
Under review as a conference paper at ICLR 2021

LEARNING TO RECOVER FROM FAILURES
USING MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning from past mistakes is a quintessential aspect of intelligence. In sequential
decision-making, existing meta-learning methods that learn a learning algorithm
utilize experience from only a few previous episodes to adapt their policy to
new environments and tasks. Such methods must learn to correct their mistakes
from highly-correlated sequences of states and actions generated by the same
policy’s consequent roll-outs during training. Learning from correlated data is
known to be problematic and can significantly impact the quality of the learned
correction mechanism. We show that this problem can be mitigated by augmenting
current systems with an external memory bank that stores a larger and more
diverse set of past experiences. Detailed experiments demonstrate that our method
outperforms existing meta-learning algorithms on a suite of challenging tasks from
raw visual observations. Videos are available at: https://sites.google.
com/view/learn-from-failures.

1 INTRODUCTION

Agents often fail to solve a new decision-making task in their first attempt. While failures do
not provide good rewards, they communicate what not to do and often hint at possible solutions.
Analyzing past failures to improve the current strategy is vital for adapting and solving new tasks.
Because of being memory-less, popular deep reinforcement learning (DRL) algorithms (Mnih et al.,
2015; Silver et al., 2017; Lillicrap et al., 2015) cannot exploit previous episodes to adjust their
decisions at test time. However, recently proposed methods that learn a learning algorithm (Duan
et al., 2016; Mishra et al., 2017) address this shortcoming by processing the history of multiple
episodes to select the next action. Such meta-learning algorithms can learn from past failures and
have achieved excellent performance on many challenging partially-observable tasks.

In this work, we utilize two observations to construct a modified training procedure for meta-
learning methods that learn a learning algorithm. The proposed training scheme leads to substantial
performance gains on tasks that require recovery from failures. To understand our contributions, let’s
first review the training process of existing methods: An agent is provided with a set of tasks to solve.
Training happens in trials. In every trial, a training task is randomly sampled, and the agent acts for
a fixed number of steps (say T). The agent’s policy is optimized to maximize the sum of rewards
collected in the trial. If the agent completes the task or the episode terminates before T steps, reset is
performed, and a new episode starts. A trial typically contains multiple episodes.

Current meta-learning algorithms learn a policy that depends on all previous episodes only in the
same trial. Different episodes in a single trial are the outcome of executing the policy network
with the same weights and are therefore correlated. For example, consider the situation when the
agent makes mistake A in the current trial that it learns to correct. Further, suppose if the agent
re-encounters the same task, it makes mistake B, that it then learns to rectify. Because the agent
has no memory of mistakes across trials, it may again make mistake A when it re-encounters the
task. This causes instability in training and is a well-known problem in scenarios where the agent
self-generates the training data. Replay buffers were introduced to largely mitigate this issue in
training off-policy reinforcement learning algorithms (Mnih et al., 2015; Lillicrap et al., 2015). To
overcome this shortcoming in the meta-learning context, we propose having a memory bank for
each task that stores episodes across trials. By storing mistakes across trials, such memory banks
encourage learning of policies that can recover from a diverse set of failures. Our second observation

1

https://sites.google.com/view/learn-from-failures
https://sites.google.com/view/learn-from-failures

Under review as a conference paper at ICLR 2021

⋮
Encoder

CNN

Shared
Decoder

𝜋𝑡

Memory Bank

MLP

MLP

⋮

Gated

Attention

⋮

MLP

If failed

Transformer

𝜏𝑡

𝜏𝑖

𝑔

SNAIL

Figure 1: Policy architecture. The policy starts with an empty memory bank. An agent executes the
policy in a task. If it fails, the trajectory is added to a memory bank. When the agent performs the
task again, the policy adapts the output based on the information from memory. The policy uses the
Transformer to extract information from each trajectory and a gated attention mechanism to merge
the information of multiple trajectories.

is that despite being successful at a task, it is important to preserve memories of past failures. We
humans often remember our mistakes and how we corrected them. Consider the setup where the agent
only utilizes memory of episodes from the same trial. As the agent trains, it will make fewer mistakes
in the training tasks. In the extreme case of perfect policy fitting, the agent may succeed in the first
episode of the trial. As a consequence, the agent’s memory will be populated only with successful
trajectories. Lack of failures in memory might have the unintended consequence of making the agent
forget how to recover from failures by the end of the training. This is undesirable because, unless
generalization to new tasks is perfect at test time, the agent is likely to make mistakes from which it
must recover. We show that this issue can be mitigated by explicitly storing the most recent failures
(possibly from earlier trials) of the agent. As a caveat and as shown by prior works (Duan et al.,
2016; Mishra et al., 2017), in partially observable environments, the agent can utilize a successful
first episode to reach its goal faster in the subsequent episodes in the same trial. Our method is
complementary and especially helps when the agent cannot even succeed in the first episode.

In this paper, we use the observations of labeling and storing failures across trials to build a meta-
learning algorithm that outperforms the existing state-of-the-art (Mishra et al., 2017). This was
achieved by constructing task-specific memory banks that replay trajectories from multiple previous
trials of the same task. We first validate our method on a 2D gridworld, where we present extensive
ablation studies. We then show that our method works well at the task of finding objects from the
first-person view in a 3D world and the task of touching objects using visual observation with a UR
robot.

2 METHOD

Our setup is as follows: An agent is required to solve a set of tasksM. Training is performed in
trials. In each trial, the agent executes a fixed number of actions, say T . A trial typically consists of
multiple episodes, where each episode refers to the trajectory taken by the agent starting from the
initial state until the environment is reset due to either failure or success of the agent or a timeout.
During training, suppose the agent encounters a taskMi in each episode in jth trial. Let the set of
episodes in this trial be {τ i,jk ; k ∈ Kj}, where Kj is the total number of episodes in jth trial. Let the

kth episode be τ i,jk :
(
oi,j
tk
, ai,j
tk
, ri,j
tk
, ..., oi,j

tk+1−1, a
i,j
tk+1−1, r

i,j
tk+1−1

)
, where oi,j

tk
, ai,j
tk
, ri,j
tk

represent

the observation, action and the reward obtained by the agent at a time step tk. Further assume that the
agent is equipped with ‖M‖ memory banks, one for each task: BMi . Each memory bank stores a
maximum of N trajectories. At every time step in the trial, the agent chooses actions (ai,jt) using the

2

Under review as a conference paper at ICLR 2021

policy,

ai,jt = πθ(ot, h
i,j
t−1,BMi) (1)

hi,jt−1 = {oi,j1:t−1, a
i,j
1:t−1, r

i,j
1:t−1}

where, hi,jt−1 represents the agent’s trajectory in the current trial until time t − 1 and θ represents
the policy parameters. The policy πθ depends on the current observation, the entire history of the
current trial (hi,jt−1), and the trajectories stored in the memory bank (BMi). The policy is optimized
to maximize the sum of rewards in the trial.

The memory bank is populated in the following way: Let f(τ) be a binary function that returns
whether the episode τ results in a success (f(τ) = 1) or failure (f(τ) = 0). We assume that we have
access to a f that can tell whether the agent fails the tasks or not. In the case of sparse rewards, it is
trivial to define f based on the reward signal. Let F i,j = {k : f(τ i,jk) = 0; k ∈ [1,Kj]} be the set
of failure episodes in the jth trial. At the end of the trial, the failure episodes F i,j are added to the
memory bank BMi . If BMi is out of space, the earliest episodes stored in the memory are dropped.
For some tasks, it is possible that the last L steps in the episode carry sufficient information about the
cause of failure. In these scenarios, instead of storing the entire episodes, only the last L steps can be
stored in BMi to reduce RAM memory usage. In the general case, L can be a hyperparameter to be
tuned for a specific task or determined by domain knowledge.

The previous state-of-the-art algorithms, RL2 (Duan et al., 2016) and SNAIL (Mishra et al., 2017), are
special cases of our formulation described in Equation (1). In particular, the policy ai,jt = πθ(ot, h

i,j
t−1)

learned by these methods does not depend on the memory bank. Due to the lack of this dependence,
training of these prior methods can be unstable. To see why, consider the training process. At the
end of every trial, the policy parameters are updated to rectify the agent’s mistakes to maximize the
agent’s rewards. Updated parameters may make the same mistake that the agent made in some past
trial. In such a scenario, the agent will oscillate between mistakes in subsequent trials, which will lead
to high-variance in gradients and slower convergence. One way to overcome these challenges is to
remember a diverse set of mistakes from the past to prevent the agent from making the same mistake.
Our method achieves this by maintaining a memory of failures from different past trials. Because
the parameters of the policy change across trials, it is possible that the agent will commit different
mistakes in different trials. Therefore, accumulating failures across trials is a way to collect a diverse
set of past mistakes made by the agent. We show that conditioning the policy on the memory bank
stabilizes training and makes our method more effective at correcting mistakes and thereby achieving
higher rewards in previously unseen environments.

In the remainder of this section, we provide details about how we condition the policy on BMi .
First, we describe the method for computing a fixed-size feature vector for each trajectory. Next, we
describe how the information is aggregated across trajectories and finally, how it is combined with
trajectory information from the current trial. Figure 1 visually illustrates the policy architecture.

2.1 COMPUTING FEATURE REPRESENTATION OF TRAJECTORIES IN THE MEMORY BANK

Previous work has shown that the Transformer architecture (Vaswani et al., 2017) outperforms
purely recurrent networks in modelling long-range temporal correlations (Ott et al., 2019). Taking
inspiration, we use the Transformer to compute the feature representation of each trajectory in the
memory bank. Let the trajectories in BMi be {τ in;n ∈ [1, N]}. The transformer consists of an
encoder that computes information per time-step of the trajectory and a decoder that aggregates this
information.

eτ i
n

= Encoder(Φ(τ in)) vτ i
n

= Decoder(g, eτ i
n
)

where Φ is a function (CNN and MLP layers) that merges the information of observation, action, and
reward at each time step, eτ i

n
∈ RL×E is an array of the embedding vectors for each time step in

the trajectory, g is the query vector that decodes the per time-step embedding into a per-trajectory
embedding, and vτ i

n
∈ RE is the embedding of the entire trajectory. g ∈ RE is randomly initialized

and learned via back-propagation. g is the same for all tasks inM and learns a decoding vector that
decodes the information for a class of tasks. The embedding of each history trajectory is independent
of the current observation ot. Therefore, it only needs to be computed once in every trial, which
speeds up the inference.

3

Under review as a conference paper at ICLR 2021

2.2 AGGREGATING INFORMATION ACROSS TRAJECTORIES IN THE MEMORY BANK

Next, the policy aggregates information from all trajectories in the memory bank BMi using multi-
head self-attention (Vaswani et al., 2017) with GRU gating (Chung et al., 2014; Parisotto et al.,
2019). Each trajectory is embedded into a vector of length E as in Section 2.1, resulting in a set of
trajectory vectors vτ i ∈ RN×E . This set is reduced into a single vector mi

o ∈ RE that represents the
contribution of the memory. To enable the agent to weight different failures according to the current
observation, the aggregation operation is conditioned on the current observation ot.

mi
d = MultiHead(Q,K, V) = MultiHead(v′ot , vτ i , vτ i)

r = σ(FC(mi
d) + FC(v′ot))

z = σ(FC(mi
d) + FC(v′ot))

y = tanh(FC(mi
d) + FC(r � v′ot))

mi
o = (1− z)� y + z � v′ot

where v′ot = MLP(CNN(ot)) is the embedding vector of the current observation, each FC represents
a different linear transformation, � is the Hadamard product. As shown in Section 2.1 and the above
derivation of computingmi

o, we have two levels of attention operations to extract information from all
the trajectories in the memory bank, which is different from Mishra et al. (2017). The first level is the
attention over each frame within a trajectory. The second level is the attention over all the trajectory
embedding vectors. The advantage of this is the reduction of time complexity (Appendix B).

2.3 MEMORY-CONDITIONED POLICY

To encode information from past steps of the trial, we use SNAIL (Mishra et al., 2017) architecture:
vot = SNAIL(vτt)t

where vτt is the featurization of current trajectory τt.

The final policy π merges information from current trial and memory bank.
π : MLP

[
MLP(vot)⊕mi

o

]
where mi

o is the feature representation of the memory BMi , ⊕ represents concatenation. If BMi is
empty, mi

o = 0.

3 EXPERIMENTS

We evaluate our method on three platforms: 2D Gridworld (Zuo, 2018), 3D Miniworld (Chevalier-
Boisvert, 2018) and UR robot reacher. We compare our method against the following baselines:

1. SNAIL: SNAIL (Mishra et al., 2017) is a meta-learning algorithm that accumulates information
across episodes in the same trial as described in Section 2. SNAIL improved over RL2 (Duan
et al., 2016) by replacing RNNs with temporal convolutions and attention 1.

2. PPO-finetune: While memory-based methods adapt to a new task by incorporating past episodes,
it is also possible to update the policy by fine-tuning. To compare our method against fine-tuning
based adaption, we first trained a memoryless base-policy, which only takes as input the current
observation. At test time, we fine-tune this policy after every episode using PPO (Schulman et al.,
2017) and the reward gathered by the agent. A variant of this baseline (PPO-finetune + Attention)
includes an attention operation (similar to our method and SNAIL) on the past steps in the same
episode such that the policy can use temporal information from the past.

3.1 GRIDWORLD

3.1.1 ENVIRONMENT SETUP

The gridworld is W ×W in size and has X + 1 blocks in different colors (Figure 2a). The black
block represents the agent. One block is the goal. The other X − 1 blocks are traps. The agent gets a

1Since Mishra et al. (2017) shows that SNAIL outperforms RL2, we only compare our method against
SNAIL.

4

Under review as a conference paper at ICLR 2021

(a) (b) (c) (d) (e)

Figure 2: Examples of the 2D Gridworld, 3D Miniworld, UR Robot Reacher environments. (a): the
top-down view of an example of 2D Gridworld. (b) and (c) show the 3D miniworld environment. (b):
first-person view (observation input) for the agent. (c): top-down view of the environment, which is
not available to the agent. (d) and (e) show the UR robot reacher environment. (d) is an example
observation input to the policy. (e) shows UR robot reacher setup.

+5 reward if it reaches the goal, a −1 reward if it reaches any trap, and a 0 reward otherwise. The
color of the goal and the positions of the blocks vary across tasks. The agent is not provided with
the color of the goal block, which makes the environment partially-observable. Observation: The
agent takes as input the rendered top-down view images of the gridworld (Figure 2a). Action: The
action set is {move left, move right, move up, move down}. All the actions move the agent by one
cell. Training: We use PPO (Schulman et al., 2017) to train all the policies. The number of steps in a
trial is 80 for X = 3. We store maximally 8 failed trajectories for each task in the memory bank with
L = 6. More experiment details are in the Appendix A.

0 1 2 3 4
Steps 1e8

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

Gridworld

Memory
PPO-finetune

PPO-finetune + Attention
SNAIL

(a)

0 1 2 3 4
Number of episodes

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

re
tu

rn

Gridworld

Memory
PPO-finetune

PPO-finetune + Attention
SNAIL

(b)

0 20 41 62 82 103 124 145
Training steps (106)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Success
Fail(hit > 0) and End Same

Fail(hit > 0) and End Diff
No hit

(c) SNAIL

0 20 41 62 82 103 124 145
Training steps (106)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

Success
Fail(hit > 0) and End Same

Fail(hit > 0) and End Diff
No hit

(d) Memory

Figure 3: Learning in the Gridworld environment. (a): learning curves in training. Our method
(Memory) learns significantly faster than SNAIL. PPO-finetune and PPO-finetune + Attention fail
to learn to solve the tasks. (b): testing results on new tasks in the Gridworld. (c) and (d): testing
results (5 episodes) on 200 new tasks (2D gridworld) as the training progresses. Success: tasks that
are successful. Fail(hit > 0) and End Diff : tasks where the agent failed, hit at least one trap within 5
episodes, and ended up in a different state (a different trap or does not hit any block) in each episode.
Fail(hit > 0) and End Same: tasks where the agent failed and hit the same trap in all 5 episodes. No
hit: tasks where the agent hit no block in all 5 episodes. Our method quickly learns to avoid hitting
the wrong blocks while SNAIL oscillates in hitting the wrong blocks, or does not learn to hit the
blocks even after 100M training steps.

3.1.2 EVALUATION

Our testing procedure is as follows: At the beginning of a trial in test time, the memory bank is empty,
and the agent has no task information. The agent acts using its policy, and if an episode fails, the last
6 frames of the episode (i.e., L = 6) is added to the memory bank. The agent rolls out 5 episodes.
SNAIL is evaluated in the same way, except that in a manner consistent with the original work, all
frames from all previous episodes (and not just failures) in the trial are processed to predict the action.
For PPO-finetune and PPO-finetune + Attention, the policy is finetuned with PPO after each episode.

Figure 3a shows the learning curves in training for different methods. We hypothesize that it is
because SNAIL does not remember the experience from previous trials, the agent suffers from
making the same mistakes repeatedly, which slows down the learning. To validate our hypothesis,
we evaluated the kind of mistakes made by our and SNAIL agents on 200 held-out environments
while the agents were training. We categorize the outcomes into 4 cases: agent fails in all 5 episodes
and does not hit any block (No hit), agent fails and ends up in different state in 5 episodes (Fail(hit

5

Under review as a conference paper at ICLR 2021

> 0) and End Diff), agent fails and ends up in the same state (Fail(hit > 0) and End Same) in all 5
episodes, agent succeeds (Success).

Figure 3c and Figure 3d shows the distribution of error modes of SNAIL and our method (Memory)
during training. As shown in Figure 3c, for a significant fraction of tasks the error mode for the
SNAIL agent is Fail(hit > 0) and End Diff. This is especially salient in the late stage of the training
as the agent learns to hit the block, but keeps hitting the wrong block. Because the SNAIL agent ends
up getting a negative reward for hitting blocks quite often, we hypothesize it never learns to hit any
block resulting in very slow training and poor performance even at the end of the training. However,
using memory (Figure 3d) quickly reduces the number of such cases during training as the memory
can replay the past failures and help the policy identify the correct goal block much more quickly.
This analysis quantifies the intuition developed in the introduction – current SOTA methods suffer
from oscillating between failure modes, which our method can overcome.

Figure 3b shows the testing performance on 500 new tasks. Our method (Memory) performs
considerably better than SNAIL and has a lower variance in the testing performance. We also found
that policies that take as input only the observations at the current time step (PPO-finetune) or the
history within the episode (PPO-finetune + Attention) are unable to learn the training tasks.

0 1 2 3 4
Steps 1e8

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

Gridworld

Memory (=)
Memory (=)
Memory (=)

Memory (=)
SNAIL

(a)

0 1 2 3 4
Steps 1e8

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

Gridworld

Memory
SNAIL

SNAIL + CAT Memory

(b)

0 2 4 6 8
Steps 1e7

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

Miniworld

Memory
PPO-finetune

PPO-finetune + Attention
SNAIL

(c)

0 1 2 3 4
Number of episodes

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

re
tu

rn

Miniworld

Memory
PPO-finetune

PPO-finetune + Attention
SNAIL

(d)

Figure 4: (a): learning curves of the policies that store failures of different length in the memory. (b):
comparing learning curves of our method (Memory), SNAIL, and SNAIL with concatenated memory.
(c): learning curves in 3D miniworld (d): testing performance in 3D Miniworld.

3.1.3 EFFECT OF THE LENGTH L OF TRAJECTORIES IN MEMORY

In the previous experiments, only the last 6 time steps of each trajectory are stored in the memory.
For the gridworld environments, this is privileged information as observing the last few time steps in
the episode is sufficient to infer if the touched block is the goal or the distractor. However, in general,
it is not known apriori how many time-steps of an episode should be stored in the memory bank. It is
expected that storing longer trajectories can make learning harder. This raises a potential confound
in the results – did our method outperform SNAIL because it had access to privileged information
of storing only the last few frames in an episode, which made the training easier? To test this, we
trained different versions of our system, each storing a different number of last L steps of the episode.
Since the episode length is 80 steps at maximum, it is guaranteed that the entire trajectory is stored in
the memory bank when L = 80. Figures 4a show that even if we store a much longer portion of the
past trajectories, even the entire trajectory, in the memory bank, our method still learns significantly
faster than SNAIL. Therefore, our method does not require precise knowledge of how many steps of
the failed episode should be stored in the memory.

3.1.4 BENEFITS OF USING A HIERARCHICAL MEMORY PROCESSING MODULE

As described in Section 2.1 and Section 2.2, our method uses a hierarchical memory processing
module: first, we use an attention module to extract each trajectory’s information into an embedding
vector; second, we use another attention module to merge the information from multiple trajectories.
Another way to make use of the memory is to concatenate all the trajectories along with the current
trial trajectory, and use SNAIL to process the entire sequence (SNAIL + CAT Memory). While our
hierarchical architecture is less computationally expensive (Section B), we further investigate whether
using hierarchical architecture is important. Figure 4b shows that applying SNAIL on a concatenated
memory (SNAIL + CAT Memory) learns much slower than our method (Memory) suggesting that the
proposed architecture is also crucial. However, note that the architecture by itself is not sufficient to

6

Under review as a conference paper at ICLR 2021

explain the superior performance of our agents – storing failures in a memory bank is also critical
(see Figure 4b).

3.2 3D MINIWORLD

In the 2D gridworld environment, the agent uses a simple action space and has access to the top-down
view. We want to test if our method can work in more visually complex environments. For this,
we conducted experiments in a 3D navigation environment, with the same task as in the gridworld
environment. There are 3 boxes in the room with different colors. Only one of the boxes gives a
+5 reward, and the other two boxes give a −1 reward. The boxes’ positions vary across tasks, and
the target box is chosen randomly from the 3 boxes for each task. The agent’s action set is {move
forward by 0.3m, turn left by 18◦, turn right by 18◦}. The setting resembles the situation where a
TurtleBot moves around the room to find the target object. The observation is a first-person view as
shown in Figure 2b. The policies are trained on 10000 tasks and tested on 1000 new tasks. Figure 4c
shows that our method learns much faster than all the baselines and achieves the highest training
performance. SNAIL policies quickly get stuck in local optimums: the agent learns to avoid getting
close to any box to avoid getting negative rewards. In contrast, our method does not suffer from this
issue. From Figure 4d, we can see that our method can successfully identify the correct target box
within 3 episodes in most tasks, while the baselines perform much worse. The advantage of using a
memory bank is even more salient in this case.

3.3 UR ROBOT REACHER

We also evaluated our method on a simulated manipulator from Universal Robots (UR) in Pybul-
let (Coumans & Bai, 2017). There are 3 balls on the table, and the robot’s task is to touch the target
ball (Figure 2e). If the robot touches the true ball, it gets a +5 reward. If it touches the other balls,
it gets a −1 reward. It gets a 0 reward, otherwise. More details about the setup are described in
Appendix A. Figure 5 shows that our method outperforms SNAIL by a large margin.

3.4 WHY DO WE ONLY STORE FAILURES?

0 1 2 3 4
Number of episodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

re
tu

rn
UR Robot Reacher

Memory SNAIL

Figure 5: Testing results for
UR Robot Reacher tasks

Since we only store failures in the memory bank, a natural question to
ask is that why do we only store failures? To investigate whether we
should store successful experiences, we extend our method (Memory)
to make use of success in the policy. We evaluate two possible ways
to add the successful experience: (a) Memory S&F: store the success-
ful experience in a separate memory bank BMi

s and use a different
memory processing neural module for the failures and successes (see
Figure C.2 in Appendix C), (b) Memory S&F Mix: use the same archi-
tecture as Memory, but add both the successes and failures to the same memory bank. We performed
the ablation experiments in the 2D Gridworld and 3D Miniworld environments.

Figure 6a and Figure 6b show that Memory S&F learns a little bit slower than Memory, which
is due to the fact that Memory S&F has more parameters to be trained. Both Memory S&F and
Memory achieve similar converged performance. Mixing the successful and failed experience in the
same memory bank (Memory S&F Mix) compromised both the learning speed and final converged
performance. As Memory S&F Mix still has a memory bank that stores experience, it learns faster
than SNAIL. In the 3D Miniworld environment (Figure 6b), both Memory S&F Mix and SNAIL fail
to learn to solve the tasks. Figure 6c and Figure 6d show that Memory and Memory S&F have
similar testing performance, while Memory S&F Mix achieves lower testing performance and SNAIL
performs worse than any variant of our method. Therefore, in these environments, it is sufficient only
to store the failed experiences. There could be environments where storing successful experiences is
critical, which is orthogonal and complementary to our paper.

In our experiments, we also found that if we add successful experiences into the memory bank
(Memory S&F and Memory S&F Mix), it is important to clear the memory bank for the successful
experiences once in a while so that the policy does not overfit to the successful experiences after the
policy learns how to solve the tasks. We found that clearing the memory bank for the successes when
the memory bank is full is sufficient to prevent the overfitting.

7

Under review as a conference paper at ICLR 2021

0 1 2 3 4
Steps 1e8

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

Gridworld

Memory
Memory S&F

Memory S&F Mix
SNAIL

(a)

0 2 4 6 8
Steps 1e7

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

Miniworld

Memory
Memory S&F

Memory S&F Mix
SNAIL

(b)

0 1 2 3 4
Number of episodes

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

re
tu

rn

Gridworld

Memory
Memory S&F

Memory S&F Mix
SNAIL

(c)

0 1 2 3 4
Number of episodes

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

re
tu

rn

Miniworld

Memory
Memory S&F

Memory S&F Mix
SNAIL

(d)

Figure 6: Ablation on adding successful experiences. (a) and (b) show the learning curves during
training for the 2D Gridworld and 3D Miniworld environments. (c) and (d) show the testing
performance of the trained policies.

4 RELATED WORK

External Memory and Learning: Integrating memory and learning is an active area of research
in deep learning. Graves et al. (2014) combined RNN with differentiable memory bank to solve
problems such as copying and sorting. Oh et al. (2016) used the idea of differentiable memory along
with Q-learning to solve navigation tasks. Explicitly using a memory bank has been found useful in
solving partially observable tasks with long-term dependencies (Parisotto & Salakhutdinov, 2017;
Wayne et al., 2018) and few-shot image recognition (Santoro et al., 2016). Recent works (Fortunato
et al., 2019; Hung et al., 2019) found that performance of memory modules can be improved by
using auxiliary losses such as the contrastive prediction coding (CPC). These losses learn better
feature representations of states stored in the memory. In a separate line of work, (Lengyel & Dayan,
2008; Blundell et al., 2016; Pritzel et al., 2017) used episodic memory to improve data efficiency of
RL algorithms. While we do not propose a novel memory module, unlike prior work, we use it for
learning across trials. Ritter et al. (2018) used episodic memory to augment the working memory,
LSTM cell states in an episode are stored in the episodic memory and retrieved later. The stored
states are less consistent after policy optimization (He et al., 2020). To avoid the issue of storing stale
representation, we store the raw trajectories in the memory banks. The policy can, therefore, makes
use of much earlier experience.

Meta Learning: Meta learning aims to learn new concepts or skills with a few examples in the new
environments (Thrun & Pratt, 1998; Vilalta & Drissi, 2002). Gradient-based meta learning uses
gradient descent to quickly adjust the network weights for adapting to the new tasks (Finn et al.,
2017; Nichol & Schulman, 2018; Beaulieu et al., 2020). Metric-based meta learning learns a metric
space in which the testing sample is compared to the training samples for the prediction (Koch et al.,
2015; Vinyals et al., 2016). RNN-based meta learning (Duan et al., 2016; Wang et al., 2016) encodes
the experience in RNN hidden states for fast adaptation in new tasks. Mishra et al. (2017) show
that replacing RNN with temporal convolutions and soft attention leads to better performance in
long-horizon tasks. However, these methods do not use the information of earlier trials. We show
that incorporating the information from multiple trials via a memory bank significantly improve
the learning both in terms of speed and test-time performance. (Rakelly et al., 2019) learned a
probabilistic task context from unordered state transitions sampled from recently collected data in
off-policy RL settings and showed improvement in data efficiency compared to (Finn et al., 2017;
Duan et al., 2016). We show that using the old failure experience speeds up the learning.

5 DISCUSSION

In this paper, we apply the idea of replaying failures to the meta-learning setting where an agent
learns to avoid making the mistakes that it has made in the past. We show that having a memory
bank of the experience across multiple previous trials and explicitly replaying the past failures can
significantly improve learning speed as well as the test-time performance.

We use a simple fixed-capacity memory bank in this work. While our methods have shown good
performance on all the tasks, there could be duplicate or similar trajectories in the memory, which
leads to inefficiency of the memory usage. While we emphasize the importance of using failures
from the past, successful experiences could be important for certain tasks as well. In the future, we
would like to explore and exploit the semantics of the trajectories, improve memory efficiency, and
investigate the benefits of using successes on other tasks.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune, and Nick
Cheney. Learning to continually learn. arXiv preprint arXiv:2002.09571, 2020. 8

Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman, Joel Z Leibo,
Jack Rae, Daan Wierstra, and Demis Hassabis. Model-free episodic control. arXiv preprint
arXiv:1606.04460, 2016. 8

Maxime Chevalier-Boisvert. gym-miniworld environment for openai gym. https://github.
com/maximecb/gym-miniworld, 2018. 4

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. 4

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation in robotics, games
and machine learning, 2017. 7

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.
1, 2, 3, 4, 8

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018. 12

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017. 8

Meire Fortunato, Melissa Tan, Ryan Faulkner, Steven Hansen, Adrià Puigdomènech Badia, Gavin
Buttimore, Charles Deck, Joel Z Leibo, and Charles Blundell. Generalization of reinforcement
learners with working and episodic memory. In Advances in Neural Information Processing
Systems, pp. 12448–12457, 2019. 8

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014. 8

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738, 2020. 8

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transport-
ing value. Nature Communications, 10(1):5223, Nov 2019. ISSN 2041-1723. doi: 10.1038/
s41467-019-13073-w. URL https://doi.org/10.1038/s41467-019-13073-w. 8

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 12

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015. 8

Máté Lengyel and Peter Dayan. Hippocampal contributions to control: the third way. In Advances in
neural information processing systems, pp. 889–896, 2008. 8

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015. 1

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141, 2017. 1, 2, 3, 4, 8, 13

9

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
https://doi.org/10.1038/s41467-019-13073-w

Under review as a conference paper at ICLR 2021

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015. 1

Alex Nichol and John Schulman. Reptile: a scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2:2, 2018. 8

Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory, active
perception, and action in minecraft. arXiv preprint arXiv:1605.09128, 2016. 8

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. arXiv preprint
arXiv:1904.01038, 2019. 3

Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. arXiv preprint arXiv:1702.08360, 2017. 8

Emilio Parisotto, H Francis Song, Jack W Rae, Razvan Pascanu, Caglar Gulcehre, Siddhant M
Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al. Stabilizing
transformers for reinforcement learning. arXiv preprint arXiv:1910.06764, 2019. 4

Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia, Oriol Vinyals,
Demis Hassabis, Daan Wierstra, and Charles Blundell. Neural episodic control. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pp. 2827–2836. JMLR. org,
2017. 8

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340, 2019. 8

Samuel Ritter, Jane X Wang, Zeb Kurth-Nelson, Siddhant M Jayakumar, Charles Blundell, Razvan
Pascanu, and Matthew Botvinick. Been there, done that: Meta-learning with episodic recall. arXiv
preprint arXiv:1805.09692, 2018. 8

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850, 2016. 8

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. 4, 5

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017. 1

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn,
pp. 3–17. Springer, 1998. 8

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017. 3, 4

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
intelligence review, 18(2):77–95, 2002. 8

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016. 8

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016. 8

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised predictive
memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018. 8

10

Under review as a conference paper at ICLR 2021

Xingdong Zuo. mazelab: A customizable framework to create maze and gridworld environments.
https://github.com/zuoxingdong/mazelab, 2018. 4

11

https://github.com/zuoxingdong/mazelab

Under review as a conference paper at ICLR 2021

APPENDIX A TRAINING SETUP

We use the same network architecture for all environments. The convolutional part is an IMPALA-
CNN (Espeholt et al., 2018). The shape of the observation input is 64× 64× 3. We use 48 processes
in parallel for policy rollouts. The discount factor for the reward is 0.999. The entropy coefficient
in PPO is 0.004. We use Adam optimizer (Kingma & Ba, 2014) for the training, and the learning
rate is initialized at 0.00025. Batch size is 12. We use 2 encoder layers and 2 decoder layers in the
Transformer with embedding dimension E = 64. The multi-head attention uses 4 heads. The policy
is parameterized by a categorical distribution. In the test time, actions with the highest probability are
taken.

Gridworld: The agent succeeds if it reaches the true goal cell. The episode ends when the maximum
number of episode steps is reached, or the agent reaches the traps or the goal. The total number of
possible levels is around X(X + 1)!

(
W 2

X+1

)
1. An action will not be executed if the agent would cross

the boundaries after taking the action. In our experiments, W = 16, X = 3. Since the agent cannot
distinguish the goal from the traps just based on observations, even an expert agent has to fail X − 1
times before reaching the real goal in the worst case. The trial horizon (also the maximum number of
episode steps) is 80. The memory bank stores 8 trajectories at most for each level. The trajectory
length L is 6. We use 40000 training levels to avoid policy over-fitting. The average episode length
of a well-trained policy is around 10 steps. We test the policies on 500 held-out new tasks. For each
task, we test the models for 5 episodes.

3D Miniworld: The room size is 4m×4m. The trial horizon is 80. The memory bank stores 8
trajectories at most for each level. The trajectory length L is 6. We train all the policies on 10000
levels and test them on 1000 new levels. Our methods learn significantly faster and better than
baselines. This task is much harder than the 2D gridworld task as the agent only has access to the
first-person view instead of the top-down view of the environment. The agent moves like a mobile
robot with a differential drive. The search space is much bigger as the agent’s action space includes
the heading of the agent. The average episode length of a well-trained policy is around 15 steps.

UR Robot Reacher: There are 3 balls on the table, and the robot’s task is to touch the target ball. The
color of the target ball and the locations of the balls vary across tasks. The xy locations of the balls
are randomly sampled within a 0.5m×0.6m region. Like the other two environments, the robot does
not know which ball is the target ball before its interaction with the balls. If the robot touches the true
ball, it gets a +5 reward. If it touches the other balls, it gets a −1 reward. It gets 0 reward, otherwise.
The policy takes as input the RGB images (Figure 2d) from a camera that looks at the table. We do
not include state information such as robot’s joint positions and ball positions in the policy input.
The robot takes an action at = (∆x,∆y,∆z) at each time step, where ∆x ∈ X ,∆y ∈ X ,∆z ∈ X ,
and X = {−0.04, 0, 0.04}cm. The policy outputs a categorical distribution on the action selection,
which has a dimension of 33 = 27. The trial horizon is 80. The memory bank stores 8 trajectories at
most for each level. The trajectory length L is 6. The policy is trained on 1000 tasks and tested on
200 new tasks. The learning curves are shown in Figure A.1.

0 1 2 3 4
Steps 1e7

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

Av
er

ag
e

Re
tu

rn

UR Robot Reacher

Memory SNAIL

Figure A.1: Learning curves for UR Robot Reacher tasks. Our method (Memory) learns much faster
than SNAIL.

1This is a rough estimation as this formula does not exclude the cases where there is no feasible path from
the agent’s start position to the goal position. The number of such cases is small when X � W 2.

12

Under review as a conference paper at ICLR 2021

APPENDIX B TIME COMPLEXITY OF HIERARCHICAL TRAJECTORY
EMBEDDING

Assume a sequence length is T , and the embedding dimension is d, then the time complexity of a
self-attention layer is O(T 2d). If there are N such trajectories, processing trajectories with two-level
attention (Section 2.1, 2.2) has a time complexity of O(NT 2d + N2d). However, if the attention
operation is over all the frames in N trajectories (Mishra et al., 2017), the time complexity becomes
O(N2T 2d). the former one typically requires much less computation.

APPENDIX C NETWORK ARCHITECTURE WITH BOTH SUCCESSFUL AND
FAILED EXPERIENCE

CNN 𝜋𝑡MLP

𝜏𝑡

Memory Bank （Failure）

Memory Module

Memory Module

Memory Bank （Success）

SNAIL

(a) Policy architecture with both successful and failed experience.

Encoder

Decoder

MLP

MLP

⋮

Gated

Attention

⋮
Transformer

𝑔

Memory Module

(b) Memory module.

Figure C.2: Policy architecture with both successful and failed experience. (a) is the policy architec-
ture. (b) is the memory module that is used in (a).

13

