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Abstract

The backpropagation algorithm has experienced remarkable success in training
large-scale artificial neural networks; however, its biological plausibility has been
strongly criticized, and it remains an open question whether the brain employs
supervised learning mechanisms akin to it. Here, we propose correlative informa-
tion maximization between layer activations as an alternative normative approach
to describe the signal propagation in biological neural networks in both forward
and backward directions. This new framework addresses many concerns about the
biological-plausibility of conventional artificial neural networks and the backpropa-
gation algorithm. The coordinate descent-based optimization of the corresponding
objective, combined with the mean square error loss function for fitting labeled
supervision data, gives rise to a neural network structure that emulates a more bio-
logically realistic network of multi-compartment pyramidal neurons with dendritic
processing and lateral inhibitory neurons. Furthermore, our approach provides a
natural resolution to the weight symmetry problem between forward and backward
signal propagation paths, a significant critique against the plausibility of the conven-
tional backpropagation algorithm. This is achieved by leveraging two alternative,
yet equivalent forms of the correlative mutual information objective. These alterna-
tives intrinsically lead to forward and backward prediction networks without weight
symmetry issues, providing a compelling solution to this long-standing challenge.

1 Introduction

How biological neural networks learn in a supervised manner has long been an open problem.
The backpropagation algorithm [1], with its remarkable success in training large-scale artificial
neural networks and intuitive structure, has inspired proposals for how biologically plausible neural
networks can perform the necessary efficient credit-assignment for supervised learning in deep neural
architectures [2]. Nonetheless, certain aspects of the backpropagation algorithm, combined with
the oversimplified nature of artificial neurons, have been viewed as impediments to proposals rooted
in this inspiration [3].

One of the primary critiques regarding the biological plausibility of the backpropagation algorithm
is the existence of a parallel backward path for backpropagating error from the output towards the
input, which uses the same synaptic weights as the forward path [1, 2, 4]. Although such weight
transport, or weight symmetry, is deemed highly unlikely based on experimental evidence [3, 4],
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some biologically plausible frameworks still exhibit this feature, which is justified by the symmetric
structure of the Hebbian updates employed in these frameworks [2, 5, 6].

The concerns about the simplicity of artificial neurons have been addressed by models which
incorporate multi-compartment neuron models into networked architectures and ascribe important
functions to dendritic processing in credit assignment [7, 8, 9, 10]. This new perspective has enabled
the development of neural networks with improved biological plausibility.

In this article, we propose the use of correlative information maximization (CorInfoMax) among
consecutive layers of a neural network as a new supervised objective for biologically plausible
models, which offers

• a principled solution to the weight symmetry problem: our proposed information theoretic crite-
rion aims to maximize the linear dependence between the signals in two neighboring layers,
naturally leading to the use of linear or affine transformations in between them. A key property of
this approach is that employing two alternative expressions for the correlative mutual information
(CMI) results in potentially asymmetric forward and backward prediction networks, offering a
natural solution to the weight transport problem. Consequently, predictive coding in both directions
emerges as the inherent solution to the correlative information maximization principle, fostering sig-
nal transmission in both forward and top-down directions through asymmetrical connections. While
the CorInfoMax principle enhances information flow in both directions, the introduction of set mem-
bership constraints on the layer activations, such as non-negativity, through activation nonlinearities
and lateral inhibitions, encourages compression of information and sparse representations [11].

• a normative approach for deriving networks with multi-compartment neurons: the gradient-based
optimization of the CorInfoMax objective naturally leads to network models that employ multi-
compartment pyramidal neuron models accompanied by interneurons as illustrated in Figure 1.

As derived and explained in detail in Section 2, the resulting networks incorporate lateral connections
and auto-synapses (autapses) to increase the entropy of a layer, promoting utilization of all
dimensions within the representation space of that layer. Meanwhile, asymmetric feedforward and
feedback connections act as forward and backward predictors of layer activation signals, respectively,
to reduce the conditional entropies between layers, targeting the elimination of redundancy.

Figure 1: A segment of a correlative information maximization based neural network. Each layer
consists of three-compartment pyramidal neurons with outputs r(k) and membrane voltages (u(k)-
soma, v(k)

B -basal dendrites, v(k)
A -distal apical dendrites) and interneurons with outputs i(k). The CMI

expression
→

I(ϵk)(r(k), r(k+1)) (
←

I(ϵk)(r(k), r(k+1))) defines forward (backward) prediction synapses
W

(k)
ff (W(k)

fb ), for minimizing H(ϵk)(r(k+1)|Lr(k)) (H(ϵk)(r(k)|Lr(k+1))) and the lateral connections
O(k+1) (O(k)) and autapses D(k+1) (D(k)) connected to distal apical dendrites at the k + 1-th (k-th)
layer, for maximizing H(ϵk)(r(k+1)) (H(ϵk)(r(k))).
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1.1 Related work

1.1.1 Multi-compartmental neuron model based biologically plausible approaches

Experimentally grounded studies, such as [7, 12], have been influential for considering a role
for dendritic-processing in multi-compartmental neurons for learning and credit assignment [13].
Subsequent research has explored biologically plausible models with supervised learning functionality,
such as the two-compartment neuron model by Urbanczik and Senn [8] and the three-compartment
pyramidal neuron model by Sacramento et al. [9]. Both models integrate non-Hebbian learning and
spike-time dependent plasticity, while the latter includes SST interneurons [14]. Similar frameworks
have been proposed by [15] and [10], with the latter introducing a normative framework based on
multi-compartmental neuron structure, top-down feedback, lateral and feedforward connections,
and Hebbian and non-Hebbian learning rules, emerging from the optimization of a prediction error
objective with a whitening constraint on co-layer neurons.

In a similar vein to [10], we propose an alternative normative framework based on information
maximization principle. In this framework, the three-compartment structure and associated forward,
top-down and lateral synaptic connections stem from the maximization of CMI between adjacent
layers, without the imposition of any whitening constraint.

1.1.2 Weight symmetry problem

A central concern regarding the biological plausibility of the backpropagation algorithm pertains
to the weight symmetry issue: synaptic weights in the feedback path for error backpropagation are
transposes of those used in the forward inference path [2, 3, 16]. The requirement of tied weights in
backpropagation is questionable for physically distinct feedforward and feedback paths in biological
systems, leading many researchers to focus on addressing the weight symmetry issue.

Various strategies have been devised to address the weight symmetry issue. For example, the feedback
alignment approach, which fixes randomly initialized feedback weights and adapts feedforward
weights, was offered as a plausible solution [17]. Later Akrout et.al. [18] proposed its extension
by updating feedback weights towards to the transpose of the feedforward weights. Along the similar
lines, Amit introduced antisymmetry through separate random initializations [19]. Liao et al. [20]
showed that the sign of the feedback weights (rather than their magnitude) affects the learning
performance, and proposed the sign-symmetry algorithm.

Intriguingly, this symmetric weight structure is also observed in biologically plausible frameworks
such as predictive coding (PC) [21, 22, 23], equilibrium propagation (EP) [24, 25, 26], and similarity
matching [27]. This phenomenon can be rationalized by the transpose symmetry of the Hebbian
update with respect to inputs and outputs. The EP framework in [25] unties forward and backward
connections inspired by [28, 29], and only yields small performance degradation. A more recent
approach by Golkar et al. [10] addresses this challenge by integrating two alternative forward
prediction error loss function terms associated with the same network layer and leveraging presumed
whitening constraints to eliminate shared feedback coefficients.

In existing predictive coding-based schemes such as [21, 22, 23], the loss function contains only for-
ward prediction error terms. The feedback connection with symmetric weights, which backpropagates
forward prediction error, emerges due to the gradient-based optimization of the PC loss. In contrast,
our framework’s crucial contribution is the adoption of two alternative expressions for the correlative
mutual information between consecutive network layers as the central normative approach. Utilizing
these two alternatives naturally leads to both forward and backward prediction paths with asymmetric
weights, promoting information flow in both feedforward and top-down directions. Unlike the work
of [10], our method circumvents the need for layer whitening constraints and additional forward
prediction terms to achieve asymmetric weights.

1.1.3 Correlative information maximization

Information maximization has been proposed as a governing or guiding principle in several machine
learning and neuroscience frameworks for different tasks: (i) The propagation of information within
a self-organized network as pioneered by Linsker [30]. (ii) Extracting hidden features or factors
associated with observations by maximizing information between the input and its internal represen-
tation such as independent component analysis (ICA-InfoMax) approach by [31]. In the neuroscience
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domain, the motivation has been to provide normative explanations to the behaviour of cortical
activities evidenced by experimental work, such as orientation and visual stimuli length selectivity
of primary visual cortex neurons [32, 33]. The same idea has been recently extended in the machine
learning field by the Deep Infomax approach where the goal is to transfer maximum information
from the input of a deep network to its final layer, while satisfying prior distribution constraints
on the output representations [34]. (iii) Matching representations corresponding to two alternative
augmentations or modalities of the same input in the context of self-supervised learning [35].

Correlative mutual information maximization has been recently proposed as an alternative for Shannon
Mutual Information (SMI), due to its desirable properties [36]: (i) maximization of CMI is equivalent
to maximizing linear dependence, which may be more relevant than establishing arbitrary nonlinear
dependence in certain applications [37], (ii) it is based only on the second order statistics, making it
relatively easier to optimize. We additionally note that criteria based on correlation are intrinsically
linked to local learning rules, leading to biologically plausible implementations, [38, 39]. Erdogan
[36] proposed the use of CorInfoMax for solving blind source separation (BSS) problem to retrieve
potentially correlated components from their mixtures. Ozsoy et al. [37] proposed maximizing the
CMI between the representations of two different augmentations of the same input as a self-supervised
learning approach. More recently, Bozkurt et al. [11] introduced an unsupervised framework to
generate biologically plausible neural networks for the BSS problem with infinitely many domain
selections using the CMI objective.

In this article, we suggest employing the CorInfoMax principle for biologically plausible supervised
learning. The key difference compared to the unsupervised framework presented in [11] is the
utilization of two alternative forms of mutual information. This leads to a bidirectional information
flow that enables error backpropagation without encountering the weight symmetry issue.

2 Deep correlative information maximization

2.1 Network data model

We assume a dataset with L input data points x[t] ∈ Rm, t = 1, . . . , L, and let yT [t] ∈ Rn be the
corresponding labels. We consider a network with P − 1 hidden layers whose activities are denoted
by r(k) ∈ RNk , k = 1, . . . , P − 1. For notational simplicity, we also denote input and output of the
network by r(0) and r(P ), i.e., r(0)[t] = x[t] and r(P )[t] = ŷ[t]. We consider polytopic constraints
for the hidden and output layer activities, i.e., r(k) ∈ P(k), where P(k) is the presumed polytopic
domain for the k-th layer [11, 40]. We note that the polytopic assumptions are plausible as the
activations of neurons in practice are bounded. In particular, we will make the specific assumption that
P(k) = B∞,+ = {r : 0 ≼ r ≼ 1}, i.e., (normalized) activations lie in a nonnegative unit-hypercube.
Such nonnegativity constraints have been connected to disentangling behavior [41, 42, 43], however,
we consider extensions in the form of alternative polytopic sets corresponding to different feature
priors [11] (see Appendix C). More broadly, the corresponding label yT can be, one-hot encoded label
vectors for a classification problem, or discrete or continuous valued vectors for a regression problem.

2.2 Correlative information maximization based signal propagation

Our proposed CorInfoMax framework represents a principled approach where both the structure of the
network and its internal dynamics as well as the learning rules governing adaptation of its parameters
are not predetermined. Instead, these elements emerge naturally from an explicit optimization process.
As the optimization objective, we propose the maximization of correlative mutual information (see
Appendix A between two consecutive network layers. As derived in future sections, the proposed
objective facilitates information flow—input-to-output and vice versa, while the presumed domains
for the hidden and output layers inherently induce information compression and feature shaping.

In Sections 2.2.1 and 2.2.2, we outline the correlative mutual information-based objective and its
implementation based on samples, respectively. Section 2.3 demonstrates that the optimization
of this objective through gradient ascent naturally results in recurrent neural networks with multi-
compartment neurons. Finally, Section 2.4 explains how the optimization of the same criterion leads
to biologically plausible learning dynamics for the resulting network structure.
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2.2.1 Stochastic CorInfoMax based supervised criterion

We propose the total correlative mutual information among consecutive layers, augmented with the
mean-square-error (MSE) training loss, as the stochastic objective to be maximized:

J(r(1), . . . , r(P )) =

P−1∑
k=0

I(ϵk)(r(k), r(k+1))− β

2
E(∥yT − r(P )∥22), (1)

where, as defined in [36, 37] and in Appendix A,
→

I(ϵk)(r(k), r(k+1)) =
1

2
log det (Rr(k+1) + ϵkI)−

1

2
log det

(
R→

e
(k+1)

∗
+ ϵkI

)
, (2)

is the correlative mutual information between layers r(k) an r(k+1), Rr(k+1) = E(r(k+1)r(k+1)T ) is
the autocorrelation matrix corresponding to the layer r(k+1) activations, and R→

e
(k+1)

∗
corresponds

to the error autocorrelation matrix for the best linear regularized minimum MSE predictor of r(k+1)

from r(k). Therefore, the mutual information objective in (2) makes a referral to the regularized
forward prediction problem represented by the optimization

minimize
W

(k)
ff

E(∥→e
(k+1)

∥22) + ϵk∥W (k)
ff ∥2F s.t.

→
e
(k+1)

= r(k+1) −W
(k)
ff r(k), (3)

and e
(k+1)
∗ is the forward prediction error corresponding to the optimal forward predictor W (k)

ff,∗.

If we interpret the maximization of CMI in (2): the first term on the right side of (2) encourages the
spread of r(k+1) in its presumed domain P(k+1), while the second term incites the minimization of
redundancy in r(k+1) beyond its component predictable from r(k).

An equal and alternative expression for the CMI can be written as (Appendix A)
←

I(ϵk)(r(k), r(k+1)) =
1

2
log det(Rr(k) + ϵkI)−

1

2
log det

(
R←

e
(k)

∗
+ ϵkI

)
, (4)

where R←
e

(k)

∗
corresponds to the error autocorrelation matrix for the best linear regularized minimum

MSE predictor of r(k) from r(k+1). The corresponding regularized backward prediction problem is
defined by the optimization

minimize
W

(k)
fb

E(∥←e
(k)

∥22) + ϵk∥W (k)
fb ∥2F s.t.

←
e
(k)

= r(k) −W
(k)
fb r(k+1). (5)

We observe that the two alternative yet equivalent representations of the correlative mutual informa-
tion between layers r(k) and r(k+1) in (2) and (4) are intrinsically linked to the forward and backward
prediction problems between these layers, which are represented by the optimizations in (3) and (5), re-
spectively. As we will demonstrate later, the existence of these two alternative forms for the CMI plays
a crucial role in deriving a neural network architecture that overcomes the weight symmetry issue.

2.2.2 Sample-based supervised CorInfoMax criterion

Our aim is to construct a biologically plausible neural network that optimizes the total CMI, equation
(1), in an adaptive manner. Here, we obtain a sample-based version of (1) as a step towards that goal.

We first define the exponentially-weighted sample auto and cross-correlation matrices as follows:

R̂r(k) [t] =
1− λr

1− λt
r

t∑
i=1

λt−i
r r(k)[i]r(k)[i]

T
, R̂r(k)r(k+1) [t] =

1− λr

1− λt
r

t∑
i=1

λt−i
r r(k)[i]r(k+1)[i]

T
, (6)

for k = 0, . . . , P , respectively, where 0 ≪ λr < 1 is the forgetting factor. Next, we define two
equivalent forms of the sample-based CMI, Î(ϵ)(r(k), r(k+1))[t]:

→
Î(ϵk)(r(k), r(k+1))[t] =

1

2
log det(R̂r(k+1) [t] + ϵkI)−

1

2
log det(R̂→

e
(k+1)

∗
[t] + ϵkI), (7)

←
Î(ϵk)(r(k), r(k+1))[t] =

1

2
log det(R̂r(k) [t] + ϵkI)−

1

2
log det(R̂←

e
(k)

∗
[t] + ϵkI), (8)

5



where R̂→
e

(k+1)

∗
[t] is the exponentially-weighted sample autocorrelation matrix for the forward

prediction error at level-(k + 1),
→
e
(k+1)∗

[t], corresponding to the best linear exponentially-weighted
regularized least squares predictor of r(k+1)[t] from the lower level activations r(k)[t]. Similarly,
R̂←

e
(k) [t] is the exponentially-weighted autocorrelation matrix for the backward prediction error at

level-(k),
←
e
(k)

[t], corresponding to the best linear exponentially-weighted regularized least squares
predictor of r(k)[t] from the higher level activations r(k+1)[t].

The sample-based CorInfoMax optimization can be written as:

maximize
r(k)[t], k = 0, . . . , P

P−1∑
k=0

Î(ϵk)(r(k), r(k+1))[t]− β

2
∥yT [t]− r(P )[t]∥22 = Ĵ(r(1), . . . , r(P ))[t]

(9a)

subject to r(k)[t] ∈ P(k), k = 1, . . . , P, (9b)

r(0)[t] = x[t], (9c)

As outlined in Appendix B, we can employ Taylor series linearization to approximate the log det
terms associated with forward and backward prediction errors in (2) and (4) in the form

log det
(
R̂→

e
(k+1) [t] + ϵkI

)
≈ 1

ϵk

t∑
i=1

λt−i
r ∥r(k+1)[i]−W

(k)
ff,∗[t]r

(k)[i]∥22 + ϵk∥W (k)
ff,∗[t]∥

2
F +Nk+1 log(ϵk) (10)

log det
(
R̂←

e
(k) [t] + ϵkI

)
≈ 1

ϵk

t∑
i=1

λt−i
r ∥r(k)[i]−W

(k)
fb,∗[t]r

(k+1)[i]∥22 + ϵk∥W (k)
fb,∗[t]∥

2
F +Nk log(ϵk), (11)

where W(k)
ff,∗[t] is the optimal linear regularized weighted least squares forward predictor coefficients

in predicting r(k+1)[i] from r(k)[i] for i = 1, . . . , t, and W
(k)
fb,∗[t] is the optimal linear regularized

weighted least squares backward predictor coefficients in predicting r(k)[i] from r(k+1)[i] for i =
1, . . . , t. Consequently, the optimal choices of forward and backward predictor coefficients are
coupled with the optimal choices of layer activations.

In the online optimization process, we initially relax the requirement on the optimality of predictors
and start with random predictor coefficient selections. During the learning process, we apply a
coordinate ascent-based procedure on activation signals and predictor coefficients. Specifically, at
time step-t, we consider two phases:

1. First, we optimize with respect to the activations {r(k)[t], k = 1, . . . , P}, where we assume
predictor coefficients to be fixed. This phase yields network structure and output dynamics,

2. Next, we update the forward and backward predictor coefficients W
(k)
ff and W

(k)
fb , for k =

1, . . . , P , to reduce the corresponding forward and backward prediction errors, respectively. This
phase provides update expressions to be utilized in learning dynamics.

As the algorithm iterations progress, the predictor coefficients converge to the vicinity of their
optimal values.

For the first phase of the online optimization, we employ a projected gradient ascent-based approach
for activations: for k = 1, . . . , P − 1, the layer activation vector r(k)[t] is included in the objective
function terms Î(ϵ)(r(k−1), r(k))[t] and Î(ϵ)(r(k), r(k+1))[t]. Therefore, to calculate the gradient with
respect to r(k)[t], we can use expressions in (7) and (8). More specifically, we choose Ĵk(r

(k))[t] =
→

Î(ϵk−1)(r(k−1), r(k))[t] +
←

Î(ϵk)(r(k), r(k+1))[t] for k = 1, . . . , P − 1, to represent the components
of the objective function in (9a) involving r(k)[t] . As described in Appendix G.1, this choice
is instrumental in avoiding weight transport problem. Similarly, we can write the component of
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the objective function in (9a) that is dependent on the final layer activations as ĴP (r
(P ))[t] =

→
Î(ϵP−1)(r(P−1), r(P ))[t]− β

2 ∥r
(P )[t]− yT [t]∥22.

Based on the derivations presented in Appendix D, which directly incorporate the approximations
from (10) and (11), we can express the gradient of the objective function in (9a) with respect to r(k),
for k = 1, . . . , P − 1 as:

∇r(k) Ĵ(r(1), . . . , r(P ))[t] = 2γBr(k) [t]r(k)[t]−
1

ϵk−1

→
e
(k)

[t]− 1

ϵk

←
e
(k)

[t], (12)

where γ = 1−λr

λr
,

→
e
(k)

[t] = r(k)[t]−W
(k−1)
ff [t]r(k−1)[t],

←
e
(k)

[t] = r(k)[t]−W
(k)
fb [t]r(k+1)[t], (13)

and Br(k) [t] = (R̂r(k) [t] + ϵk−1I)
−1 ≈ (R̂r(k) [t] + ϵkI)

−1. Similarly, for k = P , we have

∇r(P ) Ĵ(r(1), . . . , r(P ))[t] = γBr(P ) [t]r(P )[t]− 1

ϵP−1

→
e
(P )

[t]− β(r(P )[t]− yT [t]). (14)

2.3 Neural network formulation based on information maximization

In this section, we develop a biologically plausible neural network grounded on the correla-
tive information maximization-based network propagation model outlined in Section 2.2. To
achieve this, we employ projected gradient ascent optimization for determining layer activations
r(1)[t], r(2)[t], . . . , r(P )[t], which shape the network structure and dynamics, as well as updating the
corresponding synapses that govern the learning dynamics.

2.3.1 Network structure and neural dynamics

In this section, we show that the projected gradient ascent solution to the optimization in (9) defines
a multilayer recurrent neural network. To this end, we introduce the intermediate variable u(k)

as the updated layer-k activations prior to the projection onto the domain set P(k). Utilizing the
gradient expressions in (12)-(13), we can express the network dynamics for layers k = 1, . . . , P − 1
as follows (see Appendix E for details):

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] +
1

ϵk
M (k)[t]r(k)[t; s]− 1

ϵk−1

→
e
(k)

u [t; s]− 1

ϵk

←
e
(k)

u [t; s], (15)

→
e
(k)

u [t; s] = u(k)[t; s]−W
(k−1)
ff [t]r(k−1)[t; s],

←
e
(k)

u [t; s] = u(k)[t; s]−W
(k)
fb [t]r(k+1)[t; s],

(16)

r(k)[t; s] = σ+(u
(k)[t; s]), (17)

where t is the discrete data index, s is the continuous time index corresponding to network dynamics,
τu is the update time constant, M (k)[t] = ϵk(2γBr(k) [t] + glkI), and σ+ represents the elementwise
clipped-ReLU function corresponding to the projection onto the nonnegative unit-hypercube B∞,+,
defined as σ+(u) = min(1,max(u, 0)).

To reinterpret the dynamics in (15) to (17) as a multi-compartmental neural network, for
k = 1, . . . , P − 1, we define the signals:

v
(k)
A [t; s] = M (k)[t]r(k)[t; s] +W

(k)
fb [t]r(k+1)[t; s], v

(k)
B [t; s] = W

(k−1)
ff [t]r(k−1)[t; s], (18)

which allow us to rewrite the network activation dynamics (15) to (17) as:

τu
du(k)[t; s]

ds
= −glku

(k)[t; s] + gA,k(v
(k)
A [t; s]− u(k)[t; s]) + gB,k(v

(k)
B [t; s]− u(k)[t; s]), (19)

r(k)[t; s] = σ+(u
(k)[t; s]), (20)

where gA,k = 1
ϵk−1

and gB,k = 1
ϵk

. Similarly, for the output layer, we employ the same expressions
as (19) and (20) with k = P , except that in this case we have:

v
(P )
A [t; s] = M (P )[t]r(k)[t; s]− (r(P )[t; s]− yT [t]), v

(P )
B [t; s] = W

(P−1)
ff [t]r(P−1)[t; s], (21)

7



where gB,P = 1
ϵP−1

, gA,P = β and M (P )[t] = β−1(γBr(P ) [t] + glkI).

Remarkably, the equations (18) to (21) reveal a biologically plausible neural network that incorporates
three-compartment pyramidal neuron models, as presented in [9, 10]. This intricate architecture,
of which two-layer segment is demonstrated in Figure 1, naturally emerges from the proposed
correlative information maximization framework. In this network structure:

• u(k) embodies the membrane potentials for neuronal somatic compartments of the neurons at
layer-k, where τu is the membrane leak time constant of soma.

• v
(k)
B corresponds to membrane potentials for basal dendrite compartments, receiving feedforward

input originating from the previous layer.

• v
(k)
A denotes the membrane potentials for distal apical dendrite compartments, which gather top-

down input from the subsequent layer and lateral inputs represented by M (k)[t]r(k) in (18) and (21).
Decomposing M (k) into D(k)−O(k), we find that D(k) mirrors autapses[44], and the off-diagonal
component O(k) corresponds to lateral inhibition synapses. We use i(k) = −O(k)r(k) to represent
the activations of SST interneurons [14] that generate lateral inhibitions to the apical dendrites.

• Forward (backward) prediction errors manifest in the membrane voltage differences between soma
and basal (distal) compartments of the pyramidal neurons.

• Forward (backward) prediction coefficients W
(k)
ff (W (k)

fb ) are associated with feedforward
(top-down) synapses connecting layers (k) and (k + 1).

• The inverse of the regularization coefficient ϵk is related to the conductance between soma and den-
dritic compartments. This is compliant with the interpretation of the ϵ−1 in Appendix A.2 as the sen-
sitivity parameter that determines the contribution of the prediction errors to the CMI. Conversely,
at the output layer, the augmentation constant β corresponds to the conductance between soma and
distal compartments. This relationship can be motivated by modifying the objective in (9a) as

P−1∑
k=0

Î(ϵk)(r(k), r(k+1))[t] +
1

2

←

Î(β
−1)(r(P ),yT )[t], (22)

where, through the first-order approximation, the r(P )[t] dependent portion of
←

Î(β
−1)(r(P ),yT )[t]

can be expressed as −β∥r(P )[t]−W
(P )
fb yT [t]∥22. For accuracy, we enforce W

(P )
fb = I .

2.4 Learning dynamics

Network parameters consists of feedforward W
(k)
ff , feedback W

(k)
fb and lateral B(k) coefficients.The

learning dynamics of these coefficients are elaborated below:

• Feedforward Coefficients are connected to the forward prediction problem defined by the op-
timization in (3). We can define the corresponding online optimization objective function as

Cff (W
(k)
ff ) = ϵk∥W (k)

ff ∥2F + ∥→e
(k+1)

[t]∥22 for which the the partial derivative is given by

∂Cff (W
(k)
ff [t])

∂W
(k)
ff

= 2ϵkW
(k)
ff [t]− 2

→
e
(k+1)

[t]r(k)[t]T . (23)

In Appendix H, we provide a discussion on rewriting (23) in terms of the membrane voltage
difference between the distal apical and soma compartments of the neuron, based on the equilibrium
condition for the neuronal dynamics:

−→e
(k+1)

[t]r(k)[t]T = g−1B,k(gA,kv
(k)
A [t]− (glk + gAk

)u
(k)
∗ [t] + h∗[t])r

(k)[t]T , (24)

where h∗[t] is nonzero only for neurons that are silent or firing at the maximum rate.
• Similarly, Feedback Coefficients are connected to the backward prediction problem defined by the

optimization in (5), and the corresponding online optimization objective function as Cfb(W
(k)
fb ) =

ϵk∥W (k)
ff ∥2F + ∥←e

(k)
[t]∥22 for which the partial derivative is given by

∂Cfb(W
(k)
fb [t])

∂W
(k)
fb

= 2ϵkW
(k)
fb [t]− 2

←
e
(k)

[t]r(k+1)[t]T . (25)
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To compute the updates of both feedforward and feedback coefficients, we use the EP approach
[24], where the update terms are obtained based on the contrastive expressions of partial derivatives
in (23) and (25) for the nudge phase, i.e., β = β′ > 0, and the free phase, i.e., β = 0, :

δW
(k)
ff [t] ∝ 1

β′

(
(
→
e
(k+1)

[t]r(k)[t]T )
∣∣∣
β=β′

− (
→
e
(k+1)

[t]r(k)[t]T )
∣∣∣
β=0

)
, (26)

δW
(k)
fb [t] ∝ 1

β′

(
(
←
e
(k)

[t]r(k+1)[t]T )
∣∣∣
β=β′

− (
←
e
(k)

[t]r(k+1)[t]T )
∣∣∣
β=0

)
. (27)

• Lateral Coefficients, B(k) are the inverses of the ϵI perturbed correlation matrices. We can use
the update rule in [11] for their learning dynamics after the nudge phase:

B(k)[t+ 1] = λ−1r (B(k)[t]− γz(k)[t]z(k)[t]T ), where z(k) = B(k)[t]r(k)[t]
∣∣
β=β′

. (28)

As we derived in Appendix F, we can rewrite the update rule of the lateral weights in terms of the
updates of autapses and lateral inhibition synapses as follows:

D
(k)
ii [t+ 1] = λ−1r D

(k)
ii [t]− λ−1r ϵk2γ

2(z
(k)
i [t])2 + ϵkglk(1− λ−1r ), ∀i ∈ {1, . . . , Nk} (29)

O
(k)
ij [t+ 1] = λ−1r O(k)[t]ij + λ−1r ϵk2γ

2z
(k)
i [t]z

(k)
j [t], ∀i, j ∈ {1, . . . , Nk}, where i ̸= j (30)

3 Discussion of results

• In (A.14), we devise an update for layer activation r(k) by employing two distinct forms of the CMI

associated with r(k):
→

Î(ϵk−1)(r(k−1), r(k))[t], the CMI with the preceding layer, encompassing

the forward prediction error for estimating r(k), and
←

Î(ϵk)(r(k), r(k+1))[t], the CMI with the
subsequent layer, incorporating the backward prediction error for estimating r(k). Employing these
alternative expressions is crucial in circumventing the weight transport problem and offering a
more biologically plausible framework. For further discussion, please refer to Appendix G.

• In the context of the proposed correlative information maximization framework, forward and
backward predictive coding naturally emerges as a crucial mechanism. By incorporating both
alternative expressions of CMI, the framework focuses on minimizing both forward and backward
prediction errors between adjacent layers via feedforward and feedback connections. These
connections foster bidirectional information flow, thereby enhancing the overall learning process.

• Figure 1 depicts the interplay between the CorInfoMax objective and the corresponding network
architecture. The emergence of lateral connections and autapses can be attributed to the
maximization of the unconditional layer entropy component of the CMI, which allows for
efficient utilization of the available representation dimensions and avoids dimensional degeneracy.
Simultaneously, the minimization of conditional entropies between adjacent layers gives rise to
feedforward and feedback connections, effectively reducing redundancy within representations.

• We employ time-contrastive learning, as in GenRec [45], EP [24] and CSM [27], by implementing
separate phases with Hebbian and anti-Hebbian updates, governed by an assumed teaching signal.
It has been conjectured that the teaching signal in biological networks can be modeled by the
oscillations in the brain [2, 46, 47]. Although the oscillatory rhythms and their synchronization
in the brain are elusive, they are believed to play an important role in adaptive processes such as
learning and predicting upcoming events [48, 49].

4 Numerical experiments

In this section, we evaluate the performance of our CorInfoMax framework with two layer fully
connected networks on image classification tasks using three popular datasets: MNIST [50],
Fashion-MNIST [51], and CIFAR10 [52]. We used layer sizes of 784, 500, 10 for both MNIST and
Fashion-MNIST datasets while we used layer sizes of 3072, 1000, 10 for CIFAR10 dataset, and the
final layer size 10 corresponds to one-hot encoded ouput vectors. Further details including full set of
hyperparameters can be found in Appendix J. We compare the effectiveness of our approach against
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other contrastive methods, such as EP [24] and CSM [27], as well as explicit methods, including
PC [22] and PC-Nudge [53], when training multilayer perceptron (MLP) architectures.

We examine two distinct constraints on the activations of CorInfoMax Networks: (i) B∞,+, represent-
ing the nonnegative part of the unit hypercube, and (ii) B1,+ = {r : r ≽ 0, ∥r∥1 ≤ 1}, denoting the
nonnegative part of the unit ℓ1-norm ball [40]. Table 1 presents the test accuracy results for each algo-
rithm, averaged over 10 realizations along with the corresponding standard deviations. These findings
demonstrate that CorInfoMax networks can achieve comparable or superior performance in relation
to the state-of-the-art methods for the selected tasks. Additional information regarding these exper-
iments, as well as further experiments, can be found in the Appendix. Our code is available online1.

Table 1: Test accuracy results (mean ± standard deviation from n = 10 runs) for CorInfoMax
networks are compared with other biologically-plausible algorithms. The performance of CSM on
the CIFAR10 dataset is taken from [27], while the remaining results stem from our own simulations.

MNIST FashionMNIST CIFAR10

CorInfoMax-B∞,+ (Appendix J.4) 97.62± 0.1 88.14± 0.3 51.86± 0.3
CorInfoMax-B1,+ (Appendix J.6) 97.71± 0.1 88.09± 0.1 51.19± 0.4
EP 97.61± 0.1 88.06± 0.7 49.28± 0.5
CSM 98.08± 0.1 88.73± 0.2 40.79∗

PC 98.17± 0.2 89.31± 0.4 -
PC-Nudge 97.71± 0.1 88.49± 0.3 48.58± 0.7

Feedback Alignment (with MSE Loss) 97.99± 0.03 88.72± 0.5 50.75± 0.4
Feedback Alignment (with CrossEntropy Loss) 97.95± 0.08 88.38± 0.9 52.37± 0.4
BP (with MSE Loss) 97.58± 0.01 88.39± 0.1 52.75± 0.1
BP (with CrossEntropy Loss) 98.27± 0.03 89.41± 0.2 53.96± 0.3

5 Discussion and Conclusion

In this article, we have presented the correlative information maximization (CorInfoMax) framework
as a biologically plausible approach to constructing supervised neural network models. Our proposed
method addresses the long-standing weight symmetry issue by providing a principled solution, which
results in asymmetric forward and backward prediction networks. The experimental analyses demon-
strates that CorInfoMax networks provide better or on-par performance in image classification tasks
compared to other biologically plausible networks while alleviating the weight symmetry problem.
Furthermore, the CorInfoMax framework offers a normative approach for developing network models
that incorporate multi-compartment pyramidal neuron models, aligning more closely with the exper-
imental findings about the biological neural networks. The proposed framework is useful in obtaining
potential insights such as the role of lateral connections in embedding space expansion and avoiding
degeneracy, feedback and feedforward connections for prediction to reduce redundancy, and activation
functions/interneurons to shape feature space and compress. Despite the emphasis on supervised deep
neural networks in our work, it’s crucial to highlight that our approach—replacing the backpropaga-
tion algorithm, which suffers from the weight transportation problem, with a normative method devoid
of such issues—is potentially extendable to unsupervised and self-supervised learning contexts.

One potential limitation of our framework, shared by other supervised approaches, is the necessity for
model parameter search to improve accuracy. We discuss this issue in detail in Appendix K. Another
limitation stems from the intrinsic nature of our approach, which involves the determination of neural
activities through recursive dynamics (see Appendix J). While this aspect is fundamental to our
methodology, it does result in slower computation times compared to conventional neural networks in
digital hardware implementation. However, it is worth noting that our proposed network, characterized
by local learning rules, holds the potential for efficient and low-power implementations on future
neuromorphic hardware chips. Furthermore, our method employs the time contrastive learning
technique known as Equilibrium Propagation, which necessitates two distinct phases for learning.

1https://github.com/BariscanBozkurt/Supervised-CorInfoMax
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