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GRANULAR INFORMATION BOTTLENECK FOR DEEP
MULTI-MODAL CLUSTERING

Paper ID: 3581

ABSTRACT

Deep multi-modal clustering generally focuses on improving clustering accuracy
by leveraging information from different modalities. However, existing methods
are designed around the finest-grained points as input, which are neither efficient
nor robust to noisy data, negatively affecting the clustering results. To this end,
we propose a novel granular information bottleneck (GIB) for deep multi-modal
clustering, which embeds a dual-tiered information bottleneck constraint mech-
anism operating synergistically at the granular and sample levels, thereby learn-
ing discriminative feature representations with enhanced inter-cluster separabil-
ity. Specifically, GIB adaptively represents and covers the sample points through
granular balls of different granularity levels, which effectively captures the fea-
ture distribution within each cluster. Simultaneously, information compression
and preservation are used to exploit the independence and complementarity of
modalities while optimizing cluster assignments alignment. Finally, the objec-
tives of GIB are formulated as a target function based on mutual information, and
we propose a variational optimization method to ensure its convergence. Exten-
sive experimental results validate the effectiveness of the proposed GIB model in
accuracy, reliability and robustness.

1 INTRODUCTION

Multi-modal clustering has emerged as a powerful technique for integrating data from images, text,
audio and other modalities to overcome the limitations inherent in single-modality methods and
achieve superior clustering performance (Xia et al., 2022; Yang et al., 2022; Hu et al., 2024b). It has
been widely applied in various real-world scenarios, including intelligent recommendation Liu et al.
(2021), cross-modal retrieval (Chun et al., 2021; Hu et al., 2019; Yuan et al., 2022), and biomedical
science (Si et al., 2023; Acosta et al., 2022).

Deep Multi-modal Clustering. Recent advances in deep multi-modal clustering (DMC) have sig-
nificantly enhanced the representation quality and clustering performance through deeply exploring
the complex interrelationships between modalities through powerful hierarchical nonlinear mapping
(Caron et al., 2018; Palumbo et al., 2024; Liu et al., 2024; Jia et al., 2025a; Chu et al., 2024). Existing
DMC methods can be roughly divided into three categories: (1) Modality representation learning
(Li & Liao, 2021; Peng & Qi, 2019; Yang et al., 2017) which focuses on unified and modality-
specific representations using techniques like adversarial embedding and adaptive fusion weights.
For instance, Li & Liao (2021) disentangles and integrates information via a learned fusion strategy.
(2) Contrastive learning (Hu et al., 2023; Lou et al., 2025; Zou et al., 2024; 2025) which improves
representation discrimination by learning sample similarities and differences. Specifically, Zou et al.
(2025) employs dual global information guidance for noise reduction and partition refinement. (3)
Graph-based multi-modal clustering (Tan et al., 2023; Huang et al., 2022; Pan & Kang, 2021) which
constructs graphs to model relationships between data points and uses graph neural networks for
clustering. For example, Huang et al. (2022) improves accuracy by identifying consistency and
discrepancies across graphs to form a structured consensus graph.

However, the above DMC methods suffer from escalating limitations that impair their handling of
complex data. First, they process individual samples as input, rendering them vulnerable to noise,
which distorts true distributions and impedes discriminative feature extraction Sun et al. (2024). As
data scale and complexity grow, this exacerbates computational costs and challenges in model op-
timization, feature extraction, cross-modal alignment, and robustness enhancement. Consequently,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Sample-level 
Clustering 

0.1  0.1 0.3  0.1  0.2 0.1  0.1

0.1  0.1 0.3  0.1  0.2 0.1  0.1

DDC

Cluster Space

0.1  0.1 0.3  0.1  0.2 0.1  0.1

0.1  0.1 0.3  0.1  0.2 0.1  0.1

Label

1G

mG mY

1Y
),( s1 YYImax

),( sm YYImax),( sm CCImax 

),( s1 CCImax

sG sY

Label

),( mYYImin 1

sH

Encoder 1

Encoder m

1X

mX

1H

mH

Bottleneck

Modal
fusion

Granular-level 
Feature Learning

Pseudo-label Guided 
Granular Ball Splitting

),( m1 CCImin

thii nnp  ,

Split

Calculate pseudo purity and 
sample count of each GB

thii nnp  ,

Add to GBS

Adaptive Splitting

GBSparentGB

Figure 1: Illustration of the GIB framework. First, the GIB extracts modality-specific latent rep-
resentations {Hi}mi=1 from multi-modal inputs {Xi}mi=1 using m shared encoders, and then fuses
them into a global representation Hs. Second, granular ball structures {Gi}mi=1 and Gs are then
processed by the DDC module to obtain modality-specific assignments {Y i}mi=1 and a global as-
signment Y s. Here, {Ci}mi=1 denote granular-ball centers for each modality, and Cs is the granular
ball centers from the fused features. Then, at the sample clustering alignment level, we aims to
minimize

∑m
i=1 I(X

i, Hi) and
∑m

i=1

∑m
j=i+1 I(Y

i, Y j) to reduce redundancy and inconsistency,
while maximizing

∑m
i=1 I(Y

i, Y s) for clustering alignment. Finally, at the granular feature learn-
ing level minimizes

∑m
i=1

∑m
j=i+1 I(C

i, Cj) to promote complementary representations and max-
imizes

∑m
i=1 I(C

i, Cs) for modality-specific features alignment to the global representation.

these issues foster local optima and unstable training, diminishing overall efficiency. Finally, many
existing methods overlook the inherent structure and semantic information of data, undermining
cluster interpretability.

Granular-ball-based Clustering. Xia et al. (2023) proposed granular-ball computing as an inno-
vative modeling approach within the field of multi-granularity cognitive computing. It is rooted in
human cognitive mechanisms characterized by large-scale priority features Chen (1982). Building
on the principles of granular computing (Xia et al., 2023; 2025; Huang et al., 2025), researchers
apply it to data clustering. For example, Jia et al. (2025b) introduces granular-ball generation to
enhance clustering quality and accuracy. Similarly, Xie et al. (2025) employs feature-weighted
granular-ball graphs with Graph Convolutional Network (GCN) autoencoders for graph clustering.
Moreover, Xie et al. (2023) proposes granular-ball spectral clustering to reduce computational time
and resources. Additionally, Su et al. (2025) employs multi-view granular-ball contrastive clustering
to address false negatives and capture local structures.

Although those methods have achieved remarkable clustering performance, they have two draw-
backs. First, most current granular-ball clustering methods target single-modal data and struggle
to capture diverse latent structures in multi-modal datasets, leading to inaccurate results in com-
plex scenarios. More critically, the only existing multi-modal granular-ball method Su et al. (2025)
overlooks inter-modal complementary relationships and clustering assignment guidance, while un-
constrained sample numbers in granular-ball construction result in numerous single-sample balls.

Motivated by the benefits of Information Bottleneck (IB) principle (Tishby et al., 1999; Hu et al.,
2024a), researchers propose using granular balls as abstract representational carriers for data. These
granular balls not only effectively compress raw data and filter out noise but also precisely preserve
key discriminative features of data to prevent loss of core information during processing. Under
concrete guidance of IB theory, generation and optimization of granular balls follow the core logic:
maximize relevant information for each granular ball and minimize irrelevant interference. By dy-
namically adjusting coverage of a granular ball and composition of its internal samples, efficient
information transfer and compact representation are achieved, which reduces computational burden
of redundant data and strengthens ability of granular balls to capture local data structure.

In this paper, we propose a novel granular information bottleneck (GIB) method for DMC (shown in
Fig. 1). The core idea of GIB is to introduce the concept of granular computing and employ granu-
lar balls as the basic representation units, thereby enhancing the model robustness and resistance to
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Figure 2: Deep clustering methods comparison and Information Bottleneck model. (a) The left
figure is the existing sample-based clustering, where the inputs are multiple individual samples
{Xi}mi=1. The right figure is granule-based clustering, which takes multiple granules {GBi}pi=1 as
input, with p ≪ m indicating a much smaller granule count than sample count. (b)(1) The dashed
line indicates a joint distribution p(X,Y ) between X and Y , while the solid line shows compression
from X to T . (2) The black solid line signifies that variable T retains relevant information about Y .

noise. Specifically, at the lower level, the granular ball model adaptively generates multi-scale struc-
tures to mitigate intra-modal noise interference. At the higher level, we leverage granular balls as
representation units to achieve cross-modal information preservation and compression. During com-
pression, inter-modal discriminability is enhanced by minimizing the mutual information between
modal features and cluster assignments. In preservation, the global shared representation guides
the feature learning and clustering assignment of each modality, which can achieve cluster-level
consistency while discovering feature-level commonalities. The main contributions are as follows:

• We propose a novel GIB method for deep multi-modal clustering, which introduces the
granular structure to enhance noise resistance and improve model robustness. To our
knowledge, it is the first method that introduces granular computing into deep multi-modal
clustering, which introduces a new paradigm in multi-modal clustering.

• A novel dual-level information bottleneck constraint mechanism is designed, which per-
forms at both the granular and sample levels to achieve collaborative optimization of feature
representation and clustering assignment.

• A unified variational optimization framework is designed, which can efficiently solve the
objective iteratively and drive the model to converge.

• We conduct extensive experiments which validate the superior accuracy, robustness of our
model, demonstrating the effectiveness of the proposed granular representation and multi-
modal integration strategy in achieving state-of-the-art clustering performance.

2 THE PROPOSED METHOD

2.1 PRIOR KNOWLEDGE

Granular Computing. Granular Computing proposed by Xia et al. (2024) treats the entire dataset
as the coarsest granularity and performs splitting and refining of granular balls from coarse to fine
to achieve a scalable and robust computing process. The core assumption is that data with sim-
ilar distributions tend to form a granular ball, and adjacent granular balls further merge to form
larger clustering. Specifically, these granular balls act as a means to cover and represent the data,
thereby providing an accurate characterization of the sample space by functioning as input units.
Fig. 2(a) illustrates this by comparing granule-based clustering methods with existing sample-based
approaches. This approach offers two key advantages: reduced computational complexity due to
the significantly smaller number of granular balls compared with individual samples, and increased
robustness resulting from the coarse-grained representation. Therefore, granular balls enhance deep
clustering efficiency and reliability in data representation and analysis.

Information Bottleneck. Information Bottleneck (IB) principle (Tishby et al., 1999; Hu et al.,
2024a) is an information-theoretic data analysis method. Given a source variable X and a target

3
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Y , the goal of the information bottleneck is to find an optimal compressed representation T for X
while maximizing the information retained about the target Y (shown in Fig. 2(b)). The objective
function of the IB method can be formulated as follows:

Lmin = I(T ;X)− βI(T ;Y ), (1)
where I(T;X) is the mutual information between the compressed representation T and the source
variable X , and the smaller this value, the greater the information compression. I(T;Y) denotes
the mutual information between T and the target Y , which means that the larger this value, the
greater the information preservation. The parameter β balances compression and preservation.

In recent years, Information Bottleneck (IB) frameworks have increasingly been adopted within
multi-modal clustering paradigms to facilitate the extraction of task-relevant information. While
Federici et al. (2020) focuses on non-shared information, it neglects cluster-assignment consistency.
Yan et al. (2023) jointly incorporates features and assignments but limits representational capacity by
not fully exploiting clustering cues in global representations. Lou et al. (2025) introduce super deep
contrastive information bottleneck, while incorporating hidden-layer features and dual contrastive
objectives, is complex and hard to train. These sample-level methods thus undermine efficiency,
robustness, and interpretability on high-dimensional, multi-modal data.

2.2 PROBLEM FORMULATION

Let the random variables {X1, X2, . . . , Xm} represent the observable data from m modalities.
For the i-th modality, the data is Xi = {xi

1, x
i
2, . . . , x

i
n} ∈ Rn×di

, where n is the sample
count and di is the feature dimension of the samples. The granular balls for modality i are
Gi = {GBi

1, GBi
2, . . . , GBi

j}, where GBi
j is the j-th granular ball generated for this modality.

{Hi}mi=1 represents the compressed feature representation from input {Xi}mi=1, while Hs is the
fused feature representation of the individual modalities. {Y i}mi=1 denotes the local clustering as-
signment of {Hi}mi=1 obtained from the clustering model, and Y s represents the global clustering
assignment for the fused feature Hs. Gs are the granular balls generated by feature fusion Hs.
{Ci}mi=1 and Cs denote granular-ball centers from individual modalities and fused features, respec-
tively. θ denotes the pseudo-purity threshold and nth is the maximum sample threshold within a
granular ball. Note that k is the number of clusters in each modality.

The objective of the proposed GIB in this work is to eliminate multi-modal irrelevant information
while effectively obtaining valuable and more discriminative features guided by the compression
and preservation of granular information bottleneck.

2.3 PROPOSED OBJECTIVE FUNCTION

The overall objective of the GIB method proposed in this paper is achieved by minimizing the
following loss function:

LTotal = LBalls + LSamples + LDDC. (2)

In this hierarchical loss function, LBalls focuses on granular feature learning, while LSamples denotes
sample clustering alignment. Both utilize the information bottleneck principle to retain essential
task-relevant information and reduce noise. And the LDDC represents the clustering module. Jointly
optimizing the three components enables the GIB to achieve satisfactory clustering performance.

2.4 GRANULAR FEATURE LEARNING WITH LBALLS

2.4.1 GRANULAR BALL REPRESENTATION

The center cj of the granular ball GBj = {xj}
nj

j=1 is represented by the mean of all data points
within it. The radius rj is represented by the average distance from all data points to its center. The
cj and rj of GBj are defined as:

cj =
1

nj

nj∑
i=1

xi, rj =
1

nj

nj∑
i=1

∥xi − cj∥2, (3)
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Figure 3: Process of granular ball splitting: purity threshold is set to θ, and the granular ball quantity
threshold is nth. The three colors of sample points in the figure represent the pseudo-labels assigned
by weighted K-Means. (a) The initial granular-ball, the entire dataset can be seen as a granular-
ball to participate in subsequent iterations; (b) Granular-balls generated in the first iteration; (c)
Intermediate result; (d) Granular-balls extracted.

where ∥xj − cj∥ denotes the Euclidean distance from xj to cj , and nj is the number of samples in
GBj . We set a threshold nth for the number of samples in each granular ball to achieve a coarse-
grained representation, and also establish a granular ball purity threshold θ. Fig. 3 illustrates the
method for generating granular balls. Initially, the entire dataset is treated as a single large granular
ball (shown in Fig. 3(a)). The algorithm calculates the purity of each granular ball and the number of
samples it contains. If the purity of the granular ball is greater than the threshold θ, and the number
of samples within the granular ball is less than the threshold nth, then the granular ball is retained.
Otherwise, the granular ball continuously splits (shown in Fig. 3(b) and Fig. 3(c)) until these
conditions are met or the iteration stopping criteria are reached. Finally, granular balls that meet
the conditions are extracted (shown in Fig. 3(d)). The different colored sample points in the figure
represent the pseudo-labels assigned by the weighted K-Means algorithm. Given that K-Means is
sensitive to initial centers, the resulting pseudo-labels are highly dependent on the selection of those
starting points. The purity calculation is as follows:

Pseudo-Purity(GBj) =
max1≤i≤k (Count(i))

|nj |
, (4)

where k is the number of clusters defined for pseudo-labeling. Count(i) is the number of samples
in the granular ball GBj that belong to the i-th pseudo-label cluster. High pseudo-purity signifies
good quality, indicating a granular ball is dominated by samples of a single class. Conversely,
low pseudo-purity reflects uneven distribution and poorer quality. An excessively high pseudo-
purity threshold can lead to numerous small granular balls, hindering the capture of data distribution
structure. However, too low a threshold may result in insufficient splitting, retaining redundant
information and noise. Therefore, selecting a suitable purity threshold θ is important.

2.4.2 GRANULAR BALL FEATURE LEARNING LOSS

Using granular balls as processing units, we apply the information bottleneck principle at the feature
level to compress yet preserve information. Each ball is represented by its center c for mutual-
information computation. The granular level feature learning objective is:

LBalls = α

m∑
i=1

m∑
j=i+1

I(Ci, Cj)− β

m∑
i=1

I(Ci, Cs), (5)

where I(·, ·) represents the mutual information between two variables. Ci and Cj are the sets
of granular ball centers generated from modalities i and j respectively. The fusion mechanism
aggregates specific modal features into a shared representation Hs, as further described in the ap-
pendix A.6. Cs denotes the set of granular ball centers generated from the shared representation Hs.
α, β ∈ (0, 1) are the balance parameters trading off the information compression and preservation.

The first term in Eq. 5 is the mutual information between the private information of each modality,
which reduces redundant information and enhances the complementarity among the modalities. The
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second term is the mutual information between the global representation and each specific modality,
which enhances the ability to capture effective information from each modality, thereby forming a
richer and more discriminative globally shared representation. By minimizing this objective function
LBalls, the GIB can learn more optimal feature representation.

2.5 SAMPLE CLUSTERING ALIGNMENT WITH LSAMPLES

We cluster the granular balls and then map the results back to the samples, as shown in Fig. 1. The
objective function for sample clustering alignment is as follows:

LSamples = α


m∑
i=1

I(Xi, Hi) +

m∑
i=1

m∑
j=i+1

I(Y i, Y j)

− β

m∑
i=1

I(Y i, Y s), (6)

where α, β ∈ (0, 1) are balancing parameters controlling information compression and preserva-
tion. These parameters match the granular-level settings, ensuring balanced contributions from both
hierarchical levels. The mutual information between the original features and the private informa-
tion I(Xi, Hi) is used to remove invalid information, ensuring that only critical features of each
modality are retained for downstream tasks. I(Y i, Y j) measures the correlation between clustering
assignments of all modalities. And the I(Y i, Y s) calculates the mutual information between the
clustering assignment of each modality and the global clustering assignment to achieve the consis-
tency of cross-modal clustering assignments.

2.6 DATA CLUSTERING MODULE WITH LDDC

In this paper, we present the Deep Divergence-based Clustering (DDC) loss function, which op-
timizes clustering performance through three key constraints: the Cauchy-Schwartz divergence
measures the difference between cluster centers and the overall data distribution; orthogonality is
enforced among clustering vectors; and a spatial morphology constraint prevents trivial solutions,
directing the learning process toward meaningful feature distributions. The DDC loss function is:

LDDC =
1

k

k−1∑
i=1

∑
j>i

µT
i Eµj√

µT
i Eµiµj

µT
j Eµj

+ triu(ATA) +
1

k

k−1∑
i=1

∑
j>i

γT
i Eγj√

γT
i Eγiγj

γT
j Eγj

, (7)

where k is the total number of clusters, and E represents a matrix derived using a Gaussian kernel
function. The term µi denotes the i-th column vector in the clustering result matrix A. Additionally,
γi is determined by the i-th column vector of the matrix Uab = exp(−∥αa − eb∥2), where eb
represents the b-th vertex of the simplex. The expression triu(ATA) represents the sum of the
elements in the upper triangular part of the matrix ATA, excluding the diagonal elements.

2.7 OPTIMIZATION

We propose a variational optimization method to solve the objective function by approximating
mutual information as a trainable loss function. This mutual information involves two variables (the
first modality as an example):

I(X1;H1) =

∫
h1

∫
x1

p(x1, h1) log
p(x1, h1)

p(x1)p(h1)
dx1dh1

=

∫
h1

∫
x1

p(x1, h1) log
p(x1 | h1)

p(x1)
dx1dh1.

(8)

We approximate the posterior distribution P (x1, h1) using the variational distribution q(x1) and use
the Kullback-Leibler (KL) divergence measure to constrain their discrepancy. Here, we introduce a
key theorem of KL divergence regarding posterior inference.

Theorem 1 (Posterior Approximation via KL Divergence) Since KL divergence is non-negative,
by minimizing KL(q(x1)∥p(x1)), the approximate posterior q(x1) approaches the true posterior
p(x1). Proof. See Appendix A.2.
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Based on Theorem 1, we can now rewrite the mutual information I(X1;H1) as follows:

I(X1;H1) =

∫∫
p(x1, h1) log

p(x1 | h1)

p(x1)
<

∫∫
p(x1, h1) log

p(x1 | h1)

q(x1)
. (9)

Since Theorem 1 establishes the non-negativity of KL divergence and controls the approximate
posterior, we can approximate the mutual information I(X1;H1) using the log-likelihood ratio
decomposition and variational representation, leading to the expression in Theorem 2.

Theorem 2 (Variational Mutual Information Approximation) Assuming the conditional distri-
bution p(x1 | h1) is Gaussian with learnable mean µ and variance σ (via a variational IB encoder),
the mutual information I(X1;H1) admits the approximation:

I(X1;H1) ≈ 1

M

M∑
i=1

Eθi

{
KL

[
p(x1 | h1)

∥∥q(x1)
]}

,

M∑
i=1

q(x1) =
n

k
,

where θi ∼ N (0, 1) and q(x1) is uniformly distributed to enforce balanced cluster assignments.
Proof. See Appendix A.3.

Building upon the variational approximation of mutual information established in Theorem 2, Propo-
sition 1 focuses on its calculation and optimization for information compression and preservation.

Proposition 1 (Calculation of Mutual Information) By computing the joint probability p(Ci, Cj)
and the marginal probabilities p(Ci) and p(Cj) of the latent representations, mutual information
can be computed as follows:

I(Ci, Cj) =

m∑
i=1

m∑
j=i+1

⊮i̸=jp(C
i, Cj) log

(
p(Ci, Cj)

p(Ci)p(Cj)

)
. (10)

Proof. See Appendix A.4. Similarly, according to Proposition 1, I(Ci, Cs), I(Y i, Y s), as well as
I(Y i, Y j) can be computed. The details can be found in Algorithm 1 (in the appendix A.5).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We briefly introduce the experimental setup here, including the experimental datasets, evaluation
metrics, model selection, and comparison methods.

Datasets and Backbones. We conducted experiments on five publicly available and well-known
datasets: Caltech-2V, Caltech-3V, WVU, IAPR, and MIRFlickr. These datasets have different
modalities and sample sizes. For a more detailed description of the dataset, please refer to ap-
pendix A.7. The GIB model uses a unified MLP network architecture across all datasets, consisting
of three fully connected layers with ReLU activation functions. The output dimensions of the layers
are 512, 512, and 256, respectively.

Evaluation Metrics. We use Accuracy (ACC) and Normalized Mutual Information (NMI) to eval-
uate the final clustering performance. ACC is used to quantify the consistency between clustering
results and true labels, while NMI measures the degree of information shared between clustering
results. Higher values for both metrics indicate better clustering performance.

Implementation Details. We implemented GIB and other methods for comparison on a Windows
10 system equipped with a 24 GB NVIDIA RTX-4090 GPU, using the PyTorch 1.13.0 platform
(Python version 3.9). We ran the model 20 times. In each run, the training process converged after
100 epochs, and we carefully selected the model with the highest accuracy and lowest loss. The
batch size was set to 256, and Adam was chosen as the optimizer with a learning rate of 0.0001. We
fixed the pseudo-purity threshold and the maximum sample number threshold within the granular
ball to 0.9 and 1.0, respectively.
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Table 1: Clustering performance with ACC and NMI on various kinds of datasets (the bold and
underlined values in the table represent the best and second-best results respectively).

Methods Caltech-2V Caltech-3V WVU IAPR MIRFlickr
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

KM 41.6 30.5 46.3 31.3 30.8 37.2 38.9 17.2 40.9 22.5
Ncuts (TPAMI’00) 39.9 31.2 42.6 25.4 55.9 41.9 41.9 18.9 48.4 26.1

AmKM 44.6 35.2 46.9 31.5 27.9 25.1 40.4 17.0 41.0 21.6
AmNcuts (TPAMI’00) 42.8 52.2 43.7 25.5 58.3 55.0 42.2 18.9 48.2 26.2

CoregMVSC (NIPS’11) 49.2 39.6 54.4 45.3 36.5 55.8 35.1 18.4 41.0 26.8
RMKMC (IJCAI’13) 51.4 33.5 59.5 49.4 46.0 53.3 36.4 15.9 42.3 23.4
SwMC (IJCAI’17) 49.9 37.1 54.8 43.3 41.8 10.1 30.2 23.1 34.3 34.5

ONMSC (AAAI’20) 34.2 26.6 30.2 23.1 28.9 27.9 21.6 11.1 30.6 16.4
EAMC(CVPR’20) 41.9 25.6 38.9 21.4 26.9 15.2 37.1 16.4 30.5 9.1

DEMVC(InfoSci’21) 39.4 22.2 38.7 27.0 49.1 50.9 30.1 13.8 44.8 25.2
SiMVC (CVPR’21) 50.8 47.1 56.9 50.4 46.6 45.2 42.7 18.5 45.6 26.3
CoMVC (CVPR’21) 46.6 42.6 54.1 50.4 42.3 44.4 46.7 21.5 49.3 30.6
MFLVC (CVPR’22) 60.6 52.8 63.1 56.6 58.2 51.3 47.3 22.6 53.8 32.8

SPDMC (TNNLS’23) 64.4 50.6 70.1 63.0 32.9 31.3 33.3 17.1 47.5 30.3
DealMVC (ACM MM’23) 60.0 50.0 59.5 56.8 55.2 56.4 35.0 10.8 49.3 32.1

ICMVC (AAAI’24) 39.0 25.0 53.2 40.3 38.3 39.0 37.1 16.8 43.5 24.4
DIVIDE (AAAI’24) 64.1 52.9 67.8 56.2 49.9 50.0 45.6 23.0 52.3 33.5
PDMC-RCL(TIP’25) 62.5 52.4 69.7 58.4 58.0 49.1 45.7 22.4 52.7 33.0
CCMVC(TNNLS’25) 58.5 49.7 59.5 54.0 47.4 47.3 38.4 20.8 52.3 33.4

GIB 69.7 57.2 74.3 64.0 64.0 56.8 50.6 25.4 56.2 35.8
Ours vs Best Compared 5.3↑ 4.3↑ 4.2↑ 1.0↑ 5.7↑ 0.4↑ 3.3↑ 2.8↑ 2.4↑ 2.3↑

Compared Methods. We compare the proposed method with the following models: (a) Single-
modal clustering methods: Perform clustering on each individual modality for multi-modal data.
Typical algorithms include K-Means (KM) and Normalized Cuts (Ncuts). (b) Full-modal cluster-
ing methods: Connect all modalities and then apply single-modality clustering methods. Repre-
sentative algorithms include AmKM (All-modal K-Means) and AmNcuts (All-modal NCuts). (c)
Traditional multi-modal clustering methods: RMKMC Cai et al. (2013), ONMSC Zhou & Shen
(2020), CoregMVSC Kumar et al. (2011) and SwMC Nie et al. (2017). (d) Deep multi-modal
clustering methods: EAMC Zhou & Shen (2020), DEMVC (Xu et al., 2021), SiMVC and CoMVC
(Trosten et al., 2021), SPDMC Chen et al. (2023), MFLVC (Xu et al., 2022), DealMVC (Yang et al.,
2023), ICMVC Chao et al. (2024), DIVIDE Lu et al. (2024), PDMC-RCL Lou et al. (2025) and
CCMVC Shi et al. (2025). For detailed descriptions of these methods, please refer to appendix A.8.

3.2 EXPERIMENTAL RESULTS

We compare our method with 19 state-of-the-art multi-modal clustering methods and present the
clustering results on the involved multi-modal datasets in Table 1. To further illustrate the effective-
ness of our method, we provide intuitive clustering visualizations in the appendix A.9.

Comparison on the Overall Dataset. GIB achieved substantial improvements across all datasets, as
measured by the ACC and NMI metrics. Taking the Caltech-2V dataset as an example, our method
improved by 5.3% in ACC and 4.3% in NMI compared to the second-best method (DIVIDE). This
indicates that the proposed GIB method has significant advantages in deep multi-modal clustering.

Comparison on Small-Scale Datasets. In the comparison on the WVU dataset, GIB outperformed
AmNcuts by 5.7% in ACC, demonstrating its ability to effectively capture key features in small-scale
datasets by correlating granular balls and leveraging feature compression and preservation.

Comparison on Large-Scale Datasets. In the comparison on the IAPR dataset, GIB achieves 2.5%
higher ACC than the second-best method (MFLVC). This is because direct processing of massive
samples by traditional clustering incurs high computational costs and local optima issues. In con-
trast, GIB replaces samples with granular balls, improving computational efficiency and preserving
inter-cluster differences for large-scale clustering.
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Table 2: Ablation experiments on multi-modal datasets.

Methods Caltech-2V Caltech-3V WVU IAPR MIRFlickr

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

(1) LDDC 63.5 50.1 63.9 52.9 45.6 38.8 43.4 21.4 46.4 26.0
(2) LDDC + LBalls 64.6 55.2 71.5 64.4 54.4 49.8 48.2 24.4 48.6 26.3
(3) LDDC + LSamples 65.7 54.1 69.1 60.5 59.6 54.8 44.1 23.0 47.9 25.8

(4) GIB 69.7 57.2 74.3 64.0 64.0 56.8 50.6 25.4 56.2 35.8
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Figure 4: Parameter analysis of GIB on multi-modal datasets.
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Figure 5: Convergence analysis of GIB on multi-modal datasets.

3.3 COMPREHENSIVE EVALUATION

Ablation Study. We conducted ablation experiments, and the results are shown in Table 2. When
only the DDC clustering module is retained, the clustering performance is at its lowest level. Com-
bining either the LSamples module or the LBalls module with the DDC module leads to performance
improvements. The best results are achieved when all three modules are integrated. In summary,
the experiments verify that the LSamples and LBalls modules synergistically enhance clustering per-
formance, fully demonstrating the effectiveness of each module.

Parameter Analysis. To balance the compression and preservation processes, we set the same
trade-off parameters α and β for LSamples and LBalls. For these two parameters, we used a grid search
method for tuning, adjusting their values from 0 to 1 with a step size of 0.1. The results are shown
in Fig. 4. Under most parameter settings, the clustering performance for each dataset tends to be
consistent, indicating that the proposed method is not very sensitive to parameter changes.

Convergence Analysis. To evaluate the convergence of the proposed method, we present the
changes of the overall loss function, ACC, and NMI over epochs. As shown in Fig. 5, the loss
function decreases rapidly at the beginning and stabilizes around 100 epochs. Meanwhile, ACC
and NMI increase simultaneously and converge to stable values. Both indicate that our method has
satisfactory convergence properties.

4 CONCLUSION

This paper innovatively proposes the GIB multi-modal clustering method. By representing the
finest-grained samples with large-scale granular balls, GIB can effectively eliminate noise within
modalities and improve computational efficiency. GIB constrains feature representation and cluster-
ing assignment through information bottlenecks at both the granular and the sample levels, thereby
learning more compact and discriminative representations while suppressing interference from irrel-
evant information. However, multi-modal data often contain missing information, and this incom-
pleteness can prevent models from fully leveraging the complementary information across modal-
ities, thereby degrading clustering performance. In the future, we plan to extend the proposed ap-
proach to handle incomplete multi-modal data.
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A APPENDIX

In the supplemental material:

• A.1: We discuss the use of the large language mode (LLM).
• A.2: We provide a detailed proof of Theorem 1.
• A.3: We provide a detailed proof of Theorem 2.
• A.4: We provide a detailed proof of Proposition 1.
• A.5: We describe details in Algorithm 1 to clearly present the proposed GIB framework.
• A.6: We describe the adopted modality fusion method.
• A.7: We give detailed descriptions of the datasets.
• A.8: We give a detailed description of the comparison methods.
• A.9: We conducted a detailed visual analysis of relevant datasets.

A.1 LLM USAGE IN RESEARCH AND ANALYSIS

In this paper, we do not use any large language model.

A.2 PROOF OF THEOREM 1

In the variational optimization carried out in this study, we use the Kullback–Leibler (KL) diver-
gence to constrain the relationship between the approximate posterior distribution q(x1) and the
true posterior distribution p(x1). The theorem below states the key properties of the KL divergence
and its role in approximating posterior distributions.

proof.

Let p(x1) be a probability distribution and q(x1) be another probability distribution, with q(x1) > 0
for all x1. The Kullback–Leibler divergence KL(p(x1)||q(x1)) is defined as:

KL(p(x1) ∥ q(x1)) =

∫
p(x1) log

p(x1)

q(x1)
dx1. (11)

By the inequality of Jensen, or directly from basic properties of probability, the KL divergence is
non-negative:

KL
(
p(x1) ∥ q(x1)

)
≥ 0. (12)

The equality holds if and only if p(x1) = q(x1) almost everywhere. For any p(x1) and q(x1) that
satisfy the appropriate domain and positivity conditions, we have:∫

p(x1) log
p(x1)

q(x1)
dx1 ≥ 0. (13)

As a further transformation, the fractional expression within the logarithm is split into the difference
of two logarithms:

log
p(x1)

q(x1)
= log p(x1)− log q(x1). (14)

Substituting into the above equation, we get:∫
p(x1) log p(x1) dx1 −

∫
p(x1) log q(x1) dx1 ≥ 0. (15)

After rearranging terms, we obtain:∫
p(x1) log p(x1) dx1 ≥

∫
p(x1) log q(x1) dx1. (16)

This means that by minimizing KL(p(x1)||q(x1)) we can drive the approximate posterior q(x1) to
approach the true posterior p(x1). This is because as the KL divergence decreases, the difference
between q(x1) and p(x1) is continuously reduced, and eventually q(x1) can approximate p(x1) well.
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A.3 PROOF OF THEOREM 2

proof.

By definition of mutual information, we have:

I(X1;H1) =

∫∫
p(x1, h1) log

p(x1 | h1)

p(x1)
dx1 dh1. (17)

Here, p(x1, h1) is the joint probability density of x1 and h1, p(x1 | h1) is the conditional probability
density, and p(x1) is the marginal probability density of x1.

Given the relationship between p(x1) and the distribution q(x1) used for optimization, it follows
that:

I(X1;H1) <

∫∫
p(x1, h1) log

p(x1 | h1)

q(x1)
dx1 dh1. (18)

Since the joint probability can be expressed as:

p(x1, h1) = p(h1)p(x1 | h1), (19)

substitution into Eq. 18 yields:

I(X1;H1) <

m∑
i=1

∫∫
p(h1)p(x1 | h1) log

p(x1 | h1)

q(x1)
dx1 dh1. (20)

To remove redundant terms, Monte Carlo sampling Von Ahn & Dabbish (2004) is used for approxi-
mation and replacement of p(h1) to obtain a more accurate estimation. After derivation, the mutual
information can be further expressed as:

I(X1;H1) <

m∑
i=1

∫
p(x1 | h1) log

p(x1 | h1)

q(x1)
. (21)

The role of Monte Carlo sampling is to approximate integrals by drawing samples, avoiding the
difficulty of computing high-dimensional integrals directly and thereby improving computational
feasibility and accuracy.

Assume that p(x1 | h1) follows a Gaussian distribution, whose mean µ and variance σ can be
learned by the variational IB encoder. To simplify calculations, h1 is reparameterized as h1 =
µ(x1) + σ(x1) · θ, where θ represents the standard normal distribution. At this time, the mutual
information can be expressed as:

I(X1;H1) <

m∑
i=1

{
Eθi log

p(x1 | h1)

q(x1)

}
<

m∑
i=1

Eθi

{
KL

[
p(x1 | h1) ∥ q(x1)

]}
. (22)

To ensure that data samples are evenly divided into all categories, a constraint is set on q(x1) based
on the uniform distribution:

∑M
i=1 q(x

1) = M
k (where M is the number of data instances, and

k is the number of clusters). Combining with the number of data instances M , the final mutual
information is approximated as:

I(X1;H1) ≈ 1

M

M∑
i=1

Eθi

{
KL

[
p(x1 | h1) ∥ q(x1)

]}
,

M∑
i=1

q(x1) =
M

k
, (23)

which completes the proof.

A.4 PROOF OF PROPOSITION 1

proof.

To calculate I(Ci, Cj), we first obtain the joint probability distribution p(Ci, Cj) by applying di-
mension expansion, element-wise multiplication, and summation over the sample dimension, as
described in Eq. 24:

15
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p(Ci, Cj) =

bn∑
n=1

Ci
n × (Cj

n)
T . (24)

Here, bn represents the batch size. The joint probability matrix is symmetric and normalized, as
shown in Eq. 25:

p(Ci, Cj) =
1

2

(
p(Ci, Cj) + p(Cj , Ci)

)
, p(Ci, Cj) =

pij∑
i,j pij

. (25)

The first formula guarantees symmetry, and the second formula normalizes all probabilities to sum
to 1. Next, we calculate the marginal probabilities p(Ci) and p(Cj) of I(Ci, Cj). The formula for
calculating mutual information I(Ci, Cj) is as follows:

I(Ci, Cj) =

m∑
i=1

m∑
j=i+1

⊮i̸=jp(C
i, Cj) log

(
p(Ci, Cj)

p(Ci)p(Cj)

)
. (26)

Here, the summation
∑

∀k ̸=i denotes summing over all indices k different from i.

Similarly, I(Ci, Cs) and I(Y i, Y s) are obtained by calculating their respective joint probabilities
and marginal probabilities.

A.5 ALGORITHMIC DESCRIPTION OF THE DEEP GRANULAR INFORMATION BOTTLENECK
FOR MULTI-MODAL CLUSTERING

Algorithm 1 GIB Algorithm

1: Input: Multi-modal dataset {Xi}mi=1, number of clusters k, hyper-parameters α, β, learning
rate γ, purity threshold θ, and granular ball quantity threshold nth.

2: Output: The clustering result.
3: Initialize the neural network parameters.
4: while not converge do
5: Extract modal-specific representations {Hi}mi=1 by sharing modal-specific encoders.
6: Generate the granular balls {Gi}mi=1 of each modality in the latent feature space.
7: Calculate the granular-level feature learning loss function using Eq. 5.
8: Calculate the sample-level clustering alignment loss function using Eq. 6.
9: Calculate the DDC loss using Eq. 7.

10: Jointly optimize the overall loss function by Eq. 2.
11: end while
12: return obtaining the final clustering result.

A.6 MULTI-MODAL FUSION

The shared features among different modalities can be used to learn feature correlations. We did
not adopt the widely used current approach that automatically assigns weights to each view via an
attention mechanism. Instead, we propose a simplified strategy to learn view weights directly from
the clustering objective itself. The reasons for choosing this strategy are as follows: introducing an
additional attention-learning module could render the entire network quite bulky, thereby increasing
the runtime and memory overhead. By contrast, these view weights can be directly updated by
optimizing the clustering objective during joint training. The definition is as follows:

S =

m∑
i=1

wiHi. (27)

Specifically, we first initialized the weight of each modality to 1
m to ensure balance in early contribu-

tions, and then dynamically updated the specific weights for each modality through backpropagation,
while ensuring that the sum of the weights remains (

∑m
i=1 w

i = 1).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.7 DATASETS DETAILS

We describe the datasets used in the experiments in detail and summarize the datasets in Table 3.

Table 3: Description of five multi-modal datasets.

Dataset Modalities Samples Clusters
Caltech-2V 2 1400 7
Caltech-3V 3 1400 7

WVU 4 650 10
IAPR 2 7855 6

MIRFlickr 4 12154 6

• Caltech-2V Fei-Fei et al. (2004) contains 1,440 images covering 7 object categories. It in-
cludes two types of features: Wavelet moments Shen & Ip (1999) and CENsus TRansform
hISTogram (CENTRIST) Wu & Rehg (2010).

• Caltech-3V contains the same categories and images as Caltech-2V but introduces an ad-
ditional feature.

• WVU Ramagiri et al. (2011) dataset is derived from action data and includes four differ-
ent modalities. All videos undergo feature detection and description using the Harris3-D
detector and Spatio-Temporal Interest Points (STIP) with HoG/HoF descriptors.

• IAPR Grubinger et al. (2006) contains 7,855 images and their corresponding textual de-
scriptions, forming two modalities and covering six categories.

• MIRFlickr Huiskes & Lew (2008) contains 12,154 images, which are divided into 6 dif-
ferent categories.

A.8 COMPARISON METHOD DETAILS

To ensure a fair comparison, we downloaded the source code of the competing methods from the
authors’ websites and ran them according to the experimental settings and parameter-tuning proce-
dures described in each paper.

• K-Means: Partition data points into K clusters to maximize similarity within clusters and
minimize dissimilarity between clusters. The algorithm iteratively updates cluster centers
and assigns points until convergence.

• Ncuts (Normalized Cuts): It is a graph-based clustering method that achieves data group-
ing by minimizing the normalized cut cost of the graph.

• AmKM: An adaptive clustering method dynamically adjusts the cluster centers and their
number to better fit the distribution characteristics of the data.

• AmNcuts: It actively groups nodes into high-quality clusters for knowledge graphs and
multi-modal data using the Normalized Cut (N-cut) principle, aiming to minimize cross-
cluster edge weights and maximize intra-cluster connectivity.

• CoregMVSC Kumar et al. (2011): Co-regularize clustering hypotheses to achieve consis-
tent cluster assignments across modalities.

• RMKMC Cai et al. (2013): Proposes a robust and scalable multi-view clustering method
that integrates heterogeneous representations of large-scale data for unsupervised cluster-
ing. This method overcomes the limitations of graph-based spectral clustering on large-
scale datasets.

• SwMC Nie et al. (2017): Introduces a Laplacian rank-constrained graph to learn view
weights and directly assigns cluster labels to each data point without any post-processing.

• EAMC Zhou & Shen (2020): Learns cross-modal features via a shared encoder and in-
troduces a reconstruction constraint to strengthen feature-level contrastive learning (En-
FeaCL), addressing existing methods’ shortcomings with noisy data and local diversity.
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• DEMVC Xu et al. (2021): It uses deep autoencoders to learn embeddings for each modal-
ity, and jointly optimizes feature representations and cluster assignments during co-training
while accounting for modality consistency and complementarity.

• CoMVC Trosten et al. (2021): Proposes a deep multimodal clustering baseline with un-
aligned representations that can match or surpass the SOTA even without alignment, and
uses contrastive learning to enable selective alignment while preserving each modality’s
priority.
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Figure 6: Visualization on the Caltech2V dataset.
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Figure 7: Visualization on the IAPR dataset.
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Figure 8: Visualization on the Caltech3V dataset.

• MFLVC Xu et al. (2022): Addresses the conflict between learning consistent semantics and
reconstructing modality-specific information by learning low-level and high-level features
independently in separate feature spaces, significantly improving clustering performance.

• SPDMC Chen et al. (2023): It constrains sample-pair relationships with prior knowledge
through a unified regularization for semi-supervised progressive representation learning.

• DealMvc Yang et al. (2023): It proposes a novel dual-contrast calibration network for
multi-view clustering, addressing the shortcoming of existing models that overlook similar
samples across views.

• ICMVC Chao et al. (2024): It leverages multi-view consistency relation transfer and graph
convolutional networks to handle missing values, and combines instance-level attention fu-
sion with high-confidence guidance to jointly optimize multi-view representation learning
and clustering performance.

• DIVIDE Lu et al. (2024): a decoupled, robust contrastive multi-view clustering method
that identifies data pairs via high-order random walks to address false negatives and false
positives.
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• PDMC-RCL Lou et al. (2025): It quantifies the reliability of modality pairs using reliable
contrastive learning and weights them accordingly, prioritizing the learning of discrimina-
tive features from reliable pairs while performing multi-level contrastive learning at both
the feature and clustering levels.

• CCMVC Shi et al. (2025): It conducts joint training via contrastive learning at the feature,
cluster, and view levels, and incorporates an alignment mechanism to ensure cross-view
information consistency.

A.9 VISUAL ANALYSIS

To intuitively demonstrate the clustering performance of the GIB method on the dataset, we con-
ducted a detailed visual analysis, with the results shown in Fig. 6, Fig. 7, and Fig. 8. Specifically,
we used T-SNE to visualize the clustering results at different stages of the training process, namely
the early, mid, and late stages, corresponding to the 0th, 5th, and 100th epochs of training. As the
number of epochs increased, data points belonging to the same category gradually moved closer
together, forming tighter and more cohesive clusters. Meanwhile, the boundaries between different
categories became increasingly pronounced, leading to clear separations in the feature space. This
phenomenon highlights the effectiveness of GIB in enhancing clustering performance.
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