

GRANULAR INFORMATION BOTTLENECK FOR DEEP MULTI-MODAL CLUSTERING

Paper ID: 3581

ABSTRACT

Deep multi-modal clustering generally focuses on improving clustering accuracy by leveraging information from different modalities. However, existing methods are designed around the finest-grained points as input, which are neither efficient nor robust to noisy data, negatively affecting the clustering results. To this end, we propose a novel granular information bottleneck (GIB) for deep multi-modal clustering, which embeds a dual-tiered information bottleneck constraint mechanism operating synergistically at the granular and sample levels, thereby learning discriminative feature representations with enhanced inter-cluster separability. Specifically, GIB adaptively represents and covers the sample points through granular balls of different granularity levels, which effectively captures the feature distribution within each cluster. Simultaneously, information compression and preservation are used to exploit the independence and complementarity of modalities while optimizing cluster assignments alignment. Finally, the objectives of GIB are formulated as a target function based on mutual information, and we propose a variational optimization method to ensure its convergence. Extensive experimental results validate the effectiveness of the proposed GIB model in accuracy, reliability and robustness.

1 INTRODUCTION

Multi-modal clustering has emerged as a powerful technique for integrating data from images, text, audio and other modalities to overcome the limitations inherent in single-modality methods and achieve superior clustering performance (Xia et al., 2022; Yang et al., 2022; Hu et al., 2024b). It has been widely applied in various real-world scenarios, including intelligent recommendation Liu et al. (2021), cross-modal retrieval (Chun et al., 2021; Hu et al., 2019; Yuan et al., 2022), and biomedical science (Si et al., 2023; Acosta et al., 2022).

Deep Multi-modal Clustering. Recent advances in deep multi-modal clustering (DMC) have significantly enhanced the representation quality and clustering performance through deeply exploring the complex interrelationships between modalities through powerful hierarchical nonlinear mapping (Caron et al., 2018; Palumbo et al., 2024; Liu et al., 2024; Jia et al., 2025a; Chu et al., 2024). Existing DMC methods can be roughly divided into three categories: (1) *Modality representation learning* (Li & Liao, 2021; Peng & Qi, 2019; Yang et al., 2017) which focuses on unified and modality-specific representations using techniques like adversarial embedding and adaptive fusion weights. For instance, Li & Liao (2021) disentangles and integrates information via a learned fusion strategy. (2) *Contrastive learning* (Hu et al., 2023; Lou et al., 2025; Zou et al., 2024; 2025) which improves representation discrimination by learning sample similarities and differences. Specifically, Zou et al. (2025) employs dual global information guidance for noise reduction and partition refinement. (3) *Graph-based multi-modal clustering* (Tan et al., 2023; Huang et al., 2022; Pan & Kang, 2021) which constructs graphs to model relationships between data points and uses graph neural networks for clustering. For example, Huang et al. (2022) improves accuracy by identifying consistency and discrepancies across graphs to form a structured consensus graph.

However, the above DMC methods suffer from escalating limitations that impair their handling of complex data. First, they process individual samples as input, rendering them vulnerable to noise, which distorts true distributions and impedes discriminative feature extraction Sun et al. (2024). As data scale and complexity grow, this exacerbates computational costs and challenges in model optimization, feature extraction, cross-modal alignment, and robustness enhancement. Consequently,

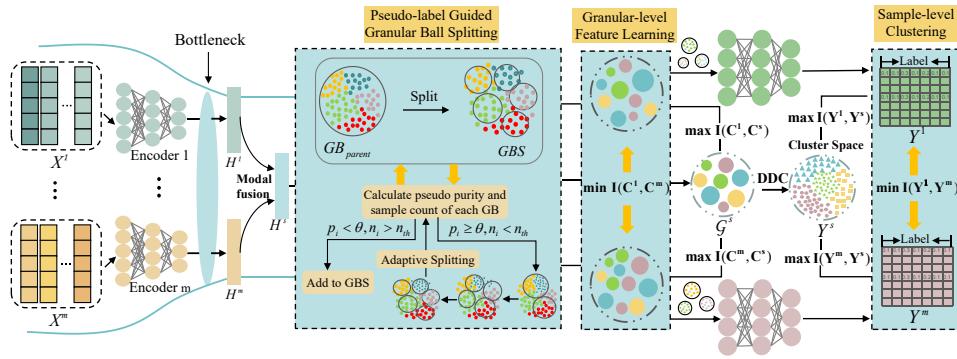


Figure 1: Illustration of the GIB framework. First, the GIB extracts modality-specific latent representations $\{H^i\}_{i=1}^m$ from multi-modal inputs $\{X^i\}_{i=1}^m$ using m shared encoders, and then fuses them into a global representation H^s . Second, granular ball structures $\{\mathcal{G}^i\}_{i=1}^m$ and \mathcal{G}^s are then processed by the DDC module to obtain modality-specific assignments $\{Y^i\}_{i=1}^m$ and a global assignment Y^s . Here, $\{C^i\}_{i=1}^m$ denote granular-ball centers for each modality, and C^s is the granular ball centers from the fused features. Then, at the sample clustering alignment level, we aims to minimize $\sum_{i=1}^m I(X^i, H^i)$ and $\sum_{i=1}^m \sum_{j=i+1}^m I(Y^i, Y^j)$ to reduce redundancy and inconsistency, while maximizing $\sum_{i=1}^m I(Y^i, Y^s)$ for clustering alignment. Finally, at the granular feature learning level minimizes $\sum_{i=1}^m \sum_{j=i+1}^m I(C^i, C^j)$ to promote complementary representations and maximizes $\sum_{i=1}^m I(C^i, C^s)$ for modality-specific features alignment to the global representation.

these issues foster local optima and unstable training, diminishing overall efficiency. Finally, many existing methods overlook the inherent structure and semantic information of data, undermining cluster interpretability.

Granular-ball-based Clustering. Xia et al. (2023) proposed granular-ball computing as an innovative modeling approach within the field of multi-granularity cognitive computing. It is rooted in human cognitive mechanisms characterized by large-scale priority features Chen (1982). Building on the principles of granular computing (Xia et al., 2023; 2025; Huang et al., 2025), researchers apply it to data clustering. For example, Jia et al. (2025b) introduces granular-ball generation to enhance clustering quality and accuracy. Similarly, Xie et al. (2025) employs feature-weighted granular-ball graphs with Graph Convolutional Network (GCN) autoencoders for graph clustering. Moreover, Xie et al. (2023) proposes granular-ball spectral clustering to reduce computational time and resources. Additionally, Su et al. (2025) employs multi-view granular-ball contrastive clustering to address false negatives and capture local structures.

Although those methods have achieved remarkable clustering performance, they have two drawbacks. First, most current granular-ball clustering methods target single-modal data and struggle to capture diverse latent structures in multi-modal datasets, leading to inaccurate results in complex scenarios. More critically, the only existing multi-modal granular-ball method Su et al. (2025) overlooks inter-modal complementary relationships and clustering assignment guidance, while unconstrained sample numbers in granular-ball construction result in numerous single-sample balls.

Motivated by the benefits of Information Bottleneck (IB) principle (Tishby et al., 1999; Hu et al., 2024a), researchers propose using granular balls as abstract representational carriers for data. These granular balls not only effectively compress raw data and filter out noise but also precisely preserve key discriminative features of data to prevent loss of core information during processing. Under concrete guidance of IB theory, generation and optimization of granular balls follow the core logic: maximize relevant information for each granular ball and minimize irrelevant interference. By dynamically adjusting coverage of a granular ball and composition of its internal samples, efficient information transfer and compact representation are achieved, which reduces computational burden of redundant data and strengthens ability of granular balls to capture local data structure.

In this paper, we propose a novel granular information bottleneck (GIB) method for DMC (shown in Fig. 1). The core idea of GIB is to introduce the concept of granular computing and employ granular balls as the basic representation units, thereby enhancing the model robustness and resistance to

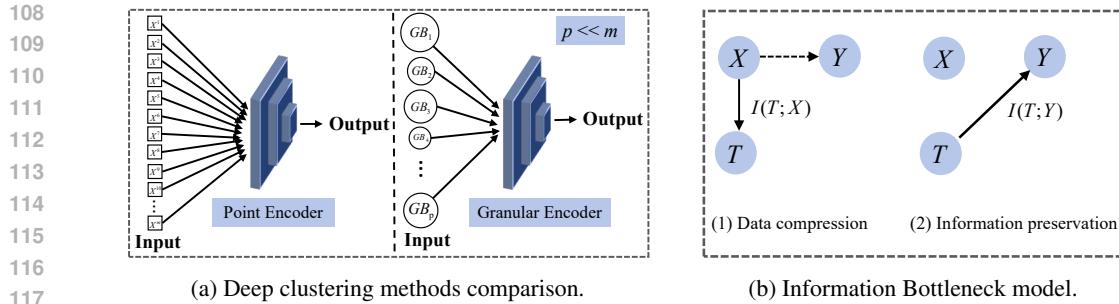


Figure 2: Deep clustering methods comparison and Information Bottleneck model. (a) The left figure is the existing sample-based clustering, where the inputs are multiple individual samples $\{X^i\}_{i=1}^m$. The right figure is granule-based clustering, which takes multiple granules $\{GB_i\}_{i=1}^p$ as input, with $p \ll m$ indicating a much smaller granule count than sample count. (b)(1) The dashed line indicates a joint distribution $p(X, Y)$ between X and Y , while the solid line shows compression from X to T . (2) The black solid line signifies that variable T retains relevant information about Y .

noise. Specifically, at the lower level, the granular ball model adaptively generates multi-scale structures to mitigate intra-modal noise interference. At the higher level, we leverage granular balls as representation units to achieve cross-modal information preservation and compression. During compression, inter-modal discriminability is enhanced by minimizing the mutual information between modal features and cluster assignments. In preservation, the global shared representation guides the feature learning and clustering assignment of each modality, which can achieve cluster-level consistency while discovering feature-level commonalities. The main contributions are as follows:

- We propose a novel GIB method for deep multi-modal clustering, which introduces the granular structure to enhance noise resistance and improve model robustness. To our knowledge, it is the first method that introduces granular computing into deep multi-modal clustering, which introduces a new paradigm in multi-modal clustering.
- A novel dual-level information bottleneck constraint mechanism is designed, which performs at both the granular and sample levels to achieve collaborative optimization of feature representation and clustering assignment.
- A unified variational optimization framework is designed, which can efficiently solve the objective iteratively and drive the model to converge.
- We conduct extensive experiments which validate the superior accuracy, robustness of our model, demonstrating the effectiveness of the proposed granular representation and multi-modal integration strategy in achieving state-of-the-art clustering performance.

2 THE PROPOSED METHOD

2.1 PRIOR KNOWLEDGE

Granular Computing. Granular Computing proposed by Xia et al. (2024) treats the entire dataset as the coarsest granularity and performs splitting and refining of granular balls from coarse to fine to achieve a scalable and robust computing process. The core assumption is that data with similar distributions tend to form a granular ball, and adjacent granular balls further merge to form larger clustering. Specifically, these granular balls act as a means to cover and represent the data, thereby providing an accurate characterization of the sample space by functioning as input units. Fig. 2(a) illustrates this by comparing granule-based clustering methods with existing sample-based approaches. This approach offers two key advantages: reduced computational complexity due to the significantly smaller number of granular balls compared with individual samples, and increased robustness resulting from the coarse-grained representation. Therefore, granular balls enhance deep clustering efficiency and reliability in data representation and analysis.

Information Bottleneck. Information Bottleneck (IB) principle (Tishby et al., 1999; Hu et al., 2024a) is an information-theoretic data analysis method. Given a source variable X and a target

162 Y , the goal of the information bottleneck is to find an optimal compressed representation T for X
 163 while maximizing the information retained about the target Y (shown in Fig. 2(b)). The objective
 164 function of the IB method can be formulated as follows:

$$\mathcal{L}_{\min} = I(T; X) - \beta I(T; Y), \quad (1)$$

166 where $I(\mathbf{T}; \mathbf{X})$ is the mutual information between the compressed representation T and the source
 167 variable X , and the smaller this value, the greater the **information compression**. $I(\mathbf{T}; \mathbf{Y})$ denotes
 168 the mutual information between T and the target Y , which means that the larger this value, the
 169 greater the **information preservation**. The parameter β balances compression and preservation.
 170

171 In recent years, Information Bottleneck (IB) frameworks have increasingly been adopted within
 172 multi-modal clustering paradigms to facilitate the extraction of task-relevant information. While
 173 Federici et al. (2020) focuses on non-shared information, it neglects cluster-assignment consistency.
 174 Yan et al. (2023) jointly incorporates features and assignments but limits representational capacity by
 175 not fully exploiting clustering cues in global representations. Lou et al. (2025) introduce super deep
 176 contrastive information bottleneck, while incorporating hidden-layer features and dual contrastive
 177 objectives, is complex and hard to train. These sample-level methods thus undermine efficiency,
 178 robustness, and interpretability on high-dimensional, multi-modal data.
 179

2.2 PROBLEM FORMULATION

181 Let the random variables $\{X^1, X^2, \dots, X^m\}$ represent the observable data from m modalities.
 182 For the i -th modality, the data is $X^i = \{x_1^i, x_2^i, \dots, x_n^i\} \in \mathbb{R}^{n \times d^i}$, where n is the sample
 183 count and d^i is the feature dimension of the samples. The granular balls for modality i are
 184 $\mathcal{G}^i = \{GB_1^i, GB_2^i, \dots, GB_j^i\}$, where GB_j^i is the j -th granular ball generated for this modality.
 185 $\{H^i\}_{i=1}^m$ represents the compressed feature representation from input $\{X^i\}_{i=1}^m$, while H^s is the
 186 fused feature representation of the individual modalities. $\{Y^i\}_{i=1}^m$ denotes the local clustering as-
 187 signment of $\{H^i\}_{i=1}^m$ obtained from the clustering model, and Y^s represents the global clustering
 188 assignment for the fused feature H^s . \mathcal{G}^s are the granular balls generated by feature fusion H^s .
 189 $\{C^i\}_{i=1}^m$ and C^s denote granular-ball centers from individual modalities and fused features, respec-
 190 tively. θ denotes the pseudo-purity threshold and n_{th} is the maximum sample threshold within a
 191 granular ball. Note that k is the number of clusters in each modality.
 192

193 The objective of the proposed GIB in this work is to eliminate multi-modal irrelevant information
 194 while effectively obtaining valuable and more discriminative features guided by the compression
 195 and preservation of granular information bottleneck.
 196

2.3 PROPOSED OBJECTIVE FUNCTION

197 The overall objective of the GIB method proposed in this paper is achieved by minimizing the
 198 following loss function:
 199

$$\mathcal{L}_{\text{Total}} = \mathcal{L}_{\text{Balls}} + \mathcal{L}_{\text{Samples}} + \mathcal{L}_{\text{DDC}}. \quad (2)$$

200 In this hierarchical loss function, $\mathcal{L}_{\text{Balls}}$ focuses on granular feature learning, while $\mathcal{L}_{\text{Samples}}$ denotes
 201 sample clustering alignment. Both utilize the information bottleneck principle to retain essential
 202 task-relevant information and reduce noise. And the \mathcal{L}_{DDC} represents the clustering module. Jointly
 203 optimizing the three components enables the GIB to achieve satisfactory clustering performance.
 204

2.4 GRANULAR FEATURE LEARNING WITH $\mathcal{L}_{\text{Balls}}$

2.4.1 GRANULAR BALL REPRESENTATION

210 The center c_j of the granular ball $GB_j = \{x_j\}_{j=1}^{n_j}$ is represented by the mean of all data points
 211 within it. The radius r_j is represented by the average distance from all data points to its center. The
 212 c_j and r_j of GB_j are defined as:
 213

$$c_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_i, \quad r_j = \frac{1}{n_j} \sum_{i=1}^{n_j} \|x_i - c_j\|_2, \quad (3)$$

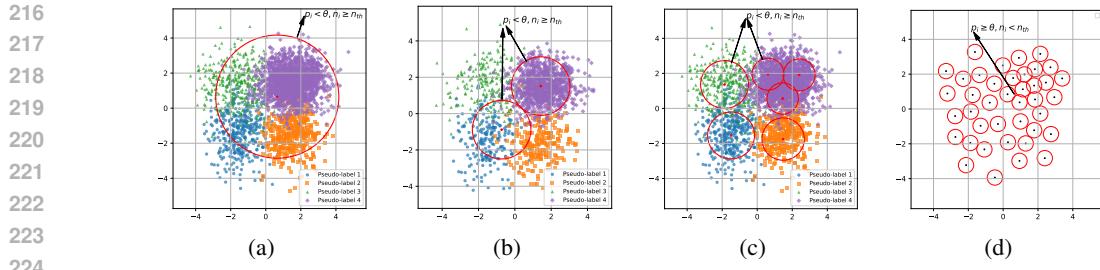


Figure 3: Process of granular ball splitting: purity threshold is set to θ , and the granular ball quantity threshold is n_{th} . The three colors of sample points in the figure represent the pseudo-labels assigned by weighted K-Means. (a) The initial granular-ball, the entire dataset can be seen as a granular-ball to participate in subsequent iterations; (b) Granular-balls generated in the first iteration; (c) Intermediate result; (d) Granular-balls extracted.

where $\|x_j - c_j\|$ denotes the Euclidean distance from x_j to c_j , and n_j is the number of samples in GB_j . We set a threshold n_{th} for the number of samples in each granular ball to achieve a coarse-grained representation, and also establish a granular ball purity threshold θ . Fig. 3 illustrates the method for generating granular balls. Initially, the entire dataset is treated as a single large granular ball (shown in Fig. 3(a)). The algorithm calculates the purity of each granular ball and the number of samples it contains. If the purity of the granular ball is greater than the threshold θ , and the number of samples within the granular ball is less than the threshold n_{th} , then the granular ball is retained. Otherwise, the granular ball continuously splits (shown in Fig. 3(b) and Fig. 3(c)) until these conditions are met or the iteration stopping criteria are reached. Finally, granular balls that meet the conditions are extracted (shown in Fig. 3(d)). The different colored sample points in the figure represent the pseudo-labels assigned by the weighted K-Means algorithm. Given that K-Means is sensitive to initial centers, the resulting pseudo-labels are highly dependent on the selection of those starting points. The purity calculation is as follows:

$$\text{Pseudo-Purity}(GB_j) = \frac{\max_{1 \leq i \leq k} (\text{Count}(i))}{|n_j|}, \quad (4)$$

where k is the number of clusters defined for pseudo-labeling. $\text{Count}(i)$ is the number of samples in the granular ball GB_j that belong to the i -th pseudo-label cluster. High pseudo-purity signifies good quality, indicating a granular ball is dominated by samples of a single class. Conversely, low pseudo-purity reflects uneven distribution and poorer quality. An excessively high pseudo-purity threshold can lead to numerous small granular balls, hindering the capture of data distribution structure. However, too low a threshold may result in insufficient splitting, retaining redundant information and noise. Therefore, selecting a suitable purity threshold θ is important.

2.4.2 GRANULAR BALL FEATURE LEARNING LOSS

Using granular balls as processing units, we apply the information bottleneck principle at the feature level to compress yet preserve information. Each ball is represented by its center c for mutual-information computation. The granular level feature learning objective is:

$$\mathcal{L}_{\text{Balls}} = \alpha \sum_{i=1}^m \sum_{j=i+1}^m I(C^i, C^j) - \beta \sum_{i=1}^m I(C^i, C^s), \quad (5)$$

where $I(\cdot, \cdot)$ represents the mutual information between two variables. C^i and C^j are the sets of granular ball centers generated from modalities i and j respectively. The fusion mechanism aggregates specific modal features into a shared representation H^s , as further described in the appendix A.6. C^s denotes the set of granular ball centers generated from the shared representation H^s . $\alpha, \beta \in (0, 1)$ are the balance parameters trading off the information compression and preservation.

The first term in Eq. 5 is the mutual information between the private information of each modality, which reduces redundant information and enhances the complementarity among the modalities. The

270 second term is the mutual information between the global representation and each specific modality,
 271 which enhances the ability to capture effective information from each modality, thereby forming a
 272 richer and more discriminative globally shared representation. By minimizing this objective function
 273 $\mathcal{L}_{\text{Balls}}$, the GIB can learn more optimal feature representation.
 274

275 2.5 SAMPLE CLUSTERING ALIGNMENT WITH $\mathcal{L}_{\text{SAMPLES}}$

277 We cluster the granular balls and then map the results back to the samples, as shown in Fig. 1. The
 278 objective function for sample clustering alignment is as follows:

$$279 \quad \mathcal{L}_{\text{Samples}} = \alpha \left\{ \sum_{i=1}^m I(X^i, H^i) + \sum_{i=1}^m \sum_{j=i+1}^m I(Y^i, Y^j) \right\} - \beta \sum_{i=1}^m I(Y^i, Y^s), \quad (6)$$

283 where $\alpha, \beta \in (0, 1)$ are balancing parameters controlling information compression and preser-
 284 vation. These parameters match the granular-level settings, ensuring balanced contributions from both
 285 hierarchical levels. The mutual information between the original features and the private informa-
 286 tion $I(X^i, H^i)$ is used to remove invalid information, ensuring that only critical features of each
 287 modality are retained for downstream tasks. $I(Y^i, Y^j)$ measures the correlation between clustering
 288 assignments of all modalities. And the $I(Y^i, Y^s)$ calculates the mutual information between the
 289 clustering assignment of each modality and the global clustering assignment to achieve the consis-
 290 tency of cross-modal clustering assignments.
 291

292 2.6 DATA CLUSTERING MODULE WITH \mathcal{L}_{DDC}

293 In this paper, we present the Deep Divergence-based Clustering (DDC) loss function, which op-
 294 timizes clustering performance through three key constraints: the Cauchy-Schwartz divergence
 295 measures the difference between cluster centers and the overall data distribution; orthogonality is
 296 enforced among clustering vectors; and a spatial morphology constraint prevents trivial solutions,
 297 directing the learning process toward meaningful feature distributions. The DDC loss function is:
 298

$$299 \quad \mathcal{L}_{\text{DDC}} = \frac{1}{k} \sum_{i=1}^{k-1} \sum_{j>i} \frac{\mu_i^T E_{\mu_j}}{\sqrt{\mu_i^T E_{\mu_i} \mu_j^T E_{\mu_j}}} + \text{triu}(A^T A) + \frac{1}{k} \sum_{i=1}^{k-1} \sum_{j>i} \frac{\gamma_i^T E_{\gamma_j}}{\sqrt{\gamma_i^T E_{\gamma_i} \gamma_j^T E_{\gamma_j}}}, \quad (7)$$

302 where k is the total number of clusters, and E represents a matrix derived using a Gaussian kernel
 303 function. The term μ_i denotes the i -th column vector in the clustering result matrix A . Additionally,
 304 γ_i is determined by the i -th column vector of the matrix $U_{ab} = \exp(-\|\alpha_a - e_b\|^2)$, where e_b
 305 represents the b -th vertex of the simplex. The expression $\text{triu}(A^T A)$ represents the sum of the
 306 elements in the upper triangular part of the matrix $A^T A$, excluding the diagonal elements.
 307

308 2.7 OPTIMIZATION

310 We propose a variational optimization method to solve the objective function by approximating
 311 mutual information as a trainable loss function. This mutual information involves two variables (the
 312 first modality as an example):
 313

$$314 \quad I(X^1; H^1) = \int_{h^1} \int_{x^1} p(x^1, h^1) \log \frac{p(x^1, h^1)}{p(x^1)p(h^1)} dx^1 dh^1 \\ 315 \\ 316 \quad = \int_{h^1} \int_{x^1} p(x^1, h^1) \log \frac{p(x^1 | h^1)}{p(x^1)} dx^1 dh^1. \quad (8)$$

318 We approximate the posterior distribution $P(x^1, h^1)$ using the variational distribution $q(x^1)$ and use
 319 the Kullback-Leibler (KL) divergence measure to constrain their discrepancy. Here, we introduce a
 320 key theorem of KL divergence regarding posterior inference.
 321

322 **Theorem 1 (Posterior Approximation via KL Divergence)** *Since KL divergence is non-negative,
 323 by minimizing $\text{KL}(q(x^1) || p(x^1))$, the approximate posterior $q(x^1)$ approaches the true posterior
 324 $p(x^1)$. Proof. See Appendix A.2.*

324 Based on Theorem 1, we can now rewrite the mutual information $I(X^1; H^1)$ as follows:
 325

$$326 \quad 327 \quad I(X^1; H^1) = \iint p(x^1, h^1) \log \frac{p(x^1 | h^1)}{p(x^1)} < \iint p(x^1, h^1) \log \frac{p(x^1 | h^1)}{q(x^1)}. \quad (9)$$

328 Since Theorem 1 establishes the non-negativity of KL divergence and controls the approximate
 329 posterior, we can approximate the mutual information $I(X^1; H^1)$ using the log-likelihood ratio
 330 decomposition and variational representation, leading to the expression in Theorem 2.
 331

332 **Theorem 2 (Variational Mutual Information Approximation)** *Assuming the conditional distribution
 333 $p(x^1 | h^1)$ is Gaussian with learnable mean μ and variance σ (via a variational IB encoder),
 334 the mutual information $I(X^1; H^1)$ admits the approximation:*
 335

$$336 \quad 337 \quad I(X^1; H^1) \approx \frac{1}{M} \sum_{i=1}^M \mathbb{E}_{\theta_i} \{ KL [p(x^1 | h^1) \| q(x^1)] \}, \quad \sum_{i=1}^M q(x^1) = \frac{n}{k},$$

338 where $\theta_i \sim \mathcal{N}(0, 1)$ and $q(x^1)$ is uniformly distributed to enforce balanced cluster assignments.
 339 *Proof.* See Appendix A.3.

340 Building upon the variational approximation of mutual information established in Theorem 2, Proposition
 341 focuses on its calculation and optimization for information compression and preservation.
 342

343 **Proposition 1 (Calculation of Mutual Information)** *By computing the joint probability $p(C^i, C^j)$
 344 and the marginal probabilities $p(C^i)$ and $p(C^j)$ of the latent representations, mutual information
 345 can be computed as follows:*

$$346 \quad 347 \quad I(C^i, C^j) = \sum_{i=1}^m \sum_{j=i+1}^m \mathbb{1}_{i \neq j} p(C^i, C^j) \log \left(\frac{p(C^i, C^j)}{p(C^i)p(C^j)} \right). \quad (10)$$

348 *Proof.* See Appendix A.4. Similarly, according to Proposition 1, $I(C^i, C^s)$, $I(Y^i, Y^s)$, as well as
 349 $I(Y^i, Y^j)$ can be computed. The details can be found in Algorithm 1 (in the appendix A.5).
 350

351 3 EXPERIMENTS

352 3.1 EXPERIMENTAL SETUP

353 We briefly introduce the experimental setup here, including the experimental datasets, evaluation
 354 metrics, model selection, and comparison methods.
 355

356 **Datasets and Backbones.** We conducted experiments on five publicly available and well-known
 357 datasets: Caltech-2V, Caltech-3V, WVU, IAPR, and MIRFlickr. These datasets have different
 358 modalities and sample sizes. For a more detailed description of the dataset, please refer to
 359 appendix A.7. The GIB model uses a unified MLP network architecture across all datasets, consisting
 360 of three fully connected layers with ReLU activation functions. The output dimensions of the layers
 361 are 512, 512, and 256, respectively.
 362

363 **Evaluation Metrics.** We use Accuracy (ACC) and Normalized Mutual Information (NMI) to eval-
 364 uate the final clustering performance. ACC is used to quantify the consistency between clustering
 365 results and true labels, while NMI measures the degree of information shared between clustering
 366 results. Higher values for both metrics indicate better clustering performance.
 367

368 **Implementation Details.** We implemented GIB and other methods for comparison on a Windows
 369 10 system equipped with a 24 GB NVIDIA RTX-4090 GPU, using the PyTorch 1.13.0 platform
 370 (Python version 3.9). We ran the model 20 times. In each run, the training process converged after
 371 100 epochs, and we carefully selected the model with the highest accuracy and lowest loss. The
 372 batch size was set to 256, and Adam was chosen as the optimizer with a learning rate of 0.0001. We
 373 fixed the pseudo-purity threshold and the maximum sample number threshold within the granular
 374 ball to 0.9 and 1.0, respectively.
 375

378
379
380
Table 1: Clustering performance with ACC and NMI on various kinds of datasets (the bold and
underlined values in the table represent the best and second-best results respectively).

Methods	Caltech-2V		Caltech-3V		WVU		IAPR		MIRFlickr	
	ACC	NMI								
KM	41.6	30.5	46.3	31.3	30.8	37.2	38.9	17.2	40.9	22.5
Ncuts (TPAMI'00)	39.9	31.2	42.6	25.4	55.9	41.9	41.9	18.9	48.4	26.1
AmKM	44.6	35.2	46.9	31.5	27.9	25.1	40.4	17.0	41.0	21.6
AmNcuts (TPAMI'00)	42.8	52.2	43.7	25.5	58.3	55.0	42.2	18.9	48.2	26.2
CoregMVSC (NIPS'11)	49.2	39.6	54.4	45.3	36.5	55.8	35.1	18.4	41.0	26.8
RMKMC (IJCAI'13)	51.4	33.5	59.5	49.4	46.0	53.3	36.4	15.9	42.3	23.4
SwMC (IJCAI'17)	49.9	37.1	54.8	43.3	41.8	10.1	30.2	23.1	34.3	34.5
ONMSC (AAAI'20)	34.2	26.6	30.2	23.1	28.9	27.9	21.6	11.1	30.6	16.4
EAMC(CVPR'20)	41.9	25.6	38.9	21.4	26.9	15.2	37.1	16.4	30.5	9.1
DEMVC(InfoSci'21)	39.4	22.2	38.7	27.0	49.1	50.9	30.1	13.8	44.8	25.2
SiMVC (CVPR'21)	50.8	47.1	56.9	50.4	46.6	45.2	42.7	18.5	45.6	26.3
CoMVC (CVPR'21)	46.6	42.6	54.1	50.4	42.3	44.4	46.7	21.5	49.3	30.6
MFLVC (CVPR'22)	60.6	52.8	63.1	56.6	58.2	51.3	47.3	22.6	53.8	32.8
SPDMC (TNNLS'23)	64.4	50.6	70.1	63.0	32.9	31.3	33.3	17.1	47.5	30.3
DealMVC (ACM MM'23)	60.0	50.0	59.5	56.8	55.2	56.4	35.0	10.8	49.3	32.1
ICMVC (AAAI'24)	39.0	25.0	53.2	40.3	38.3	39.0	37.1	16.8	43.5	24.4
DIVIDE (AAAI'24)	64.1	52.9	67.8	56.2	49.9	50.0	45.6	23.0	52.3	33.5
PDMC-RCL(TIP'25)	62.5	52.4	69.7	58.4	58.0	49.1	45.7	22.4	52.7	33.0
CCMVC(TNNLS'25)	58.5	49.7	59.5	54.0	47.4	47.3	38.4	20.8	52.3	33.4
GIB	69.7	57.2	74.3	64.0	64.0	56.8	50.6	25.4	56.2	35.8
Ours vs Best Compared	5.3↑	4.3↑	4.2↑	1.0↑	5.7↑	0.4↑	3.3↑	2.8↑	2.4↑	2.3↑

401
402
403 **Compared Methods.** We compare the proposed method with the following models: **(a) Single-**
404 **modal clustering methods:** Perform clustering on each individual modality for multi-modal data.
405 Typical algorithms include K-Means (KM) and Normalized Cuts (Ncuts). **(b) Full-modal clustering**
406 **methods:** Connect all modalities and then apply single-modality clustering methods. Representative
407 algorithms include AmKM (All-modal K-Means) and AmNcuts (All-modal NCuts). **(c) Traditional**
408 **multi-modal clustering methods:** RMKMC Cai et al. (2013), ONMSC Zhou & Shen (2020), CoregMVSC
409 Kumar et al. (2011) and SwMC Nie et al. (2017). **(d) Deep multi-modal clustering methods:** EAMC Zhou & Shen (2020), DEMVC (Xu et al., 2021), SiMVC and CoMVC (Trosten et al., 2021), SPDMC Chen et al. (2023), MFLVC (Xu et al., 2022), DealMVC (Yang et al., 2023), ICMVC Chao et al. (2024), DIVIDE Lu et al. (2024), PDMC-RCL Lou et al. (2025) and CCMVC Shi et al. (2025). For detailed descriptions of these methods, please refer to appendix A.8.
413

414
415 3.2 EXPERIMENTAL RESULTS
416417
418 We compare our method with 19 state-of-the-art multi-modal clustering methods and present the
419 clustering results on the involved multi-modal datasets in Table 1. To further illustrate the effectiveness
420 of our method, we provide intuitive clustering visualizations in the appendix A.9.421
422 **Comparison on the Overall Dataset.** GIB achieved substantial improvements across all datasets, as
423 measured by the ACC and NMI metrics. Taking the Caltech-2V dataset as an example, our method
424 improved by 5.3% in ACC and 4.3% in NMI compared to the second-best method (DIVIDE). This
425 indicates that the proposed GIB method has significant advantages in deep multi-modal clustering.426
427 **Comparison on Small-Scale Datasets.** In the comparison on the WVU dataset, GIB outperformed
428 AmNcuts by 5.7% in ACC, demonstrating its ability to effectively capture key features in small-scale
429 datasets by correlating granular balls and leveraging feature compression and preservation.430
431 **Comparison on Large-Scale Datasets.** In the comparison on the IAPR dataset, GIB achieves 2.5%
432 higher ACC than the second-best method (MFLVC). This is because direct processing of massive
433 samples by traditional clustering incurs high computational costs and local optima issues. In contrast,
434 GIB replaces samples with granular balls, improving computational efficiency and preserving
435 inter-cluster differences for large-scale clustering.

Table 2: Ablation experiments on multi-modal datasets.

Methods	Caltech-2V		Caltech-3V		WVU		IAPR		MIRFlickr	
	ACC	NMI								
(1) \mathcal{L}_{DDC}	63.5	50.1	63.9	52.9	45.6	38.8	43.4	21.4	46.4	26.0
(2) $\mathcal{L}_{DDC} + \mathcal{L}_{Balls}$	64.6	55.2	71.5	64.4	54.4	49.8	48.2	24.4	48.6	26.3
(3) $\mathcal{L}_{DDC} + \mathcal{L}_{Samples}$	65.7	54.1	69.1	60.5	59.6	54.8	44.1	23.0	47.9	25.8
(4) GIB	69.7	57.2	74.3	64.0	64.0	56.8	50.6	25.4	56.2	35.8

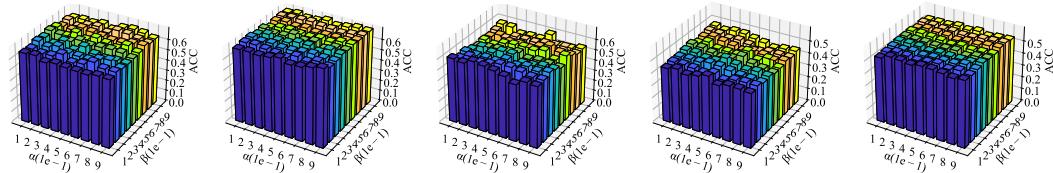


Figure 4: Parameter analysis of GIB on multi-modal datasets.

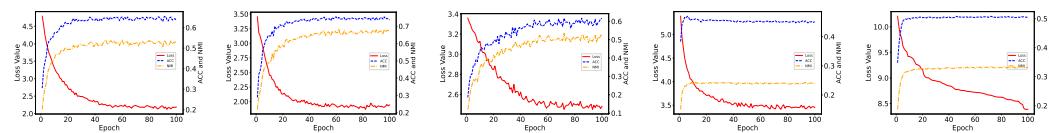


Figure 5: Convergence analysis of GIB on multi-modal datasets.

3.3 COMPREHENSIVE EVALUATION

Ablation Study. We conducted ablation experiments, and the results are shown in Table 2. When only the DDC clustering module is retained, the clustering performance is at its lowest level. Combining either the $\mathcal{L}_{Samples}$ module or the \mathcal{L}_{Balls} module with the DDC module leads to performance improvements. The best results are achieved when all three modules are integrated. In summary, the experiments verify that the $\mathcal{L}_{Samples}$ and \mathcal{L}_{Balls} modules synergistically enhance clustering performance, fully demonstrating the effectiveness of each module.

Parameter Analysis. To balance the compression and preservation processes, we set the same trade-off parameters α and β for $\mathcal{L}_{Samples}$ and \mathcal{L}_{Balls} . For these two parameters, we used a grid search method for tuning, adjusting their values from 0 to 1 with a step size of 0.1. The results are shown in Fig. 4. Under most parameter settings, the clustering performance for each dataset tends to be consistent, indicating that the proposed method is not very sensitive to parameter changes.

Convergence Analysis. To evaluate the convergence of the proposed method, we present the changes of the overall loss function, ACC, and NMI over epochs. As shown in Fig. 5, the loss function decreases rapidly at the beginning and stabilizes around 100 epochs. Meanwhile, ACC and NMI increase simultaneously and converge to stable values. Both indicate that our method has satisfactory convergence properties.

4 CONCLUSION

This paper innovatively proposes the GIB multi-modal clustering method. By representing the finest-grained samples with large-scale granular balls, GIB can effectively eliminate noise within modalities and improve computational efficiency. GIB constrains feature representation and clustering assignment through information bottlenecks at both the granular and the sample levels, thereby learning more compact and discriminative representations while suppressing interference from irrelevant information. However, multi-modal data often contain missing information, and this incompleteness can prevent models from fully leveraging the complementary information across modalities, thereby degrading clustering performance. In the future, we plan to extend the proposed approach to handle incomplete multi-modal data.

486 ETHICS STATEMENT
487488 This paper does not involve any potential ethics issues.
489490 REPRODUCIBILITY STATEMENT
491492 We have taken significant measures to guarantee the reproducibility of our research. The primary
493 document outlines the proposed methodology, key algorithms, and evaluation criteria in detail. Ad-
494 ditionally, the supplementary materials include comprehensive proofs of the theoretical claims and
495 thorough derivations of the main results. For our experiments, we utilized publicly available datasets
496 and provided an in-depth description of the experimental setup. To support reproducibility, the full
497 source code and implementation specifics will be made publicly accessible upon the acceptance of
498 this manuscript.
499500 REFERENCES
501502 Julián N Acosta, Guido J Falcone, Pranav Rajpurkar, and Eric J Topol. Multimodal biomedical ai.
503 *Nature medicine*, 28(9):1773–1784, 2022.505 Xiao Cai, Feiping Nie, and Heng Huang. Multi-view k-means clustering on big data. In *IJCAI*,
506 volume 13, pp. 2598–2604, 2013.507 Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for un-
508 supervised learning of visual features. In *Proceedings of the European conference on computer*
509 *vision (ECCV)*, pp. 132–149, 2018.511 Guoqing Chao, Yi Jiang, and Dianhui Chu. Incomplete contrastive multi-view clustering with high-
512 confidence guiding. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38,
513 pp. 11221–11229, 2024.515 Lin Chen. Topological structure in visual perception. *Science*, 218(4573):699–700, 1982.516 Rui Chen, Yongqiang Tang, Yuan Xie, Wenlong Feng, and Wensheng Zhang. Semisupervised pro-
517 gressive representation learning for deep multiview clustering. *IEEE Transactions on Neural*
518 *Networks and Learning Systems*, 35(10):14341–14355, 2023.520 Tianzhe Chu Chu, Shengbang Tong, Tianjiao Ding, Xili Dai, Benjamin Haeffele, Rene Vidal, and
521 Yi Ma. Image clustering via the principle of rate reduction in the age of pretrained models.
522 International Conference on Learning Representations (ICLR), 2024.523 Sanghyuk Chun, Seong Joon Oh, Rafael Sampaio De Rezende, Yannis Kalantidis, and Diane Larlus.
524 Probabilistic embeddings for cross-modal retrieval. In *Proceedings of the IEEE/CVF conference*
525 *on computer vision and pattern recognition*, pp. 8415–8424, 2021.527 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust rep-
528 resentations via multi-view information bottleneck. In *8th International Conference on Learning*
529 *Representations, ICLR 2020*. OpenReview.net, 2020.531 Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training
532 examples: An incremental bayesian approach tested on 101 object categories. In *IEEE Conference*
533 *on Computer Vision and Pattern Recognition Workshops, CVPR*, pp. 178, 2004.534 Michael Grubinger, Paul Clough, Henning Müller, and Thomas Deselaers. The iapr tc-12 bench-
535 mark: A new evaluation resource for visual information systems. In *International workshop*
536 *ontoImage*, volume 2, 2006.538 Di Hu, Feiping Nie, and Xuelong Li. Deep multimodal clustering for unsupervised audiovisual
539 learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
pp. 9248–9257, 2019.

- 540 Shizhe Hu, Guoliang Zou, Chaoyang Zhang, Zhengzheng Lou, Ruilin Geng, and Yangdong Ye.
 541 Joint contrastive triple-learning for deep multi-view clustering. *Information Processing & Man-*
 542 *agement*, 60(3):103284, 2023.
- 543 Shizhe Hu, Zhengzheng Lou, Xiaoqiang Yan, and Yangdong Ye. A survey on information bottle-
 544 neck. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(8):5325–5344, 2024a.
- 545 Shizhe Hu, Chengkun Zhang, Guoliang Zou, Zhengzheng Lou, and Yangdong Ye. Deep multi-
 546 view clustering by pseudo-label guided contrastive learning and dual correlation learning. *IEEE*
 547 *Transactions on Neural Networks and Learning Systems*, 2024b.
- 548 Jintao Huang, Yiu-ming Cheung, Chi-man Vong, and Wenbin Qian. Gbrip: Granular ball repres-
 549 entation for imbalanced partial label learning. In *Proceedings of the AAAI Conference on Artificial*
 550 *Intelligence*, volume 39, pp. 17431–17439, 2025.
- 551 Shudong Huang, Ivor W Tsang, Zenglin Xu, and Jiancheng Lv. Cgdd: Multiview graph cluster-
 552 ing via cross-graph diversity detection. *IEEE Transactions on Neural Networks and Learning*
 553 *Systems*, 35(3):4206–4219, 2022.
- 554 Mark J Huiskes and Michael S Lew. The mir flickr retrieval evaluation. In *Proceedings of the 1st*
 555 *ACM international conference on Multimedia information retrieval*, pp. 39–43, 2008.
- 556 Yuheng Jia, Jianhong Cheng, Hui Liu, and Junhui Hou. Towards calibrated deep clustering network.
 557 In *The Thirteenth International Conference on Learning Representations, ICLR 2025*. OpenRe-
 558 view.net, 2025a.
- 559 Zihang Jia, Zhen Zhang, and Witold Pedrycz. Generation of granular-balls for clustering based on
 560 the principle of justifiable granularity. *IEEE Transactions on Cybernetics*, 2025b.
- 561 Abhishek Kumar, Piyush Rai, and Hal Daume. Co-regularized multi-view spectral clustering. *Ad-*
 562 *vances in neural information processing systems*, 24, 2011.
- 563 Yongzhen Li and Husheng Liao. Multi-view clustering via adversarial view embedding and adaptive
 564 view fusion. *Applied Intelligence*, 51(3):1201–1212, 2021.
- 565 Meng Liu, Yue Liu, Ke Liang, Wenxuan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu. Deep
 566 temporal graph clustering. In *The Twelfth International Conference on Learning Representations,*
 567 *ICLR 2024*. OpenReview.net, 2024.
- 568 Yang Liu, Cheng Lyu, Zhiyuan Liu, and Jinde Cao. Exploring a large-scale multi-modal transpor-
 569 *tation recommendation system. Transportation Research Part C: Emerging Technologies*, 126:
 570 103070, 2021.
- 571 Zhengzheng Lou, Hang Xue, Yanzheng Wang, Chaoyang Zhang, Xin Yang, and Shizhe Hu.
 572 Parameter-free deep multi-modal clustering with reliable contrastive learning. *IEEE Transactions*
 573 *on Image Processing*, 2025.
- 574 Yiding Lu, Yijie Lin, Mouxing Yang, Dezhong Peng, Peng Hu, and Xi Peng. Decoupled contrastive
 575 multi-view clustering with high-order random walks. In *Proceedings of the AAAI conference on*
 576 *artificial intelligence*, volume 38, pp. 14193–14201, 2024.
- 577 Feiping Nie, Jing Li, and Xuelong Li. Self-weighted multiview clustering with multiple graphs. In
 578 Carles Sierra (ed.), *Proceedings of the Twenty-Sixth International Joint Conference on Artificial*
 579 *Intelligence, IJCAI*, pp. 2564–2570, 2017.
- 580 Emanuele Palumbo, Laura Manduchi, Sonia Laguna Cillero, Daphné Chopard, and Julia E Vogt.
 581 Deep generative clustering with multimodal diffusion variational autoencoders. In *The Twelfth*
 582 *International Conference on Learning Representations (ICLR 2024)*. OpenReview, 2024.
- 583 Erlin Pan and Zhao Kang. Multi-view contrastive graph clustering. *Advances in neural information*
 584 *processing systems*, 34:2148–2159, 2021.
- 585 Yuxin Peng and Jinwei Qi. Cm-gans: Cross-modal generative adversarial networks for common
 586 representation learning. *ACM Transactions on Multimedia Computing, Communications, and*
 587 *Applications (TOMM)*, 15(1):1–24, 2019.

- 594 Sricharan Ramagiri, Rahul Kavi, and Vinod Kulathumani. Real-time multi-view human action
 595 recognition using a wireless camera network. In *2011 Fifth ACM/IEEE International Conference on Distributed Smart Cameras*, pp. 1–6. IEEE, 2011.
- 596
- 597 Dinggang Shen and Horace HS Ip. Discriminative wavelet shape descriptors for recognition of 2-d
 598 patterns. *Pattern recognition*, 32(2):151–165, 1999.
- 599
- 600 Fuhao Shi, Shaohua Wan, Shengli Wu, Hui Wei, and Hu Lu. Deep contrastive coordinated multi-
 601 view consistency clustering. *Machine Learning*, 114(3):81, 2025.
- 602
- 603 Jingna Si, Ziwei Tian, Dongmei Li, Lei Zhang, Lei Yao, Wenjuan Jiang, Jia Liu, Runshun Zhang,
 604 and Xiaoping Zhang. A multi-modal clustering method for traditional chinese medicine clinical
 605 data via media convergence. *CAAI Transactions on Intelligence Technology*, 8(2):390–400, 2023.
- 606
- 607 Peng Su, Shudong Huang, Weihong Ma, Deng Xiong, and Jiancheng Lv. Multi-view granular-
 608 ball contrastive clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 609 volume 39, pp. 20637–20645, 2025.
- 610
- 611 Yuan Sun, Yang Qin, Yongxiang Li, Dezhong Peng, Xi Peng, and Peng Hu. Robust multi-view
 612 clustering with noisy correspondence. *IEEE Transactions on Knowledge and Data Engineering*,
 613 2024.
- 614
- 615 Yuze Tan, Yixi Liu, Hongjie Wu, Jiancheng Lv, and Shudong Huang. Metric multi-view graph
 616 clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp.
 617 9962–9970, 2023.
- 618
- 619 Naftali Tishby, Fernando C. N. Pereira, and William Bialek. The information bottleneck method.
 620 In *Proceedings Annual Aller-ton Conference Communnication Control Computing*, pp. 368–377,
 621 1999.
- 622
- 623 Daniel J Trosten, Sigurd Lokse, Robert Jenssen, and Michael Kampffmeyer. Reconsidering repre-
 624 sentation alignment for multi-view clustering. In *Proceedings of the IEEE/CVF conference on*
 625 *computer vision and pattern recognition*, pp. 1255–1265, 2021.
- 626
- 627 Luis Von Ahn and Laura Dabbish. Labeling images with a computer game. In *Proceedings of the*
 628 *SIGCHI conference on Human factors in computing systems*, pp. 319–326, 2004.
- 629
- 630 Jianxin Wu and Jim M Rehg. Centrist: A visual descriptor for scene categorization. *IEEE transac-*
 631 *tions on pattern analysis and machine intelligence*, 33(8):1489–1501, 2010.
- 632
- 633 Shuyin Xia, Guoyin Wang, and Xinbo Gao. Granular-ball computing: an efficient, robust,
 634 and interpretable adaptive multi-granularity representation and computation method. *CoRR*,
 635 abs/2304.11171, 2023.
- 636
- 637 Shuyin Xia, Xiaoyu Lian, Guoyin Wang, Xinbo Gao, Jiancu Chen, and Xiaoli Peng. Gbsvm: an
 638 efficient and robust support vector machine framework via granular-ball computing. *IEEE Trans-*
 639 *actions on Neural Networks and Learning Systems*, 36(5):9253–9267, 2024.
- 640
- 641 Shuyin Xia, Guan Wang, Gaojie Xu, Sen Zhao, and Guoyin Wang. Gbge: Efficient and adaptive
 642 graph coarsening via granular-ball computing. In *Proceedings of the Thirty-Fourth International*
 643 *Joint Conference on Artificial Intelligence, IJCAI*, pp. 3489–3497, 2025.
- 644
- 645 Wei Xia, Quanxue Gao, Qianqian Wang, Xinbo Gao, Chris Ding, and Dacheng Tao. Tensorized
 646 bipartite graph learning for multi-view clustering. *IEEE Transactions on Pattern Analysis and*
 647 *Machine Intelligence*, 45(4):5187–5202, 2022.
- 648
- 649 Jiang Xie, Weiyu Kong, Shuyin Xia, Guoyin Wang, and Xinbo Gao. An efficient spectral clustering
 650 algorithm based on granular-ball. *IEEE Transactions on Knowledge and Data Engineering*, 35
 651 (9):9743–9753, 2023.
- 652
- 653 Jiang Xie, Yuxin Cheng, Shuyin Xia, Chunfeng Hua, Guoyin Wang, and Xinbo Gao. Aw-gbgae: an
 654 adaptive weighted graph autoencoder based on granular-balls for general data clustering. *IEEE*
 655 *Transactions on Pattern Analysis and Machine Intelligence*, 2025.

- 648 Jie Xu, Yazhou Ren, Guofeng Li, Lili Pan, Ce Zhu, and Zenglin Xu. Deep embedded multi-view
 649 clustering with collaborative training. *Information Sciences*, 573:279–290, 2021.
 650
- 651 Jie Xu, Huayi Tang, Yazhou Ren, Liang Peng, Xiaofeng Zhu, and Lifang He. Multi-level feature
 652 learning for contrastive multi-view clustering. In *Proceedings of the IEEE/CVF conference on*
 653 *computer vision and pattern recognition*, pp. 16051–16060, 2022.
- 654 Xiaoqiang Yan, Yiqiao Mao, Yangdong Ye, and Hui Yu. Cross-modal clustering with deep correlated
 655 information bottleneck method. *IEEE Transactions on Neural Networks and Learning Systems*,
 656 35(10):13508–13522, 2023.
- 657
- 658 Haizhou Yang, Quanxue Gao, Wei Xia, Ming Yang, and Xinbo Gao. Multiview spectral clustering
 659 with bipartite graph. *IEEE Transactions on Image Processing*, 31:3591–3605, 2022.
- 660
- 661 Xihong Yang, Jin Jiaqi, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou, Xin-
 662 wang Liu, and En Zhu. Dealmvc: Dual contrastive calibration for multi-view clustering. In
 663 *Proceedings of the 31st ACM international conference on multimedia*, pp. 337–346, 2023.
- 664
- 665 Xitong Yang, Palghat Ramesh, Radha Chitta, Sriganesh Madhvanath, Edgar A Bernal, and Jiebo
 666 Luo. Deep multimodal representation learning from temporal data. In *Proceedings of the IEEE*
 667 *conference on computer vision and pattern recognition*, pp. 5447–5455, 2017.
- 668
- 669 Zhiqiang Yuan, Wenkai Zhang, Changyuan Tian, Yongqiang Mao, Ruixue Zhou, Hongqi Wang,
 670 Kun Fu, and Xian Sun. Mcrn: A multi-source cross-modal retrieval network for remote sensing.
 671 *International Journal of Applied Earth Observation and Geoinformation*, 115:103071, 2022.
- 672
- 673 Runwu Zhou and Yi-Dong Shen. End-to-end adversarial-attention network for multi-modal cluster-
 674 ing. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 675 14619–14628, 2020.
- 676
- 677 Guoliang Zou, Yangdong Ye, Tongji Chen, and Shizhe Hu. Learning dual enhanced representation
 678 for contrastive multi-view clustering. In *Proceedings of the 32nd ACM International Conference*
 679 *on Multimedia*, pp. 8731–8739, 2024.
- 680
- 681 Guoliang Zou, Shizhe Hu, Tongji Chen, Yunpeng Wu, and Yangdong Ye. Dual global information
 682 guidance for deep contrastive multi-modal clustering. *Information Sciences*, 712:122158, 2025.
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A APPENDIX**
703704 In the supplemental material:
705

- 706 • **A.1:** We discuss the use of the large language mode (LLM).
- 707 • **A.2:** We provide a detailed proof of Theorem 1.
- 708 • **A.3:** We provide a detailed proof of Theorem 2.
- 709 • **A.4:** We provide a detailed proof of Proposition 1.
- 710 • **A.5:** We describe details in Algorithm 1 to clearly present the proposed GIB framework.
- 711 • **A.6:** We describe the adopted modality fusion method.
- 712 • **A.7:** We give detailed descriptions of the datasets.
- 713 • **A.8:** We give a detailed description of the comparison methods.
- 714 • **A.9:** We conducted a detailed visual analysis of relevant datasets.

717 **A.1 LLM USAGE IN RESEARCH AND ANALYSIS**
718719 In this paper, we do not use any large language model.
720721 **A.2 PROOF OF THEOREM 1**
722723 In the variational optimization carried out in this study, we use the Kullback–Leibler (KL) diver-
724 gence to constrain the relationship between the approximate posterior distribution $q(x^1)$ and the
725 true posterior distribution $p(x^1)$. The theorem below states the key properties of the KL divergence
726 and its role in approximating posterior distributions.727 *proof.*
728729 Let $p(x^1)$ be a probability distribution and $q(x^1)$ be another probability distribution, with $q(x^1) > 0$
730 for all x^1 . The Kullback–Leibler divergence $\text{KL}(p(x^1)||q(x^1))$ is defined as:

731
$$\text{KL}(p(x^1) \parallel q(x^1)) = \int p(x^1) \log \frac{p(x^1)}{q(x^1)} dx^1. \quad (11)$$

732 By the inequality of Jensen, or directly from basic properties of probability, the KL divergence is
733 non-negative:
734

735
$$\text{KL}(p(x^1) \parallel q(x^1)) \geq 0. \quad (12)$$

736 The equality holds if and only if $p(x^1) = q(x^1)$ almost everywhere. For any $p(x^1)$ and $q(x^1)$ that
737 satisfy the appropriate domain and positivity conditions, we have:
738

739
$$\int p(x^1) \log \frac{p(x^1)}{q(x^1)} dx^1 \geq 0. \quad (13)$$

740 As a further transformation, the fractional expression within the logarithm is split into the difference
741 of two logarithms:
742

743
$$\log \frac{p(x^1)}{q(x^1)} = \log p(x^1) - \log q(x^1). \quad (14)$$

744 Substituting into the above equation, we get:
745

746
$$\int p(x^1) \log p(x^1) dx^1 - \int p(x^1) \log q(x^1) dx^1 \geq 0. \quad (15)$$

747 After rearranging terms, we obtain:
748

749
$$\int p(x^1) \log p(x^1) dx^1 \geq \int p(x^1) \log q(x^1) dx^1. \quad (16)$$

750 This means that by minimizing $\text{KL}(p(x^1)||q(x^1))$ we can drive the approximate posterior $q(x^1)$ to
751 approach the true posterior $p(x^1)$. This is because as the KL divergence decreases, the difference
752 between $q(x^1)$ and $p(x^1)$ is continuously reduced, and eventually $q(x^1)$ can approximate $p(x^1)$ well.
753

756 A.3 PROOF OF THEOREM 2
757758 *proof.*759 By definition of mutual information, we have:
760

761
$$I(X^1; H^1) = \iint p(x^1, h^1) \log \frac{p(x^1 | h^1)}{p(x^1)} dx^1 dh^1. \quad (17)$$

762

763 Here, $p(x^1, h^1)$ is the joint probability density of x^1 and h^1 , $p(x^1 | h^1)$ is the conditional probability
764 density, and $p(x^1)$ is the marginal probability density of x^1 .
765766 Given the relationship between $p(x^1)$ and the distribution $q(x^1)$ used for optimization, it follows
767 that:
768

769
$$I(X^1; H^1) < \iint p(x^1, h^1) \log \frac{p(x^1 | h^1)}{q(x^1)} dx^1 dh^1. \quad (18)$$

770 Since the joint probability can be expressed as:
771

772
$$p(x^1, h^1) = p(h^1)p(x^1 | h^1), \quad (19)$$

773 substitution into Eq. 18 yields:
774

775
$$I(X^1; H^1) < \sum_{i=1}^m \iint p(h^1)p(x^1 | h^1) \log \frac{p(x^1 | h^1)}{q(x^1)} dx^1 dh^1. \quad (20)$$

776

777 To remove redundant terms, Monte Carlo sampling Von Ahn & Dabbish (2004) is used for approxi-
778 mation and replacement of $p(h^1)$ to obtain a more accurate estimation. After derivation, the mutual
779 information can be further expressed as:
780

781
$$I(X^1; H^1) < \sum_{i=1}^m \int p(x^1 | h^1) \log \frac{p(x^1 | h^1)}{q(x^1)}. \quad (21)$$

782

783 The role of Monte Carlo sampling is to approximate integrals by drawing samples, avoiding the
784 difficulty of computing high-dimensional integrals directly and thereby improving computational
785 feasibility and accuracy.
786787 Assume that $p(x^1 | h^1)$ follows a Gaussian distribution, whose mean μ and variance σ can be
788 learned by the variational IB encoder. To simplify calculations, h^1 is reparameterized as $h^1 =$
789 $\mu(x^1) + \sigma(x^1) \cdot \theta$, where θ represents the standard normal distribution. At this time, the mutual
790 information can be expressed as:
791

792
$$I(X^1; H^1) < \sum_{i=1}^m \left\{ \mathbb{E}_{\theta_i} \log \frac{p(x^1 | h^1)}{q(x^1)} \right\} < \sum_{i=1}^m \mathbb{E}_{\theta_i} \{ \text{KL} [p(x^1 | h^1) \| q(x^1)] \}. \quad (22)$$

793

794 To ensure that data samples are evenly divided into all categories, a constraint is set on $q(x^1)$ based
795 on the uniform distribution: $\sum_{i=1}^M q(x^1) = \frac{M}{k}$ (where M is the number of data instances, and
796 k is the number of clusters). Combining with the number of data instances M , the final mutual
797 information is approximated as:
798

799
$$I(X^1; H^1) \approx \frac{1}{M} \sum_{i=1}^M \mathbb{E}_{\theta_i} \{ \text{KL} [p(x^1 | h^1) \| q(x^1)] \}, \quad \sum_{i=1}^M q(x^1) = \frac{M}{k}, \quad (23)$$

800

801 which completes the proof.
802803 A.4 PROOF OF PROPOSITION 1
804805 *proof.*806 To calculate $I(C^i, C^j)$, we first obtain the joint probability distribution $p(C^i, C^j)$ by applying di-
807 mension expansion, element-wise multiplication, and summation over the sample dimension, as
808 described in Eq. 24:
809

$$p(C^i, C^j) = \sum_{n=1}^{b_n} C_n^i \times (C_n^j)^T. \quad (24)$$

Here, b_n represents the batch size. The joint probability matrix is symmetric and normalized, as shown in Eq. 25:

$$p(C^i, C^j) = \frac{1}{2} (p(C^i, C^j) + p(C^j, C^i)), \quad p(C^i, C^j) = \frac{p_{ij}}{\sum_{i,j} p_{ij}}. \quad (25)$$

The first formula guarantees symmetry, and the second formula normalizes all probabilities to sum to 1. Next, we calculate the marginal probabilities $p(C^i)$ and $p(C^j)$ of $I(C^i, C^j)$. The formula for calculating mutual information $I(C^i, C^j)$ is as follows:

$$I(C^i, C^j) = \sum_{i=1}^m \sum_{i=i+1}^m \mathbb{1}_{i \neq j} p(C^i, C^j) \log \left(\frac{p(C^i, C^j)}{p(C^i)p(C^j)} \right). \quad (26)$$

Here, the summation $\sum_{\forall k \neq i}$ denotes summing over all indices k different from i .

Similarly, $I(C^i, C^s)$ and $I(Y^i, Y^s)$ are obtained by calculating their respective joint probabilities and marginal probabilities.

A.5 ALGORITHMIC DESCRIPTION OF THE DEEP GRANULAR INFORMATION BOTTLENECK FOR MULTI-MODAL CLUSTERING

Algorithm 1 GIB Algorithm

- 1: **Input:** Multi-modal dataset $\{X^i\}_{i=1}^m$, number of clusters k , hyper-parameters α, β , learning rate γ , purity threshold θ , and granular ball quantity threshold n_{th} .
 - 2: **Output:** The clustering result.
 - 3: Initialize the neural network parameters.
 - 4: **while** not converge **do**
 - 5: Extract modal-specific representations $\{H^i\}_{i=1}^m$ by sharing modal-specific encoders.
 - 6: Generate the granular balls $\{\mathcal{G}^i\}_{i=1}^m$ of each modality in the latent feature space.
 - 7: Calculate the granular-level feature learning loss function using Eq. 5.
 - 8: Calculate the sample-level clustering alignment loss function using Eq. 6.
 - 9: Calculate the DDC loss using Eq. 7.
 - 10: Jointly optimize the overall loss function by Eq. 2.
 - 11: **end while**
 - 12: **return** obtaining the final clustering result.

A.6 MULTI-MODAL FUSION

The shared features among different modalities can be used to learn feature correlations. We did not adopt the widely used current approach that automatically assigns weights to each view via an attention mechanism. Instead, we propose a simplified strategy to learn view weights directly from the clustering objective itself. The reasons for choosing this strategy are as follows: introducing an additional attention-learning module could render the entire network quite bulky, thereby increasing the runtime and memory overhead. By contrast, these view weights can be directly updated by optimizing the clustering objective during joint training. The definition is as follows:

$$S = \sum_{i=1}^m w^i H^i. \quad (27)$$

Specifically, we first initialized the weight of each modality to $\frac{1}{m}$ to ensure balance in early contributions, and then dynamically updated the specific weights for each modality through backpropagation, while ensuring that the sum of the weights remains ($\sum_{i=1}^m w^i = 1$).

864 A.7 DATASETS DETAILS
865866 We describe the datasets used in the experiments in detail and summarize the datasets in Table 3.
867868 Table 3: Description of five multi-modal datasets.
869

870 Dataset	871 Modalities	872 Samples	873 Clusters
Caltech-2V	2	1400	7
Caltech-3V	3	1400	7
WVU	4	650	10
IAPR	2	7855	6
MIRFlickr	4	12154	6

- 878 • **Caltech-2V** Fei-Fei et al. (2004) contains 1,440 images covering 7 object categories. It in-
879 cludes two types of features: Wavelet moments Shen & Ip (1999) and CENSus TRansform
880 hISTogram (CENTRIST) Wu & Rehg (2010).
- 881 • **Caltech-3V** contains the same categories and images as Caltech-2V but introduces an ad-
882 dditional feature.
- 883 • **WVU** Ramagiri et al. (2011) dataset is derived from action data and includes four differ-
884 ent modalities. All videos undergo feature detection and description using the Harris3-D
885 detector and Spatio-Temporal Interest Points (STIP) with HoG/HoF descriptors.
- 886 • **IAPR** Grubinger et al. (2006) contains 7,855 images and their corresponding textual de-
887 scriptions, forming two modalities and covering six categories.
- 888 • **MIRFlickr** Huiskes & Lew (2008) contains 12,154 images, which are divided into 6 dif-
889 fferent categories.

891 A.8 COMPARISON METHOD DETAILS
892893 To ensure a fair comparison, we downloaded the source code of the competing methods from the
894 authors' websites and ran them according to the experimental settings and parameter-tuning pro-
895 cedures described in each paper.

- 897 • **K-Means**: Partition data points into K clusters to maximize similarity within clusters and
898 minimize dissimilarity between clusters. The algorithm iteratively updates cluster centers
899 and assigns points until convergence.
- 900 • **Ncuts (Normalized Cuts)**: It is a graph-based clustering method that achieves data group-
901 ing by minimizing the normalized cut cost of the graph.
- 902 • **AmKM**: An adaptive clustering method dynamically adjusts the cluster centers and their
903 number to better fit the distribution characteristics of the data.
- 904 • **AmNcuts**: It actively groups nodes into high-quality clusters for knowledge graphs and
905 multi-modal data using the Normalized Cut (N-cut) principle, aiming to minimize cross-
906 cluster edge weights and maximize intra-cluster connectivity.
- 907 • **CoregMVSC** Kumar et al. (2011): Co-regularize clustering hypotheses to achieve consis-
908 tent cluster assignments across modalities.
- 909 • **RMKMC** Cai et al. (2013): Proposes a robust and scalable multi-view clustering method
910 that integrates heterogeneous representations of large-scale data for unsupervised cluster-
911 ing. This method overcomes the limitations of graph-based spectral clustering on large-
912 scale datasets.
- 913 • **SwMC** Nie et al. (2017): Introduces a Laplacian rank-constrained graph to learn view
914 weights and directly assigns cluster labels to each data point without any post-processing.
- 915 • **EAMC** Zhou & Shen (2020): Learns cross-modal features via a shared encoder and in-
916 troduces a reconstruction constraint to strengthen feature-level contrastive learning (En-
917 FeaCL), addressing existing methods' shortcomings with noisy data and local diversity.

- **DEMVC** Xu et al. (2021): It uses deep autoencoders to learn embeddings for each modality, and jointly optimizes feature representations and cluster assignments during co-training while accounting for modality consistency and complementarity.
 - **CoMVC** Trosten et al. (2021): Proposes a deep multimodal clustering baseline with unaligned representations that can match or surpass the SOTA even without alignment, and uses contrastive learning to enable selective alignment while preserving each modality's priority.

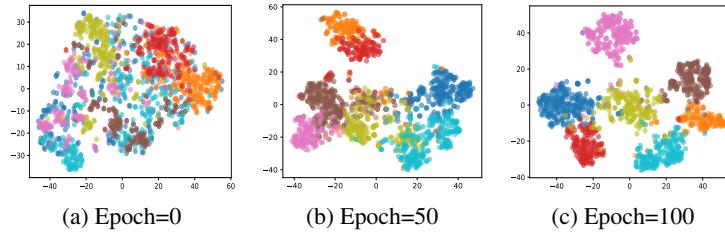


Figure 6: Visualization on the Caltech2V dataset.

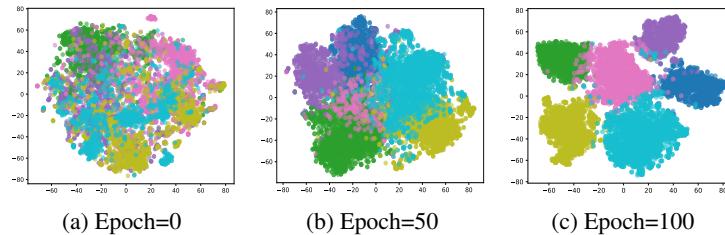


Figure 7: Visualization on the IAPR dataset.

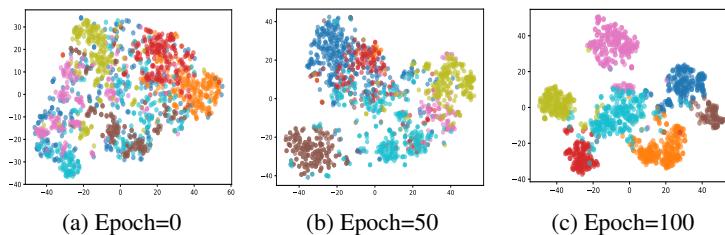


Figure 8: Visualization on the Caltech3V dataset.

- **MFLVC** Xu et al. (2022): Addresses the conflict between learning consistent semantics and reconstructing modality-specific information by learning low-level and high-level features independently in separate feature spaces, significantly improving clustering performance.
 - **SPDMC** Chen et al. (2023): It constrains sample-pair relationships with prior knowledge through a unified regularization for semi-supervised progressive representation learning.
 - **DealMvc** Yang et al. (2023): It proposes a novel dual-contrast calibration network for multi-view clustering, addressing the shortcoming of existing models that overlook similar samples across views.
 - **ICMVC** Chao et al. (2024): It leverages multi-view consistency relation transfer and graph convolutional networks to handle missing values, and combines instance-level attention fusion with high-confidence guidance to jointly optimize multi-view representation learning and clustering performance.
 - **DIVIDE** Lu et al. (2024): a decoupled, robust contrastive multi-view clustering method that identifies data pairs via high-order random walks to address false negatives and false positives.

- 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
- **PDMC-RCL** Lou et al. (2025): It quantifies the reliability of modality pairs using reliable contrastive learning and weights them accordingly, prioritizing the learning of discriminative features from reliable pairs while performing multi-level contrastive learning at both the feature and clustering levels.
 - **CCMVC** Shi et al. (2025): It conducts joint training via contrastive learning at the feature, cluster, and view levels, and incorporates an alignment mechanism to ensure cross-view information consistency.
- 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

A.9 VISUAL ANALYSIS

To intuitively demonstrate the clustering performance of the GIB method on the dataset, we conducted a detailed visual analysis, with the results shown in Fig. 6, Fig. 7, and Fig. 8. Specifically, we used T-SNE to visualize the clustering results at different stages of the training process, namely the early, mid, and late stages, corresponding to the 0th, 5th, and 100th epochs of training. As the number of epochs increased, data points belonging to the same category gradually moved closer together, forming tighter and more cohesive clusters. Meanwhile, the boundaries between different categories became increasingly pronounced, leading to clear separations in the feature space. This phenomenon highlights the effectiveness of GIB in enhancing clustering performance.