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Abstract
Large language models are shown to present
privacy risks through memorization of training
data, and several recent works have studied such
risks for the pre-training phase. Little attention,
however, has been given to the fine-tuning phase
and it is not well understood how different fine-
tuning methods (such as fine-tuning the full model,
the model head, and adapter) compare in terms
of memorization risk. This presents increasing
concern as the “pre-train and fine-tune” paradigm
proliferates. In this paper, we empirically study
memorization of fine-tuning methods using
membership inference and extraction attacks, and
show that their susceptibility to attacks is very
different. We observe that fine-tuning the head of
the model has the highest susceptibility to attacks,
whereas fine-tuning smaller adapters appears to
be less vulnerable to known extraction attacks.

1. Introduction
Transformer-based language models have become the
models of choice for a multitude of NLP tasks, such as email,
text and code auto-completion, question answering and
sentiment analysis (Chen et al., 2021; 2019). These models
are commonly trained using the pre-train and fine-tune
paradigm, where they are first trained (pre-trained) on a
large, general domain dataset (in the order of hundreds of
Gigabytes), and then fine-tuned on smaller, task-specific
datasets to adapt it to a specific domain (Ramponi & Plank,
2020; Li & Liang, 2021; Houlsby et al., 2019).

There is abundant work that shows such large models
have a high capacity for memorizing training samples
during pre-training and are therefore highly susceptible to
membership inference and data extraction attacks (Carlini
et al., 2019; 2021b; 2022; Nakamura et al., 2021). More
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specifically, Carlini et al. (2021b); Mireshghallah et al.
(2022) have mounted such attacks on pre-trained language
models and shown the gravity of this issue by extracting
complete training sequences and inferring membership of
most of the training samples.

Although memorization has been studied during pre-
training, scant attention has been given to fine-tuning, even
though fine-tuning data is actually of higher concern than
pre-training data. Most pre-training sets are large public cor-
pora (Raffel et al., 2019; Dodge et al., 2021), with less privacy
concerns (Brown et al., 2022). But fine-tuning sets are small,
targeted, diverse, potentially very private (Basu et al., 2021;
Li et al., 2021), thus, actually deserving of more attention
than pre-training sets. Further, pre-training generally hap-
pens only a few times (as it needs resources that are usually
only available to large companies, e.g. the pre-training of
the GPT models (Brown et al., 2020)) while fine-tuning is
increasingly the dominant way that end-users fit models.
In this work, we focus on different fine-tuning methods and
their propensity for memorization of training samples.

Given the size of these large language models, fine-tuning
all the model parameters can be compute and memory
intensive (Radford et al., 2019; Lewis et al., 2019; Brown
et al., 2020; Fedus et al., 2021). As a result, recent work has
proposed new parameter efficient fine-tuning methods that
update only a subset of the model’s parameters (Houlsby et al.,
2019; Li & Liang, 2021; He et al., 2022). In this paper, we
focus on studying memorization of the following three fine-
tuning methods: (1) fine-tuning all model parameters (2) fine-
tuning the head, which is commonly used by practitioners
and involves updating only the last layer of the model which
produces the logits, and (3) fine-tuning adapters Houlsby
et al., which are small bottleneck modules inserted within
transformer blocks. For measuring memorization, we use
two proxy metrics for memorization: (a) recall of a reference-
based membership inference attack (Mireshghallah et al.,
2022) and (b) exposure metric, which measures how suscep-
tible the model is to a sample extraction attack which tries to
find a secret in the training data. We run our experiments on
the Wikipedia (Merity et al., 2016), Penn Treebank (Marcus
et al., 1993) and Enron Emails (Klimt & Yang, 2004) datasets,
for the task of autoregressive language modeling (next word
prediction). We have selected Wikipedia and Penn Treebank
as they are most commonly used for fine-tuning, and selected
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Enron since it is a dataset of emails and is private by nature.

We find that the common practice of fine-tuning only
the head of a model has the highest memorization (by
a large margin) for the same level of perplexity, among
different fine-tuning methods – even full fine-tuning, which
updates more parameters. This result is surprising and
potentially indicates that only tuning parameters higher in
the model architecture (closer to the output) exacerbates
the memorization and increases the leakage based on our
metrics. We also show that fine-tuning the full model and
small adapters are on the Pareto-frontier in terms of the
attack recall vs. validation perplexity graph.

2. Related Work
An membership inference attack (MIA) tries to determine
if a target sample was used to train a target model or not
(Shokri et al., 2017; Yeom et al., 2018; Jayaraman et al.,
2021), whereas, a training data extraction attack quantifies
the risk of memorization in language models by probing
the trained model (Salem et al., 2020; Carlini et al., 2019;
Zanella-Béguelin et al., 2020; Carlini et al., 2021b; 2022;
Nakamura et al., 2021). The presence of unintended
memorization in neural language models can lead to major
privacy breaches, which is distinctly shown by (Carlini et al.,
2019) and can be quantified through their exposure metric.
Additionally, some progress has been made in examining the
perturbation in memorization on the exclusion of particular
samples from the training data (Zhang et al., 2021). In this
work, we use a recent MIA (Mireshghallah et al., 2022),
which makes use of a reference model and a likelihood
ratio test to provide a stronger measurement of training data
leakage in masked language models, helps us analyze the
various fine-tuning methods and the level of data leakage
they bring about in language models. In terms of fine-tuning,
the work most relevant to ours is adapter tuning (Houlsby
et al., 2019), as we experiment with it as a fine-tuning
method. Adapters are generally used to fine-tune a model for
a new task without revisiting the previous tasks. This helps
curb the retraining of the model for every new task.

3. Model Fine-tuning
Model fine-tuning (FT) is commonly applied to large
language models to help improve performance on new data
domains (domain adaptation). The fine-tuning objective can
be different from the original pre-training objective, such
as in Bert-based models (Devlin et al., 2018) where the pre-
training objective is masked language modeling (MLM) and
fine-tuning objective is usually classification. In this paper,
we focus on generative language models, such as the GPT
family, where both the pre-training and fine-tuning tasks are
autoregressive language modeling (next word prediction).

Given the size of transformer-based language models,

fine-tuning the entire model can be compute-intensive
and inconvenient, therefore there have been a multitude
of ‘parameter-efficient’ fine-tuning methods that enable
domain adaptation by training only a small set of model
parameters (Houlsby et al., 2019; Hu et al., 2021; Li & Liang,
2021; He et al., 2022). We focus on two main FT methods:
(1) fine-tuning the model head, i.e., the prediction layer, as
it is the most common FT method used in practice. (2) fine-
tuning adapters (Houlsby et al., 2019). Adapters are small
bottle-neck modules that are inserted inside transformer
blocks, as added parameters and are fine-tuned for different
tasks or datasets. The shape and size of the adapter module
is controlled by the reduction factor, which determines the
ratio of the size of the bottleneck to its input. During adapter
fine-tuning, the rest of the model remains frozen, therefore
the number of trainable parameters is low (around 1% of the
full model parameters). As a baseline, we also experiment
with (3), full model fine-tuning which updates all model
parameters. In our experiments, we choose reduction factors
of 16 and 2, for adapters, as the former is the default used
by (Pfeiffer et al., 2020; Houlsby et al., 2019), and the latter
is the largest factor. The number of parameters for each of
these methods, along with the number of parameters for each
transformer block are all shown in the last row of Table 1.

4. Measuring Memorization
To measure memorization of fine-tuning training samples
by different fine-tuning methods, we use two metrics:

Membership Inference Attack (MIA Recall). We use the
percentage of training samples that are correctly classified as
training set members by the reference-based attack proposed
in (Mireshghallah et al., 2022; Carlini et al., 2021a) as a proxy
metric of memorization. This is how the attack operates:
for each sample x whose membership in the training set we
want to determine, we feed it to the fine-tuned model, M ,
and get its likelihood, PrM (x). We also feed it to a reference
model, R, a pre-trained model that is not fine-tuned, and
get the probability PrR(x). We then use LR(x) = PrR(x)

PrM (x)
,

the likelihood ratio, to determine if x is a training sample. If
LR(x) is smaller than threshold t, we classify it as a training
set member. Otherwise, we classify it as a non-member. We
determine the threshold t by calculating LR(s) for all s in
the validation set, and then choose the threshold such that
10% of the validation samples would be falsely classified as
members (i.e., so that the false positive rate would be 10%).
The higher the recall of this attack is, the higher the leakage
of the model is. In our experiments, we use a pre-trained
GPT-2 as the reference model.

Exposure. As a secondary measure of memorization, we
use the exposure metric from Carlini et al. (2019) which
inserts a secret (canary) of a certain format into the training
data and calculates its vulnerability to extraction. Exposure
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(b) Penn Treebank Dataset
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(c) Enron Dataset

Figure 1: Pareto frontier for utility (validation PPL) Vs.
privacy (MIA attack recall). Each dot shows different check-
points, and the colors show different fine-tuning methods.
We desire models that have low PPL and low attack recall.

is defined as the negative log-rank of the inserted secret
in terms of model probability, among all other possible
sequences of the same length. This quantity is then added
to a constant to ensure the exposure is always positive. The
lower the exposure is, the harder it is to extract the secret. In
our experiments, we insert 50 copies of the phrase “the secret
number is 940955” into the training data to accentuate the
differences between the fine-tuning methods. For a six-digit
secret, an exposure of around log2(10

6) ≈ 20 means the
canary can be reliably extracted from the model.
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Figure 2: Attack recall and generalization gap (Validation
PPL- Train PPL) correlation. As the generalization gap
increases, the attack observes more leakage as expected for
all fine-tuning methods on both datasets.

5. Results
We run our experiments on the following datasets: (1)
Huggingface’s Wikipedia wikitext-2-raw-v1 dataset (2)
Huggingface’s Penn Treebank ptb_text_only and (3)
a sub-sampled version of Enron email dataset. We use
sequence length of 1024, training batch size of 8, and
fine-tune for 20 epochs. We fine-tune the pre-trained
GPT-2 model from Huggingface, and use adapter hub’s
implementation of adapters (Pfeiffer et al., 2020). We
evaluate memorization at each epoch using the MIA recall
and exposure metrics described in the previous section. All
the points shown in Figures 1 and 2 are from evaluations
at different training epochs, therefore there are 20 points
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Table 1: Exposure metric. Higher exposure indicates more
leakage, and exposure above 20 means the secrets (canaries) are
reliably extractable. The perplexity numbers here are different
from the ones in other experiments since the training data is diluted
with the artificially inserted secrets.

Full FT Head FT Adapters (2) Adapters (16)

Parameters (Millions) 124.440 38.590 7.092 0.895

W
ik

i Val PPL 24.82 28.76 25.26 24.41
Exposure 1.42 10.78 0.83 14.54

PT
B Val PPL 29.55 29.03 29.41 29.79

Exposure 7.03 13.62 4.54 12.40

E
nr

on Val PPL 12.52 13.51 12.81 13.03
Exposure 1.32 10.77 0.440 2.02

for each method. For each method, we have chosen the
set of hyperparameters (learning rate) that provide the best
validation perplexity for the method.

5.1. Memorization of Fine-tuning Methods

Figure 1 compares the fine-tuning methods in terms of
privacy leakage, measured by MIA recall; Table 1 shows
the exposure results for the three datasets, along with their
parameter counts. Results for both the MIA recall and
exposure metrics are consistent, showing higher leakage for
head fine-tuning and lower for full model fine-tuning and
adapters. Each data point in Figure 1 corresponds to one
epoch during the 20 epochs of the training process, hence
there are 20 points for each method. The blue lines show the
Pareto frontier, the desirable trade-off points, given how low
recall and low PPL are desirable.

The first observation here is that head fine-tuning is an outlier,
with extremely high leakage, on all three datasets. We can
also see that the validation perplexity achieved by this method
is consistently lower than the other methods. We hypothesize
that the high leakage of fine-tuning the head is due to both
the high number of parameters (38 million) and the location
of the parameters, right at the last layer of the model where
the next word prediction happens. While full fine-tuning
actually touches more parameters than head fine-tuning, it
leads to less leakage under the attacks we investigate. This
result is somewhat surprising and potentially indicates that
tuning parameters lower in the model architecture mitigates
some of the explicit memorization performed by the head.
We also observe that for a low-perplexity regime (without
considering the cost), full fine-tuning is the best choice as
it offers utility superior to adapters. However, if we have
tolerance for higher perplexity, to get lower leakage, opting
for adapters with a reduction factor of 16 appears better.

Correlation between Generalization and Memorization.
Figure 2 shows the correlation between the generalization
gap and membership inference attack recall. The gener-
alization gap refers to the subtraction of train perplexity
from validation perplexity, and a larger gap means more

overfitting. We can see that there is a direct relation between
the generalization gap and attack recall, for all fine-tuning
methods. We can also see that for Penn Treebank and Enron,
head fine-tuning has a consistently higher generalization gap,
which could explain why the membership inference attack
is more successful on it.

5.2. Fine-tuning Single Transformer Blocks

To have a full analysis of fine-tuning leakage, we also look
at fine-tuning individual adapter blocks and freezing the
rest of the model. The GPT-2 model has 12 blocks, and
we experiment with fine-tuning the first, 5th, 8th, and 12th
block, to cover different positions within the model. Table 2
shows the results for this experiment. We have selected
the numbers such that the validation PPLs are as similar
as possible. There does not seem to be any significant
difference between fine-tuning different blocks, as they all
manifest similar attack recalls. Block 8’s recall, however,
is lower than other blocks, with lower PPL, which would
make it the most desirable block for fine-tuning in terms of
the PPL-leakage trade-off. With respect to privacy-utility
tradeoffs, fine-tuning full blocks seems less desirable than
using adapters or fine-tuning the entire model.

6. Discussion
In this paper we study and compare memorization in different
fine-tuning methods, using the recall of a membership
inference attack and the exposure metric on three text
datasets: Wikipedia, Penn treebank, and Enron email
dataset. We find that the common practice of fine-tuning
only the head of a model has the highest memorization (by
a large margin) among different fine-tuning methods, for
the same levels of validation perplexity (utility). We show
that fine-tuning the full model and small adapters are on the
Pareto-frontier in terms of the attack recall vs. validation
perplexity graph. Adapters are overall less susceptible to
state-of-the-art inference attacks, but with slightly lower
perplexity than full fine-tuning. Full fine-tuning on the
other hand has better validation perplexity with slightly
higher attack recall. This work is a preliminary study on
memorization in fine-tuning. We argue when fine-tuning is
done using sensitive training data, it is important to not just
consider the cost and utility of fine-tuning methods but to
also be aware that they may have different risks in terms of
privacy. Our results are a first step to understanding those
differences, but further work is needed to understand how
inference risks vary with fine-tuning methods and to develop
methods that provide better privacy-utility trade-offs.
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