
Tokenization Falling Short: hTe Cusre of Tkoeniaztion

Anonymous ACL submission

Abstract
Language models typically tokenize raw text001
into sequences of subword identifiers from002
a predefined vocabulary, a process inher-003
ently sensitive to typographical errors, length004
variations, and largely oblivious to the in-005
ternal structure of tokens—issues we term006
the curse of tokenization . In this study, we007
delve into these drawbacks and demonstrate008
that large language models (LLMs) remain sus-009
ceptible to these problems. This study system-010
atically investigates these challenges and their011
impact on LLMs through three critical research012
questions: (1) complex problem solving, (2)013
token structure probing, and (3) resilience to014
typographical variation. Our findings reveal015
that scaling model parameters can mitigate the016
issue of tokenization; however, LLMs still suf-017
fer from biases induced by typos and other text018
format variations. Our experiments show that019
subword regularization such as BPE-dropout020
can mitigate this issue. We will release our021
code and data to facilitate further research.022

1 Introduction023

Tokenization is a fundamental step in the prepro-024

cessing pipeline of large language models (LLMs)025

(OpenAI, 2023; Anil et al., 2023; Touvron et al.,026

2023; Chai et al., 2023; Lozhkov et al., 2024), con-027

verting raw text into a sequence of subword units028

derived from a predefined vocabulary (Sennrich029

et al., 2016; Kudo and Richardson, 2018). This pro-030

cess, while effective in many scenarios, presents031

significant challenges that can hinder the perfor-032

mance and robustness of LLMs. These challenges033

include sensitivity to typographical errors (Cao034

et al., 2023), length variations (Aghajanyan et al.,035

2022), and a lack of awareness of the internal struc-036

ture of tokens (Brown et al., 2020)—collectively037

termed the curse of tokenization.038

Typographical errors, such as minor misspellings039

or misplaced characters, can drastically affect the040

tokenization process. Unlike humans, who can041

assign
ment

assignment

assign + ment

cosine similarity: 0.21
angle: 78.16°

assign
ment

assignment
assign + ment

(a) cosine (“assignment”,
“assign” + “ment”).

im

port import
im + port

cosine similarity: 0.13
angle: 82.47°

im
port

import
im + port

(b) cosine(“import”,
“im” + “port”).

Figure 1: Compositional challenges in token embed-
dings. (a) “assignment” decomposed into “assign”
and “ment” shows a cosine similarity of 0.21 and an an-
gle of 78.16°. (b) “import” decomposed into “im” and
“port” shows a cosine similarity of 0.13 and an angle
of 82.47°. These results indicate that existing LLMs do
not accurately capture surface form composition.

easily overlook these errors and understand the in- 042

tended meaning, LLMs can misinterpret or fail to 043

recognize these variations, leading to degraded per- 044

formance (Cao et al., 2023). This typo-sensitivity 045

reveals a crucial gap in current tokenization meth- 046

ods, which do not sufficiently mimic human read- 047

ing capabilities. 048

Another critical issue is the length unawareness 049

of current tokenization approaches. LLMs often 050

struggle to accurately represent the organizational 051

structure of text, being insensitive to the number 052

of characters or words (Aghajanyan et al., 2022). 053

This insensitivity affects their ability to understand 054

and process text effectively, particularly in tasks 055

requiring a nuanced understanding of text length 056

and compositional structure. 057

Furthermore, existing tokenization methods are 058

often blind to the internal structure of tokens. The 059

decoupled embedding space and lookup table ap- 060

proach fail to account for the hierarchical compo- 061

sition of language, spanning characters, subwords, 062

and words, as depicted in Figure 1. This lack of 063

integration across different levels of token com- 064

position limits the model’s ability to fully grasp 065

semantic relationships and differences. 066

Case insensitivity in certain languages adds an- 067

other layer of complexity, where variations in cap- 068

1

italization can lead to different token representa-069

tions, further complicating the model’s understand-070

ing and processing of text.071

To address these challenges, we conducted a072

comprehensive study examining the limitations of073

current tokenization methods and their impact on074

LLM performance. Our study is guided by three075

critical research questions (RQs):076

RQ1: Complex Problem Solving (§3). As a pilot077

experiment, we firstly investigate the performance078

of LLMs on complex problems that are sensitive to079

tokenization, involving anagram task and complex080

mathematical language understanding.081

RQ2: Token Structure Probing (§4). We study082

the token structural tasks such as case manipulation,083

length counting, and length-sensitive tasks to probe084

the token structural understanding of LLMs.085

RQ3: Typographical Variation (§5). We de-086

signed a robust set of evaluation benchmarks087

termed TKEval on top of various datasets such as088

MMLU, TruthfulQA, GSM8K, and HumanEval,089

covering diverse tasks and linguistic phenomena.090

These benchmarks allow us to systematically test091

and analyze the LLMs’ resilience to tokenization.092

Our findings highlight that while scaling model093

parameters can enhance the robustness of tokeniza-094

tion, LLMs still suffer from biases introduced by095

typographical errors and text format variations. We096

demonstrate the persistent nature of these tokeniza-097

tion challenges.098

Contribution 1) We provide a comprehensive099

analysis of the problem known as the curse of tok-100

enization, detailing its impact on language model101

performance and introducing systematic evaluation102

benchmarks to assess these issues.103

2) By evaluating various scales of LLMs, includ-104

ing LLama3, Mistral, and GPT-4 families, across105

thirteen distinct tasks, we demonstrate that even106

state-of-the-art models struggle with handling ty-107

pographical variations. Specifically, LLMs exhibit108

greater sensitivity to character-level variations com-109

pared to subword-level variations.110

3) We demonstrate that regularized tokenization111

approaches, such as BPE-dropout with moderate112

drop rates, can enhance the model’s resilience to113

the discussed issues.114

4) To facilitate further research, we will release115

our evaluation code and benchmarks, enabling the116

research community to build upon our findings and117

develop more robust models.118

2 Related Work 119

2.1 Tokenization 120

Tokenization Approach Conventional language 121

models (Radford et al., 2018; Chai et al., 2020) 122

typically tokenize input text into a sequence of 123

tokens by splitting it into smaller subwords. Tradi- 124

tional tokenization approaches include frequency- 125

based methods such as Byte Pair Encoding (BPE; 126

Sennrich et al., 2016) and probability-based meth- 127

ods like WordPiece (Schuster and Nakajima, 2012). 128

BPE merges tokens based on bigram frequency, re- 129

lying on subword pair co-occurrence to greedily 130

merge neighboring pairs. In contrast, WordPiece 131

can be viewed as a language-modeling based BPE 132

variant. It select the unit pair that maximizes the 133

bigram likelihood of training data at utmost, rather 134

than choose the most frequent pair. 135

Unigram Language Model (Kudo, 2018) prunes 136

tokens based on unigram LM perplexity, treating 137

the segmentation process as a probabilistic mix- 138

ture of characters, subwords, and words, reduc- 139

ing subwords by evaluating likelihood reduction. 140

Additionally, some tokenization methods handle 141

text at the byte level (Xue et al., 2022) or char- 142

acter level (Sutskever et al., 2011; Clark et al., 143

2022). Conventional LLMs often use byte-level 144

BPE (BBPE) for base vocabulary construction, rep- 145

resenting any text with a moderate vocabulary size 146

and avoiding the out-of-vocabulary (OOV) prob- 147

lem. For a detailed introduction to tokenization, 148

readers can refer to Chai (2021). 149

Tokenization-Free Approach Tokenization ap- 150

proaches often suffer from the vocabulary bottle- 151

neck, where there is a trade-off between vocabulary 152

size and diverse language coverage in multilingual 153

scenarios. To address this issue, Rust et al. (2023); 154

Chai et al. (2024) introduced a tokenization-free 155

approach that renders raw text as visual text images 156

for masked language modeling and autoregressive 157

pre-training. This method demonstrates robust mul- 158

tilingual generalization capabilities compared to 159

subword tokenization approaches. 160

2.2 Perturbation Probing 161

Several studies have investigated the behavior of 162

language models under input perturbations at vari- 163

ous levels, including character-level (Nishino et al., 164

2019), subword-level (Abdou et al., 2022), and 165

word-level (Sinha et al., 2021) scrambling. Despite 166

these efforts, intrinsic evaluations of perturbing 167

LLM inputs remain under-explored. 168

2

Cao et al. (2023) proposed examining scrambled169

sentence recovery and scrambled QA with con-170

text corruptions. In contrast, our study conducts a171

comprehensive evaluation of both character- and172

subword-level perturbations, along with noise in-173

jection. We evaluate a wide range of LLMs across174

various tasks to provide a detailed comparison and175

inspire future research in tokenization and robust176

model performance.177

3 RQ1: Complex Problem Solving178

Complex problem-solving tasks are critical bench-179

marks for evaluating the complex reasoning and180

comprehension capabilities of LLMs. We explore181

the LLM’s ability to perform intricate operations182

on tokenized inputs, as the tokenization process183

is fundamental to determine how the raw text is184

segmented and processed, directly impacting the185

model’s interpretation and prediction.186

Anagram solving and mathematical language187

comprehension were selected to elucidate the re-188

lationship between tokenization quality and the189

model’s performance on complex problem-solving.190

Anagram tasks require models to decode and re-191

arrange jumbled letters into coherent words, em-192

phasizing the importance of precise token bound-193

aries and recognition accuracy. On the other hand,194

mathematical language comprehension, particu-195

larly expressed with LATEX-formatted expressions,196

demands an exact interpretation of specialized sym-197

bols and structured notation, challenging the tok-198

enization process’s robustness.199

3.1 Anagram Task200

Task Description and Settings The anagram task201

tests the model’s ability to unscramble a sequence202

of jumbled characters to form a valid word. This203

task evaluates the model’s handling of surface-form204

manipulations and its understanding of char-level205

compositions within a word. The complexity arises206

from the need to identify potential word candidates207

from mixed characters and reassemble them cor-208

rectly. We present a task example in §A.1. Specifi-209

cally, we include two tasks:210

• Cycled Letters in Word (CL; Srivastava et al.,211

2022) – The model is given a word with its letters212

cycled, and is expected to generate the original213

word (e.g., “remo” → “more”).214

• Word Unscrambling (WU) (Srivastava et al.,215

2022) – The model is given a randomly scrambled216

word, and must recover the original word (e.g.,217

0 1 2 3
K-shot

0

20

40

60

E
M

 S
co

re

Word Unscrambling

0 1 2 3
K-shot

Cycled Letters

llama3-8b
llama3-70b

mistral-7b
mixtral-8x7b

gpt-4 turbo

Figure 2: K-shot performance on Word Unscrambling
(WU) and Cycled Letters (CL) tasks. The plots illustrate
that increasing the number of demonstration examples
(K-shot) does not consistently enhance performance.
However, models with larger parameter sizes generally
exhibit better performance across both tasks.

“nad” → “and”). 218

We employ exact match (EM) scores for evaluation. 219

Unless otherwise specified, we use the inference- 220

time temperature of 0 for all LLMs in following 221

experiments, to assure the results reproducible. 222

Results and Analysis The experimental results 223

reveal that larger models demonstrate better perfor- 224

mance on the anagram task, yet they remain suscep- 225

tible to tokenization errors. Specifically, models 226

struggled with longer anagrams (see Figure 3) or 227

those containing uncommon letter combinations, 228

indicating that while scaling improves token recog- 229

nition, inherent tokenization flaws persist. 230

0-6 6-12 12-18
Length bucket

0

50

100

E
M

 s
co

re

Llama3-8b Llama3-70b

Figure 3: Violin plot illustrating the relationship be-
tween the length of scrambled words and the Exact
Match (EM) score of Llama3-8B and Llama3-70B on
the word unscrambling task under one-shot evaluation.
The models tend to correctly reorder anagrams of shorter
lengths, while struggling with longer words.

The violin plot in Figure 3 highlights the per- 231

formance differences between Llama3-8B and 232

Llama3-70B on the word unscrambling task across 233

various word lengths. Notably, Llama3-70B con- 234

sistently outperforms Llama3-8B, especially in the 235

0-6 and 6-12 character buckets, where it shows 236

higher and denser EM scores. This trend indicates 237

that as the model parameter size increases from 238

8B to 70B, the ability to accurately reorder scram- 239

3

bled words improves. However, both models strug-240

gle with longer words (12-18 characters), though241

Llama3-70B maintains a slight edge.242

Our results indicate several key trends. Firstly,243

the performance improves significantly as model244

size scales from 8B to 70B parameters, as evi-245

denced by the performance of Llama3-70B com-246

pared to Llama3-8B (AI@Meta, 2024). Sec-247

ondly, we observe that while the dense Mistral-248

7B model performs poorly, the sparse Mixtral-249

8x7B model (an MoE sparse model) shows im-250

proved performance due to its parameter size scal-251

ing. Lastly, GPT-4 turbo, a much more powerful252

model, achieves state-of-the-art results, clearly out-253

performing all other models across all shot con-254

ditions. This sensitivity underscores the need for255

more robust tokenization that can handle typograph-256

ical variations without degrading performance.257

3.2 Mathematical Language (LATEX)258

Comprehension259

Task Description and Settings The mathematical260

language comprehension task evaluates the model’s261

ability to read and comprehend mathematics writ-262

ten in LATEX, the typesetting language used by pro-263

fessional mathematicians. This task assesses the264

models’ capability to interpret complex mathemat-265

ical expressions and accurately tokenize symbols266

and operators within structured LATEX format.267

We employ Identify Math Theorems (IMT;268

Srivastava et al., 2022) for evaluation, and use269

perplexity to measure the model’s confidence in270

different given choices. The dataset comprises 54271

problems divided into nine sections, each repre-272

senting a major area of mathematics research or273

advanced pedagogy. We present the input-output274

format in §A.1.275

Setting 0-Shot 1-Shot 2-Shot 3-Shot

GPT-3 (6B)a 33.96 28.30 33.96 28.30
GPT-3 (200B)a 32.08 30.19 33.96 30.19
Llama2-7b 37.70 34.00 35.80 37.70
Llama3-8b 41.51 45.28 45.28 35.85
Llama3-70b 62.26 79.25 69.81 71.70
Mistral-7b 47.20 43.40 37.70 37.70
Mixtral-8x7b 49.10 56.60 64.20 62.30

Table 1: Few-shot results on Identifying Math The-
orems, with exact match (EM) scores reported as per-
centages. a[Srivastava et al., 2022]

Results and Analysis Our evaluation results of276

various models are shown in Table 1. The results277

demonstrate that while larger models generally per-278

form better on LaTeX-formatted mathematical con- 279

tent, the relationship between the number of in- 280

context examples and model performance is not 281

linear. The Llama3-70B model consistently outper- 282

formed other models, achieving a score of 62.26% 283

in the zero-shot setting and improving to 79.25% 284

with one-shot learning. However, additional in- 285

context examples led to fluctuating performance, 286

with scores of 69.81% in the two-shot setting and 287

71.70% in the three-shot setting. This indicates 288

that increasing the number of in-context demonstra- 289

tions does not consistently enhance performance 290

and may lead to variability depending on the spe- 291

cific examples provided. 292

Other models exhibited similar trends. GPT-3- 293

200B (Srivastava et al., 2022), despite its larger 294

parameter count, did not show significant improve- 295

ment over the smaller GPT-3-6B model, suggesting 296

that simply increasing the model size does not guar- 297

antee better performance in LATEX comprehension 298

tasks. The comparison between dense and sparse 299

models revealed that the dense Mistral-7B model 300

performed poorly across all shot conditions, while 301

the sparse Mixtral-8x7B model demonstrated better 302

results, especially in few-shot scenarios. 303

4 RQ2: Token Structure Probe 304

Tokenization is a key preprocessing step in LLMs, 305

yet it introduces several significant challenges, 306

which we defined as the curse of tokenization . 307

These challenges include length unawareness, case 308

insensitivity, and a lack of awareness of the internal 309

structure of tokens. Tokenization transforms text 310

into sequences of token identifiers, often obscuring 311

the surface form and internal structure of the origi- 312

nal text. This conversion can lead to deficiencies 313

in the model’s ability to understand and process 314

textual data accurately. 315

The curse of tokenization manifests in several 316

ways, which refers to the inherent challenges: 317

A) Length Unawareness: Models struggle to rec- 318

ognize the organizational structure of text, such 319

as the number of characters or words. 320

B) Case Insensitivity: Variations in capitaliza- 321

tion can lead to different token identifiers and 322

representations, complicating the model’s pro- 323

cessing of text. 324

C) Blindness to Internal Structure: The decou- 325

pled embedding space and lookup table ap- 326

proach used in LLMs fail to preserve the hier- 327

archical and relational structure within tokens, 328

4

obscuring the surface form and internal rela-329

tionships between characters and subwords.330

To address these challenges, we construct a set of331

probing tasks to evaluate the model’s understanding332

of token structure. These tasks are divided into333

intra-token (§4.1) and inter-token probes (§4.2).334

4.1 Intra-Token Probing335

Task Description and Settings To measure the336

capability of LLMs, we devise intra-token probing337

tasks related to length, case, and counting problems.338

These tasks evaluate the model’s performance on339

the internal structure of tokens or word, specifically340

including four tasks:341

• Character Count (CC) – The model is asked342

to count the number of occurrences of a specific343

character within the given word (e.g., the charac-344

ter appears twice in the word “undertake” → the345

answer is: “e”).346

• N -th Character (NC) – The model is expected347

to output the n-th character of the given word348

(e.g., 4-th character of the word “dual” → “l”).349

• N -th Character Reverse (NCR) – The model350

must identify the n-th character from the end of351

a word (e.g., 2nd character from the end of the352

word “dual” → “a”).353

• Case Conversion (CCV) – This task involves354

converting the characters within a word to differ-355

ent cases (uppercase, lowercase) or converting356

the word into title case.357

For each task, we conduct many-shot evaluation (0-358

3 shot) and report the EM score to test the model’s359

ability to understand and manipulate the internal360

structure of tokens and words at a granular level,361

revealing the extent to which the tokenization pro-362

cess could preserve this information. Detailed test363

examples are provided in Appendix A.2.364

Results and Analysis We evaluated CC, NC,365

NCR, and CCV tasks across different models and366

shot settings. The results are presented in Figure 4.367

The CC task reveals that larger models exhibit368

superior performance, particularly GPT-4 turbo,369

which achieves near-perfect accuracy across all370

shot conditions. Smaller models, such as Llama3-371

8B, show significant improvement with few-shot372

learning, indicating that exposure to examples373

greatly enhances their performance. For example,374

Llama3-8B’s accuracy improves from 0% in the375

zero-shot setting to 81% in the three-shot setting.376

This demonstrates that increased model size and377

few-shot learning contribute positively to CC tasks.378

The NC task underscores the difficulty models379

0 1 2 3
K-shot

0

25

50

75

100

E
M

 S
co

re

CCV

0 1 2 3
K-shot

E
M

 S
co

re

CC

0 1 2 3
K-shot

0

25

50

75

100

E
M

 S
co

re

NC

0 1 2 3
K-shot

E
M

 S
co

re

NCR

llama3-8b
llama3-70b

mistral-7b
mixtral-8x7b

gpt-4 turbo

Figure 4: K-shot performance on intra-token probing
tasks (CCV, CC, NC, NCR). The plots demonstrate
that increasing the number of demonstration examples
(K-shot) generally results in an improvement from zero-
shot to one-shot, with performance stabilizing thereafter.

face in accurately identifying specific characters 380

within words. GPT-4 turbo again leads in perfor- 381

mance, while smaller models show substantial im- 382

provement with increased shots. Llama3-70B, for 383

instance, improves from 1% in the zero-shot setting 384

to 55% in the three-shot setting. This indicates that 385

while larger models perform better, few-shot learn- 386

ing plays a crucial role in enhancing the model’s 387

ability to identify specific characters. 388

Identifying characters from the end of the word, 389

or reverse character identification, proves more 390

challenging. GPT-4 turbo achieves the highest per- 391

formance with a score of 52% in the one-shot set- 392

ting, though overall accuracy is lower compared to 393

other tasks. Smaller models like Llama3-8B show 394

moderate improvements with additional shots, but 395

their performance remains relatively low. This 396

highlights the complexity of reverse character iden- 397

tification and the need for more advanced tokeniza- 398

tion strategies to address this challenge. 399

4.2 Inter-Token Probing 400

Task Description and Settings To evaluate the 401

capabilities of LLMs in understanding and manip- 402

ulating relationships between multiple tokens, we 403

devised inter-token probing tasks. These tasks fo- 404

cus on identifying common patterns and sequences 405

across tokens, and they assess the model’s ability 406

to recognize and process such relationships. Specif- 407

ically, we include three tasks: 408

• Common Substrings (CS) – The model iden- 409

tifies multiple common substrings between two 410

given words. 411

• Longest Common Substrings (LCS) – The 412

5

0 1 2 3
K-shot

0

20

40

60

80

100
E

M
 S

co
re

CS

0 1 2 3
K-shot

E
M

 S
co

re

LCSeq

0 1 2 3
K-shot

E
M

 S
co

re

LCS

llama3-8b llama3-70b mistral-7b mixtral-8x7b gpt-4 turbo

(a) EM score performance on k-shot evaluation.

0 1 2 3
K-shot

0

1

2

3

4

5

E
di

t D
is

ta
nc

e

CS

0 1 2 3
K-shot

E
di

t D
is

ta
nc

e

LCSeq

0 1 2 3
K-shot

E
di

t D
is

ta
nc

e

LCS

llama3-8b llama3-70b mistral-7b mixtral-8x7b gpt-4 turbo

(b) Edit distance on k-shot evaluation.

Figure 5: K-shot performance on various inter-token
probing tasks. For edit distances, lower is better.

model identifies the longest continuous common413

substring for two given words.414

• Longest Common Subsequences (LCSeq) –415

The model identifies the longest common sub-416

sequence (not necessarily continuous) between417

two given words.418

For each task, we conduct many-shot evalua-419

tions (0-3 shot) and report the EM and edit distance420

(ED) score to test the model’s ability to understand421

and manipulate relationships between tokens at a422

higher level. For CS tasks, the model’s response423

is considered correct if it generates one of the mul-424

tiple possible common substrings. Detailed test425

examples are provided in Appendix A.3.426

Results and Analysis The results are presented427

in Figure 5. The results for CS tasks indicate that428

larger models, such as Llama3-70B and GPT-4429

Turbo, perform significantly better than smaller430

models. GPT-4 Turbo achieves the highest ac-431

curacy across all shot settings, demonstrating the432

model’s robustness in identifying continuous sub-433

strings. Notably, Llama3-70B also shows strong434

performance, particularly in the three-shot setting.435

Sparse models like Mixtral-8x7B exhibit notable436

improvements compared to dense models, high-437

lighting the effectiveness of sparse architectures in438

handling complex token relationships.439

For LCS tasks, GPT-4 Turbo leads in perfor-440

mance, achieving high accuracy across all shot set-441

tings. Llama3-70B and Mixtral-8x7B show consid-442

erable improvements with increased shots, indicat-443

ing that exposure to more examples helps models444

better identify multiple common substrings. Dense445

models like Mistral-7B lag behind, reinforcing the446

advantage of sparse architectures in such tasks.447

The LCSeq task reveals that even the best- 448

performing models face challenges with non- 449

continuous patterns. While Llama3-70B and GPT- 450

4 Turbo demonstrate superior performance, there 451

is a significant drop in accuracy compared to CS 452

tasks. Few-shot learning significantly enhances the 453

performance of smaller models, such as Llama3- 454

8B, which improves from 1% in zero-shot to 4% 455

in three-shot settings. This underscores the impor- 456

tance of few-shot examples in aiding models to 457

recognize and process non-continuous patterns. 458

5 RQ3: Typographical Variation 459

To evaluate the robustness of LLMs to typographi- 460

cal variations, we constructed tasks that introduce 461

character-level and token-level typographical er- 462

rors into the input text. These tasks are designed to 463

test the models’ ability to maintain semantic under- 464

standing despite the presence of such errors. The 465

datasets include MMLU (Hendrycks et al., 2021), 466

TruthfulQA (Lin et al., 2022), GSM8K (Cobbe 467

et al., 2021), and HumanEval (Chen et al., 2021), 468

ensuring diverse coverage. 469

Task Description and Settings The primary goal 470

of these tasks is to assess the LLMs’ resilience to 471

typographical errors at both the character and token 472

levels, examining whether these models can main- 473

tain semantic understanding when faced with such 474

perturbations. For character-level typographical 475

variation, we employed n-gram shuffling within 476

word boundaries (with n set to 2, 3, 5) with a 477

50% probability, and n-gram noise, which involve 478

adding, deleting, and replacing characters, spaces, 479

and punctuation marks to simulate spelling noise. 480

This corruption occurs with a 30% probability, in- 481

cluding insertion, deletion, or substitution opera- 482

tions. Token-level typographical variation was 483

introduced by shuffling tokens within n-grams of 484

sizes 2, 3, and 5, with a 50% probability of permu- 485

tation or typo generation, similar to the character- 486

level method. We include four tasks: 487

• Character-Level Permutation: Shuffling char- 488

acters within word boundaries using n-grams of 489

sizes 2, 3, and 5, with a 50% probability. 490

• Character-Level Noise: Adding, deleting, re- 491

placing random characters to simulate spelling 492

noise, each with a 10% probability. 493

• Token-Level Permutation: Randomly reorder- 494

ing tokens using n-grams of sizes 2, 3, 5, with a 495

50% probability. 496

• Token-Level Noise: Adding, deleting, replacing 497

6

n=2 n=3 n=5

24

26

28
E

M
 S

co
re

Baseline (28.27)

llama3-8B

n=2 n=3 n=5

30

35

E
M

 S
co

re

Baseline (36.84)

llama3-8B-instruct

n=2 n=3 n=5

26

28

30

E
M

 S
co

re

Baseline (30.23)

llama3-70B

n=2 n=3 n=5

24

26

28

E
M

 S
co

re

Baseline (28.03)

mistral-7B

n=2 n=3 n=5

25

30

E
M

 S
co

re
Baseline (34.03)

mixtral-8x7B Typo Level
char level
token level

Typo Type
noise
reorder

(a) TruthfulQA

n=2 n=3 n=5

40

50

60

E
M

 S
co

re

Baseline (62.14)

llama3-8B

n=2 n=3 n=5

40

50

60

E
M

 S
co

re

Baseline (63.9)

llama3-8B-instruct

n=2 n=3 n=5

50

60

70

E
M

 S
co

re

Baseline (75.43)

llama3-70B

n=2 n=3 n=5

40

50

E
M

 S
co

re

Baseline (58.67)

mistral-7B

n=2 n=3 n=5
40

60

E
M

 S
co

re

Baseline (67.19)

mixtral-8x7B Typo Level
char level
token level

Typo Type
noise
reorder

(b) MMLU

n=2 n=3 n=5
n-gram

0

20

40

E
M

 S
co

re

Baseline (50.49)

llama3-8B

n=2 n=3 n=5
n-gram

0

50

E
M

 S
co

re

Baseline (75.59)

llama3-8B-instruct

n=2 n=3 n=5
n-gram

0

50

E
M

 S
co

re

Baseline (81.05)

llama3-70B

n=2 n=3 n=5
n-gram

0

20

E
M

 S
co

re

Baseline (37.98)

mistral-7B

n=2 n=3 n=5
n-gram

0

25

50

E
M

 S
co

re

Baseline (58.91)

mixtral-8x7B

n=2 n=3 n=5
n-gram

0

25

50

E
M

 S
co

re

Baseline (62.93)
gpt-4 turbo

Typo Level
char level token level

Typo Type
noise reorder

(c) GSM8K (5-shot)

n=2 n=3 n=5
n-gram

15

20

25

E
M

 S
co

re Baseline (25.61)

llama3-8B

n=2 n=3 n=5
n-gram

20

40

E
M

 S
co

re

Baseline (55.49)

llama3-8B-instruct

n=2 n=3 n=5
n-gram

20

40

60

E
M

 S
co

re

Baseline (67.07)

llama3-70B

n=2 n=3 n=5
n-gram

15

20

25

E
M

 S
co

re

Baseline (27.44)

mistral-7B

n=2 n=3 n=5
n-gram

20

30

E
M

 S
co

re

Baseline (37.8)

mixtral-8x7B

n=2 n=3 n=5
n-gram

50

75

E
M

 S
co

re

Baseline (88.41)
gpt-4 turbo

Typo Level
char level token level

Typo Type
noise reorder

(d) HumanEval

Figure 6: Performance comparison for various models across different n-gram sizes (n=2,3,5) and typographical
variations on (1) TruthfulQA, (b) MMLU, (c) GSM8K, and (d) HumanEval. The typographical variations include
character-level (blue) and token-level (orange) perturbations, with noise (solid line) and reorder (dashed line) types.
Baseline performance is indicated with a dotted line at the top of each plot.

tokens to inject noise, with a 30% probability.498

For evaluation, we report pass@1 for Hu-499

manEval using a temperature of 0.2 and a top-p500

of 0.95. For others, we used a temperature of501

0. GSM8K was evaluated using a 5-shot setting,502

while MMLU, TruthfulQA, and HumanEval were503

assessed in a zero-shot setting. We measured per-504

formance on MMLU and TruthfulQA using per-505

plexity for multiple-choice selection1.506

Results and Analysis Figures 6 presents a compre-507

hensive analysis of the impact of typographical vari-508

ations on various LLMs, specifically focusing on509

character-level and token-level perturbations across510

different n-gram sizes (n=2, 3, 5). The evaluation511

covers a range of datasets, including TruthfulQA,512

MMLU, GSM8K (5-shot), and HumanEval.513

Across all datasets and models, there is a con-514

sistent trend showing that LLMs are much more515

sensitive to noise (solid lines) than to reordering516

(dashed lines). Noise injection, which involves517

adding, deleting, or replacing characters or tokens,518

1Since GPT-4 Turbo does not support perplexity computa-
tion, it was excluded from the evaluation for these two tasks.

leads to more pronounced variations and generally 519

degrades overall performance. This is evident from 520

the lower EM scores for noise perturbations com- 521

pared to reorder perturbations. 522

Despite the challenges posed by n-gram re- 523

ordering within word boundaries, GPT-4 Turbo 524

maintained high accuracy across all n-gram sizes. 525

Character-level n-gram noise injection, simulating 526

realistic spelling noise, further tested the models’ 527

robustness. The results indicate that all models 528

experienced evident performance degradation, re- 529

gardless of the parameter sizes, highlighting their 530

sensitivity to typographical noise. 531

For most models and datasets, as the n-gram 532

size of noise injection increases from n=2 to 5, the 533

performance tends to stabilize or improve. This 534

trend suggests that models can better handle larger 535

n-gram noise injection, likely because the context 536

within larger n-grams provides more semantic co- 537

herence compared to smaller n-grams. 538

At the token level, models were subjected to n- 539

gram permutations similar to those applied at the 540

character level. The results indicated that models 541

7

generally performed better with token-level permu-542

tations than with character-level shuffles and noise543

injection. This suggests that token-level errors may544

be less disruptive to the overall semantic structure545

of the input text.546

6 Does BPE-dropout Matter?547

0 1 2 3
K-shot

50

100

E
M

 S
co

re

CCV

0 1 2 3
K-shot

CC

0 1 2 3
K-shot

NC

0 1 2 3
K-shot

NCR

0 1 2 3
K-shot

50

100

E
M

 S
co

re

CS

0 1 2 3
K-shot

LCSeq

0 1 2 3
K-shot

LCS
p=0 (baseline)
p=0.2
p=0.4
p=0.6
p=0.8

Figure 7: K-shot performance on various tasks (CCV,
CC, NC, NCR, CS, LCSeq, and LCS) using the Mistral-
7B model fine-tuned with a BPE-dropout tokenizer at
different dropout rates p, ranging from 0 to 0.8. The
baseline without BPE-dropout (i.e., p = 0) is depicted
with a dashed line. It demonstrates that introducing
a moderate amount of variability during tokenization
improves the model’s generalization capabilities, miti-
gating the curse of tokenization issues.

To further enhance the robustness of our mod-548

els, we explore regularized tokenization approach,549

BPE-dropout (Provilkov et al., 2020), which ran-550

domly drops BPE merges during tokenization. This551

technique allows text sequences to be tokenized in552

more diverse ways, promoting robustness to vari-553

ous token combinations and increasing the likeli-554

hood of encountering smaller tokens. Intuitively,555

this diversity benefits the model’s understanding of556

internal token structures.557

Training Setup For the training data, we synthe-558

sized a dataset consisting of 111k examples specif-559

ically designed for RQ2. More detailed training560

settings are provided in Appendix B.3.561

Results and Analysis Figure 7 shows the impact562

of varying BPE-dropout rates on the Mistral-7B563

model’s performance across multiple K-shot set-564

tings and tasks. The baseline performance, with a565

dropout rate of p = 0, shows robust results across566

several tasks, particularly in CS and CC. These567

tasks are relatively straightforward, involving sim-568

ple token manipulations that do not significantly569

challenge the model’s capacity to generalize from570

zero-shot to few-shot scenarios. The high perfor-571

mance in these tasks suggests that the Mistral-7B572

model, even without BPE-dropout, is adept at han-573

dling simpler token relationships. However, it is574

important to note that the baseline performance 575

does not uniformly extend to more complex tasks. 576

In contrast, tasks such as LCSeq reveal relatively 577

low performance across all models, irrespective of 578

the BPE-dropout rate. This suggests inherent diffi- 579

culties in these tasks that stem from the requirement 580

to identify non-continuous and intricate token pat- 581

terns. The consistent under-performance indicates 582

that LCSeq tasks pose a significant challenge to the 583

model’s ability to generalize, likely due to the in- 584

creased complexity in recognizing and processing 585

longer and fragmented sequences. 586

Interestingly, the introduction of a moderate 587

BPE-dropout rate (p = 0.2) frequently surpasses 588

the baseline, highlighting the benefits of induc- 589

ing variability during tokenization. This moderate 590

dropout rate enhances the model’s generalization 591

capabilities by preventing overfitting and promot- 592

ing a more robust learning process. Notably, in 593

tasks such as CCV, NC, and LCS, the p = 0.2 594

model consistently achieves higher EM scores, un- 595

derscoring the benefits of incorporating tokeniza- 596

tion regularization. 597

Our analysis reveals that higher dropout rates 598

(p = 0.6 and p = 0.8) exhibit relatively lower per- 599

formance across most tasks. This decline can be 600

attributed to insufficient training, as the dataset 601

was trained for only five epochs. The higher 602

dropout rates introduce greater tokenization vari- 603

ation, which necessitates additional training com- 604

pute to achieve convergence. The lack of adequate 605

training epochs likely hindered these models from 606

fully leveraging the potential benefits of higher 607

BPE-dropout rates. We provided detailed training 608

analysis in Appendix §D. 609

7 Conclusion 610

In this study, we investigated the challenge of the 611

curse of tokenization, comprehensively evaluating 612

mainstream LLMs across thirteen tasks sensitive to 613

conventional subword tokenization. Our findings 614

reveal that while larger models and increased shot 615

counts can partially mitigate these issues, LLMs 616

still struggle with understanding internal structures 617

and token compositions. Moderate BPE-dropout 618

can alleviate some of these challenges, whereas 619

larger drop rates lead to performance degradation. 620

We encourage the research community to develop 621

more flexible approaches to further address these 622

limitations and enhance model robustness. 623

8

Limitations624

While our study provides valuable insights into625

the robustness and performance of large language626

models (LLMs) under various tokenization and ty-627

pographical variation scenarios, several limitations628

should be acknowledged:629

Data Diversity and Size The training data syn-630

thesized for RQ2 (token structure probe) consists631

of approximate 30k examples. While this dataset632

size is substantial, it may not fully capture the di-633

versity and complexity of real-world text. Future634

work could benefit from expanding the dataset size635

and incorporating a wider range of linguistic phe-636

nomena.637

Evaluation Metrics Our evaluation primarily re-638

lies on metrics such as pass@1 for HumanEval and639

accuracy for MMLU, TruthfulQA, and GSM8K.640

While these metrics provide valuable insights, they641

may not fully capture the nuanced performance642

of LLMs in real-world applications. Incorporat-643

ing additional metrics that assess other aspects of644

model performance, such as robustness to out-of-645

distribution data and interpretability, could provide646

a more comprehensive evaluation.647

Subword Regularization Although our use of648

BPE-dropout shows promising improvements in649

model robustness and accuracy, the approach in-650

troduces randomness into the tokenization process.651

This randomness can lead to variability in model652

performance, making it challenging to ensure con-653

sistent improvements across different datasets and654

tasks. Further research is needed to optimize the655

BPE-dropout technique and evaluate its long-term656

impact on model performance.657

Typographical Variation Our study focuses on658

character-level and token-level typographical varia-659

tions, but it does not address other common types660

of text perturbations, such as grammatical errors,661

semantic variations, or contextual inconsistencies.662

Exploring the effects of these additional types of663

variations could provide a more holistic understand-664

ing of LLM robustness.665

Generalizability The findings from our evalu-666

ation on specific datasets (MMLU, TruthfulQA,667

GSM8K, and HumanEval) may not generalize to668

all types of text and tasks. Further studies are669

needed to assess the generalizability of our findings670

across a broader range of datasets and real-world671

scenarios, such as extending to multilingual evalu- 672

ation (Peng et al., 2024). 673

Ethical Consideration 674

Bias and Fairness Tokenization strategies can 675

introduce or exacerbate biases present in the train- 676

ing data. Our study, which involves diverse to- 677

kenization techniques like BPE-Dropout, should 678

include thorough bias assessments to ensure that 679

these methods do not perpetuate unfair or discrim- 680

inatory outcomes. Mitigating bias is crucial for 681

creating fair and equitable AI systems. 682

Transparency and Interpretability Our re- 683

search involves complex tokenization processes 684

that can obscure the decision-making of LLMs. 685

Enhancing the transparency of these models by 686

providing clear explanations of how tokenization 687

impacts model behavior is essential. This trans- 688

parency helps build trust and allows users to un- 689

derstand and identify potential issues in language 690

model predictions. 691

Privacy and Data Security The datasets used 692

for training and evaluating tokenization methods 693

often contain sensitive information. Ensuring data 694

anonymization and compliance with data protec- 695

tion regulations is critical to protecting user privacy. 696

Our study adheres to strict data security protocols 697

to prevent any misuse of sensitive information. 698

References 699

Mostafa Abdou, Vinit Ravishankar, Artur Kulmizev, and 700
Anders Søgaard. 2022. Word order does matter and 701
shuffled language models know it. In Proceedings 702
of the 60th Annual Meeting of the Association for 703
Computational Linguistics (Volume 1: Long Papers), 704
pages 6907–6919, Dublin, Ireland. Association for 705
Computational Linguistics. 706

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, 707
Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke Zettle- 708
moyer. 2022. HTLM: hyper-text pre-training and 709
prompting of language models. In The Tenth Inter- 710
national Conference on Learning Representations, 711
ICLR 2022, Virtual Event, April 25-29, 2022. Open- 712
Review.net. 713

AI@Meta. 2024. Llama 3 model card. 714

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean- 715
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 716
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil- 717
lican, David Silver, Slav Petrov, Melvin Johnson, 718
Ioannis Antonoglou, Julian Schrittwieser, Amelia 719
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli- 720
crap, Angeliki Lazaridou, Orhan Firat, James Molloy, 721

9

https://doi.org/10.18653/v1/2022.acl-long.476
https://doi.org/10.18653/v1/2022.acl-long.476
https://doi.org/10.18653/v1/2022.acl-long.476
https://openreview.net/forum?id=P-pPW1nxf1r
https://openreview.net/forum?id=P-pPW1nxf1r
https://openreview.net/forum?id=P-pPW1nxf1r
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Michael Isard, Paul Ronald Barham, Tom Henni-722
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,723
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens724
Meyer, Eliza Rutherford, Erica Moreira, Kareem725
Ayoub, Megha Goel, George Tucker, Enrique Pi-726
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,727
Ivo Danihelka, Becca Roelofs, Anaïs White, Anders728
Andreassen, Tamara von Glehn, Lakshman Yagati,729
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,730
Jakub Sygnowski, and et al. 2023. Gemini: A fam-731
ily of highly capable multimodal models. CoRR,732
abs/2312.11805.733

Loubna Ben Allal, Niklas Muennighoff, Lo-734
gesh Kumar Umapathi, Ben Lipkin, and735
Leandro von Werra. 2022. A framework736
for the evaluation of code generation mod-737
els. https://github.com/bigcode-project/738
bigcode-evaluation-harness.739

Tom Brown, Benjamin Mann, Nick Ryder, Melanie740
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind741
Neelakantan, Pranav Shyam, Girish Sastry, Amanda742
Askell, et al. 2020. Language models are few-shot743
learners. Advances in neural information processing744
systems, 33:1877–1901.745

Qi Cao, Takeshi Kojima, Yutaka Matsuo, and Yusuke746
Iwasawa. 2023. Unnatural error correction: GPT-4747
can almost perfectly handle unnatural scrambled text.748
In Proceedings of the 2023 Conference on Empirical749
Methods in Natural Language Processing, EMNLP750
2023, Singapore, December 6-10, 2023, pages 8898–751
8913. Association for Computational Linguistics.752

Yekun Chai. 2021. Word Tokenization for Pre-trained753
Models. https://cyk1337.github.io/notes/754
2021/11/29/Subword-Tokenization-in-NLP/.755

Yekun Chai, Shuo Jin, and Xinwen Hou. 2020. High-756
way transformer: Self-gating enhanced self-attentive757
networks. In Proceedings of the 58th Annual Meet-758
ing of the Association for Computational Linguistics,759
pages 6887–6900, Online. Association for Computa-760
tional Linguistics.761

Yekun Chai, Qingyi Liu, Jingwu Xiao, Shuohuan Wang,762
Yu Sun, and Hua Wu. 2024. Dual modalities of text:763
Visual and textual generative pre-training.764

Yekun Chai, Shuohuan Wang, Chao Pang, Yu Sun, Hao765
Tian, and Hua Wu. 2023. ERNIE-code: Beyond766
English-centric cross-lingual pretraining for program-767
ming languages. In Findings of the Association for768
Computational Linguistics: ACL 2023, pages 10628–769
10650, Toronto, Canada. Association for Computa-770
tional Linguistics.771

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,772
Henrique Pondé de Oliveira Pinto, Jared Kaplan,773
Harrison Edwards, Yuri Burda, Nicholas Joseph,774
Greg Brockman, Alex Ray, Raul Puri, Gretchen775
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-776
try, Pamela Mishkin, Brooke Chan, Scott Gray,777
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz778

Kaiser, Mohammad Bavarian, Clemens Winter, 779
Philippe Tillet, Felipe Petroski Such, Dave Cum- 780
mings, Matthias Plappert, Fotios Chantzis, Eliza- 781
beth Barnes, Ariel Herbert-Voss, William Hebgen 782
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 783
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 784
William Saunders, Christopher Hesse, Andrew N. 785
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 786
Morikawa, Alec Radford, Matthew Knight, Miles 787
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 788
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 789
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 790
ing large language models trained on code. CoRR, 791
abs/2107.03374. 792

Jonathan H. Clark, Dan Garrette, Iulia Turc, and John 793
Wieting. 2022. Canine: Pre-training an efficient 794
tokenization-free encoder for language representa- 795
tion. Transactions of the Association for Computa- 796
tional Linguistics, 10:73–91. 797

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 798
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 799
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 800
Nakano, Christopher Hesse, and John Schulman. 801
2021. Training verifiers to solve math word prob- 802
lems. CoRR, abs/2110.14168. 803

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 804
Sid Black, Anthony DiPofi, Charles Foster, Laurence 805
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 806
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 807
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 808
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 809
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 810
2023. A framework for few-shot language model 811
evaluation. 812

Dan Hendrycks, Collin Burns, Steven Basart, Andy 813
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein- 814
hardt. 2021. Measuring massive multitask language 815
understanding. In 9th International Conference on 816
Learning Representations, ICLR 2021, Virtual Event, 817
Austria, May 3-7, 2021. OpenReview.net. 818

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 819
sch, Chris Bamford, Devendra Singh Chaplot, Diego 820
de Las Casas, Florian Bressand, Gianna Lengyel, 821
Guillaume Lample, Lucile Saulnier, Lélio Re- 822
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, 823
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo- 824
thée Lacroix, and William El Sayed. 2023. Mistral 825
7b. CoRR, abs/2310.06825. 826

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 827
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 828
ford, Devendra Singh Chaplot, Diego de Las Casas, 829
Emma Bou Hanna, Florian Bressand, Gianna 830
Lengyel, Guillaume Bour, Guillaume Lample, 831
Lélio Renard Lavaud, Lucile Saulnier, Marie- 832
Anne Lachaux, Pierre Stock, Sandeep Subramanian, 833
Sophia Yang, Szymon Antoniak, Teven Le Scao, 834
Théophile Gervet, Thibaut Lavril, Thomas Wang, 835
Timothée Lacroix, and William El Sayed. 2024. Mix- 836
tral of experts. CoRR, abs/2401.04088. 837

10

https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.550
https://cyk1337.github.io/notes/2021/11/29/Subword-Tokenization-in-NLP/
https://cyk1337.github.io/notes/2021/11/29/Subword-Tokenization-in-NLP/
https://cyk1337.github.io/notes/2021/11/29/Subword-Tokenization-in-NLP/
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.acl-main.616
https://doi.org/10.18653/v1/2020.acl-main.616
http://arxiv.org/abs/2404.10710
http://arxiv.org/abs/2404.10710
http://arxiv.org/abs/2404.10710
https://doi.org/10.18653/v1/2023.findings-acl.676
https://doi.org/10.18653/v1/2023.findings-acl.676
https://doi.org/10.18653/v1/2023.findings-acl.676
https://doi.org/10.18653/v1/2023.findings-acl.676
https://doi.org/10.18653/v1/2023.findings-acl.676
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
https://doi.org/10.1162/tacl_a_00448
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088

Taku Kudo. 2018. Subword regularization: Improv-838
ing neural network translation models with multiple839
subword candidates. In Proceedings of the 56th An-840
nual Meeting of the Association for Computational841
Linguistics (Volume 1: Long Papers), pages 66–75,842
Melbourne, Australia. Association for Computational843
Linguistics.844

Taku Kudo and John Richardson. 2018. Sentencepiece:845
A simple and language independent subword tok-846
enizer and detokenizer for neural text processing. In847
Proceedings of the 2018 Conference on Empirical848
Methods in Natural Language Processing, EMNLP849
2018: System Demonstrations, Brussels, Belgium,850
October 31 - November 4, 2018, pages 66–71. Asso-851
ciation for Computational Linguistics.852

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.853
TruthfulQA: Measuring how models mimic human854
falsehoods. In Proceedings of the 60th Annual Meet-855
ing of the Association for Computational Linguistics856
(Volume 1: Long Papers), pages 3214–3252, Dublin,857
Ireland. Association for Computational Linguistics.858

Ilya Loshchilov and Frank Hutter. 2017. Decou-859
pled weight decay regularization. arXiv preprint860
arXiv:1711.05101.861

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-862
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,863
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,864
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur865
Zucker, Younes Belkada, Zijian Wang, Qian Liu,866
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-867
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue868
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,869
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,870
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,871
Niklas Muennighoff, Xiangru Tang, Muhtasham872
Oblokulov, Christopher Akiki, Marc Marone, Cheng-873
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,874
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-875
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten876
Scholak, Sébastien Paquet, Jennifer Robinson, Car-877
olyn Jane Anderson, Nicolas Chapados, and et al.878
2024. Starcoder 2 and the stack v2: The next genera-879
tion. CoRR, abs/2402.19173.880

Masaaki Nishino, Sho Takase, Tsutomu Hirao, and881
Masaaki Nagata. 2019. Generating natural anagrams:882
Towards language generation under hard combinato-883
rial constraints. In Proceedings of the 2019 Confer-884
ence on Empirical Methods in Natural Language Pro-885
cessing and the 9th International Joint Conference886
on Natural Language Processing (EMNLP-IJCNLP),887
pages 6408–6412, Hong Kong, China. Association888
for Computational Linguistics.889

OpenAI. 2023. GPT-4 technical report. CoRR,890
abs/2303.08774.891

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.892
HumanEval-XL: A multilingual code generation893

benchmark for cross-lingual natural language gen- 894
eralization. In Proceedings of the 2024 Joint In- 895
ternational Conference on Computational Linguis- 896
tics, Language Resources and Evaluation (LREC- 897
COLING 2024), pages 8383–8394, Torino, Italia. 898
ELRA and ICCL. 899

Ivan Provilkov, Dmitrii Emelianenko, and Elena Voita. 900
2020. BPE-dropout: Simple and effective subword 901
regularization. In Proceedings of the 58th Annual 902
Meeting of the Association for Computational Lin- 903
guistics, pages 1882–1892, Online. Association for 904
Computational Linguistics. 905

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 906
Sutskever, et al. 2018. Improving language under- 907
standing by generative pre-training. 908

Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Eliz- 909
abeth Salesky, Miryam de Lhoneux, and Desmond 910
Elliott. 2023. Language modelling with pixels. In 911
The Eleventh International Conference on Learning 912
Representations, ICLR 2023, Kigali, Rwanda, May 913
1-5, 2023. OpenReview.net. 914

Mike Schuster and Kaisuke Nakajima. 2012. Japanese 915
and korean voice search. In 2012 IEEE International 916
Conference on Acoustics, Speech and Signal Process- 917
ing, ICASSP 2012, Kyoto, Japan, March 25-30, 2012, 918
pages 5149–5152. IEEE. 919

Rico Sennrich, Barry Haddow, and Alexandra Birch. 920
2016. Neural machine translation of rare words with 921
subword units. In Proceedings of the 54th Annual 922
Meeting of the Association for Computational Lin- 923
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger- 924
many, Volume 1: Long Papers. The Association for 925
Computer Linguistics. 926

Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau, 927
and Adina Williams. 2021. UnNatural Language 928
Inference. In Proceedings of the 59th Annual Meet- 929
ing of the Association for Computational Linguistics 930
and the 11th International Joint Conference on Natu- 931
ral Language Processing (Volume 1: Long Papers), 932
pages 7329–7346, Online. Association for Computa- 933
tional Linguistics. 934

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, 935
Abu Awal Md Shoeb, Abubakar Abid, Adam 936
Fisch, Adam R. Brown, Adam Santoro, Aditya 937
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska, 938
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, 939
Alex Ray, Alex Warstadt, Alexander W. Kocurek, 940
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par- 941
rish, Allen Nie, Aman Hussain, Amanda Askell, 942
Amanda Dsouza, Ameet Rahane, Anantharaman S. 943
Iyer, Anders Andreassen, Andrea Santilli, Andreas 944
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K. 945
Lampinen, Andy Zou, Angela Jiang, Angelica Chen, 946
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto- 947
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi, 948
Arfa Tabassum, Arul Menezes, Arun Kirubarajan, 949
Asher Mullokandov, Ashish Sabharwal, Austin Her- 950
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and 951

11

https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.18653/v1/D19-1674
https://doi.org/10.18653/v1/D19-1674
https://doi.org/10.18653/v1/D19-1674
https://doi.org/10.18653/v1/D19-1674
https://doi.org/10.18653/v1/D19-1674
https://doi.org/10.48550/ARXIV.2303.08774
https://aclanthology.org/2024.lrec-main.735
https://aclanthology.org/2024.lrec-main.735
https://aclanthology.org/2024.lrec-main.735
https://aclanthology.org/2024.lrec-main.735
https://aclanthology.org/2024.lrec-main.735
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://openreview.net/pdf?id=FkSp8VW8RjH
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.18653/v1/2021.acl-long.569

et al. 2022. Beyond the imitation game: Quantifying952
and extrapolating the capabilities of language models.953
CoRR, abs/2206.04615.954

Ilya Sutskever, James Martens, and Geoffrey Hinton.955
2011. Generating text with recurrent neural networks.956
In Proceedings of the 28th International Conference957
on International Conference on Machine Learning,958
ICML’11, page 1017–1024, Madison, WI, USA. Om-959
nipress.960

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-961
bert, Amjad Almahairi, Yasmine Babaei, Nikolay962
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti963
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-964
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,965
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,966
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-967
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan968
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,969
Isabel Kloumann, Artem Korenev, Punit Singh Koura,970
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-971
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-972
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-973
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-974
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,975
Ruan Silva, Eric Michael Smith, Ranjan Subrama-976
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-977
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,978
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,979
Melanie Kambadur, Sharan Narang, Aurélien Ro-980
driguez, Robert Stojnic, Sergey Edunov, and Thomas981
Scialom. 2023. Llama 2: Open foundation and fine-982
tuned chat models. CoRR, abs/2307.09288.983

Linting Xue, Aditya Barua, Noah Constant, Rami Al-984
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,985
and Colin Raffel. 2022. Byt5: Towards a token-free986
future with pre-trained byte-to-byte models. Trans.987
Assoc. Comput. Linguistics, 10:291–306.988

12

https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2206.04615
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1162/TACL_A_00461
https://doi.org/10.1162/TACL_A_00461
https://doi.org/10.1162/TACL_A_00461

Contents 989

1 Introduction 1 990

2 Related Work 2 991

2.1 Tokenization . 2 992

2.2 Perturbation Probing . 2 993

3 RQ1: Complex Problem Solving 3 994

3.1 Anagram Task . 3 995

3.2 Mathematical Language (LATEX) Comprehension . 4 996

4 RQ2: Token Structure Probe 4 997

4.1 Intra-Token Probing . 5 998

4.2 Inter-Token Probing . 5 999

5 RQ3: Typographical Variation 6 1000

6 Does BPE-dropout Matter? 8 1001

7 Conclusion 8 1002

A Task Examples 14 1003

A.1 Complex Problem Solving Examples . 14 1004

A.2 Intra-Token Probing Examples . 14 1005

A.3 Inter-Token Probing Examples . 14 1006

B Experimental Settings 15 1007

B.1 Baselines . 15 1008

B.2 Evaluation Settings . 15 1009

B.3 Post-Training Details . 15 1010

C Details of Probing Task Construction 15 1011

C.1 Token Structure Probing (RQ2) . 15 1012

C.2 Typographical Variation Task (RQ3) . 16 1013

D Detailed Results of BPE-dropout Post-Training 16 1014

E Additional Analysis 18 1015

E.1 Impact of Typographical Variations on Sequence Length 18 1016

E.2 Compositional Challenges in Token Embeddings . 19 1017

13

A Task Examples1018

A.1 Complex Problem Solving Examples1019

We present detailed examples of complex problem-1020

solving tasks including word anagram and identify-1021

ing math theorems as follows:1022

Anagram Task Format

Input: A string of jumbled characters
(e.g., “moeh” for “home”).
Output: The correct unscrambled word
(e.g., “home”).

1023

Identifying Math Theorems Task Format

Input: A LATEX-formatted mathemati-
cal theorem. E.g., “Let f ∈ L1(R) be
an integrable function. The span of
{fa(x) = f(x + a) : a ∈ R} is dense in
L1(R) if and only if f̂ has no real roots..
A) Let f ∈ L1(R) be an integrable func-

tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ has no real roots.

B) Let f ∈ L1(R) be an integrable func-
tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ has no real roots. .

C) Let f ∈ L1(R) be an integrable func-
tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ is irreducible over Q.

D) Let f ∈ L1(R) be an integrable func-
tion. The span of {fa(x) = f(x+a) :
a ∈ R} is dense in L1(R) if and only
if f̂ has no repeated roots.

Output: The model must determine
whether the theorem is true. If it is false,
the model should provide the correct
version; i.e., select the option “A”.

1024

A.2 Intra-Token Probing Examples1025

For intra-token probing tasks, we provide Character1026

Count (CC), N -th Character (NC), N -th Character1027

Reverse (NCR), and Case Conversion (CCV) for1028

illustration.1029

Character Count (CC)

Input: Which character appears 3 times
in the word ‘messrs’?
Output: ‘s’.

1030

N -th Character (NC)

Input: What is the 4th character of the
word ‘myron’?
Output: ‘o’.

1031

N -th Character Reverse (NCR)

Input: What is the 2nd character from
the end of the word ‘pensioner’?
Output: ‘e’.

1032

Case Conversion (CCV)

Input: Which character appears 3 times
in the word ‘messrs’?
Output: ‘s’.

1033

A.3 Inter-Token Probing Examples 1034

We present examples of inter-token probing tasks, 1035

which involve identifying Common Substrings 1036

(CS), Longest Common Subsequences (LCSeq), 1037

and Longest Common Substrings (LCS). These 1038

tasks evaluate the model’s ability to analyze and 1039

compare internal structure across different inputs. 1040

Common Substrings (CS)

Input: What are the common substrings
of ’critical’ and ’conscious’?
Output: ‘i‘, ‘c’.

1041

Longest Common Subsequences (LCSeq)

Input: What are the longest common
subsequences of ‘illustrate’ and ‘criti-
cal’?
Output: ‘ita’.

1042

Longest Common Substrings (LCS)

Input: What are the longest common
substrings of ‘cow’ and ‘condition’?
Output: ‘co’.

1043

14

B Experimental Settings1044

B.1 Baselines1045

We include Llama3-8B, Llama3-8B-Instruct,1046

Llama3-70B, Mistral-7B and Mixtral-8x7B for1047

LLM evaluation.1048

Llama3 Llama3 (AI@Meta, 2024) series are one1049

of the most powerful open-sourced models recently.1050

Llama3-8B is a dense pretrained model with a1051

vocab size of 128256, which needs few-shot ex-1052

amples to better follow instructions. Llama3-8B-1053

Instruct is also envolved for diverse model types.1054

Llama3-8B-Instrcut is a instruction-fine-tuned ver-1055

sion of Llama3-8B, showing much improvement1056

over Llama3-8B on benchmarks like HumanEval1057

and TruthfulQA.1058

Mistral & Mixtral Mistral-7B (Jiang et al.,1059

2023) is a dense model with a vocab size of 320001060

released last year. Mixtral-8x7B (Jiang et al., 2024)1061

is a sparse mixture-of-expert(MoE) model with1062

13B active parameters, whose performance greatly1063

surpasses Mistral-7B and matches the performance1064

of Llama2-70B.1065

GPT-4 Turbo The model version we evaluate is1066

“gpt-4-1106-preview”2. Compared with GPT-4,1067

"gpt-4-1106-preview" yields stronger performance1068

on following instructions, structured output and1069

other abilities.1070

B.2 Evaluation Settings1071

We utilize lm-evaluation-harness (Gao et al., 2023)1072

for the evaluation of GSM8K, MMLU, and1073

TruthfulQA. For HumanEval, we adopt bigcode-1074

evaluation-harness (Ben Allal et al., 2022). All1075

models are tested under bfloat16 precision for1076

higher efficiency.1077

To eliminate the impact of the Chain-of-Thought1078

(CoT) prompt, GSM8K is evaluated using a 5-1079

shot setting without CoT, and we report the "exact1080

match" as the final metric. For HumanEval, we1081

report pass@1 using a temperature of 0.2 and a1082

top-p of 0.95. The maximum total length of the1083

prompt and model output is set to 512 for Llama31084

and 1024 for Mistral-7B and Mixtral-8x7B. We1085

only apply corruption to the annotation to make1086

sure that entry point can be found after corruption.1087

For TruthfulQA, model performances are measured1088

within the “MC1 (single-true)” setting.1089

2https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

For models after instruction-tuning, we do not 1090

apply chat templates except for TruthfulQA, as 1091

model outputs tend to be difficult to parse in chat 1092

mode. 1093

B.3 Post-Training Details 1094

Dataset We synthesized the dataset for RQ2 with 1095

a template-based method. Table 2 describes statis- 1096

tics of dataset splits for each task.

Task Train Test

Intra-Token Probing 111,070 800

Character Count 20,775 200
N-th Character 31,241 200
N-th Character Reverse 31,316 200
Case Conversion 27,738 200

Inter-Token Probing 14,400 600

Common Substrings 4,800 200
Longest Common Substrings 4,800 200
Longest Common Subsequences 4,800 200

Table 2: The dataset size for training and testing.
1097

Training Details We employ the AdamW opti- 1098

mizer (Loshchilov and Hutter, 2017) with the hy- 1099

perpameters of β1 = 0.9, β2 = 0.95. The peak 1100

learning rate is set to 5e-5, and the minimum learn- 1101

ing rate is set to 1e-6. The learning rate warms 1102

up during the first 10% of training steps and then 1103

decays with a cosine scheduler. 1104

Given the difference in data distribution resulting 1105

from BPE-dropout, we post-train Mistral-7B (Jiang 1106

et al., 2023) on the training split for 5 epochs 1107

with a global batch size of 16. Following the pre- 1108

training recipe, we concatenate all sequences and 1109

then chunk them into fixed context lengths of 4096 1110

for our autoregressive post-training. We conduct 1111

data shuffling within the same epochs. 1112

C Details of Probing Task Construction 1113

C.1 Token Structure Probing (RQ2) 1114

To create a comprehensive test set for evaluating 1115

the tokenization capabilities of LLMs, we followed 1116

a systematic data synthesis process. Initially, we 1117

manually collected a set of around 300 words from 1118

the web, ensuring a diverse representation of word 1119

structures. This collection included words with 1120

common suffixes, prefixes, and varying lengths to 1121

cover a broad range of token structures. 1122

Next, we defined a set of rules to create tasks 1123

for both intra-token and inter-token evaluations. 1124

15

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4

These rules were designed to test different aspects1125

of tokenization, such as character counting, charac-1126

ter identification, case conversion, and identifying1127

common substrings and subsequences.1128

Then we generated the probing tasks. For intra-1129

token evaluations, we created tasks like Character1130

Count (CC), N -th Character (NC), N -th Character1131

Reverse (NCR), and Case Conversion (CCV). For1132

inter-token evaluations, we developed tasks such as1133

Common Substrings (CS), Longest Common Sub-1134

strings (LCS), and Longest Common Subsequences1135

(LCSeq). Each task was carefully crafted to test1136

the model’s ability to understand and manipulate1137

token structures at various levels.1138

C.2 Typographical Variation Task (RQ3)1139

Task Test

GSM8k 1319
MMLU 14,042
TruthfulQA 817
HumanEval 164

Table 3: Dataset statistics of typographical variation
tasks (RQ3).

To thoroughly evaluate the typographical varia-1140

tion (RQ3), we conduct corruption to the questions1141

of several benchmark datasets’ test split and keep1142

answers intact. Details of evaluation dataset are1143

summarized at Table 3.1144

Character-Level We performed character-level1145

corruption within word boundaries, ensuring that1146

the positions of punctuation marks or spaces re-1147

mained unchanged after corruption. Even when1148

there were not enough characters to form a com-1149

plete n-gram, corruption was still applied.1150

Token-Level We converted the input prompts1151

into tokens using tokenizers from different model1152

families. Corruption was then applied within an1153

n-gram range, without regard to word boundaries.1154

This approach simulates token-level typographical1155

variations, challenging the models to handle disrup-1156

tions at the token level.1157

Permutation For permutation task, we randomly1158

shuffle tokens or characters within an n-gram range1159

with a 50% probability, as illustrated in Figure 8.1160

We evaluate by using n-gram range from 2 to 5,1161

in which various n-gram levels could assess the1162

model’s performance under varying degrees of cor- 1163

ruption. 1164

Noise Injection We consider three kinds of noise 1165

that commonly encountered by humans: insertion 1166

(10%), deletion (10%), and replacement (10%). For 1167

insertion, we choose a token or character from the 1168

current n-gram under 50% circumstances. Other- 1169

wise, we randomly select a token or character from 1170

the whole vocabulary (token or character) and add 1171

it to a random position. 1172

When performing replacing, we replace a token 1173

or character in the current n-gram with a token or 1174

character randomly selected from the whole vocab- 1175

ulary. Figure 8 illustrates our approach of injecting 1176

noise to tokens using a tri-gram granularity. 1177

D Detailed Results of BPE-dropout 1178

Post-Training 1179

The results, as shown in Figure 10, illustrate the 1180

effect of BPE-dropout on EM scores across seven 1181

tasks (CS, LCSeq, CCV, CC, NC, LCS, NCR) un- 1182

der various post-training conditions (0-shot, 1-shot, 1183

2-shot, and 3-shot) with dropout rates ranging from 1184

0.0 to 0.8. 1185

We observe that moderate dropout rates (0.2 to 1186

0.4) appear to improve the convergence of EM 1187

scores across all tasks, particularly in the zero-shot 1188

setting. This indicates that a certain level of vari- 1189

ability introduced by dropout can help the model 1190

generalize better when no additional examples are 1191

provided. In the 1-shot, 2-shot, and 3-shot settings, 1192

moderate dropout rates contribute to stabilizing per- 1193

formance, suggesting that this level of dropout in- 1194

troduces useful regularization without significantly 1195

compromising token integrity. 1196

It is evident that higher dropout rates (0.6 and 1197

0.8) lead to a noticeable decline in EM scores 1198

across all tasks and post-training conditions. This 1199

indicates that excessive dropout disrupts the tok- 1200

enization process, resulting in subwords with fewer 1201

merges that conflict with the original pre-training 1202

of the models. Tasks such as NC, LCS, and NCR 1203

show more significant drops in EM scores with 1204

higher dropout rates, reflecting their complexity 1205

and the challenge of maintaining token integrity 1206

under substantial dropout. 1207

Task-specific performance varies under differ- 1208

ent dropout conditions. CS and CC tasks exhibit 1209

high robustness to dropout, maintaining relatively 1210

stable EM scores even at moderate dropout rates. 1211

This suggests that the nature of these tasks makes 1212

16

Origin

def largest_divisor(n: int) -> int:
 """ For a given number n, find
 the largest number that divides n evenly, smaller than n
 >>> largest_divisor(15)
 5
 """

Char-Level
Permutation
(5-gram)

def largest_divisor(n: int) -> int:
 """ For a given number n, fdin
 teh raglets number htat dividse n leenvy, asllmer than n
 >>> largest_divisor(15)
 5
 """

Figure 8: Example of a char-level permutation(5-gram) prompt from HumanEval.

Origin

Token-Level
Noise

(3-gram)

[8100, 50777, 2380, 369, 17954, 1475, 6693, 323, 293, 2094, 55404, 1354, 369,
1077, 4885, 1475, 1938, 449, 3116, 13, 3005, 31878, 279, 27410, 520, 279, 20957, 6,
3157, 7446, 369, 400, 17, 824, 7878, 37085, 19151, 13]

[8100, 50777, 2380, 412, 17954, 1475, 6693, 323, 293, 2094, 4124, 55404, 1354, 369,
1077, 4885, 1475, 1938, 449, 75316, 13, 3005, 31878, 279, 27410, 520, 279, 20957, 6,
3157, 7446, 369, 400, 6134, 17, 824, 7878, 37085, 19151, 13]

Figure 9: Example of token-level noise (tri-gram) injected prompt from GSM8K. Red, Green, and Gray denote
replacement, insertion, and deletion respectively.

them less sensitive to the variability introduced by1213

dropout. LCSeq and CCV tasks show moderate1214

sensitivity to dropout, with a noticeable decline in1215

performance at higher dropout rates. NC, LCS, and1216

NCR tasks are more adversely affected by higher1217

dropout rates, indicating their reliance on stable1218

token sequences.1219

The positive effects of moderate BPE-dropout1220

include improved generalization and regularization.1221

Moderate dropout rates (0.2 to 0.4) introduce ben-1222

eficial variability, enhancing the model’s ability1223

to generalize, particularly in zero-shot scenarios1224

where the model must rely solely on its pre-trained1225

knowledge without additional examples. BPE-1226

dropout acts as a regularizer, preventing the model1227

from overfitting to specific token sequences seen1228

during pre-training. This is especially useful in low-1229

resource settings (e.g., 0-shot and 1-shot) where1230

overfitting can be a significant concern. 1231

However, challenges arise with high dropout 1232

rates. Higher dropout rates lead to subwords with 1233

fewer merges, deviating from the token sequences 1234

the model encountered during pre-training. This 1235

disruption results in poorer performance, as the 1236

model struggles to reconcile the altered tokeniza- 1237

tion with its pre-trained representations. More com- 1238

plex tasks (NC, LCS, NCR) suffer more from high 1239

dropout rates, highlighting the need for careful tun- 1240

ing of dropout rates based on task complexity and 1241

tokenization stability requirements. 1242

The findings suggest that there is an optimal 1243

range for BPE-dropout rates that balances the ben- 1244

efits of regularization and improved generalization 1245

with the need to maintain token integrity. Prac- 1246

titioners should consider moderate dropout rates 1247

to leverage the positive effects while avoiding the 1248

17

1 2 3 4 5
Epoch

0

50

100
E

M
 S

co
re

CS

1 2 3 4 5
Epoch

LCSeq

1 2 3 4 5
Epoch

CCV

1 2 3 4 5
Epoch

CC

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

NC

1 2 3 4 5
Epoch

LCS

1 2 3 4 5
Epoch

NCR
dropout p

0.0
0.2
0.4
0.6
0.8

(a) 0-shot

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

CS

1 2 3 4 5
Epoch

LCSeq

1 2 3 4 5
Epoch

CCV

1 2 3 4 5
Epoch

CC

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

NC

1 2 3 4 5
Epoch

LCS

1 2 3 4 5
Epoch

NCR
dropout p

0.0
0.2
0.4
0.6
0.8

(b) 1-shot

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

CS

1 2 3 4 5
Epoch

LCSeq

1 2 3 4 5
Epoch

CCV

1 2 3 4 5
Epoch

CC

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

NC

1 2 3 4 5
Epoch

LCS

1 2 3 4 5
Epoch

NCR
dropout p

0.0
0.2
0.4
0.6
0.8

(c) 2-shot

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

CS

1 2 3 4 5
Epoch

LCSeq

1 2 3 4 5
Epoch

CCV

1 2 3 4 5
Epoch

CC

1 2 3 4 5
Epoch

0

50

100

E
M

 S
co

re

NC

1 2 3 4 5
Epoch

LCS

1 2 3 4 5
Epoch

NCR
dropout p

0.0
0.2
0.4
0.6
0.8

(d) 3-shot

Figure 10: The impact of BPE-dropout on EM scores across seven tasks (CS, LCSeq, CCV, CC, NC, LCS, NCR)
under different post-training conditions: (a) 0-shot, (b) 1-shot, (c) 2-shot, and (d) 3-shot. The dropout rates range
from 0.0 to 0.8. The plots show that moderate dropout rates generally lead to improvements. Tasks such as CS and
CC are more robust to dropout, maintaining higher scores even at moderate dropout rates, while tasks like NC, LCS,
and NCR show significant performance drops with increasing dropout.

pitfalls of excessive dropout. Different tasks ex-1249

hibit varying sensitivities to dropout, underscoring1250

the importance of task-specific dropout tuning to1251

achieve the best performance outcomes.1252

E Additional Analysis1253

E.1 Impact of Typographical Variations on1254

Sequence Length1255

Figure 11 shows a strong positive correlation be-1256

tween token lengths before and after introducing1257

typographical errors across different tasks (GSM8K1258

and MMLU) and n-gram settings (2, 3, 5). We ob-1259

serve that token lengths after introducing errors are1260

proportional to their original lengths. Besides, both1261

GSM8k and MMLU tasks exhibit similar patterns,1262

and the n-gram settings (2, 3, 5) do not significantly1263

alter this relationship. Most Most interestingly, the1264

slope for reorder errors is relatively larger than for1265

noise errors, indicating that reorder errors tend1266

to result in a slightly greater increase in token1267

50 100 150

100

200

af
te

r

task = gsm8k | ngram = 2

50 100 150

100

200

task = gsm8k | ngram = 3

50 100 150

100

200

task = gsm8k | ngram = 5

0 500
before

0

500

1000

1500

af
te

r

task = mmlu | ngram = 2

0 500
before

0

500

1000

1500
task = mmlu | ngram = 3

0 500
before

0

500

1000

1500
task = mmlu | ngram = 5

reorder noise

Figure 11: Scatter plots showing the positive correla-
tion between token lengths before and after introducing
typographical errors on MMLU and GSM8K, varying
n-gram settings (2, 3, or 5). The x-axis represents the
original token length, and the y-axis represents token
length after adding errors.

length compared to noise errors. 1268

18

E.2 Compositional Challenges in Token1269

Embeddings1270

Figure 1 illustrates the compositional challenges1271

faced by existing LLMs when handling subword1272

units. Specifically, it presents cosine similarities1273

and angular differences between embeddings of1274

original words and their subword components.1275

In Figure 1(a), we observe the word "assign-1276

ment" and its subword components "assign" and1277

"ment." The cosine similarity between the compos-1278

ite embedding "assign + ment" and the original1279

word "assignment" is relatively low at 0.51, with1280

a significant angular difference of 59.24 degrees.1281

This substantial disparity indicates that the learned1282

token embeddings fail to capture the surface form1283

composition accurately. The model does not rec-1284

ognize that "assign" combined with "ment" should1285

semantically align closely with "assignment."1286

Similarly, Figure 1(b) shows the word “import”1287

and its subword components “im” and “port”. Here,1288

although the cosine similarity between “im + port”1289

and “import” is higher at 0.93, the angular differ-1290

ence is still notable at 21.17 degrees. This suggests1291

that while the model captures some compositional1292

aspects, it still struggles to fully integrate subword1293

information to match the original word’s embed-1294

ding perfectly.1295

These observations highlight a critical limitation1296

of existing LLMs: their learned token embeddings1297

do not adequately capture the surface form com-1298

position. The inability to effectively combine sub-1299

word units to represent the full word’s meaning1300

undermines the model’s overall understanding and1301

processing capabilities.1302

19

	Introduction
	Related Work
	Tokenization
	Perturbation Probing

	RQ1: Complex Problem Solving
	Anagram Task
	Mathematical Language (LaTeX) Comprehension

	RQ2: Token Structure Probe
	Intra-Token Probing
	Inter-Token Probing

	RQ3: Typographical Variation
	Does BPE-dropout Matter?
	Conclusion
	Task Examples
	Complex Problem Solving Examples
	Intra-Token Probing Examples
	Inter-Token Probing Examples

	Experimental Settings
	Baselines
	Evaluation Settings
	Post-Training Details

	Details of Probing Task Construction
	Token Structure Probing (RQ2)
	Typographical Variation Task (RQ3)

	Detailed Results of BPE-dropout Post-Training
	Additional Analysis
	Impact of Typographical Variations on Sequence Length
	Compositional Challenges in Token Embeddings

