	62
Full Dataset	–	0	78.07	–	79183.84	87.98	0

890
891 **Fast and Reliable δ Selection Using a Small Subset of Training Data.** The tables 21 and 22
892 show that δ_s and δ_e can be tuned quickly and reliably using only a small portion of the training set.
893 Across both CIFAR-10 with ResNet-18 and ImageNet-1K with ResNet-50, the relative ordering of
894 pruning strength and accuracy remains consistent between full data runs and ten percent subset runs.
895 Larger thresholds such as $\delta_s = 10^{-5}$ consistently yield higher DSI, while smaller thresholds such as
896 $\delta_s = 10^{-7}$ produce more conservative pruning, precisely matching the full training patterns. These
897 partial runs are extremely lightweight, requiring only a few minutes for CIFAR-10 and roughly one
898 hour for ImageNet-1K on four A-100 GPUs. As a result, selecting δ is fast, inexpensive, and does not
899 diminish the overall efficiency gains of B PAS.

900 Once a good δ schedule is identified for a dataset family, it transfers well to related settings. The
901 values tuned on CIFAR-10 transfer directly to CIFAR-100 and SVHN without further adjustment,
902 preserving the expected DSI and accuracy behavior in low-resolution CNNs. Similarly, values tuned
903 on ImageNet-1K with ResNet-50 generalize to ImageNet-like datasets and other CNN variants.
904 Although transformers exhibit slower and noisier activation stabilization, they can also be handled
905 with a small subset of data, as demonstrated by our experiments with CvT-13 and GPT large. These
906 findings show that δ hyperparameters can be tuned rapidly on small data slices and reused across
907 models, making B PAS practical and scalable for new architectures and datasets.

908
909 **Extended Comparison with SOTA.** Table 23 summarizes the performance of representative data
910 selection and pruning techniques on CIFAR-10 and CIFAR-100. Classical core-set and influence-

918
919
920
Table 21: Pattern of δ_s - δ_e schedules on pruning (DSI) and accuracy under full-data vs. 10% of
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675
180676
180677
180678
180679
180680
180681
180682
180683
180684
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698
180699
180700
180701
180702
180703
180704
180705
180706
180707
180708
180709
180710
180711
180712
180713
180714
180715
180716
180717
180718
180719
180720
180721
180722
180723
180724
180725
180726
180727
180728
180729
180730
180731
180732
180733
180734
180735
180736
180737
180738
180739
180740
180741
180742
180743
180744
180745
180746
180747
180748
180749
180750
180751
180752
180753
180754
180755
180756
180757
180758
180759
180760
180761
180762
180763
180764<br

972
973
974 Table 23: Comparison of pruning methods on CIFAR-10 and CIFAR-100.
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992

Method	CIFAR-10 Acc. (%)	CIFAR-100 Acc. (%)
Herding (Welling, 2009b)	92.2	73.1
Influence (Koh & Liang, 2017)	93.1	74.4
K-Center (Sener & Savarese, 2017)	94.7	74.1
DeepFool (Ducoffe & Precioso, 2018)	95.1	74.2
Forgetting (Toneva et al., 2018)	94.7	75.3
EL2N-2 (Toneva et al., 2018)	94.4	74.1
EL2N-20 (Toneva et al., 2018)	95.3	77.2
Least Confidence (Coleman et al., 2019)	95.0	74.2
Margin (Coleman et al., 2019)	94.9	74.0
CD (Agarwal et al., 2020)	95.0	74.2
Craig (Mirzaoleiman et al., 2020)	94.8	74.4
GraNd-4 (Paul et al., 2021)	95.3	74.6
Glister (Killamsetty et al., 2021)	95.2	74.6
DP (Yang et al., 2022)	94.9	77.2
ε -greedy (Raju et al., 2021)	95.2	76.4
UCB (Raju et al., 2021)	95.3	77.3
InfoBatch (Qin et al., 2024)	95.6	78.2
B-PAS (Ours)	95.6	78.2

993
994 Table 24: Comparison of full-data training and B-PAS on loss, perplexity, training time, and pruning
995 statistics for GPT2-large.
996
997

Method	Loss	Perplexity	Avg. Epoch Time (s)	Total Time (s)	Pruned Batch (%)	DSI (%)
Full Data	0.2207	1.25	5359.88	54420.13	–	–
B-PAS	0.2201	1.25	5039.11	51211.29	23.00	6

1000
1001 Furthermore, to assess whether permanent pruning introduces class imbalance, we compared the
1002 class distribution of the dataset before training and after 100 epochs of B-PAS. As shown in Table 26,
1003 the proportions remain effectively unchanged, with all deviations within 0.1%. This stability occurs
1004 because B-PAS removes entire batches, and each batch contains a naturally mixed set of classes due to
1005 the initial random shuffling. Consequently, pruning at the batch level does not preferentially remove
1006 any particular class. Combined with the difficulty analysis, these results demonstrate that B-PAS
1007 does not introduce class bias and does not prune based on sample easiness. Instead, pruning is driven
1008 solely by the activation-stability criterion, ensuring that the retained dataset remains representative of
1009 the original distribution with respect to both class balance and example difficulty.

1010
1011 A.4 MORE ABLATION STUDIES
1012

1013 Extended Impact Analysis of Normalization.

1014 Across normalization schemes in Table 27, pruning thresholds, and
1015 architectures, the results consistently show that B-PAS remains ef-
1016 fective even when normalization is absent, as long as the δ schedule
1017 is calibrated to the activation dynamics of the model. On CIFAR-10
1018 with ResNet-18, BatchNorm yields the smoothest activation
1019 trajectories and therefore the highest data savings (25.06% DSI), but
1020 LayerNorm alone still enables meaningful pruning (13.2% DSI)
1021 with strong accuracy (93.99%). In contrast, removing normalization
1022 entirely severely destabilizes activation variance, leading to only 2%
1023 DSI and a substantial accuracy drop, which aligns with the known
1024 behavior of unnormalized ResNets.

1025 The δ -range ablation further confirms this trend in Table 29. Without
BatchNorm, larger thresholds (e.g., $\delta_s = 5 \times 10^{-5}$, $\delta_e = 10^{-3}$) are required to counteract noisier

1026
1027 Table 27: Effect of differ-
1028 ent normalization strategies on
1029 DSI and accuracy.

Normalizer	DSI (%)	Acc (%)
Layer	13.2	93.99
Layer + Batch	21.9	94.97
None	2.0	90.39
Batch	25.06	95.60

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 25: Comparison of average difficulty metrics between pruned and kept batches. Pruned batches exhibit lower confidence and higher misclassification rates, indicating they are not disproportionately composed of “easy” examples.

Metric	Pruned Mean	Kept Mean
Confidence	0.60	0.65
Misclassification Rate	0.40	0.35

Table 26: Class distribution before training and after 100 epochs of B-PAS. The differences are within $\pm 0.1\%$, indicating no class imbalance introduced by pruning.

Class (%)	plane	car	bird	cat	deer	dog	frog	horse	ship	truck
Initial	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
After 100 Epochs	10.05	10.01	9.99	10.04	10.08	9.91	9.92	9.91	10.05	10.04

activation dynamics, enabling 19.72% pruning at the cost of accuracy. More conservative thresholds (e.g., $\delta_s = 10^{-6}$, $\delta_e = 5 \times 10^{-5}$) yield minimal pruning (2%), reflecting the higher instability of unnormalized features. When BatchNorm is restored, the same thresholds (10^{-6} to 5×10^{-5}) enable substantially higher DSI (25.06%) with top performance (95.60%), demonstrating that stable feature statistics directly expand the “prunable” region detected by B-PAS.

Finally, Table 28 shows experiments on LeNet-5, a normalization-free architecture. It shows that B-PAS is not dependent on normalization layers. With a tuned δ schedule ($\delta_s = 10^{-4}$, $\delta_e = 10^{-3}$), the method prunes 31% of the data and maintains accuracy within 0.5% of the baseline. This confirms that B-PAS is compatible with models lacking normalization, but the threshold schedule must reflect the architecture’s intrinsic activation stability regime.

Effect of Batch Size. The batch size ablation in Table 30 shows that DSI increases consistently as batch size grows, reflecting the fact that larger batches yield smoother and more stable activation trajectories across epochs, which allows B-PAS to prune earlier and more aggressively. Accuracy remains nearly unchanged across all settings, indicating that the method is robust to batch-size variation and does not introduce batch-size-dependent bias. Although larger batches improve the magnitude of achievable data savings, the core behavior of activation stabilization and accuracy preservation remains consistent, demonstrating that B-PAS functions reliably under standard training configurations.

Different Approaches to Quantify Activation Stability. The ablation in Table 31 compares several alternative activation stability metrics. Kurtosis yields moderate pruning but remains highly sensitive to early-epoch fluctuations, resulting in conservative DSI. Entropy exhibits the opposite behavior: its larger dynamic range causes overly aggressive pruning, leading to substantial accuracy degradation. Using the maximum standard deviation amplifies layer-wise noise and produces unstable pruning behavior with limited savings. In contrast, the proposed mean standard deviation provides a stable and well-behaved signal, achieving a balanced trade-off between pruning strength and accuracy. These results indicate that mean standard deviation is the most reliable activation stability quantifier among the tested alternatives.

A.5 VISUALIZATIONS

Figure 5 illustrates the evolution of mean standard deviation changes ($\Delta \bar{X}$) across epochs for selected batches for CIFAR-10 with ResNet-18. The change is initially large but decreases steadily, eventually

Table 28: Comparison of Full Data training and B-PAS on CIFAR-10 (LeNet-5).

Method	DSI (%)	Acc (%)
Full Data	–	71.0
B-PAS	31.07	70.5

Table 30: Effect of batch size on pruning effectiveness and accuracy on CIFAR-10 (ResNet-18).

Batch Size	DSI (%)	Acc (%)
32	20.25	94.86
64	23.26	94.93
128	25.06	95.60
256	26.97	95.10

Table 29: Effect of pruning thresholds and BatchNorm on B-PAS.

δ_s	δ_e	BatchNorm	DSI (%)	Accuracy (%)
5×10^{-5}	10^{-3}	without BN	19.72	89.87
10^{-6}	5×10^{-5}	without BN	2.00	90.39
10^{-6}	5×10^{-5}	with BN	25.06	95.60

Table 31: Comparison of different activation stability quantification for pruning.

Quantification	DSI (%)	Acc (%)
kurtosis	22.22	95.00
entropy	74.89	89.64
max std	13.45	95.41
mean std	25.06	95.60

saturating as training progresses. Once the change falls below the threshold, the corresponding batches are pruned. Figure 6 reports the number of batches pruned per epoch. Pruning does not occur in early epochs, when activation changes remain high, but becomes increasingly aggressive in later stages as changes stabilize.

Additionally, Figure 7 and 8 shows the relationship between threshold growth and the number of remaining batches per epoch (CIFAR-10, ResNet-18). As training progresses, the threshold value becomes larger resulting into more batch pruning.

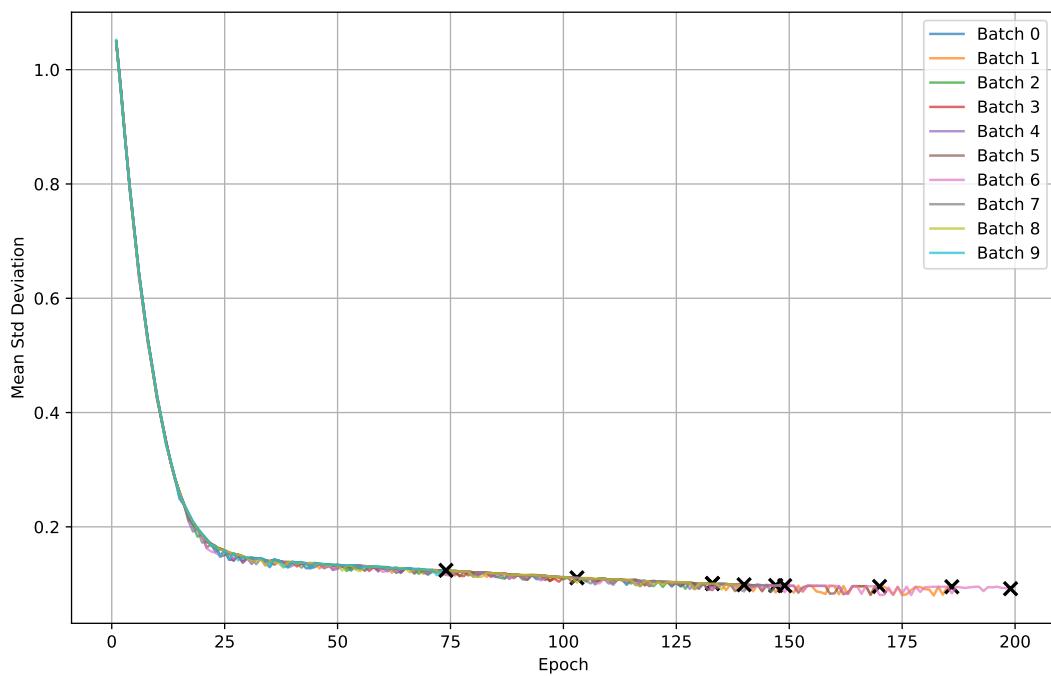


Figure 5: Evolution of mean standard deviation ($\Delta\bar{X}$) for representative batches across epochs. Large initial fluctuations gradually saturate, and once below the pruning threshold, the corresponding batches are pruned.

A.6 LLM USAGE

In this research, large language models (LLMs) have been utilized to assist in verifying grammatical correctness. All contents were developed and verified by the authors.

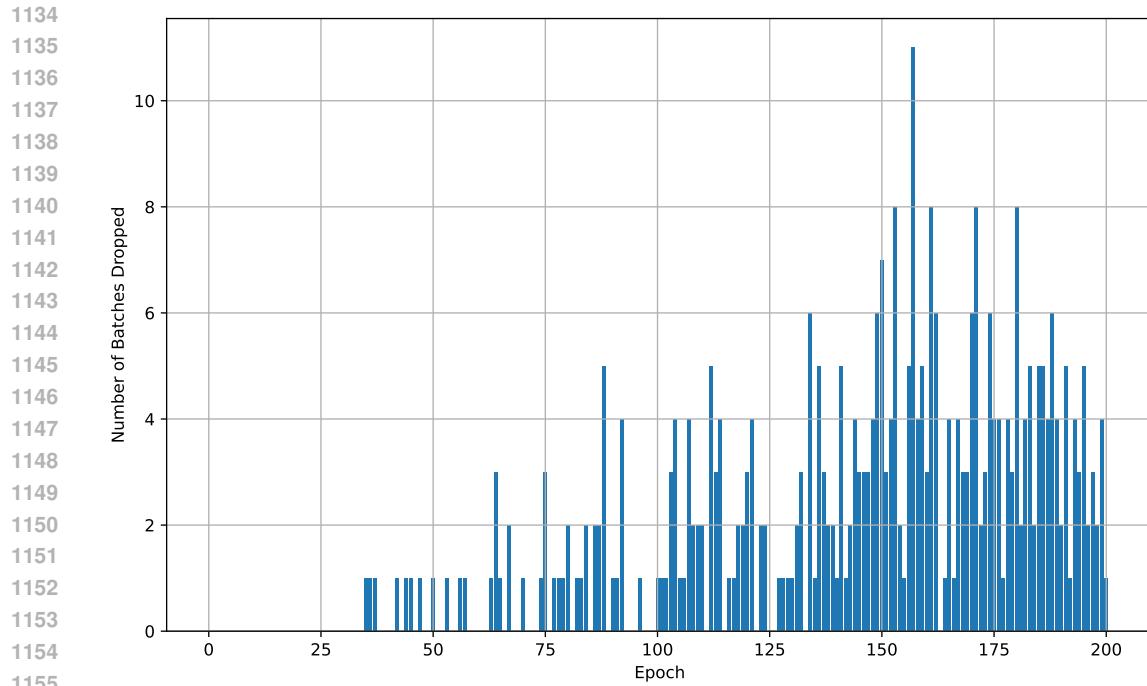


Figure 6: Number of batches pruned per epoch. No pruning occurs in early epochs, while pruning accelerates in later epochs as more batches stabilize, leading to substantial reductions in training cost.

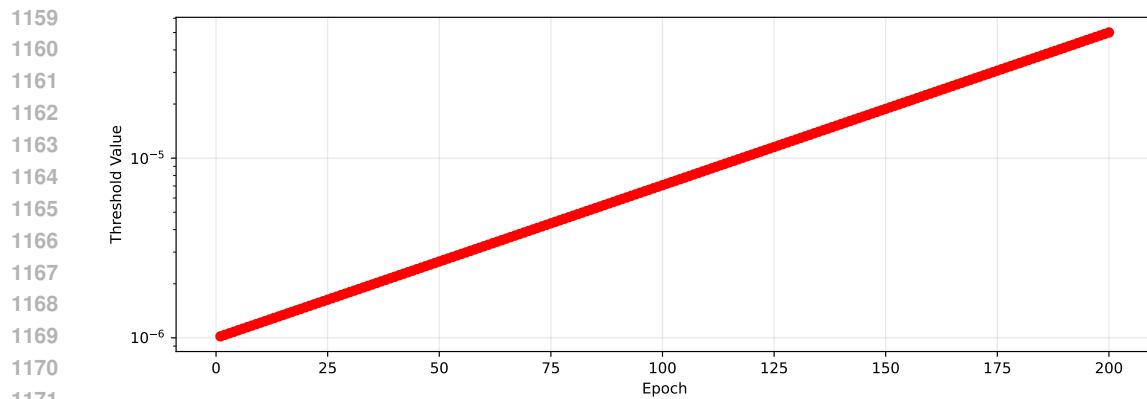


Figure 7: Exponential Threshold Evolution Over Epochs.

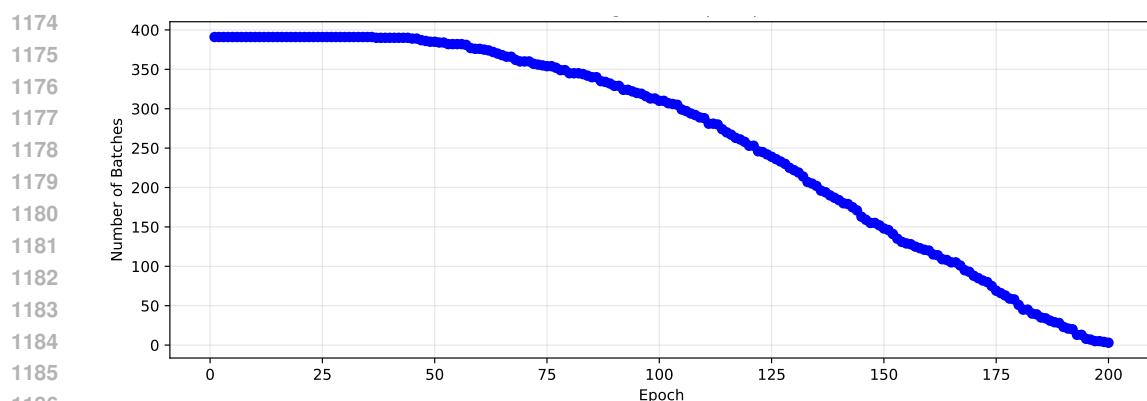


Figure 8: Remaining Batches per Epoch