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Abstract

This work explores enabling Chain-of-Thought (CoT) reasoning to link visual
cues across multiple images. A straightforward solution is to adapt rule-based
reinforcement learning for Vision-Language Models (VLMs). However, such
methods typically rely on manually curated question-answer pairs, which can
be particularly challenging when dealing with fine-grained visual details and
complex logic across images. Inspired by self-supervised visual representation
learning, we observe that images contain inherent constraints that can serve as
supervision. Based on this insight, we construct image triplets comprising two
augmented views of the same image and a third, similar but distinct image. During
training, the model is prompted to generate a reasoning process to compare these
images (i.e., determine same or different). Then we optimize the model with rule-
based reinforcement learning. Due to the high visual similarity and the presence
of augmentations, the model must attend to subtle visual changes and perform
logical reasoning to succeed. Experiments show that, although trained solely on
visual comparison tasks, the learned reasoning ability generalizes effectively to a
wide range of questions. Without relying on any human-annotated question-answer
pairs, our method achieves significant improvements on multi-image reasoning
benchmarks and shows strong performance on general vision tasks.

1 Introduction

Making visual analysis with multiple images is crucial in many real-world applications. For example,
we understand actions through sequential images or videos, gain 3D awareness by recognizing
multiview images, and analyze events by observing differences between states, efc. Although Vision
Language Models (VLMs) [2, 8, 19, 15, 1] demonstrate promising capabilities in understanding
single images, we find them struggle to link visual cues across multiple images.

Multi-image understanding requires not only identifying fine-grained visual cues but also performing
logical reasoning to uncover correspondences and differences among images. Recently, reasoning
in language models [12, 16, 31, 27] has been significantly improved through the use of Chain-of-
Thought (CoT) prompting, especially when combined with rule-based reinforcement learning [28].
Therefore, a straightforward idea to improve multi-image understanding is to extend this reinforcement
learning paradigm to the visual domain. However, GRPO [28] requires constructing question-answer
pairs with standard answers to compute rewards, which is particularly challenging for tasks involving
fine-grained visual details and complex logic across images.

Instead of focusing on constructing QA pairs, we explore how to incentivize VLMs to perform
multi-image reasoning with minimal data preparation cost. Modern VLMs already possess strong
perceptual and multimodal capabilities. Meanwhile, recent advances in RL-based single image
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reasoning [34, 23, 5] suggest that reasoning ability can be effectively acquired with limited data.
However, most of these methods still rely on task-specific supervision, such as hand-crafted QA
pairs. To reduce the reliance on manual annotations, we draw inspiration from self-supervised visual
representation learning [7, 14, 13, 3], where images are used as their own source of supervision.
Contrastive learning methods [14, 7], for instance, learn discriminative representations by pulling
together features from different views of the same image and pushing them away from those of
different images. Guided by this principle, we exploit inherent constraints in images as a supervision
signal for reward calculation, and present a novel method, MiCo (Multiple image Contrast).

Specifically, we construct training triplets consisting of two augmentations of the same image and
a third, different but similar image with its own augmentation. We prompt the VLM to output the
thinking process and make comparisons among these images to answer same/different. Multiple
trajectories are sampled per example, and reinforcement learning is applied using advantages
computed from the correctness of the final answer. A key aspect of our approach is the design
of challenging image comparisons. If negative samples are too distinct, the reasoning is trivial. We
address this by sampling frames from the same video or using image editing datasets to find similar
images, ensuring subtle differences that require careful visual inspection and reasoning. Beyond
this contrastive framework, we also introduce Augmented GRPO, a training strategy that samples
trajectories using weak augmentations and optimizes them under stronger augmentations. This design
allows high-quality CoTs to generalize to more difficult images.

Although the model is trained solely on the image comparison task, the learned ability to link visual
cues across multiple images generalizes to a wider scope of scenarios. For example, the model
can predict plausible future actions by analyzing visual changes across frames, distinguish object
identities by comparing fine-grained appearance details, or detect subtle camera movement in scene
transformations. Moreover, the contrastive learning process encourages attention to fine-grained
details, which also benefits certain single-image understanding tasks like fine-grained layout/attribute
understanding. Experimental results show that MiCo achieves strong performance for multi-image
understanding [40, 32, 10], and also brings improvements on general vision tasks [11, 6, 39].

2 Related Work

Vision language model reasoning. Recent studies show that reasoning-capable LLMs [16, 12, 31, 27]
can be effectively guided to generate long CoT [36] reasoning processes through reinforcement
learning, leading to significant progress on tasks involving complex logic. Building on these advances,
a surge of recent works [5, 29, 26, 25] has extended CoT reasoning into the vision-language domain.
For example, MM-Eureka [23] expands training data coverage across domains and refines RL training
strategies. NoisyRollout [20] introduces image augmentations to enrich the exploration space for
policy optimization. LVAA-Thinking [4] provides a detailed analysis of supervised fine-tuning
and RL for visual reasoning, along with a curated dataset for related tasks. ThinkLite [34] further
improves data efficiency via sample selection with Monte Carlo Tree Search. While these methods
rely heavily on curated training data generated by existing models or human annotations, our work
explores an alternative: leveraging inherent constraints within visual data to naturally elicit reasoning
ability—without explicit question-answer supervision.

Multi-image understanding. Understanding multiple images is crucial in real-world scenarios that
require comparing object states, tracking actions, or recognizing objects across views. Recent large
VLMs [2, 18, 17, 1, 15] have begun to support multi-image inputs natively. LLaVA-Interleave [19]
extends LLaVA [19] to process interleaved multimodal inputs. VISC [41] introduces focus-centric
data to enhance visual reasoning. Meanwhile, numerous benchmarks [32, 10, 24, 21, 44, 37]
have been proposed to evaluate multi-image understanding from various angles. Despite these
developments, recent evaluations [40, 46] highlight persistent limitations: VLMs often fail to link
fine-grained visual cues across images, such as identifying the same object under different views or
detecting subtle state changes for predictive reasoning. Our work addresses this gap by incentivizing
the model to compare the fine details across images and make logical analysis.

3 Method
3.1 Pilot Study for Multi-image Understanding

We begin with a pilot study to assess how well current VLMs understand multiple images. As shown in
Fig. 1, we present examples that highlight the capabilities of several state-of-the-art VLMs, Qwen?2.5-



Example 2

Example 1 | I ] II %

Question: How many people are there in these images? Question: How does the camera move?

e
%7 Qwen2.5VL: There is one person visible across these images. Vv { InternVL: The camera appears to move along a path that.. X
{4, InternVL : There is one person visible across these images. 1/ @ 6PT40: The camera moves to the right and slightly forward... X

Example 3

Example 4

Question: How many distinct toys can you identify in these images? Question: Are there any differences besides the camera movement?

"'/; InternVL: There is one distinct toy visible in these images: a green LEGO car. X G; Qwen2.5VL: ..In the first image, the gorillas are inside their cage, while in the
@ GPT-40: There are two distinct LEGO car toys in the images. Lamborghini Sidn FKP 37 second image, they are outside their cage... X
Appears in Images 1 and 2. Ford Mustang Shelby 6T500 Appears in Image 3. X @ 6PT4o: Yes, there are several differences... The cage labeled "GORILLA" is now

labeled "LION" and contains two lions... X

Figure 1: Challenges for multi-image understanding. While recent works support multiple images
as input, most of them focus on scenarios where each image can be interpreted independently (e.g.,
Example 1), which remains relatively easy for current state-of-the-art VLMs. However, many real-
world tasks (e.g., Example 2-4) require models to compare subtle visual differences, align visual
cues across images, and reason about object correspondences—capabilities that current VLM still
struggle with. We gather Example 1 from MuirBench [32], Example 3 from VLM2-bench [40],
Example 2,4 from real world samples.

VL [33], InternVL [8], and GPT-40 [15]. While many recent models and benchmarks [24, 32, 44]
support multi-image or video inputs, they primarily focus on scenarios like Example 1, where each
image can be understood in isolation. In Example 1, models correctly identify a single person across
images, reflecting solid basic perception. However, when we examine more complex cases in Fig. 1,
we observe that VLMs often suffer from severe hallucinations. In Example 2, both models fail to
infer the correct camera movement, showing weaknesses in spatial reasoning. In Example 3, VLMs
cannot distinguish between different car toys, indicating difficulty with cross-image comparison.
Example 4 further reveals failure in tracking semantic changes across images, with hallucinated
object positions and misidentified labels. These cases highlight that current VLMs still lack robust
visual comparison abilities essential for multi-image understanding. These examples typically require
the model to explicitly link visual cues across images, analyze fine-grained differences, and reason
about inter-image correspondences.

As current VLMs already possess strong abilities in single-image perception (e.g., reading fine-grained
text) and demonstrate solid commonsense knowledge, as evidenced by their performance on standard
vision benchmarks. We hypothesize that their primary limitation in multi-image understanding lies
in their inability to compare and connect visual information across images. To address this gap,
we focus on enhancing the meta-cognitive ability of visual comparison, the core skill needed for
effective multi-image reasoning.

3.2 Multi-image Contrast

Rather than collecting data for each specific multi-image task, we aim to improve VLMs’ general
capacity to analyze and reason over multiple images by targeting the core meta skill: visual
comparison. Inspired by the principles of self-supervised learning, we design a lightweight and
scalable framework that encourages the model to distinguish similar yet distinct images. By simulating
contrastive visual situations and prompting the model to generate structured reasoning trajectories,
we aim to enhance its ability to perceive fine-grained differences, establish correspondences, and
perform step-by-step comparisons across images.

Here, we elaborate on the pipeline of MiCo. The overall framework consists of the following
main steps. First, we identify and construct contrastive image samples that are visually similar yet
different. Then, we apply data augmentation to build informative training triplets. Finally, we leverage
Augmented GRPO to evaluate a set of reasoning trajectories and optimize the VLM accordingly.
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Figure 2: Demonstrations for contrastive samples. The first row shows two triplets from the video,
and the second row demonstrates samples from image editing datasets. These samples are visually
similar but contain subtle differences (marked with red circles), on which we apply random cropping
and resizing. In each triplet, the first two images are the same, and the third image is different.

Image selection. We begin by selecting image pairs that are visually similar but exhibit subtle
differences, which serve as contrastive supervision signals. We denote such a pair as (I, I;), where
I, and I, are distinct images sharing high structural similarity (e.g., similar layout or background),
but with small detail variations.

We leverage two types of data sources that naturally fulfill this requirement: video frames and image
editing datasets. For video data, we randomly sample (I, I;) from the same video with a temporal
gap of 2 seconds, and compute their Structural Similarity (SSIM) to filter out near-identical pairs. For
image editing data, each (I, I;,) pair consists of a "before" and "after" edited image. We compute
the pixel-wise Mean Squared Error (MSE) to remove significantly different pairs. These constraints
ensure that the collected pairs exhibit subtle but meaningful changes.

Image augmentation. While the selected image pairs already exhibit subtle variations, directly
learning to distinguish them may still lead to shortcut learning. To increase task complexity and
encourage detailed reasoning, we apply data augmentation to create diverse image views.

As the visualization examples provided in Fig. 2, given a source image I, we generate two augmented
versions via random cropping and resizing (they do not change the content of images). For each
image pair (I,, I;), we thus construct a contrastive triplet:

T ={Ti(1.), T2(1,), Ts(I)},

3.3 Augmented GRPO

Question-answer formulation. After getting the triplets that contain similar images and their
augmentations. We construct QA pairs for reinforcement learning. Given an image triplet, we add
reasnoning prompt and user questions as follows:

-

Reasoning Template of MiCo

Reasoning Prompt: First output the thinking process in <think> </think> and give the final
answer in <answer> </answer> tags.

User Question: Regardless of the augmentation, are imagel and image2 the same? How
about image2 and image3, imagel and image3? Only return T(True) or F(False) in <answer>
</answer>, for example <think> </think> <answer>TFT</answer>.

\ J

To increase the diversity and balance the difficulties of questions, besides the image triplet, we also
construct image pairs and design the corresponding prompts for comparing two images. In addition,
we use GPT-4o [15] to expand the user question of the same meaning but with various expressions.

Rollout augmentation. For each question ¢ with augmented images 7, the original GRPO samples a
group of outputs {01, 02, -+ , 0} from the old policy 7y,,, and then optimizes the policy model .
To better leverage difficult samples that arise from strong augmentations, we sample trajectories using
weakly augmented inputs 7%, which are easier to produce valid reasoning chains. These sampled
trajectories are then used to optimize the policy on stronger augmented contexts 7 °, effectively
transferring reliable behavior to harder instances.



Algorithm 1 MiCo: Reinforcement Multi-image Reasoning

1: Input: Policy g, old policy my,,,, image triplet dataset D = {(I, I2, I3)}, training steps Tiax,
group size G, clip parameter €, weak augment operators 7, strong augment operators 7°

2: fort =1 to T do

Sample triplet (I3, I3, Is) ~ D

Apply weak augmentation: (I3%, Iy, I3') = TV(I1, I», I3)

Apply strong augmentation: (I7,I5,I5) = T*(1y, Iz, I3)

Construct prompts q* and q° from the weak and strong augmented triplets, respectively

Sample G CoT responses {o; }$ ; from 7, (- | q*) > Rollouts from weak prompt

Evaluate reward R; = R(I*,q%,0;) foreachi=1,... G

Compute group baseline R = é Zil R;, and advantages A; = %'(}1;

10: Optimize 7y on the strong prompt q° using the group rollouts:

11: LO) =4 Zil min (rﬁih clip(r;, 1 — e, 1+ e)/li), where r; = %
old v

12: 0+ 06— VyL(0)

13: Qold — 0

14: end for

R A A

Training objective. The training objective of Augmented GRPO could be formulated as follows.
This objective encourages the policy to assign higher likelihoods to responses with higher relative
rewards within each group.

J(0) =Elg ~ P(Q, {oi}) ~ 7,,,(0q)]
GZ (min (220Dt (ZDY 1) s ralnep))

0514 (Oi|q) T 6014 (Oi‘q
Wref(oi ‘ (]) Wref(oi | q)
D ref) = -1 - ]-7 2
KL (7]‘0”7(' f) 7_(_9(01. |q) 0g 779(01’ |q) ( )

where € and S are hyperparameters. Following GRPO [28], A; is the normalized advantage computed
based on rewards {r1,72,...,7rg}.

r; — mean({ri,re, - ,rg})
std({ri,ro,--- ,ra})

Following DeepSeek-R1 [12], we leverage the binary format reward and the accuracy reward, which
considers the matching of “<think> </think> <answer> </answer>" tags, and the correctness of the
final answer. For the triplet comparisons, we get 1 for the accuracy reward only if we make correct
comparisons for all three pairs.

A; =

3

Overall algorithm. Our MiCo could be summarized in Algorithm 1. We first construct an image
triplet consisting of two augmented views of the same image and a third, visually similar but distinct
image (with augmentations). The model is prompted to perform multi-image comparison and generate
reasoning trajectories. During training, chain-of-thought responses are sampled from the weakly
augmented views, and the policy is optimized on the strongly augmented ones using rule-based
reinforcement learning. This process enables the model to learn fine-grained visual reasoning in a
self-supervised manner.

4 Experiments

4.1 Implementation Details

Hyper-parameters. For the baseline model, we follow previous works [23, 20, 34, 4] and select
Qwen2.5-VL-7B [2]. For the training data, we use OmniEdit [35] for image editing pairs and extract
video frames from Vidgen-1M [30]. The part of reinforcement learning follows GRPO [28], we set a



Table 1: Performance on VLM2-Bench [40], which evaluates the ability to compare and link fine-
grained visual cues across multiple images. Without relying on any human- or model-annotated data,
MiCo achieves significant improvements and sets a new state-of-the-art. Reasoning-based models
(marked with e) are evaluated using their corresponding prompting strategies.

Baselines or Models General Object Person Overall*
Mat Trk Cpr Cnt Grp Cpr Cnt Grp VID Avg Ahuman
Chance-Level 25.00 25.00 50.00 34.88 25.00 | 50.00 34.87 25.00 - 3273 -61.44
Human-Level 95.06 98.11 96.02 9423 91.29 | 97.08 92.87 91.17 100.00 | 95.16 0.00
o LLaVA-OneVision[17] 16.60 13.70 4722 56.17 2750 | 62.00 46.67 37.00 4725 39.35  -55.81
o LLaVA-Video-7B [43] 18.53 12.79 5472 6247 2850 | 62.00 6691  25.00 59.00 45.65  -49.51
o LongVQA-7B [42] 14.29 12.98 46.53 4947  29.00 | 58.00 41.56 25.00  45.00 37.10  -58.06
o mPLUG-OwI2-7B [38] 17.37 18.26 49.17 6297 31.00 | 63.00 58.06 29.00  43.00 40.87  -54.31
o Qwen2-VL-7B [2] 18.07 19.18 68.08 61.84 3750 | 72.00 67.92 47.00 55.25 4976 -45.40
o InternVL2.5-8B [8] 41.24 26.53 7222 67.65 40.00 | 85.00 66.67 52.25 50.25 5541  -39.75
o InternVL2.5-26B [8] 30.50 30.59 4333 5148 5250 | 59.50 59.67 @ 61.25 45.25 4559  -49.57
o Qwen2.5-VL-7B [2] 35.91 43.38 7139 4172 4750 | 80.00 59.76  69.00  45.00 5482 -40.34
o GPT-4o0 [15] 37.45 39.27 74.17  80.62 57.50 | 50.00 90.50  47.00 66.75 60.36  -34.80
o MM-Eureka-7B [23] 55.60 47.03 74.10 5250 54.00 | 77.50 60.00 51.00  43.50 5724 -3791
o NoisyRollout-7B [20] 40.93 43.83 63.33  50.83 3450 | 7050 63.33  47.00 36.50 50.08  -45.08
o ThinkLite-VL-7B [34] 4045 46.58 7556 6250 49.50 | 77.50 62.50  51.00 36.50 5579  -39.37
o VLAA-Thinker-7B [4] 47.49 63.03 7220 61.40 5500 | 71.00 57.50 51.00 @ 47.75 58.49  -36.67
o Qwen2.5-VL-7B-CoT[2] | 43.24 42.92 66.39 5056  36.00 | 6250 5583  39.00 36.75 4891  -46.24
e MiCo-7B-CoT 57.14 67.12 8194 56.67 58.00 | 65.00 57.50 62.00 44.25 61.06  -34.09
A Improvement +13.90 42420 +15.55 +6.11 +22.00 | 4250 +1.67 +423.00 +7.50 | +12.93 +12.93

format reward and accuracy reward with the weight of 1:1, respectively. Besides, we also apply a
KL regularization with a weight of 0.01. During training, we follow previous works [23] to skip the
rollout group with all correct/false answers. During training, we use a learning rate of 1e-6 and set
the batch size of 16. For each training sample, we generate a group of 8 rollouts. We train the model
for 600 iterations on 8 x A100 GPUs.

Evaluation protocols. For evaluation, we follow the default hyper-parameters of Qwen2.5-VL [33]
and utilize the VLMEvalKit [9]. For reasoning baselines, we adopt their official prompting formats.
Minor inconsistencies in results may occur due to differences in the implementation details of
evaluation frameworks or answer parsing logic.

4.2 Result Analysis for Multi-image Comparison

Evaluation metrics. We first report the model performance on VLM2-Bench [40]. This benchmark
mostly aligns with our intention of linking fine-grained visual cues across images. Specifically,
VLM2-Bench includes three tracks: General Cue (GC), Object-centric Cue (OC), and Person-centric
Cue (PC). Each track consists of subtasks with specific metrics: Mat (Matching) and Trk (Tracking)
use paired T/F accuracy; Cpr (Comparison) evaluates consistency by requiring the model to correctly
answer both a positive and its corresponding negative statement; Cnt (Counting) uses normalized
error to measure numerical prediction accuracy; Grp (Grouping) is a multiple-choice task assessing
clustering ability; and VID (Video Identity Describing) is scored based on GPT-40 evaluation of
open-ended descriptions.

Result analysis. As shown in Tab. 1, we present the comparison results on VLM2-Bench. We observe
that all existing open- and closed-source models lag behind human performance by a large margin.
Among them, GPT-40 [15] demonstrated clear advantages over other models. Thanks to the strong
generalization ability of reinforcement learning, recent reasoning VLMs [23, 20, 34, 4] have shown
consistent improvements when built upon Qwen2.5-VL-7B [2]. We report the performance of MiCo
in the final block. Trained with contrastive triplets, MiCo effectively learns the core ability to compare
images, achieving substantial gains across multiple tasks and obtaining the best average performance
overall. Notably, our 7B model even outperforms GPT-40. However, we find that CoT reasoning does
not benefit all sub-tasks equally. Specifically, for tasks involving human faces (person track), CoT-
based models offer limited or even negative gains compared to no-CoT counterparts. We hypothesize
that human identity representations, such as facial nuances, are difficult to verbalize, thus limiting
the benefit of language-based reasoning. In contrast, object-level identity differences (e.g., logos,



Table 2: Ablation studies on key configurations. We conduct experiments on VLM2-Bench [40] and
report the average accuracy across the general, object, and person tracks. For each ablation, all other
settings are kept consistent with our final model to ensure fair comparisons.

(a) Learning Paradigm (b) Data Source
General  Object  Person General ~ Object  Person
Qwen2.5-VL [2] 39.64 53.53 63.44 Edit Data® [35] 61.23 65.33 56.35
SFT 42.90 51.15 55.98 Edit Data? [45] 60.88 64.33 55.27
No-CoT RL 45.36 50.01 55.23 Video Data 60.29 64.50 55.68
CoT RL 62.13 65.53 57.18 Edit! + Video 62.13 65.53 57.18
(c) Rollout Augmentation (d) Sample Formulation
General ~ Object  Person General ~ Object  Person
Qwen2.5-VL [2] 39.64 53.53 63.44 Qwen2.5-VL [2] 39.64 53.53 63.44
(Strong, Strong) 59.41 64.00 56.98 Image Pairs 56.41 66.98 55.68
(Weak, Weak) 55.58 62.03 54.81 Image Triplets 60.64 65.33 55.81
(Weak, Strong) 62.13 65.53 57.18 Pairs + Triplets 62.13 65.53 57.18
(e) Prompt Diversity (f) Image Augmentations
General  Object  Person General ~ Object  Person
Qwen2.5-VL [2] 39.64 53.53 63.44 Base (Crop, Resize) 62.13 65.53 57.18
Single Prompt 55.53 64.16 51.50 Base + Flip 61.13 63.98 56.77
20 Variations 62.13 65.53 57.18 Base + Rotat. 62.58 65.03 55.86
50 Variations 63.13 65.29 54.93 Base + Color. 60.15 64.26 54.86

textures, shapes) are more readily describable, allowing CoT reasoning to help reduce hallucinations
and improve distinction.

4.3 Ablation Studies

We conduct a series of ablation studies to validate the effectiveness of our core designs. As an initial
exploration of visual reasoning, we also analyze the impact of some basic configurations.

Training strategies. In Tab. 2 (a), we evaluate different training paradigms. We first apply supervised
fine-tuning (SFT) on our contrastive dataset, allowing the model to directly predict the final answer.
We observe that this leads to minor gains on the general track, which more closely aligns with the
training task. However, the ability acquired through SFT does not generalize well to more diverse
reasoning tasks. We also test a no-CoT reinforcement learning baseline, where the model is trained to
output answers directly using GRPO [28]. Due to the absence of intermediate reasoning steps, the
resulting trajectories are short and behave similarly to SFT, yielding limited improvements.

Data source. In Tab. 2 (b), we compare different training data sources. Both the image editing
data (OmniEdit [35]) and video-derived frames (VidGen [30]) individually support effective learning.
Combining these two heterogeneous sources further enhances performance. We also validate that our
framework is not tied to specific editing styles, as models trained on either OmniEdit or UltraEdit [45]
generalize well, demonstrating robustness to the editing domain variation.

Rollout augmentation. In this work, we leverage weak augmentations for rollout sampling, and use
these high-quality answers to optimize harder questions with stronger augmentations. In Tab. 2 (c),
we report different combinations of augmentation in “(sampling, optimization)” process. We show
that, strong augmentations are vital for contrastive learning compared with weak augmentations, and
our rollout augmentation strategy gets the best performance.

Sample formulation. As discussed in Sec. 3.3, we construct prompts based on either image
pairs or image triplets. While we initially suspected that binary image-pair comparisons (with
50% guess probability) might result in low-quality CoTs, our experiments reveal that they still
contribute positively to performance. In practice, we find that combining both formats—pair-based
and triplet-based leads to the best results.

Other configurations. In Tab. 2 (e), (f), we explore the effects of prompt and augmentation diversity.
We observe that increasing the variation of image prompts helps prevent overfitting, with performance



Table 3: Quantitative results on general vision benchmarks. We report performance for wide
scenarios. Multi-image benchmarks are marked in bold. MiCo brings steady improvements compared
with our baseline, and gets competitive results against other visual reasoning models.

MuirBench [32] BLINK [10] Hallusion [11] MMStar [6] MMMU [39] MathVistas [22]

MM-Eureka-7B [23] 60.57 54.39 68.45 65.73 54.11 72.00
NoisyRollout-7B [20] 59.61 56.07 66.66 65.66 54.55 71.60
VLAA-Thinker-7B [4] 61.00 54.81 69.08 63.60 54.44 70.80
ThinkLite-VL-7B [34] 57.62 55.81 72.97 66.80 53.55 71.89
Qwen2.5VL-7B [2] 58.43 55.54 69.50 64.06 54.11 67.10
MiCo-7B 60.53 57.23 69.61 65.60 54.717 67.90
A Improvement +2.10 +1.69 +0.11 +1.54 +0.66 +0.80

Table 4: Task analysis for visual reasoning. We list representative sub-tasks from MuirBench [32]
and BLINK [10] to analyze the generalization ability and limitations for MiCo.

Visual retrieval Semantic Corr. Spatial Rela. Scene Under. Forensic Det. Relative Depth

Qwen2.5VL-7B [4] 63.69 33.09 88.81 61.82 48.48 81.45
MM-Eureka-7B [23] 57.19 + 33.09 + 82.51 67.74 ++ 50.00 + 75.80
VLAA-Thinker-7B [4] 68.83 + 34.53 + 86.71 69.89 ++ 47.72 76.61
MiCo-7B 71.23 ++ 41.72 ++ 90.20 + 63.97 + 47.72 78.22

saturating at around 50 distinct prompt templates. For image augmentations, we experimented with
various techniques and ultimately selected random cropping and resizing as the default setting based
on empirical performance.

4.4 Analysis on General Vision Tasks

In this section, we evaluate the generalization ability and capacity boundaries of MiCo on a broader
range of vision tasks. We first report quantitative results on additional benchmarks and analyze
performance across more diverse task types.

Results on additional benchmarks. As shown in Tab. 4, we evaluate MiCo on MuirBench [32] and
BLINK [10], both of which are representative multi-image understanding benchmarks. To further
assess generalization, we also include several single-image benchmarks, including MMStar [6],
MMMU [39], HallusionBench [11], and MathVista [22].

Compared to methods trained with manually curated supervision, our contrastive learning framework
exhibits strong performance on multi-image understanding tasks, where relational reasoning across
images is crucial. While MiCo also improves over standard baselines on single-image tasks, its
performance remains behind models trained with task-specific guidance, particularly in complex
scenarios like visual mathematics, where symbolic reasoning and structured representation are
essential but not explicitly modeled in our current training paradigm.

Task-wise analysis. We further analyze the performance of MiCo on specific sub-tasks from
MuirBench [32] and BLINK [10] to better understand its strengths and limitations. Our contrastive
learning framework demonstrates clear advantages on correspondence-style tasks, such as Visual
Retrieval and Semantic Correspondence, where MiCo outperforms other reasoning models. These
results highlight the model’s strength in aligning multimodal signals through relational comparisons.
In addition, Spatial Relation tasks—which evaluate the model’s understanding of image layout and
object positioning—also benefit from contrastive training. By encouraging attention to relative
positions among visual entities, MiCo achieves the highest accuracy in this category.

On the other hand, MiCo lags behind models trained with manually curated reasoning datasets on tasks
such as Scene Understanding and Forensic Detection, which typically rely on single-image question
answering. These tasks often demand domain-specific priors or curated logic patterns that are less
emphasized in our data construction process. We also observe that Relative Depth, a representative
spatial reasoning task, remains challenging for all models and exhibits a noticeable performance drop.
This suggests that depth-aware understanding is not sufficiently captured by current training signals.
Incorporating explicit spatial or geometric cues remains a promising direction for future work toward
building spatially grounded vision-language models.



Question: How many different cups could you find? A Question: How to transform the first image to the second?

o \g{\‘ SN I - _ . N p—

MiCo: Let’s analyze the differences between the two images:.

Oven Door: In_the first image, the oven door is open, revealing the
interior where the bread is baking. In the second image, the oven door
is closed, and we can see the bread through the glass window.
Lighting: The lighting inside the oven appears brighter in the first
image compared to the second image, which might be due to the open
door allowing more light to enter.

Background Elements: The second image has additional elements in
the background, such as a sign that reads “SUB” and a pink cloth
hanging on the wall, which are not present in the first image.

MiCo: To determine how many different cups can be found,
let's analyze each image:

Image I: The person is holding a cup with a simple design of
coffee beans and steam. This appears to be one type of cup.
Image 2: The person is holding a cup with a more intricate
design featuring swirls and coffee beans. This looks like a
different style of cup compared to the first one.

Image 3: The cup here has a similar design to the second
image, with swirls and coffee beans...This suggests that this
cup might be the same as the one in Image 2.

I L sh R : 2 sh her disti Focus: The focus seems to be on the bread in both images, but the
mage 1 shows one type of cup. Image 2 s Ows another distinct second image provides a clearer view of the bread through the closed
type of cup. Image 3 shows the same cup as in Image 2. door
Therefore, there are two distinct types of cups visible across

. Hence, close the door of the oven.
all three images.
N,

VRN 4

-

'b: How does the camera move when shooting the video?"y | Question: Which point is corresponding to the reference poim‘?\
. -

MiCo: The differences between the two
images suggest that there has been a
change in the position of the laptop
relative to the rest of the scene,
particularly concerning its angle and the
position of the items on the table. In the
first image, the laptop appears to be more
angled towards the viewer, while in the
second image, it seems to be more
upright and centered.

Given these observations, it‘s likely that
the camera moved to capture this change
in perspective. Since the the first image
is from the beginning of the video and
the second image is from the end, and
considering the changes described.

MiCo: To determine the corresponding point
for the reference point (REF) in the first
image, we need to identify a similar point in
the second image that could be analogous.

In the first image: The reference point (REF)
is located near the top center of the bottle,
close to the cap area.

In the second image:

- Point A is at the very top of the bottle's cap.
- Point B is slightly below the cap, near the
neck of the bottle.

- Point C is around the middle of the bottle,
near the label.

- Point D is at the bottom of the bottle.

The point that is closest to the top center of
the bottle, similar to where the reference
point is located in the first image, is Point A.
Therefore, the answer is Point A.

Hence, the camera must have moved to
the right to achieve this new framing.

s, 2 N, /

Figure 3: Demonstrations for visual reasoning. Given a question, MiCo first examines the details of
each image to identify answer-related visual cues, and then performs cross-image comparisons to
derive the final answer. The reasoning processes are marked in gray, with key contents underlined.

4.5 Qualitative Analysis

We provide qualitative demonstrations in Fig. 3 to illustrate the multi-image reasoning process of
MiCo. For each question, the model first generates a detailed reasoning chain that carefully compares
visual cues across the input images. This includes analyzing fine-grained differences and similarities
that are relevant to the question. Based on this reasoning, the model then produces a final answer that
successfuly addresses the query objective.

4.6 Unsuccessful Attempts

Throughout our exploration, we experimented with several alternative approaches that ultimately did
not lead to improved performance. For completeness and to facilitate future research, we summarize
these unsuccessful attempts and provide insights into why they may have failed.

Confidence reweighting. Since our task is formulated as answering T/F questions, even when
evaluating three comparisons simultaneously, there remains a non-trivial chance (12.5%) of obtaining
the correct answer purely by guessing. To reduce the impact of such randomness, we explored
adding an additional reward or weight based on the model’s answer confidence. Specifically, we
experimented with several approaches to compute confidence scores from the softmax probabilities
of the output tokens. However, these confidence-based reweighting strategies did not yield any
performance improvements. We analyze that this may be due to the fact that the softmax probability



of the predicted token does not reliably reflect the model’s true certainty about the overall answer.
In particular, the model may assign high confidence to tokens that are syntactically or semantically
unrelated to the actual correctness of the reasoning (e.g., punctuation, or irrelevant words within the
output). As a result, the computed “confidence” can be misleading, making it an ineffective signal for
reward shaping.

Importance sampling. As in our Augmented GRPO, we sample the trajectories on simple
examples with weak augmentations, but we use the trajectory to optimize harder exaples with
strong augmentations. This might cause misalignment similar to offline reinforcement learning. In
this way, we apply importance sampling, which calculates the probability gap between the trajectories
for the simple and hard examples as a weight to reweight the reward/advantages. This strategy could
not bring improvements. We suspect that although importance sampling is theoretically justified, it
may interfere with the core optimization dynamics of GRPO. Specifically, GRPO relies on the relative
ranking of trajectories within a group to compute structured advantages. Introducing importance
weights—derived from distribution shifts—may distort this internal ranking or inject instability into
the reward signals. Additionally, the token-level probability changes caused by visual augmentations
can be noisy or poorly calibrated, making the computed importance weights unreliable in practice.

5 Conclusion

In this work, we propose a self-supervised framework that leverages inherent image constraints to
incentivize multi-image reasoning in VLMs. We identify that the core challenge lies in linking visual
cues across images. To address this, we adopt contrastive learning principles and construct image
triplets for reinforcement training. To further enhance reasoning, we introduce Augmented GRPO,
which samples rollouts from simpler examples and optimizes the model on harder ones. Although
trained solely on image comparison tasks, our model generalizes well and achieves strong results
across multiple benchmarks.

Broader Impact. MiCo explores a self-supervised and reinforcement learning-based approach to
improve multi-image reasoning in vision-language models without relying on human-annotated
question-answer pairs. By leveraging intrinsic visual constraints, such as consistency across
augmented views and differences between similar images, MiCo significantly reduces the need
for labor-intensive data curation. This has the potential to democratize the development of reasoning-
capable Al systems, making them more accessible in low-resource settings or for underrepresented
languages and domains where curated datasets are scarce.

However, as with any powerful vision-language technology, there is a risk of misuse, particularly in
applications involving surveillance, misinformation, or unauthorized inference of user intent from
visual data. MiCo’s improved ability to perform fine-grained comparisons across images could be
exploited in privacy-invading scenarios if deployed irresponsibly. To mitigate such risks, we advocate
for deploying MiCo in alignment with responsible Al guidelines, ensuring transparency, consent,
and clear boundaries in its application domains. In practice, this includes integrating robust sensitive
content filtering, restricting deployment in high-stakes or privacy-sensitive scenarios, and establishing
human-in-the-loop mechanisms for critical decision-making processes.

Limitations and future directions. While our approach supports general reasoning through visual
comparisons, it shows limited effectiveness on specialized tasks such as face verification, visual math,
and spatial understanding, where structured priors or domain-specific knowledge are required. In
future work, we plan to explore more efficient data construction strategies tailored to these domains.

Acknowledgement. This work is supported by the National Natural Science Foundation of China
(No. 624B2124, 62441615, 62422606).
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to introduction in Sec. 1.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the limitations in Sec. 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
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Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: This paper does not include theoretical result.
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The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec. 3 and Sec. 4.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all

submissions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer:
Justification: This work is cooperating with the company, we need to apply for approval.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?

Answer: [Yes]
Justification: Please refer to Sec. 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The results are stable, papers in related topic do not require error bars.
Guidelines:

» The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: Please refer to Sec. 4.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, it conforms to the requirements.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The scope of our research does not involve data or models with a high risk for
misuse. We utilize publicly available, non-sensitive datasets and models that do not require
special safeguards for responsible release.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:We have carefully credited all previous works we used in the paper. The license
and terms are properly respected.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This question does not apply to our research as no new assets were introduced.
Our study solely relies on existing, publicly available resources, and thus, no additional
documentation for new assets is necessary.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This question does not apply to our research as it does not involve
crowdsourcing experiments or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This question is not applicable to our research as no human subjects were
involved.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use the LLM for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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