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Abstract

Multimodal large language models (MLLMs) have achieved remarkable progress
in vision–language tasks, but they continue to struggle with spatial understanding.
Existing spatial MLLMs often rely on explicit 3D inputs or architecture-specific
modifications, and remain constrained by large-scale datasets or sparse supervision.
To address these limitations, we introduce SPATIALTHINKER, a 3D-aware MLLM
trained with RL to integrate structured spatial grounding with multi-step reasoning.
The model simulates human-like spatial perception by constructing a scene graph
of task-relevant objects and spatial relations, and reasoning towards an answer via
dense spatial rewards. SPATIALTHINKER consists of two key contributions: (1)
a data synthesis pipeline that generates STVQA-7K, a high-quality spatial VQA
dataset, and (2) online RL with a multi-objective dense spatial reward enforcing
spatial grounding. SPATIALTHINKER-7B outperforms supervised fine-tuning and
the sparse RL baseline on spatial understanding and real-world VQA benchmarks,
nearly doubling the base-model gain compared to sparse RL, and surpassing GPT-
4o. These results showcase the effectiveness of combining spatial supervision with
reward-aligned reasoning in enabling robust 3D spatial understanding with limited
data and advancing MLLMs towards human-level visual reasoning.

1 Introduction

Spatial reasoning is central to human intelligence, enabling us to perceive, localize, and manipulate
objects in complex environments. This ability is critical for embodied AI tasks such as robotic
manipulation [40, 27, 61], navigation [36], and augmented reality [43], where spatial awareness
underpins real-world decision-making [23, 73]. While multimodal large language models (MLLMs)
excel at general vision–language tasks [39, 50, 21, 7, 24, 52, 29], they continue to struggle with 3D
spatial understanding [10, 75, 41, 89, 74, 56], which requires capturing geometry, structure, and
relations beyond 2D projections.

Existing approaches remain data-hungry or architecturally specialized. They rely on massive synthetic
datasets derived from 3D scene graphs (e.g., SpatialVLM was trained on 2B Spatial VQA samples,
SpatialRGPT on 700k) [10, 19, 17], architectural changes [35], explicit 3D inputs such as point
clouds [34, 17, 8], or reinforcement learning (RL) with sparse rewards [58, 78, 86, 87, 68, 99].

We present SPATIALTHINKER, a 3D-aware MLLM that integrates scene graph grounding with
multi-step reasoning through online policy RL. The model builds question-focused scene subgraphs
consisting of objects, their relations, and localized coordinates, and reasons over them under a
lexicographically-ordered multi-objective reward: format rewards enforce structured reasoning,
count penalties regulate regional focus, accuracy rewards prioritize correctness, and CIoU-based
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spatial rewards encourage precise localization. This design promotes human-like reasoning: observe,
localize, think, answer.

By training on only 7K samples with our synthesized STVQA-7K dataset, SPATIALTHINKER-7B
outperforms supervised fine-tuning (+6%) and conventional RL baselines (+3.2%) across twelve
spatial understanding, real-world and generic VQA benchmarks, surpassing GPT-4o (+3.4% avg.) and
Claude 3.5 Sonnet (+10.1% avg.) [39, 5], particularly a +12.1% gain over GPT-4o on 3DSRBench
[56]. While sparse RL improves the base model by +4% avg., our dense spatial reward design
yields +7.2%, nearly doubling the benefit. These results show that models can learn effective spatial
reasoning by focusing on relevant regions, constructing internal scene representations, and accurately
localizing objects through dense rewards, without relying on large-scale data alone [10, 55].

Our contributions are:

• SPATIALTHINKER, a Spatial MLLM that integrates scene graph-based grounding with
online RL for spatial reasoning, achieving strong results with only 7K samples.

• STVQA-7K, a high-quality spatial VQA dataset grounded in scene graphs.

• A dense, lexicographically gated multi-objective reward that guides regionally focused
spatial reasoning, achieving superior generalization across six spatial benchmarks.

2 SpatialThinker: Spatially-Aware Reasoning MLLMs

2.1 Multi-Objective Reward Design

SPATIALTHINKER is trained with a fine-grained, multi-objective reward that guides visually grounded
reasoning. Unlike prior RLVR methods relying on sparse correctness signals [63, 99, 69], we combine
four complementary components, including: format, accuracy, count, and spatial rewards, aligned
with the reasoning stages: observe, localize, think, answer. We present reward ablation in Appendix E

Format Reward. Responses must follow a structured template with <observe>, <scene>, <think>,
and <answer> tags. The scene JSON must be parseable, with valid object fields (ID, bbox) and
triplet relations. The format reward Rf ∈ {0, 1} (weight wformat = 0.1) enforces this structure.

Accuracy Reward. To prioritize task performance, we assign Ra = 1 if the predicted answer exactly
matches the ground truth, else 0. This component receives the highest weight (waccuracy = 0.5) to
prioritize task performance while the other rewards guide how the model arrives at correct answers.

Count Reward. The count reward encourages the model to predict the appropriate number of
objects and relations relevant to the spatial query. It penalizes both under- and over-generation,
using a weighted error term based on the deviation between predicted and ground-truth counts:
Rc = wcount · (0.7 · obj-score + 0.3 · rel-score), where wcount = 0.2. This guides the model to
stay focused on question-relevant regions. Without it, models tend to game the spatial reward by
generating excessive objects and relations to boost match likelihood.

Spatial Reward. To supervise object localization, we compute the spatial reward only when the final
answer is correct. Predicted and ground-truth objects are matched using the Hungarian algorithm
with a cost function that combines Complete IoU (CIoU) and semantic similarity: C(opred

i , ogt
j ) =

λspatial(1− IoU(bi, bj)) + λsemantic(1− sim(li, lj)), where b and l denote bounding boxes and labels,
respectively. The reward is then computed as the average CIoU across matched pairs: Rspatial =
1

|M|
∑

(i,j)∈M CIoU(bpred
i , bgt

j );wspatial = 0.2. CIoU offers dense supervision over IoU, even for
non-overlapping boxes by incorporating distance and aspect ratio terms [97].

Lexicographic Gating. To avoid reward gaming across objectives, we apply lexicographic ordering
with conditional gating [70], prioritizing format ≻ {count, accuracy} ≻ spatial. The model must first
satisfy formatting, then jointly optimize count and accuracy, and receives spatial reward only when
the answer is correct. This ensures spatial grounding reinforces valid reasoning. Without accuracy
gating, we observe that models overfit to spatial localization while sacrificing task correctness. The
final reward is computed as the following with I[·] as the indicator function:

Rtotal = I[Rformat > 0] · (wfRf + wcRc + waRa + I[Raccuracy > 0] · wsRs)
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2.2 Online RL Policy Optimization

To train SPATIALTHINKER with dense, lexicographically gated rewards, we adopt Group-Relative
Policy Optimization (GRPO) [20, 67], an online RL method that avoids critic networks by esti-
mating advantages through intra-group comparisons. Given an input x, we sample N trajectories
{y(1), . . . , y(N)} from the current policy πθold . Each response is scored via our dense spatial reward
function (Section 2.1), and advantages are computed using group-normalized scores: A(i) = r(i)−µ

σ+ε ,
where µ and σ are the group mean and standard deviation, and ε = 10−6. We then update the policy
using a PPO-style clipped loss with KL regularization:

LRL(θ) = − 1

G

G∑
i=1

1

|y(i)|

|y(i)|∑
t=1

[
min

(
ri,tA(i), clip(ri,t, 1− ϵl, 1 + ϵh)A

(i)
)
− β Di,t

KL

]
,

where ri,t =
πθ(y

(i)
t |x,y(i)

<t)

πθold (y
(i)
t |x,y(i)

<t)
is the importance ratio between new and old policies, and Di,t

KL is the

token-level KL divergence against a reference model. We set ϵl = 0.2, ϵh = 0.3, and β = 10−2.
This objective balances learning from dense spatial rewards while constraining policy divergence to
ensure stability and generalization.

2.3 STVQA-7K: Dataset Construction

To facilitate reward-aligned spatial reasoning, we construct STVQA-7K, a synthetic visual question
answering (VQA) dataset built from human-annotated scene graphs in Visual Genome [44]. STVQA-
7K comprises 7,587 spatially grounded multiple-choice VQA pairs spanning both 2D and 3D
spatial understanding. We augment the original VG150 predicate set with 34 additional spatial
relations—covering distance (e.g., near, far), size (e.g., bigger, taller), orientation (e.g., facing away),
and containment (e.g., inside, beneath)—to enrich the relational vocabulary beyond the standard 50
predicates. Each QA pair is generated from a scene graph using Claude Sonnet 4 [6], then verified
for semantic correctness using GPT-4o [39] through a consistency-based filtering pipeline. From an
initial pool of 56,224 questions, we retain the top 7.5K high-quality samples after automated rating,
difficulty estimation, and validation. Finally, we align each question with a subgraph of relevant
objects and relations, enabling localized scene graph supervision during training. This results in
a richly annotated, task-aligned dataset for developing and evaluating grounded spatial reasoning
models. Complete data construction details are provided in Appendix C.

3 Experiments

Implementation Details. We build SPATIALTHINKER upon two strong open-source multimodal
base models: Qwen2.5-VL-3B and Qwen2.5-VL-7B [7]. No supervised fine-tuning is performed
prior to RL training on our STVQA-7K dataset (Section C). We employ GRPO [67] as the advantage
estimator as described in Section 2.2, using a rollout size of 8 samples per query and a sampling
temperature of 1.0. The models are trained with a maximum context length of 16,384 tokens. The
rollout batch size is set to 512, and the global batch size is 128. We train for 75 training steps i.e., 5
training episodes) on 4 × NVIDIA H100 80GB GPUs. Training time totals around 13 hours for the
3B model and 15 hours for the 7B model. The models are trained on high-resolution image inputs
ranging from 512×512 to 2048×2048 pixels, to preserve fine-grained spatial information. All model
parameters, including the vision encoder, are updated during training. We use the AdamW optimizer
with bf16 precision, a learning rate of 1× 10−6, and a weight decay of 1× 10−2. The KL penalty
coefficient is set to 10−2 (Appendix F). STVQA-7K is partitioned with a 90/10 train–validation split.

Experimental Setup. We evaluate SPATIALTHINKER on six spatial reasoning benchmarks span-
ning 2D and 3D understanding: CV-Bench [74], BLINK [25], 3DSRBench [56], MMVP [75],
SpatialBench [8], and RealWorldQA [85]. Comparisons include both proprietary (GPT-4o [39])
and open-source models—Qwen2.5-VL [7], Cambrian-1 [74], LLaVA-Next [46], VLAA-Thinker
[12]—as well as spatially-specialized models such as SpatialRGPT [17], SpatialBot [8], SpaceLLaVA
[10], SpaceThinker [3], and RoboPoint [93]. We also evaluate training variants including supervised
fine-tuning (SFT) and vanilla GRPO (using only format and accuracy rewards) to isolate the contri-
bution of dense spatial rewards. Detailed experimental setup, evaluation settings, and prompts are
shared in Appendix D.
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Model 3DSRBench [56] CV-Bench [74] Avg. BLINKval [25] Avg.

2D 3D
Spatial

Relation
Relative
Depth

Proprietary Models
GPT-4o [39] 44.3 75.8 83.0 79.4 82.5 78.2 80.4
Claude 3.5 Sonnet [5] 48.2 60.2 71.5 65.9 58.7 67.7 63.2

Open-Source General MLLMs
Qwen2.5-VL-3B [7] 44.0 59.9 60.2 60.0 66.4 54.0 60.2
Qwen2.5-VL-7B [7] 48.4 69.1 68.0 68.6 84.0 52.4 68.2
VLAA-Thinker-Qwen2.5-VL-7B [12] 52.2 60.8 60.3 60.6 81.2 71.0 76.1
LLaVA-NeXT-8B [46] 48.4 62.2 65.3 63.8 - - -
Cambrian-1-8B [74] 42.2 72.3 72.0 72.2 69.9 73.4 71.7

Open-Source Spatial MLLMs
RoboPoint-13B [93] - - 61.2 - 60.8 61.3 61.1
SpatialBot-3B [8] 41.1 - 69.1 - 67.8 67.7 67.8
SpaceLLaVA-13B [1] 42.0 - 68.5 - 72.7 62.9 67.8
SATORI-R1 [68] 47.5 50.9 62.8 56.9 60.1 52.4 56.3
Spatial-RGPT-7B w/ depth [17] 48.4 - 60.7 - 65.7 82.3 74.0
SpaceThinker [3] 51.1 65.1 65.9 65.5 73.4 59.9 66.7
SpaceOm [2] 52.2 72.1 69.3 70.7 81.1 65.3 73.2

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 50.8 53.9 68.4 61.1 65.0 66.9 66.0
Qwen2.5-VL-3B + Vanilla GRPO 50.1 70.6 66.6 68.6 73.4 55.6 64.5
SpatialThinker-3B (Ours) 52.9 71.0 76.3 73.6 81.8 66.9 74.4
Qwen2.5-VL-7B + SFT 53.6 56.1 71.3 63.7 75.5 64.5 70.0
Qwen2.5-VL-7B + Vanilla GRPO 54.7 68.9 76.5 72.7 80.4 75.0 77.7
SpatialThinker-7B (Ours) 56.4 77.7 78.7 78.2 86.0 72.6 79.3

Table 1: Performance over 2D & 3D Spatial Understanding Benchmarks across different model types.

3.1 Results

Performance across spatial benchmarks. As shown in Tables 1 and 2, SPATIALTHINKER-7B
achieves strong performance across all benchmarks: 78.2% on CV-Bench (vs. GPT-4o’s 79.4%),
79.3% on BLINK tasks (vs. GPT-4o’s 80.4%), 78.0% on MMVP (vs. GPT-4o’s 70.7%), 56.4%
on 3DSRBench, outperforming GPT-4o by 12.1%, and 66.4% on SpatialBench (vs. GPT-4o’s
67.0%). Our 7B model outperforms all baselines on MMVP, and all open-source baselines on
SpatialReasonerEval. Despite using only RGB inputs and 7K training samples, SPATIALTHINKER-
7B matches or surpasses larger proprietary and spatially-specialized open-source models, and further
enhances visual understanding on real-world VQA benchmarks (see Appendix G.2 & H).

RL Training with Dense Rewards Enables Stronger Generalization. Compared to SFT and vanilla
GRPO, SPATIALTHINKER-7B achieves +6% and +3.2% higher average accuracy, respectively over 6
spatial and 6 VQA tasks. Similarly, the 3B variant shows +5.5% and +4.1% avg. gains respectively.
Notably, while vanilla GRPO gives modest gains over base model (+4% for 7B, +4.9% for 3B),
training with our dense spatial reward nearly doubles ×1.8 this gain (+7.2% for 7B, +9% for 3B),
underscoring the complementary learning signal provided by count and spatial objectives. The same
trend holds under out-of-distribution evaluation, with dense rewards enabling significantly better
real-world transfer (see Appendix G.4).

Model MMVP [75] SpatialReasonerEval [58] SpatialBench [8]

Proprietary Models
GPT-4o [39] 70.7 85.8 67.0
Claude 3.5 Sonnet [5] 71.3 84.1 63.2

Open-Source General & Spatial MLLMs
Qwen2.5-VL-3B [7] 67.0 68.0 49.9
Qwen2.5-VL-7B [7] 72.3 70.6 62.5
VLAA-Thinker-7B [12] 75.3 61.2 66.2
SpaceThinker [3] 63.0 69.6 57.9
SATORI-R1 [68] 63.7 64.0 60.3
SpaceOm [2] 66.3 68.9 58.6
SpatialReasoner [58] 64.0 76.4 59.2
Visionary-R1 [86] 70.3 72.9 59.8

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 62.7 67.5 56.3
Qwen2.5-VL-3B + Vanilla GRPO 68.3 69.3 56.9
SpatialThinker-3B (Ours) 69.0 76.5 61.5
Qwen2.5-VL-7B + SFT 68.3 70.8 63.5
Qwen2.5-VL-7B + Vanilla GRPO 74.3 79.6 64.2
SpatialThinker-7B (Ours) 78.0 82.7 66.4

Table 2: Performance on additional spatial benchmarks.

4 Conclusion

We introduced SPATIALTHINKER, a
3D-aware MLLM that achieves strong
spatial reasoning by combining scene
graph grounding with dense spatial re-
wards. Trained on just 7K samples, it
surpasses GPT-4o on spatial bench-
marks while outperforming models
trained on larger datasets and spe-
cialised spatial MLLMs. Dense spa-
tial rewards nearly double the gains of
standard RL, underscoring the value
of rich supervision signals. Future
work could explore implicit spatial
reasoning with latent tokens, and de-
sign unified multi-objective policies
covering diverse visual tasks.
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Appendix

A Related Work

3D Spatial Reasoning in MLLMs. While multimodal large language models have achieved notable
success in fundamental visual tasks [39, 50, 21, 51], their ability to perform complex spatial reasoning
remains limited. Multiple evaluations have highlighted persistent shortcomings in this domain [60, 75,
41, 88, 45, 89, 56], which can be partially attributed to the predominance of datasets centered around
visual perception rather than explicit spatial or relational grounding [38]. In response, considerable
research has focused on incorporating 3D spatial information into MLLMs. Early approaches embed
explicit representations such as point clouds or multi-view reconstructions [34, 33], while others
generate structured spatial states or world models guided by physical priors [80, 81]. More recent
systems have trained large-scale models with 3D-enhanced VQA datasets, such as SpatialVLM with
2B samples [10], and extensions like SpatialPIN [55] or SpatialBot [8], which inject 3D priors or
auxiliary depth signals. SpatialRGPT [17] builds 3D scene graphs from RGB-depth data to produce a
large 700k-sample spatial QA dataset for training, improving performance but requiring extensive
pre-processing and data. Similarly, MM-Spatial [19], SpatialLLM [57], and SpaRE [62] address
spatial reasoning with hundreds of thousands to millions of synthetic or reconstructed samples.
Despite this progress, existing methods are either data-heavy, reliant on specialized 3D inputs, or
restricted in modeling structured relational understanding. In contrast, SPATIALTHINKER achieves
robust 3D spatial reasoning including object localization, and relational and regional understanding,
using only 7K high-quality structured QA samples combined with reinforcement learning over dense
spatial rewards.

Structured Visual Grounding in MLLMs. Scene graphs provide a structured representation of
objects and their relations and have been widely explored for visual reasoning [32, 77, 30]. Classical
scene graph generation builds on detection-relation pipelines [9, 18], but often struggles with multi-
role or open-vocabulary reasoning. With the advent of LLMs, text-augmented approaches such as
LLM4SGG and GPT4SGG convert captions into structured graphs [42, 16], while more advanced
open-vocabulary SGG methods leverage VLMs or MLLMs to generalize beyond fixed ontologies
[11, 48]. Recent RL-driven frameworks, such as R1-SGG and Relation-R1, train models to construct
scene graphs directly with dense structural or cognitive rewards [15, 47], highlighting the utility of
structured supervision. In parallel, region-aware MLLMs like KOSMOS-2 [64], Ferret [91], and
GLaMM [66] improve spatial grounding by integrating region information through bounding boxes
and textual region descriptions, enabling more precise localization within images.SPATIALTHINKER
builds on these advances by explicitly grounding reasoning on scene subgraphs focused on the
question-specific region of interest, combining structured scene understanding with interpretable,
reward-guided spatial reasoning.

Multimodal Reinforcement Learning. Reinforcement learning (RL) has been widely adopted to
enhance reasoning in MLLMs, extending chain-of-thought prompting [83] and fine-grained verifiable
rewards to multimodal reasoning tasks. Recent works have applied RL for math reasoning [90,
59], classification and grounding [54], semantic segmentation [53], structured reasoning pipelines
[68] or referring expressions comprehension and open vocabulary detection [69, 65, 54]. Spatial
RL strategies have emerged as well: SVQA-R1 incorporates view-consistency rewards [78], while
SpatialReasoner adds coordinate-aware supervision in reasoning [69, 58]. Despite these efforts, most
existing methods rely on relatively simple or sparse reward signals, such as final answer accuracy
or coarse coordinate supervision, which provide limited guidance for detailed spatial relational
reasoning. SPATIALTHINKER advances this space with a fine-grained multi-objective reward design
covering regional subgraph construction, comprising object localisation and relational grounding,
and final correctness. The model predicts these structured representations first, then reasons over
them for detailed and interpretable spatial inference.

B Preliminaries

Scene Graph Generation. A scene graph provides a structured representation of an image I as a
directed graph G = (V,E). Each node vi ∈ V denotes an object with a category label ci and a 2D
bounding box bi = (xi, yi, wi, hi); each edge eij ∈ E is a relationship triplet ⟨vi, rij , vj⟩ capturing
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spatial or interactive relations (e.g., left of, on, under) [32, 77]. Classical SGG decomposes prediction
into object detection and relation recognition [9, 18], while open-vocabulary methods leverage
language/vision priors to generalize beyond fixed ontologies [11, 48]. We refer to question-focused
scene subgraphs as Gq = (Vq, Eq) ⊆ G that retain only objects and relations relevant to a given
query q.

Reasoning in Multimodal Large Language Models. Multimodal large language models (MLLMs)
define autoregressive policies πθ over sequences of interleaved visual and textual tokens. Given an
image ximg and a spatial question xtext, the model generates a reasoning trace y = (a1, . . . , aT ),
where each at represents a token from intermediate reasoning steps or the final answer. This policy is
factorized as:

πθ(y | ximg,xtext) =

T∏
t=1

πθ(at | ximg,xtext, a<t) (1)

While supervised fine-tuning enables models to imitate reasoning traces observed during training,
reinforcement learning offers a principled way to optimize generation using explicit reward signals,
often resulting in better generalization to out-of-distribution inputs and improved adherence to task-
specific structure [26, 20, 37]. The reinforcement learning objective seeks to maximize expected
reward over trajectories:

max
θ

EQ∼D,y∼πθ(·|Q) [R(Q,y)] (2)

where Q = {ximg,xtext} is the input query, D is the dataset distribution, and R is a verifiable reward
function evaluating task correctness, formatting, and spatial grounding.

Task Formulation We cast spatial reasoning in MLLMs as the task of producing a visually
grounded response y to a query Q = ximg,xtext. Unlike generic reasoning, our formulation explicitly
requires constructing question-focused scene subgraphs Gq and reasoning over objects, bounding
boxes, and relations. The policy πθ is trained on spatially grounded VQA samples from STVQA-7K
C using our multi-objective spatial reward R (Section 2.1), which enforces structural validity, count
fidelity, answer accuracy, and precise spatial grounding.

C STVQA-7K: Dataset Construction

High-quality spatial VQA datasets remain scarce, as most existing benchmarks either lack grounded
scene-graph annotations (i.e., explicit spatial coordinates for objects and relations) or fail to compre-
hensively cover both 2D and 3D spatial reasoning categories. Visual Genome [44] provides dense,
human-annotated scene graphs that support strict grounding of both question generation and answer
verification within a unified representational framework. Using Visual Genome, we synthetically
constructed a spatial visual question answering dataset called SPATIALTHINKER Visual Question
Answering dataset i.e., STVQA-7K comprising 7,587 samples, fully grounded in human-annotated
scene graphs [44], which we employed for post-training the SPATIALTHINKER models. Importantly,
our pipeline is scalable and can be extended to generate up to 108K samples, the maximum supported
by Visual Genome, enabling future large-scale post-training or RL fine-tuning.

The original VG150 predicate set is limited to 50 relations, missing several important categories
such as positional relations (e.g., left, right, beside), distance-based relations (e.g., near, far, next
to), comparative size (e.g., smaller, taller, bigger), orientation (e.g., facing towards/away), and
containment (e.g., inside, beneath). To address this gap, we extended the scene graph relation space
with an additional 34 predicates, ensuring richer spatial coverage in both 2D and 3D reasoning.
Bounding box coordinates are retained in absolute pixel space, rather than normalized values, to
preserve real-world scale and spatial alignment, to enable both improved spatial reasoning and
effective use of CIoU-based supervision during reward optimization. The dataset construction
pipeline proceeds in three stages: (1) synthetic question generation from ground-truth scene graphs,
(2) automated quality filtering with external verification, and (3) scene graph adaptation for regional
alignment with individual questions.

Synthetic Question Generation. Visual Genome scene graphs serve as our foundational ground
truth, providing object categories, bounding boxes, and relational triplets for over 150,000 images.
We synthetically generate question-answer pairs for a given scene graph data using Claude Sonnet
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4 [6], synthesizing multiple-choice questions based on the salient objects and meaningful spatial
relations explicitly present in each graph. Each question-answer pair is accompanied with a rating
generated out of 10 and the difficulty level. Our question generation encompasses nine distinct spatial
reasoning categories: spatial relations (above, behind, near, etc.), physical reach and interaction
(holding, touching), comparative size, orientation from specific viewpoints, instance location within
image frames, depth ordering relative to the camera, distance comparisons to reference objects, object
counting, and existence verification. This comprehensive taxonomy spans both 2D and 3D spatial
understanding, providing a broad coverage of visual-spatial reasoning capabilities. To promote robust
perception, we also include questions involving objects that are partially visible or occluded in the
scene, encouraging the model to reason about spatial arrangements and fine-grained details. For each
question, we generate a rating out of 10.

Figure 1: Distribution of QA types in STVQA-7K. The
dataset spans a diverse range of spatial reasoning skills,
with an emphasis on spatial relations while also balanc-
ing other categories such as localization, depth, distance,
size, and orientation.

Quality Filtering and Validation. To en-
sure semantic correctness at scale, we im-
plement a consistency-based verification
procedure using GPT-4o [39] as an exter-
nal validation model. For each generated
question-answer pair, we assess agreement
between the external model and our syn-
thetic ground truth label using a pass@2
criterion. Questions that fail this initial
consistency check undergo additional eval-
uation with two supplementary model re-
sponses. Items for which all four collected
responses disagree with the generated la-
bel are discarded as potentially incorrect
or ambiguous. This filtering process be-
gins with 56,224 initially generated ques-
tions by Claude Sonnet 4 [6]. We select the
10,000 highest-rated samples based on the
questions complexity and rating towards its
contribution to enhance spatial intelligence
as judged by Claude Sonnet 4. Follow-
ing consistency filtering, we retain 6,895
training samples and 692 validation sam-
ples ( 75%), indicating high label reliability.
The final set consists of 50% samples from the relation category, and the remaining 50% distributed
across the eight other categories. To prevent positional bias, answers are uniformly distributed across
options A, B, C, and D. Figure Figure 1 illustrates the distribution of QA types in STVQA-7K,
highlighting the emphasis on spatial relations while maintaining balanced coverage across the re-
maining reasoning categories. Representative examples of generated QA pairs across the nine spatial
reasoning categories are shown in Figure 2, illustrating the diversity of question types in STVQA-7K.

Scene Graph Adaptation. Since each question focuses on specific objects and relationships within
the broader scene, we derive question-aligned scene subgraphs that capture only the relevant spatial
context. For each question, we extract content words through tokenization and lemmatization to
obtain both singular and plural word forms. We then filter the original scene graph to retain only object
nodes whose labels appear in the extracted question vocabulary. Relational triplets are preserved
when both the subject and object entities are retained and the predicate appears in the question
context. The resulting focused scene graph representations enable training the model to generate
question-aligned region-of-interest subgraphs, encouraging it to localize attention, ground reasoning
in relevant entities and relations, and ultimately learn where to focus within complex visual scenes.
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Figure 2: Examples of generated QA pairs across the nine spatial reasoning categories in STVQA-7K.
Each category highlights distinct reasoning skills, ranging from relative spatial relations and depth
ordering to distance, size, orientation, reach, location, count and existence.
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Figure 3: Method overview of SPATIALTHINKER. Our framework integrates structured scene-graph
grounded reasoning with multi-objective dense RL to enhance 3D spatial understanding in multimodal
large language models.

D Experimental Setup Details

This section presents comprehensive evaluations of SPATIALTHINKER across multiple spatial rea-
soning benchmarks, demonstrating the effectiveness of our multi-objective dense reward design and
data-efficient training approach.

D.1 Implementation Details

We build SPATIALTHINKER upon two strong open-source multimodal base models: Qwen2.5-VL-
3B and Qwen2.5-VL-7B [7], using them as backbones for policy optimization with reinforcement
learning. No supervised fine-tuning is performed prior to RL training on our STVQA-7K dataset
(Section C). We employ GRPO [67] as the advantage estimator as described in Section 2.2, using a
rollout size of 8 samples per query and a sampling temperature of 1.0. The models are trained with a
maximum context length of 16,384 tokens. The rollout batch size is set to 512, and the global batch
size is 128. We train for 75 training steps i.e., 5 training episodes) on 4 × NVIDIA H100 80GB
GPUs. Training time totals around 13 hours for the 3B model and 15 hours for the 7B model.

The models are trained on high-resolution image inputs ranging from 512×512 to 2048×2048 pixels,
to preserve fine-grained spatial information. All model parameters, including the vision encoder,
are updated during training. We use the AdamW optimizer with bf16 precision, a learning rate of
1× 10−6, and a weight decay of 1× 10−2. The KL penalty coefficient is set to 10−2. STVQA-7K is
partitioned with a 90/10 train–validation split.

D.2 Experimental Setup

We evaluate SPATIALTHINKER across a diverse suite of 12 spatial understanding and real-world VQA
benchmarks, covering both 2D and 3D understanding aspects to assess fine-grained spatial reasoning
capabilities and real-world generalization. We compare against both proprietary and open-source
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baselines, including models specifically trained for spatial reasoning tasks. Our experiments address
two key questions: (Q1) Does our spatial VQA data generation pipeline, combined with dense reward
RL, improve MLLMs’ general spatial reasoning capabilities? (Q2) How effectively can MLLMs
learn spatial understanding from just 7K synthetic training samples, and how does this compare to
models trained on orders-of-magnitude larger datasets?

Benchmarks. We evaluate models across six core spatial benchmarks, and six general-purpose VQA
and real-world understanding datasets. The spatial benchmarks includes CV-Bench [74] that measures
2D spatial relations, object counting, depth ordering, and distance reasoning. BLINK’s Spatial
Relations and Relative Depth tasks [25] test directional and positional understanding, and fine-grained
point-level depth perception—particularly challenging as SPATIALTHINKER receives no explicit
point-level supervision during training 3DSRBench [56] assesses egocentric 3D spatial reasoning
via relational and multi-object comparisons. MMVP [75] examines visual pattern recognition across
attributes such as orientation, positional relations, existence, viewpoint, and size. SpatialBench [8]
assesses general spatial comprehension across counting, existence, positional relationships, physical
interactions such as reach, and size comparisons. Finally, SpatialReasonerEval [58] emphasizes depth
and distance reasoning within 3D spatial tasks.

To assess broader generalization, we further evaluate models on six diverse real-world benchmarks.
VStarBench [84] measures accurate localization and recognition of key objects in complex natural
scenes. RealWorldQA [85] requires integrating visual inputs with commonsense and multi-step
reasoning for real-world understanding. MME-RealWorld [94] spans five challenging domains
including optical character recognition in the wild, remote sensing, diagram and table interpretation,
autonomous driving, and scene monitoring. RoboSpatial-Home [71] simulates embodied spatial
reasoning tasks involving object-object relationships, compatibility, and reference-frame switching
(ego-centric, object-centric, and world-centric). We only use Configuration and Compatibility
subsets of RoboSpatial-Home. MM-Star [14] provides a holistic benchmark covering math, logical
reasoning, instance recognition, and fine/coarse visual perception. HallusionBench [31] evaluates
hallucination resistance in multimodal models, requiring accurate visual grounding to counteract
entangled linguistic or perceptual illusions. Together, these benchmarks allow us to probe spatial and
perceptual reasoning across synthetic, embodied, and naturalistic settings.

Closed-Source MLLM Baselines. Among proprietary models, we evaluate GPT-4o (GPT-4O-
0513) [39] and Claude 3.5 Sonnet (CLAUDE-3.5-SONNET-0620) [5], which represent the current
state-of-the-art in commercial multimodal reasoning. These serve as upper bounds for spatial
generalization under non-public training regimes.

Open-Source Generalist MLLM Baselines. We compare against generalist open-source MLLMs
including Qwen2.5-VL 3B and 7B models [7], LLaVA-NeXT [46], Cambrian-1 [74], and
VLAA-Thinker (3B and 7B) [12]. These models represent state-of-the-art vision-language ar-
chitectures, offering strong general visual reasoning but without specific spatial tuning.

Open-Source Spatial MLLM Baselines. We benchmark against specialized open-source models
designed for spatial reasoning: SpaceLLaVA-13B [1, 10] – a public re-implementation of SpatialVLM,
SpatialRGPT-7B [17] incorporates region-level supervision and explicit depth maps into training,
RoboPoint-13B [93], which instruction-tunes an MLLM to predict image key-point affordances for
robotics and spatial affordance tasks, SpaceThinker [3], a fine-tuned VLAA-Thinker model for spatial
reasoning, and its improved successor SpaceOm [2], which incorporates deeper chain-of-thought
traces and Robo2VLM data [13]. Other baselines include SpatialReasoner [58], trained with RL and
explicit 3D representations, and SpatialBot [8], which integrates RGB and depth inputs for robust
spatial perception.

In addition to the above, we compare against our training variants including supervised fine-tuning
(SFT) baselines and vanilla GRPO trained with sparse rewards (accuracy and format only) to isolate
the contribution of our dense spatial reward framework.

In addition to external baselines, we evaluate ablations on variants of our model trained with the
STVQA-7K dataset: a supervised fine-tuning (SFT) baseline, and a sparse-reward RL baseline that
optimizes only format and accuracy rewards, each weighted equally at 0.5. These ablations allow us
to isolate the contribution of our proposed multi-objective dense spatial reward function.
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Evaluation Setting. We report accuracy as the primary evaluation metric across all benchmarks.
All models are evaluated under zero-shot settings, using greedy decoding (temperature = 0.0,
max_new_tokens = 2048) to ensure deterministic and reproducible outputs. For models with spe-
cific reasoning templates such as VLAA-Thinker, SpaceThinker, and SpaceOm, we utilize their
corresponding structured prompts. In line with their original training setup, SpatialRGPT receives
depth inputs, while all other models are evaluated using RGB images alone. Our evaluation pipeline
builds upon OpenVLThinker’s evaluation framework [22], adapted to support our new benchmark
and dataset formats.

D.3 SpatialThinker Prompt Format

We use a structured prompt to guide the model through a four-stage reasoning process, explicitly
separated using the tags <observe>, <scene>, <think>, and <answer>. This format is enforced
during training via a binary format reward Rf ∈ {0, 1}, with weight wformat = 0.1, which verifies
the presence, ordering, and validity of all required tags. The <scene> section must contain a JSON-
encoded subgraph with object IDs, bounding boxes, and relational triplets, while the final answer
must be clearly placed within the <answer> tags.

Each prompt also includes the input image dimensions in the form Image size: {Width} ×
{Height}, which are dynamically replaced with actual values. Including this information helps the
model constrain predicted bounding box coordinates within image bounds, enabling better spatial
localization. These coordinates are directly evaluated using IoU-based spatial rewards such as
Complete IoU (CIoU), making dimension-aware prediction essential for optimizing structured spatial
grounding.

SpatialThinker Prompt

You FIRST observe the image in <observe> </observe> tags, then visualise the relevant scene
graph in <scene> </scene> tags, followed by thinking about the reasoning process as an internal
monologue within <think> </think> tags and then provide the final answer. The final answer
MUST BE put within <answer> </answer> tags, and only return the final choice including the
correct option and answer within the answer tags, e.g., <answer> (C) The red cube is left of the
green sphere </answer>.
Image size: {Width} × {Height}

D.4 Details on SFT Training

To establish a comprehensive baseline for comparison with our reinforcement learning approach, we
conduct supervised fine-tuning (SFT) experiments using the same base models (Qwen2.5-VL-3B
and Qwen2.5-VL-7B) and training dataset (STVQA-7K). The SFT implementation utilizes LLaMA-
Factory framework [96] with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning.

The training configuration employs LoRA with rank 8 applied to all available modules within the
model architecture, enabling comprehensive adaptation while maintaining computational efficiency.
Models are trained for 3 epochs totaling 645 training steps, using a context window length of 2048
tokens. We adopt BF16 mixed precision training with a learning rate of 1× 10−4, following a cosine
learning rate schedule with a warmup ratio of 0.1.

For the SFT experiments, we train models directly on question-answer pairs without intermediate
reasoning traces or chain-of-thought prompting. This design choice reflects the practical constraint
that generating ground-truth reasoning traces would require additional dataset processing, annotation,
and API credits budget. In contrast, reinforcement learning approaches with verifiable rewards
(RLVR) naturally enables training with answer supervision alone, as the model learns to generate
its own reasoning strategies through environmental feedback rather than imitating pre-specified
reasoning patterns.

The SFT baseline serves a critical role in our experimental evaluation, providing direct evidence of
the generalization advantages offered by reinforcement learning with dense spatial rewards compared
to traditional supervised learning on the same dataset.
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D.5 Details on RL Training

We implement reinforcement learning training using the EasyR1 framework [95], building upon
Qwen2.5-VL-3B and Qwen2.5-VL-7B as base models without any prior supervised fine-tuning.
This direct application of RL to the base models enables us to isolate the effects of reward-driven
learning from potential confounding factors introduced by intermediate training stages. Additionally,
performing an SFT stage prior to RL would require generating ground-truth reasoning traces, which
is limited by API budget. Moreover, explicit reasoning supervision is not strictly necessary—our
multi-objective dense spatial rewards encourage the model to acquire structured reasoning and
self-reflection abilities directly during RL training.

The training employs Group Relative Policy Optimization (GRPO) [67] as the advantage estimation
method, configured with a rollout size of 8 samples per query at a sampling temperature of 1.0. This
configuration balances exploration diversity with computational efficiency, allowing the model to
discover multiple reasoning strategies while maintaining stable convergence. The training process
utilizes a rollout batch size of 512 and a global batch size of 128, processing data through 75 training
steps (approximately 5 training episodes) to achieve convergence. The entire training pipeline runs
on 4 × NVIDIA H100 80GB GPUs, requiring approximately ∼ 13 hours for the 3B model and ∼ 15
hours for the 7B variant.

To preserve fine-grained spatial information critical for accurate object localization and spatial
reasoning, models process high-resolution image inputs ranging from 512 × 512 to 2048 × 2048
pixels. The training configuration updates all model parameters including the vision encoder, enabling
comprehensive adaptation to spatial reasoning tasks. Optimization employs AdamW with BF16
mixed precision, a conservative learning rate of 1× 10−6, and weight decay of 1× 10−2. The KL
penalty coefficient is set to 10−2 to prevent excessive divergence from the base model distribution
while allowing sufficient exploration for spatial reasoning strategies. The training utilizes a 90/10
train-validation split of the STVQA-7K dataset, with a maximum context length of 16,384 tokens to
accommodate detailed scene descriptions and reasoning traces.

For baseline comparisons, we train vanilla GRPO models (Qwen2.5-VL-3B + Vanilla GRPO and
Qwen2.5-VL-7B + Vanilla GRPO) using a simplified reward structure consisting solely of accuracy
(wacc = 0.5) and format rewards (wformat = 0.5), without the spatial grounding and count penalty
components. This configuration represents standard RLVR approaches that rely on sparse final-answer
supervision [20, 69, 12]. The full multi-objective reward design employed for SPATIALTHINKER
training, incorporating format, count, accuracy, and spatial rewards with lexicographic gating, is
detailed in Section 2.1. The substantial performance improvements of SPATIALTHINKER over vanilla
GRPO baselines demonstrate the critical importance of dense spatial supervision in teaching models
to perform visually-grounded reasoning.

D.5.1 SpatialThinker RL Training Curves

Throughout reinforcement learning, all four reward components: format, accuracy, count, and
spatial; demonstrate consistent and interpretable improvement, reflecting stable learning under our
lexicographically gated, multi-objective reward structure. The format reward quickly converges early
in training, indicating the model learns to produce structurally valid outputs that adhere to the required
scene-grounded reasoning format. Accuracy steadily improves across steps, highlighting the model’s
increasing ability to provide correct answers. Count reward rises consistently, showing that the model
learns to focus on predicting only question-relevant objects and relations, rather than describing the
entire scene. The spatial reward also improves gradually, indicating better object localization and
grounding, as the model increasingly aligns predicted bounding boxes with ground truth annotations.
Together, these trends reflect how each reward component scaffolds a different stage of the reasoning
process, enforcing structure, correctness, focus, and grounding in tandem.

Response length initially declines, then rises again as it begins producing more deliberate, structured
reasoning, signaling an “aha moment” where the model starts to produce more deliberate reasoning
traces [20, 98]. This emergent behavior suggests the development of internal problem-solving
strategies, as the model learns to spend more “thinking time” before answering, consistent with the
emergence of self-reflection and structured planning in its spatial reasoning process.
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(a) Format Reward (b) Count Reward (c) Accuracy Reward

(d) Spatial Reward (e) Response Length

Figure 4: RL training dynamics of SPATIALTHINKER. All reward components (a–d) improve
consistently, reflecting stable optimization. Response length (e) shows a non-monotonic trend,
indicating emergent reasoning strategies.

E Reward Design Process

This section details our approach to designing a robust reward system that guides models toward
genuine spatial reasoning while preventing degenerate solutions. Our reward design emerged from
iterative refinement to address systematic reward hacking behaviors observed during training. Early
experiments revealed that models readily exploit loopholes in reward functions—particularly when
spatial localization rewards were provided without proper constraints. To empirically motivate our
design choices, we first present an ablation over successive reward components on the STVQA-val
split, followed by details of observed behaviours and analysis.

E.1 Reward Design Ablation

To empirically validate our design choices, we conduct a controlled ablation study on the STVQA-
7Kval set, progressively introducing each reward component and constraint. The ablation results
support our design rationale by highlighting how each component mitigates specific failure modes.
Adding spatial rewards naively without generation constraints, causes performance to collapse by
over 50% (from 74.9% to 23.7%), as models exploit the reward by generating cluttered bounding
boxes to game the CIoU metric. Introducing the count reward addresses this issue, improving
accuracy by 38% relative (to 61.7%), as it constrains overgeneration and forces models to focus on
question-relevant elements. However, residual overfitting persists because rewarding spatial alignment
across all scene objects biases the model toward exhaustive global descriptions. To address this, we
shift from global to local spatial supervision—rewarding only Regions of Interest (RoIs) derived
from question-relevant objects and relations—thereby training the model to attend selectively to
meaningful spatial cues rather than densely describing the entire scene. Lexicographic gating further
ensures that spatial rewards are only applied when the final answer is correct, effectively serving
as a bonus signal rather than a competing objective. This ordering stabilizes learning—without it,
models overfit by optimizing auxiliary rewards more aggressively than accuracy itself. Together,
these interventions restore and slightly surpass the original performance (76.3%), demonstrating
the importance of grounding rewards in both correctness and relevance. Finally, dataset filtering
using pass@2 correctness verification with gpt-4o [39] amplifies these effects, yielding a substantial
gain and culminating in the best validation accuracy of 87.9%. This step ensures that only high-
quality, verifiable supervision signals contribute to training, reinforcing the alignment between spatial
grounding and task success.
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Reward Components STVQA-7Kval

Format + Accuracy 74.9
+ Spatial 23.7
+ Count 61.7
+ Lexicographic Gating and RoI Filtering 76.3
+ Filtered Dataset (pass@2) 87.9(+13.0)

Table 3: Reward ablation on STVQA-7Kval. Progressive addition of constraints and filtering restores
stable optimization and improves grounding quality. The final configuration (yellow) represents our
full reward design.

E.2 Reward Design Rationale

Mitigating Spatial Reward Hacking. Our initial reward formulation, which directly rewarded
spatial localization quality, led to unexpected model behavior. Without constraints on generation
quantity, models discovered they could maximize spatial rewards by generating numerous bounding
boxes with varying coordinates. Through Hungarian matching that selects the best-matching boxes,
even random predictions would occasionally yield high Complete IoU (CIoU) scores. This reward
hacking manifested as models producing excessive, hallucinated objects while achieving poor task
accuracy—the spatial reward was inflated despite the clutter of irrelevant predictions degrading actual
performance. To address this exploitation, we introduced the Count Reward that penalizes deviations
from expected object and relation counts. This reward serves dual purposes: (1) preventing reward
hacking by constraining the generation space, and (2) encouraging models to focus on question-
relevant scene elements rather than exhaustively describing the entire image. The count reward
formulation provides a linear penalty proportional to relative deviations from ground truth counts,
normalized to prevent domination by scenes with many objects.

Scene Graph Filtering. Another form of overfitting emerged when training with complete Visual
Genome scene graphs. Models would memorize exhaustive scene descriptions, including irrelevant
background objects, leading to poor generalization. We addressed this by filtering ground truth scene
graphs to retain only objects and relations relevant to the given question, focusing supervision on
task-critical information.

CIoU over IoU for Spatial Reward. For spatial localization, we adopt Complete IoU (CIoU)
instead of standard IoU to compute the spatial reward. Unlike IoU, which returns zero when predicted
and ground-truth boxes do not overlap, CIoU provides meaningful gradients by incorporating center
distance, aspect ratio, and overlap [97]. This makes CIoU a denser and more robust supervisory
signal during training.

Balancing Supervision with Exploration. Our experiments reveal a crucial insight: models learn
simple reward functions significantly faster than complex ones. Tasks with straightforward rewards
(e.g., format compliance) show rapid improvements, while multi-component rewards require careful
balancing. However, counterintuitively, highly detailed reward functions that attempt to supervise
every aspect often degrade performance. Models overfit to maximize minute reward components,
converging to template-style answers that score well on individual metrics while losing flexibility.
We observed accuracy drops mid-training when rewards became too prescriptive, as models focused
on reward optimization rather than genuine task understanding. Effective reinforcement learning
requires providing guidance while preserving exploration space. Our final design addresses this by
providing soft signals through format checks, count constraints, and accuracy rewards, with spatial
localization rewards activated only for correct answers. This maintains the delicate balance between
guidance and exploration necessary for robust learning.

Sequential Optimization via Lexicographic Gating. To prevent models from gaming individual
reward components at the expense of task accuracy, we implement lexicographic gating [70].
Rewards are applied in a strict hierarchy: format ≻ {count, accuracy} ≻ spatial. This forces models
to first master output formatting, then simultaneously learn to control generation scope and achieve
correctness, before optimizing spatial grounding:
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Rtotal = I[Rformat = 1] · (wformat ·Rf + wcount ·Rc + waccuracy ·Ra + I[Raccuracy = 1] · wspatial ·Rs)

where I[·] is the indicator function, with weights wformat = 0.1, wcount = 0.2, waccuracy = 0.5,
wspatial = 0.2. This gated design ensures spatial rewards are only applied when the final answer is
correct, aligning grounding quality with task success and preventing scenarios where models achieve
high spatial scores through precise but irrelevant localizations.

F Ablation on Divergence Constraints

Recent works such as DAPO [92, 76] argue that KL regularization can unnecessarily constrain
policy updates and recommend removing the KL penalty entirely to allow freer exploration. In
contrast, ? revisit divergence regularization and propose using a chi-squared penalty to better control
overoptimization. Motivated by these findings, we ablate the effect of different divergence constraints
in our reinforcement learning setup for spatial reasoning.

Table 4 reports results on CV-Bench 2D and 3D tasks [74] for three variants of SPATIALTHINKER-3B:
(i) no KL penalty, (ii) chi-squared divergence penalty with a coefficient of 0.01, and (iii) our default
KL divergence penalty with a coefficient of 0.01. Removing the KL penalty leads to a noticeable
drop in performance, particularly on 3D tasks. Using a chi-squared divergence penalty underperforms
both the no-penalty and KL variants on several subtasks, especially depth and distance reasoning.
The KL-regularized model achieves the best overall performance, yielding a CV-Bench average of
73.7% and providing the strongest results on 3D reasoning tasks.

These findings suggest that a modest KL penalty stabilizes policy updates and prevents reward
overoptimization in our spatial reasoning setting, leading to more reliable improvements. While
recent language-only alignment work has advocated for removing divergence constraints, our results
indicate that retaining a small KL term remains beneficial for multimodal reasoning tasks where
stability and coherent spatial grounding are crucial.

Model Variant Count Relation Depth Distance CV-Bench 2D CV-Bench 3D CV-Bench Avg.
SpatialThinker-3B + No KL Penalty 65.5 76.8 74.8 70.2 71.2 72.5 71.9
SpatialThinker-3B + Chi2 (0.01) 64.5 73.7 71.2 66.2 69.1 68.7 68.9
SpatialThinker-3B + KL (0.01) 68.5 73.5 79.7 72.8 71.0 76.3 73.7

Table 4: Ablation on divergence constraints for SPATIALTHINKER-3B on CV-Bench tasks. KL-
regularization with β = 0.01 yields the highest overall average and strongest 3D reasoning perfor-
mance.

G Detailed Results and Discussion

We evaluate SpatialThinker across six spatial reasoning and six generalist VQA benchmarks to assess
its effectiveness in learning spatial understanding and real-world VQA from limited training data
through dense reward supervision.

G.1 Performance across Spatial Benchmarks.

We evaluate SPATIALTHINKER across six spatial reasoning benchmarks that collectively span 2D
relational understanding, 3D spatial alignment, counting, depth ordering, and distance comparison.
As shown in Tables 1 and 2, SPATIALTHINKER-7B achieves strong and consistent performance
across all spatial tasks. On CV-Bench, the model attains an average accuracy of 78.2% across 2D
and 3D tasks, nearing GPT-4o’s 79.4% while outperforming all other open-source models, and
Claude 3.5 Sonnet. On the challenging 3DSRBench, which requires orientation and multi-object
reasoning, it achieves 56.4%, surpassing GPT-4o by +12%. On BLINK’s spatial relation and relative
depth tasks, it achieves 86.0% and 72.6%, respectively, yielding a 79.3% average—closely matching
GPT-4o (80.4%) and outperforming other spatial MLLMs like Spatial-RGPT-7B (74.0%), which uses
depth inputs and 700K training samples. On SpatialBench, our model reaches 66.4%, approaching
GPT-4o’s 67.0%.
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Despite being trained on just 7K synthetic samples and using only RGB inputs, SPATIALTHINKER-
7B consistently outperforms open-source baselines, including VLAA-Thinker-7B, Cambrian-1-8B,
Spatial-RGPT, SpaceLLaVA, and RoboPoint-13B, all of which are trained on orders of magnitude
more data. Notably, it exceeds specialized spatial models as well: on CV-Bench 3D, it outperforms
SpaceLLaVA-13B (78.7% vs. 68.5%), and on BLINK tasks, it surpasses Spatial-RGPT-7B by +5.3%,
and SpatialBot by +11.5% despite their reliance on depth information. Further, SPATIALTHINKER-7B
outperforms all models on MMVP, and all open-source baselines on SpatialReasonerEval that mea-
sures 3D spatial understanding tasks like depth and distance. These results highlight the effectiveness
of our dense reward design in enabling generalizable spatial reasoning without the need for explicit
geometric inputs or large-scale pretraining.

Model MM-Star [14] VStarBench [84] RealWorldQA [85] MME-RealWorld-Lite [94] RoboSpatial-Home [71] HallusionBench [31]
Proprietary and Open-Source MLLMs

GPT-4o [39] 64.7 66.0 75.4 51.6 68.4 55.0
Claude 3.5 Sonnet [5] 65.1 51.8 60.1 45.2 57.0 55.5
Qwen2.5-VL-3B [7] 55.9 74.9 58.2 41.9 58.7 46.3
Qwen2.5-VL-7B [7] 63.9 75.9 68.4 44.1 70.6 52.9
VLAA-Thinker-7B [12] 63.8 58.1 66.4 44.6 68.9 68.9
SpaceThinker [3] 54.5 56.5 61.6 - 52.6 65.4
SpaceOm [2] 57.7 56.5 53.3 - 68.9 62.9

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 53.9 73.3 64.8 43.0 69.8 58.9
Qwen2.5-VL-3B + Vanilla GRPO 56.7 74.3 64.4 46.7 64.0 59.0
SpatialThinker-3B (Ours) 57.6 78.0 66.3 46.5 70.6 62.5
Qwen2.5-VL-7B + SFT 63.2 78.0 65.4 47.4 72.4 66.2
Qwen2.5-VL-7B + Vanilla GRPO 63.4 73.9 66.6 46.3 76.2 60.7
SpatialThinker-7B (Ours) 65.9 81.7 69.2 48.3 76.3 66.4

Table 5: Performance on VQA and Real-World benchmarks. Top-1 & Top-2 accuracies are repre-
sented using bold text, and underlines.

G.2 Performance across Real-World and General VQA Benchmarks

We further assess our model’s generalization to real-world visual question answering using six diverse
benchmarks: MM-Star, RealWorldQA, VStarBench, MME-RealWorld-Lite, RoboSpatial-Home, and
HallusionBench (Table 5). SPATIALTHINKER-7B achieves the highest overall performance across
these datasets. It obtains 65.9% on MM-Star, 81.7% on VStarBench, and 76.3% on RoboSpatial-
Home, surpassing all open-source and proprietary baselines. It also performs competitively on
hallucination-sensitive and real-world benchmarks, scoring 66.4% on HallusionBench, 69.2% on
RealWorldQA, and 48.3% on MME-RealWorld-Lite benchmarks.

These results show that training with dense spatial rewards generalizes beyond synthetic benchmarks
to real-world settings. Gains on MM-Star, RoboSpatial-Home, and VStarBench highlight the benefit
of structured scene grounding, even with a small synthetic training set. Compared to generalist
and open-source spatial MLLM baselines, SPATIALTHINKER delivers greater robustness, fewer
hallucinations, and higher task fidelity, reinforcing our hypothesis that spatial grounding via reward
optimization not only improves spatial reasoning but also enhances visual understanding in the wild.

G.3 RL Training with Dense Rewards Enables Stronger Generalization

Model Avg. Acc. (12) ∆Base ∆GPT-4o ∆Claude 3.5 Sonnet

Proprietary and Base MLLMs
GPT-4o [39] 67.8 - - -
Claude 3.5 Sonnet [5] 61.1 - - -
Qwen2.5-VL-3B [7] 57.3 - - -
Qwen2.5-VL-7B [7] 64.0 - - -

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 60.8 +3.5 -7.0 -0.3
Qwen2.5-VL-3B + Vanilla GRPO 62.2 +4.9 -5.6 +1.1
SpatialThinker-3B (Ours) 66.3 +9.0 -1.5 +5.2
Qwen2.5-VL-7B + SFT 65.2 +1.2 -2.6 +4.1
Qwen2.5-VL-7B + Vanilla GRPO 68.0 +4.0 +0.2 +6.9
SpatialThinker-7B (Ours) 71.2 +7.2 +3.4 +10.1

Table 6: Average accuracy across all 12 benchmarks with rel-
ative improvements (∆). SpatialThinker models consistently
outperform SFT and vanilla GRPO, with SpatialThinker-7B
surpassing GPT-4o by +3.4 points and Claude 3.5 Sonnet by
+10.1 points.

To isolate the contributions of our
multi-objective spatial reward de-
sign, we compare against two abla-
tion variants: supervised fine-tuning
(SFT) and reinforcement learning
with sparse rewards using only format
and answer accuracy. As shown in Ta-
ble 6, SPATIALTHINKER-7B achieves
an average accuracy of 71.2% across
all 12 benchmarks—exceeding the
SFT baseline by +6.0% and the sparse
GRPO variant by +3.2%. These gains
are consistent across the 3B variant
as well, where SPATIALTHINKER-3B
outperforms its SFT and GRPO coun-
terparts by +5.5% and +4.1% aver-
age gains, respectively. Notably, even
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vanilla GRPO provides modest im-
provements over the base model (+4.0 for 7B, +4.9 for 3B), but our dense spatial reward nearly
doubles ×1.8 this gain (+7.2% for 7B, +9.0% for 3B), underscoring the complementary learning
signal provided by count and spatial objectives.

Beyond aggregate accuracy, lexicographic reward gating stabilizes training by enforcing format and
answer correctness before applying spatial rewards. This encourages structured task completion prior
to spatial grounding, resulting in steady and interpretable reward curves during training (Section ??).
Overall, these results affirm that structured reinforcement learning with dense spatial supervision
significantly enhances the capabilities of multimodal LLMs, even in low-data regimes.

G.4 Out-of-Distribution Generalization: Dense Rewards Enable Stronger Transfer

Model Variant Spatial VQA ∆Base Real-World VQA ∆Base

Qwen2.5-VL-3B + SFT +2.3 +5.9
Qwen2.5-VL-3B + GRPO +4.3 +6.0
SpatialThinker-3B +9.3 +8.5
Qwen2.5-VL-7B + SFT +0.3 +2.9
Qwen2.5-VL-7B + GRPO +4.7 +2.7
SpatialThinker-7B +8.3 +5.2

Table 7: Average accuracy gains (∆) over respective
base models on (6) spatial and (6) real-world VQA
(OOD) benchmarks.

While both SFT and sparse-reward GRPO
improve spatial reasoning over base mod-
els, their ability to generalize to out-of-
distribution (OOD) real-world tasks is lim-
ited, when compared to SPATIALTHINKER
models. As shown in Table 7, sparse-
reward GRPO provides large spatial gains
(+4.3% for 3B, +4.7% for 7B), but of-
fers only marginal improvements on real-
world benchmarks (+6.0 and +2.7 respec-
tively)—nearly matching or underperform-
ing SFT (+5.9% for 3B, +2.9% for 7B). In
contrast, SPATIALTHINKER, trained with dense spatial and count rewards, achieves significantly
stronger OOD generalization: +8.5 for 3B and +5.2 for 7B, outperforming all baselines at both
scales. Notably, SPATIALTHINKER-7B provides nearly double the real-world VQA benchmarks
gains compared to sparse-reward GRPO (+5.2% vs. +2.7%), highlighting the robustness of our
dense reward framework. The combination of structured reasoning formats and lexicographically
gated dense rewards encourages models to internalize spatial priors and compositional patterns that
transfer effectively to out-of-distribution tasks, even without explicit domain-specific supervision.
Appendix H further demonstrates generalization to abstract reasoning tasks.

H Additional Results: Abstract Reasoning

To further evaluate the generalization capacity of SPATIALTHINKER, we examine its performance on
two abstract reasoning benchmarks: Lego Puzzles [72], which test compositional object reasoning
and multi-step spatial reasoning, and BLINK Multi-View [25], which requires integrating spatial cues
across multiple viewpoints, including visual-spatial understanding and perspective understanding.
These tasks are not part of the training distribution and measure the ability of models to extrapolate
structured reasoning skills to abstract domains.

Model Lego Puzzles [72] BLINK Multi-View [25]
Proprietary and Open-Source MLLMs

GPT-4o [39] 57.7 54.1
Claude 3.5 Sonnet [5] 53.6 51.9
Qwen2.5-VL-3B [7] 29.9 42.9
Qwen2.5-VL-7B [7] 35.8 44.4
VLAA-Thinker-7B [12] 33.4 51.1
SpaceThinker [3] 31.5 50.4
SpaceOm [2] 32.0 48.9

Method Comparison (Trained on SpatialThinkerVQA)
Qwen2.5-VL-3B + SFT 34.7 42.1
Qwen2.5-VL-3B + Vanilla GRPO 27.0 45.9
SpatialThinker-3B (Ours) 33.9 45.1
Qwen2.5-VL-7B + SFT 36.6 44.4
Qwen2.5-VL-7B + Vanilla GRPO 29.7 51.9
SpatialThinker-7B (Ours) 37.7 52.6

Table 8: Results on abstract reasoning benchmarks. Lego Puzzles measure compositional reasoning
over object arrangements, while BLINK Multi-View requires integrating multi-view spatial cues.
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Across both tasks, SPATIALTHINKER-7B achieves the highest open-source performance improving
over generalist and spatial MLLMs, and scoring 37.7% on Lego Puzzles and 52.6% on BLINK
Multi-View, closely approaching GPT-4o and surpassing Claude 3.5 Sonnet on the latter. Interest-
ingly, we observe that vanilla GRPO provides competitive performance on BLINK Multi-View but
underperforms on Lego Puzzles, suggesting that dense spatial rewards offer complementary signals
that better support compositional reasoning. These results demonstrate that the spatial grounding
learned through reinforcement learning transfers to more abstract domains that require compositional
and multi-view integration skills.

I Detailed Results: CV-Bench

Model CV-Bench Tasks CV-Bench Avg.Count Relation Depth Distance 2D 3D

Proprietary Models
GPT-4o [39] 65.9 85.7 87.8 78.2 75.8 83.0 79.4
Gemini-1.5-Pro [28] 70.4 85.2 82.4 72.8 77.8 77.6 77.7
Claude 3.7 Sonnet [4] - 74.2 85.8 84.2 - 85.0 -

Open-Source General MLLMs
Qwen2-VL-2B [79] 54.7 22.6 16.7 31.7 38.7 24.2 31.5
Qwen2.5-VL-3B [7] 61.5 58.3 67.3 53.0 59.9 60.2 60.1
Qwen2.5-VL-7B [7] 55.9 82.2 70.0 66.0 69.1 68.0 68.6
VLAA-Thinker-3B [12] 61.6 83.5 53.0 46.8 72.6 49.9 61.3
VLAA-Thinker-7B [12] 47.0 74.6 61.3 59.2 60.8 60.3 60.6
LLaVA-NeXT-34B [46] - - - - 73.0 74.8 73.9
Mini-Gemini-HD-34B [49] - - - - 71.5 79.2 75.4
Cambrian-1-34B [74] - - - - 74.0 79.7 76.9

Open-Source Spatial MLLMs
Spatial-LLaVA-7B [82] - - 57.3 52.2 - 54.8 -
VisualThinker-R1-2B [98] 59.6 66.8 54.2 56.7 63.2 55.45 59.3
Spatial-RGPT-7B w/ depth [17] - - 62.3 59.0 - 60.7 -
RoboPoint-13B [93] - 75.6 77.8 44.5 - 61.15 -
SpaceThinker-3B [3] 61.0 69.2 70.5 61.3 65.1 65.9 65.5
SpaceLLaVA-13B [1] - 63.7 66.8 70.2 - 68.5 -
SpatialBot-3B [8] - 69.4 77.3 60.8 - 69.05 -

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 30.2 77.5 61.2 75.5 53.9 68.4 61.2
Qwen2.5-VL-3B + Vanilla GRPO 67.5 73.7 64.0 69.2 70.6 66.6 68.6
SpatialThinker-3B (Ours) 68.5 73.5 79.7 72.8 71.0 76.3 73.7
Qwen2.5-VL-7B + SFT 33.3 78.9 64.8 77.7 56.1 71.3 63.7
Qwen2.5-VL-7B + Vanilla GRPO 58.9 78.8 79.3 73.7 68.9 76.5 72.7
SpatialThinker-7B (Ours) 68.7 86.7 81.2 76.2 77.7 78.7 78.2

Table 9: Detailed breakdown of CV-Bench [74] results across Count, Relation, Depth, and Distance
subtasks.
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J Detailed Results: 3DSRBench

Model 3DSRBench Tasks Avg.Height Location Orientation Multi-Object

Proprietary Models
GPT-4o [39] 53.2 59.6 21.6 39.0 44.3
Claude 3.5 Sonnet [5] 53.5 63.1 31.4 41.3 48.2
Gemini 2.0 Flash [29] 49.7 68.9 32.2 41.5 49.9
Gemini 2.0 Flash (thinking) [29] 53.0 67.1 35.8 43.6 51.1

Open-Source MLLMs
Qwen2.5-VL-3B [7] 45.2 56.8 35.7 35.7 44.0
Qwen2.5-VL-7B [7] 44.1 62.7 40.6 40.5 48.4
Qwen2.5-VL-72B [7] 53.3 71.0 43.1 46.6 54.9
Cambrian-1-8B [74] 23.2 53.9 35.9 41.9 42.2
LLaVA-NeXT-8B [46] 50.6 59.9 36.1 43.4 48.4
VLAA-Thinker-7B [12] 54.0 60.2 42.9 49.1 52.2

Open-Source Spatial MLLMs
SpatialBot-3B [8] 40.4 54.4 31.9 33.5 41.1
SpaceLLaVA-13B [1] 49.3 54.4 27.6 35.4 42.0
SpatialLLM-8B [57] 45.8 61.6 30.0 36.7 44.9
SpatialRGPT-7B w/ depth [17] 55.9 60.0 34.2 42.3 48.4
SpaceThinker-3B [3] 53.1 57.3 41.9 49.6 51.1

Method Comparison (Trained on STVQA-7K)
Qwen2.5-VL-3B + SFT 51.1 58.3 42.7 48.1 50.8
Qwen2.5-VL-3B + Vanilla GRPO 48.9 57.9 42.5 47.2 50.1
SpatialThinker-3B (Ours) 52.6 61.8 43.4 49.8 52.9
Qwen2.5-VL-7B + SFT 50.6 66.3 43.8 47.9 53.6
Qwen2.5-VL-7B + Vanilla GRPO 54.3 64.7 45.5 50.4 54.7
SpatialThinker-7B (Ours) 52.0 70.3 45.5 50.9 56.4

Table 10: Detailed Breakdown of 3DSRBench [56] Height, Location, Orientation, and Multi-Object
tasks.
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