
Towards Full Utilization on Mask Task for Distilling PLMs into NMT

Anonymous ACL submission

Abstract

Owing to being well-performed in many natu-001
ral language processing tasks, the application002
of pre-trained language models (PLMs) in neu-003
ral machine translation (NMT) is widely con-004
cerned. Knowledge distillation (KD) is one of005
the mainstream methods which could gain con-006
siderable promotion for NMT models without007
extra computational costs. However, previous008
methods in NMT always distill knowledge at009
hidden states level and can not make full use010
of the teacher models. For solving the afore-011
mentioned issue, we propose KD based on012
mask task as a more effective method utilized013
in NMT which includes encoder input con-014
version, mask task distillation, and gradient015
optimization mechanism. Here, we evaluate016
our translation systems for English→German017
and Chinese→English tasks and our methods018
clearly outperform baseline methods. Besides,019
our framework can get great performances020
with different PLMs.021

1 Introduction022

Aimed at improving the performance of neural023

machine translation (NMT), pre-trained language024

models (PLMs) are applied to enhance Transformer025

(Vaswani et al., 2017) by either using PLMs as extra026

inputs or distilling knowledge from PLMs to NMT027

model(Clinchant et al., 2019; Zhu et al., 2020;028

Weng et al., 2020). Among these two approaches,029

knowledge distillation (KD) (Bucila et al., 2006;030

Hinton et al., 2015) maintains the original struc-031

ture of the Transformer, leading to an improvement032

without extra computational costs. For example, by033

taking BERT (Devlin et al., 2018) as the teacher034

model, the encoder in Transformer is chosen as035

the student model could acquire knowledge from036

the hidden states of the teacher model(Yang et al.,037

2020; Wu et al., 2020). This kind of KD acquires038

knowledge from the hidden states of PLMs(cf. Fig.039

1a).040

However, KD at hidden states level can not make 041

full use of the teacher model, which may miss 042

some knowledge from PLMs. At least, the lacking 043

of classifier layer lose some information from the 044

class probabilities produced by the teacher model, 045

which is called the “soft targets” (Hinton et al., 046

2015). On the contrary, if we could imitate the 047

process of pre-training tasks from PLMs, the stu- 048

dent model can take advantage of the complete 049

knowledge distilled by the teacher model. 050

In this paper, we propose KD based on mask task 051

in NMT to improve the performance of the Trans- 052

former in NMT (cf. Fig. 1b). In our framework, 053

we take advantage of the whole structure of the 054

teacher model in KD by distilling the logits from 055

the mask task. To adapt to KD based on mask task, 056

we design three strategies, namely encoder input 057

conversion, mask task distillation, and gradient op- 058

timization mechanism. In particular, we use the 059

same tokenizer as the teacher model and mask part 060

of tokens. Besides, we add a classifier layer for 061

encoder. The encoder needs to accomplish both the 062

translation task and mask task simultaneously. The 063

objective is to absorb the monolingual knowledge 064

from the teacher model while taking on the role 065

of the encoder of translation. And we propose the 066

gradient optimization mechanism to alleviate the 067

conflict between the NMT task and the KD task 068

and guarantee the efficiency of KD in NMT. 069

To demonstrate the effectiveness of our frame- 070

work, we implement the proposed approaches 071

based on the advanced pre-trained models and 072

Transformer model. Experimental results on 073

WMT14 English to German and WMT19 Chinese 074

to English machine translation tasks show that our 075

approach outperforms the Transformer baseline 076

and the others KD methods. 077

The main contributions can be summarized as: 078

• We are the first to put forward to utilize the 079

whole structure of the teacher model to distill 080

knowledge in NMT, which avoids the loss of knowl- 081

1



edge in KD at hidden states level;082

• We propose KD based on mask task in NMT.083

For adjusting our framework, we propose three084

strategies: encoder input conversion, mask task085

distillation, and gradient optimization mechanism.086

• We evaluate our framework with different087

PLMs on several large-scale benchmark datasets.088

Our experiments show significant improvement089

over other methods.090

2 Background091

2.1 Pre-trained Language Models Based on092

Mask Task093

PLMs like BERT (Devlin et al., 2018) have shown094

strong performance gains using self-supervised095

training that requires a large collection of unlabeled096

text. One of the most significant training objec-097

tives is the masked language model (MLM) which098

predicts masked individual words. In MLM’s im-099

plementation, 15% of the tokens are randomly se-100

lected; of those, 80% are replaced with [MASK],101

10% are replaced with a random token, and 10% are102

kept unchanged. The task is to predict the original103

tokens from the modified inputs.104

Based on the MLM task, more advanced tasks105

are proposed to train PLMs. SpanBERT (Joshi106

et al., 2020) presents a pre-training method that107

masks contiguous random spans based on geomet-108

ric distribution, rather than random individual to-109

kens.110

2.2 Knowledge Distillation in Neural111

Machine Translation112

KD is an effective method that can help student113

network obtain knowledge from a large and accu-114

rately trained teacher network. In KD, θS and θT115

are the sets of parameters of the student model and116

the teacher model which are usually trained to min-117

imize the negative log-likelihood. The KD loss can118

be formulated as:119

L (θT , θS) = −||HT −HS ||22 (1)120

where HT and HS are the hidden states of the121

teacher model and student model, respectively.122

Following KD at hidden states level, Yang et al.,123

2020 proposes asymptotic distillation, which uti-124

lizes the second-to-last layer of BERT and works125

significantly better than other hidden states. Wu126

et al., 2020 utilizes all hidden layers in PLMs and127

adds the layer mixing mechanism for intermediate128

layers to distill more knowledge from the teacher129

model. However, these methods still can not make 130

full use of the teacher models. 131

3 Methodology 132

Distilling knowledge from PLMs is a useful com- 133

plement to provide NMT models with proper lan- 134

guage knowledge. Previous methods concentrate 135

on distilling knowledge from the hidden states of 136

PLMs. We propose a novel framework that could 137

utilize the logits from the mask task. We imitate 138

the process of pre-training tasks from the teacher 139

models and make adjustment for the student model. 140

Our method can mask full use of the whole PLMs 141

which contains three steps including encoder in- 142

put conversion, mask task distillation, and gradient 143

optimization mechanism. We will introduce three 144

steps in detail. 145

3.1 Encoder Input Conversion 146

Contrary to the previous methods, the encoder part 147

accepts different inputs from the NMT task and the 148

mask task. The encoder tokenizer is replaced by the 149

teacher’s tokenizer, which permit the unity of posi- 150

tions of tokens. After that, some tokens are masked 151

according to the mask pre-training task of PLMs. 152

Specifically, given a sequence of source language 153

words X = {x1, x2, · · ·, xm} and corresponding 154

target language words Y = {y1, y2, · · ·, yn}, we 155

can get encoder input X = {x1,x2, · · ·,xm}, mask 156

encoder input X′ = {x′
1,x

′
2, · · ·, [MASK],x′

m}, 157

and decoder input Y = {y1,y2, · · ·,ym}. X and 158

Y are used in NMT task while X and X′ are used 159

in KD task. 160

3.2 Mask Task Distillation 161

Different tasks are executed in parallel, while the 162

data in the encoder are different. For the NMT 163

task, we merely transform the encoder tokenizer to 164

the PLMs’ tokenizer. Transformer is optimized by 165

maximizing the likelihood, denoted by 166

LNMT = −
n∑

i=1

logP (yi | y<i,X) (2) 167

Then, different from previous knowledge distil- 168

lation methods(Yang et al., 2020), a classifier layer 169

participates in the KD task to assist the mask pre- 170

diction of the encoder. Our objective learns the 171

logits information from the PLMs directly: 172

LKD (θT , θS) =

−
∑|V |

v=1 q (y = v | x′; θT )× log p (y = v | x′; θS)
(3) 173
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Figure 1: (a): Overview of KD at hidden states level: NMT task and KD task share same data, and encoder learns
from the hidden states of the PLMs; (b): Overview of our framework: our method utilizes the PLMs tokenizer and
adds an classifier layer.we also utilize different inputs between different tasks.

where |V | is the the number of words in source174

language dictionary.175

Finally, the loss function of our framework is:176

LALL = LNMT + αLKD (4)177

where α is used to balance the preference among178

the two losses.179

3.3 Gradient Optimization Mechanism180

For reducing conflicts between the NMT task and181

KD task, we propose the gradient optimization182

mechanism(GOM). Inspired by multi-task learn-183

ing(Zhao et al., 2018), we evaluate conflicts be-184

tween tasks with the direction of the gradient and185

reduce them by the gradient optimization strategy.186

More specifically, given a mini-batch of train-187

ing samples, the gradient in the encoder ∇θ will188

be influenced by the NMT task and the KD task,189

∇θ = ∇θNMT + ∇θKD, where ∇θNMT and190

∇θKD denote gradients from the NMT task and191

the KD task. As an auxiliary task of the NMT task,192

∇θKD whether to be withhold depends on the di-193

rection of the gradient.The destructive interference194

from the KD task can be measured by195

sign = sign(〈∇θNMT ,∇θKD〉) (5)196

∇θ =

{
∇θNMT +∇θKD, sign > 0

∇θNMT , sign <= 0
(6)197

For each module in the encoder, we calculate the198

sign of the gradient separately.199

4 Experiment 200

4.1 Implementation Detail 201

Data-sets We carry out experiments on large- 202

scale machine translation tasks: WMT’14 English- 203

German (En-De) and WMT’19 Chinese-English 204

(Zh-En). For En-De task, we use 4.5M prepro- 205

cessed data. We use newstest2013 as the validation 206

set and newstest2014 as the test set, which con- 207

tain 3000 and 3003 sentences, respectively. For 208

Zh-En task, we use 20.4M preprocessed data. We 209

use newstest2018 as our validation set and new- 210

stest2019 as our test set, which contain 3981 and 211

2000 sentences, respectively. We also measure 212

case sensitive BLEU with significance test (Koehn, 213

2004) for En-De and Zh-En, respectively. 214

Settings Following the setting in Vaswani et al., 215

2017, we carry out our experiments on standard 216

Transformer (Vaswani et al., 2017) with the fairseq 217

toolkit (Ott et al., 2019). For Transformer(Base), 218

we set the dimension of the input and output of all 219

6 layers as 512, and that of the feed-forward layer 220

to 2048. We employ 8 parallel attention heads. 221

In training processing, we use Adam optimizer 222

with 1 = 0.9, 2 = 0.98, learning rate is 7e-4 and 223

dropout is 0.1. All experiments are conducted us- 224

ing 4 NVIDIA V100 GPUs, where the batch size 225

of each GPU is set to 4096 tokens. The α in equa- 226

tion(4) ranges from [0.25, 0.5, 0.75] and we choose 227

on the performance of validation set. We train each 228

model for 200,000 steps and save in every 5,000 229

steps. At last, we average the last five checkpoints 230

for testing. 231

We choose BERT and SpanBERT(Joshi et al., 232

2020) as the teacher PLMs in our experiments. 233
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Models Method En-De Zh-En
Transformer(Base) - 27.96 24.63

Transformer(Base)+BERT
KD in Hidden States 28.20 24.88

KD on Mask Task 28.71* 25.14*

Transformer(Base)+SpanBERT
KD in Hidden States 27.67 -

KD on Mask Task 28.36* -

Table 1: Case-sensitive BLEU scores on English-German and Chinese-English.‘*’: significantly (p < 0.01) better
than Transformer (Base).

With regard to the mask strategies, we follow the234

same regulations and proportions as the teacher235

models. The experiments in Zh-En with Span-236

BERT are missing because of the lack of resources237

of SpanBERT-Chinese.238

4.2 Main Results239

The results are shown in Table 1. We also list the240

Transformer baseline and the result of the KD at241

hidden states level. Compared with baseline, Trans-242

former with the BERT based on mask task KD243

improves 0.75 BLEU scores and 0.51 BLEU in244

En-De and Zh-En, which outperforms Transformer245

with the BERT in the hidden states obviously. The246

experiment with the SpanBERT also improves 0.4247

BLEU scores than the baseline while the KD with248

SpanBERT at hidden states level incurs the decline249

in the BLEU scores. It is apparent that our frame-250

work can improve about 0.5 BLEU scores than251

KD at hidden states level with different PLMs as252

teacher models.253

4.3 Impact of Different Inputs254

Method Input BLEU
Transfromer(Base) - 27.96

KD in Hidden States
orign 28.20
mask 28.07

KD on Mask Task
orign 28.46
mask 28.53

Table 2: Impact of different inputs in WMT’14 En-De.

To show the effectiveness of input, we do a de-255

tailed ablation study with BERT as shown in Table256

2. We use different distillation strategies with dif-257

ferent inputs, and analyze the influence of different258

input strategies. On the one hand, the strategy of259

masking input is not applicable for KD at hidden260

states level, for which leads to the decline of BLEU261

scores. On the other hand, KD based on task can262

improve about 0.5 BLEU scores without GOM, 263

and the rest improvement owing to the mask input. 264

Compared with the input strategies, the selection 265

of which part to distill can bring more promotion. 266

According to the experiments above, we con- 267

clude that the most effective step is mask task distil- 268

lation, while encoder input conversion can enhance 269

the effect of distillation for further improvement. 270

4.4 Impact of Gradient Optimization 271

Mechanism 272

Method GOM BLEU

KD in Hidden States
× 28.20
X 28.44

KD on Mask Task
× 28.53
X 28.71

Table 3: Impact of Gradient Optimization Mechanism
in WMT’14 En-De.

We also evaluate the effectiveness with and with- 273

out gradient optimization mechanism in different 274

KD methods. As shown in Table 3, GOM can 275

improve about 0.2 BLEU scores in either KD at 276

hidden states level or KD based on mask task com- 277

pared with KD directly. It reveals that GOM has 278

a positive influence on the benefit NMT task by 279

reducing the conflicts between the NMT task and 280

KD task effectively. 281

5 Conclusion 282

In this paper, we first address the situation of KD in 283

NMT and the disadvantages of KD at hidden states 284

level. Then, we propose KD based on mask tasks, 285

which overcomes the drawback of current KD in 286

NMT and bring improvement. Moreover, we apply 287

our framework to other PLMs with mask tasks and 288

prove the effectiveness. Experiments show that our 289

framework can achieve remarkable performance on 290

the WMT En-De and Zh-En benchmark datasets. 291
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