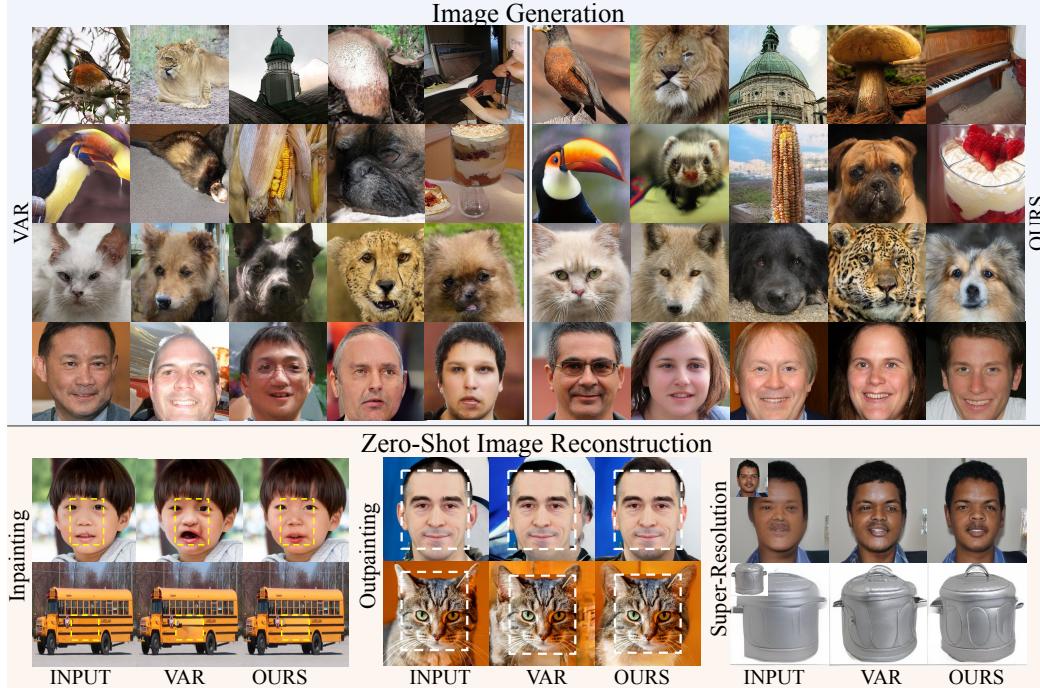


# SCALE-WISE VAR IS SECRETLY DISCRETE DIFFUSION

000  
001  
002  
003 **Anonymous authors**  
004 Paper under double-blind review  
005  
006  
007



030  
031 **Figure 1: Figure illustrating the different applications of SRDD method:** SRDD exhibit better  
032 sampling fidelity and zero shot performance compared to the VAR.  
033

## ABSTRACT

034 Autoregressive (AR) transformers have emerged as a powerful paradigm for visual  
035 generation, largely due to their scalability, computational efficiency and unified  
036 architecture with language and vision. Among them, next scale prediction Visual  
037 Autoregressive Generation (VAR) has recently demonstrated remarkable perfor-  
038 mance, even surpassing diffusion-based models. In this work, we revisit VAR and  
039 uncover a theoretical insight: when equipped with a Markovian attention mask,  
040 VAR is mathematically equivalent to a discrete diffusion. We term this reinterpreta-  
041 tion as Scalable Visual Refinement with Discrete Diffusion (SRDD), establishing  
042 a principled bridge between AR transformers and diffusion models. Leveraging  
043 this new perspective, we show how one can directly import the advantages of  
044 diffusion—such as iterative refinement and reduce architectural inefficiencies into  
045 VAR, yielding faster convergence, lower inference cost, and improved zero-shot  
046 reconstruction. Across multiple datasets, we show that the diffusion-based perspec-  
047 tive of VAR leads to consistent gains in efficiency and generation. To facilitate  
048 further research, we will make the code and models public.  
049

## 1 INTRODUCTION

052 Autoregressive models Bengio et al. (2003); Papamakarios et al. (2017) are among the most efficient  
053 and scalable approaches for generative modeling van den Oord et al. (2016b); Brown et al. (2020);  
van den Oord et al. (2016a). Recent work Austin et al. (2021) shows that autoregressive training

054 can be viewed as a discrete diffusion variant, where tokens are masked in a fixed order rather than  
 055 randomly as in diffusion. However, using this formulation for visual generation introduces two key  
 056 limitations: (i) the autoregressive paradigm introduces an inductive bias, where pixels or regions  
 057 generated initially are not informed of the distribution or semantics of the generated image. (ii) the  
 058 model receives no explicit signal about the degree of degradation, forcing it to learn this internally  
 059 (one could imagine this as the initial tokens having more degradation and the final ones having  
 060 less). As a result, despite their efficiency, AR models underperform when directly combined with  
 061 diffusion-style training strategies.

062 Although effective for text generation, these  
 063 models have not been successful for image gen-  
 064 eration. Diffusion models Ho et al. (2020); Song  
 065 et al. (2020; 2023) have portrayed the capability  
 066 to generate high quality images by iteratively  
 067 denoising pure noise to a point in the data dis-  
 068 tribution through a large number of steps. Al-  
 069 though effective for generating high-quality im-  
 070 ages, these models are notoriously slow Pee-  
 071 bles & Xie (2023); Chang et al. (2022); Sa-  
 072 haria et al. (2022) and require extensive design  
 073 choices Rombach et al. (2022); Peebles & Xie  
 074 (2023); Salimans (2016); Song et al. (2023); Lu  
 075 et al. (2023; 2022); Song et al. (2021) for fast  
 076 inference. Moreover, increasing the model size  
 077 for the diffusion model leads to heavy inference  
 078 computational requirements to achieve good quality results. Tackling the fundamental limitations  
 079 of a diffusion model requires a model that can perform fast generation while exhibiting scalability  
 080 with compute and parameter size. Recently, Visual Autoregressive Generation Tian et al. (2024)  
 081 (VAR) introduced a new paradigm of models based on next scale prediction using transformers.  
 082 These models, rather than predicting the next token as in GPT architectures Chen et al. (2020);  
 083 Sun et al. (2024); Ramesh et al. (2021), autoregressively predict the next scale corresponding to a  
 084 higher-resolution image. Moreover, VAR has also shown that increasing the parameters of the model  
 085 drastically improves the generation quality in terms of FID scores.

085 In this work, we delve deep into the inner workings of VAR and discrete diffusion models. We observe  
 086 similar findings of existing work Voronov et al. (2024), suggesting that the current version of VAR  
 087 has design inefficiencies and the overall model can be improved further by predicting the next scale  
 088 in a Markovian fashion, conditioned on the immediate previous scale rather than all previous scales.  
 089 Our analysis of the training dynamics and the loss functions of the model reveals that the *Markovian*  
 090 *variant of VAR is an efficient formulation of a discrete diffusion model*. Motivated by this, we present  
 091 Scalable Visual Refinement with Discrete Diffusion (SRDD), a theoretical perspective that interprets  
 092 the Markovian variant of VAR, together with probabilistic sampling techniques, through the lens of  
 093 discrete diffusion. To the best of our knowledge, we are the first work to connect a variant of VAR to a  
 094 discrete diffusion. As shown in (Figure 2), SRDD inherits VAR’s strong scaling behaviour, achieving  
 095 improved performance with increasing model size. The discrete diffusion perspective brings in an  
 096 added benefit, such as utilizing all relevant literature holding for discrete diffusion models in VAR  
 097 formulation. This in turn, drastically improves the generation quality of VAR without the need for  
 098 explicit handcrafted design choices, but instead uses structured choices deep-rooted in theory.

098 We experiment with three different properties tied to probabilistic sampling with diffusion properties,  
 099 such as (1) classifier-free guidance Ho (2022); Schiff (2024) (2) token resampling Wang et al. (2025),  
 100 and (3) distillation Salimans & Ho (2022); Meng et al. (2023), and show that SRDD in turn works  
 101 better when combined with these strategies. Moreover, like diffusion models, we also explore  
 102 zero-shot generation performance like super-resolution, inpainting, and outpainting and obtain better  
 103 results than the original VAR architecture. We present these results in Figure 1. With this work, we  
 104 reveal a new perspective on VAR by formally connecting it to discrete diffusion with a theoretical  
 105 lens that explains its behaviour and informs principled design choices, and direct the attention of  
 106 the community to how the quality, efficiency and explainability of visual generation can be further  
 107 improved. Thereby, we open up possibilities in visual generation research. This explainability may be  
 108 further used for design choices while scaling up LLMs for joint visual-language generation as well.

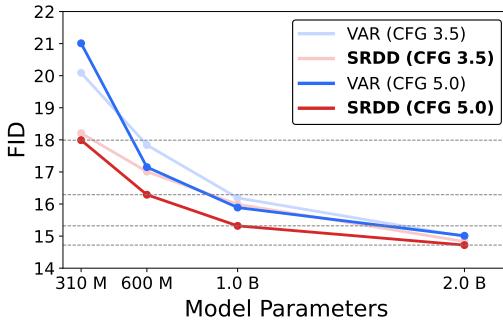


Figure 2: **Scaling behaviour of SRDD and VAR:** SRDD exhibits similar scaling behavior with parameter size as observed in VAR

Model Parameters

Figure 2: **Scaling behaviour of SRDD and VAR:** SRDD exhibits similar scaling behavior with parameter size as observed in VAR

Model Parameters

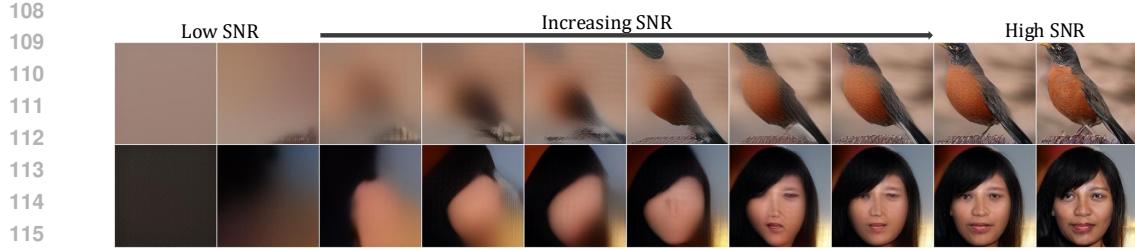


Figure 3: **Scale-wise generation of VAR:** The SNR increases through the generation process, similar to the diffusion process.

## 2 BACKGROUND

In this section, we describe in brief detail the working of visual autoregressive generation and discrete diffusion models.

**Visual Autoregressive Generation:** Tian et al. (2024) brought about a new paradigm for visual generative modeling, where the model is trained for next-scale prediction. Unlike earlier autoregressive models that generate discrete tokens at a single resolution sequentially, in VAR, all tokens at one resolution are generated jointly, and then progressively refined to move from the lowest to the highest resolution. To generate an image with resolution  $H \times W$ , the generation process happens progressively through sub-resolutions  $x_i = h_i \times w_i$ . At each step, the model conditions on all previously generated resolutions, effectively modeling  $p(x_1, x_2, \dots, x_i) = \prod_{i=1}^N p_\theta(x_i|x_{i-1}, x_{i-2}, \dots, x_1)$ , where  $x_i$  denotes discrete tokens corresponding to different resolutions obtained through the multi-scale VQVAE van den Oord et al. (2016b). These tokens by themselves may not form any meaningful image, but the summation of residual over different resolutions reconstructs the whole image. An autoregressive transformer is trained to learn the corresponding distribution. The effective training loss for VAR can be written as

$$\mathcal{L} = -E_{q(x_N)} \left[ \sum_{i=1}^N \log p_\theta(x_i|x_{i-1}, \dots, x_1) \right], \quad (1)$$

where  $N$  is the total number of resolutions in the generation and  $q()$  is the training data distribution.

**Discrete diffusion models:** are the discrete counter parts of continuous-time diffusion models. These models were first proposed in Sohl-Dickstein et al. (2015), then later extended in Sahoo et al. (2024); Hoogeboom et al. (2022); Luo et al. (2023a). D3PMs Austin et al. (2021) elaborated more on discrete diffusion models and brought in the new perspective of rethinking the transition noise matrices. In a general discrete diffusion model, the transition between adjacent states is modelled as a categorical distribution, where the current state is transformed through a transition matrix. We formally define this by  $q(x_t|x_{t-1}) = \text{Cat}(x_t|p = x_{t-1}Q_t)$ , where  $Q_t$  is the transition matrix from a state  $x_{t-1}$  to a state  $x_t$  and  $q(x_t|x_0) = \text{Cat}(x_t|p = x_0\overline{Q_t})$ , where  $\overline{Q_t} = Q_1Q_2 \cdots Q_t$ . The choice of the transition matrix decides the nature of degradation existing in the diffusion process and is designed by  $[Q_t]_{ij} = q(x_t = j|x_{t-1} = i)$ . Like in a continuous time diffusion model, a parameterized model  $p_\theta(x_t, t)$  learns the reverse distribution, removing degradation from an input signal  $x_t$ , given the amount of degradation. Discrete diffusion models are trained with cross-entropy loss predicting the categorical distribution at each timestep  $t$ , formally defined as,

$$\mathcal{L} = -E_{q(x_0)} \left[ \sum_{t=1}^T E_{q(x_t|x_0)} [\log p_\theta(x_0|x_t)] \right]. \quad (2)$$

Alternatively, though the Markovian formulation, diffusion models may also be trained to reconstruct  $x_{t-1}$  given  $x_t$  directly using the parameterized model. The corresponding loss function is written as

$$\mathcal{L} = -E_{q(x_0)} \left[ \sum_{t=1}^T E_{q(x_t|x_0)} [\log p_\theta(x_{t-1}|x_t)] \right], \quad (3)$$

where  $p_\theta$  is a diffusion model that iteratively restores a sample from the degraded distribution to one in the tokens of real distribution.

**Concurrent works:** Recent works, Kumbong et al. (2025); Voronov et al. (2024), observe that VAR assumes all preceding scales are equally important for generating the next scale, even though the current resolution already encodes prior-scale information, making such conditioning redundant and architecturally inefficient as shown in Figure 3. While prior work recognizes these shortcomings, it lacks a theoretical explanation of why Markovian variants perform better. In this paper, we bridge this gap by showing that the Markovian formulation of VAR naturally aligns with the discrete diffusion perspective, thereby offering a principled explanation for the observed performance gains.

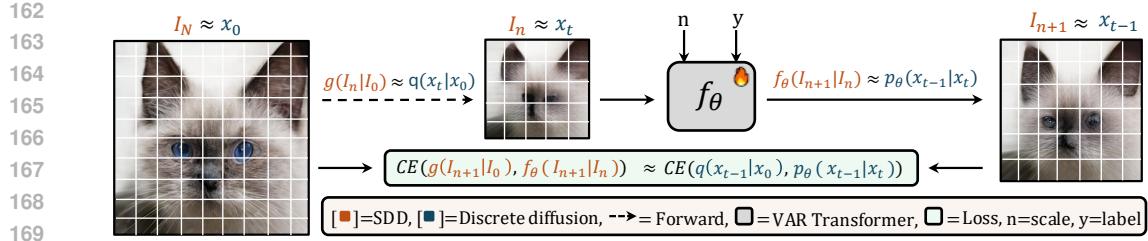


Figure 4: **Figure illustrates the connection between the Markovian variant of VAR (SDD) and discrete diffusion.**: The SDD forward process  $g(I_n | I_0) = M(n)I_0$  mirrors the diffusion transition  $q(x_t | x_0)$ , where the ground truth  $I_0$  is deterministically degraded by the transition matrix  $M(n)$ . Further, the learnable transformer  $f_\theta(I_n, n, y)$  predicts the coarser-to-finer transition  $I_{n+1}$ , analogous to the reverse diffusion step  $p_\theta(x_{t-1} | x_t)$ . Importantly, the training objective in both cases reduces to a cross-entropy loss between the forward posterior and model prediction, making the loss formulation of SDD equivalent to the diffusion ELBO in the limiting case of a deterministic transition.

### 3 METHOD

In this section, we connect the working of Markovian variant VAR (referred as SDD) to that of a discrete diffusion model as shown in Fig. 4.

#### 3.1 AUTOREGRESSIVE MODELS AS DISCRETE DIFFUSION MODELS.

Following Austin et al. Austin et al. (2021), an autoregressive process can be interpreted as a special case of a discrete diffusion model. Consider a sequence of length  $N = T$  and a deterministic forward process that progressively masks tokens one by one  $q([x_t]_i | x_0) = [x_0]_i$  if  $i < T - t$  else  $[\text{MASK}]$ . This implies that  $q(x_{t-1} | x_t, x_0)$  is a delta distribution over the sequence with one fewer mask:  $q([x_{t-1}]_i | x_t, x_0) = \delta_{[x_t]_i}$  if  $i \neq N - t$  else  $\delta_{[x_t]_0}$ . Although this procedure does not act independently on each token, it can be recast as a diffusion process defined over the product space  $[0, N] \times \mathcal{V}$ , where  $\mathcal{V}$  is the vocabulary and  $\mathbf{Q}$  is an  $N \times |\mathcal{V}| \times N \times |\mathcal{V}|$  sparse transition matrix. All tokens except the one at position  $i = T - t$  have deterministic posteriors, so the KL divergence

$$D_{\text{KL}}(q([x_{t-1}]_j | x_t, x_0) \| p_\theta([x_{t-1}]_j | x_t)) = 0, \quad \text{for } j \neq i \quad (4)$$

vanishes for  $j \neq i$ . The only non-trivial divergence occurs at position  $i$ , yielding

$$D_{\text{KL}}(q([x_{t-1}]_i | x_t, x_0) \| p_\theta([x_{t-1}]_i | x_t)) = -\log p_\theta([x_0]_i | x_t), \quad (5)$$

which exactly corresponds to the standard cross-entropy loss used in autoregressive training.

#### 3.2 RETHINKING VAR VARIANTS THROUGH THE DISCRETE DIFFUSION LENS

To illustrate how VAR is a variant of discrete diffusion models, we link VAR towards the key characteristics of discrete diffusion models (1) A model parameterized with the amount of degradation to remove (2) A categorical distribution matching loss function (3) A progressively increasing SNR during the generation process

**(1) A amount of degradation parameterized into the model input:** VAR inherently is an iterative refinement model trained to reconstruct tokens of different levels of intensities. Just as in diffusion models where the timestep of diffusion is conditioned to the model, we found out that in the original implementation for VAR, the current resolution(scale) to be restored is parameterized, embedded and informed through the model through a concatenation operation along with the class embedding.

**(2) Loss function for training VAR:** Another notable design choice of VAR is the use cross-entropy loss for predicting discrete tokens as defined in 1. Taking a closer look at the loss for discrete diffusion where categorical distribution matching happens through cross entropy loss, Equation (3),

$$\mathcal{L} = -E_{q(x_0)} \left[ \sum_{t=1}^T E_{q(x_t | x_0)} [\log p_\theta(x_{t-1} | x_t)] \right]. \quad (6)$$

In the limiting case where there is only one possible transition between the states  $x_t \rightarrow x_{t-1}$ . And the final stationary state  $\mathbf{x}_T$  is predefined to a fixed  $\text{SOS}$  token, the effective loss function becomes,

$$\mathcal{L} = -E_{q(x_0)} \left[ \sum_{i=1}^T \log p_\theta(x_{i-1} | x_i) \right]. \quad (7)$$

Taking a closer look at 1. We find that in the limiting case of a deterministic transition matrix, this is the exact same loss function (within the factor of a scaling constant) used to train VAR, but rather conditioned on the previous scale alone.

**(3) Progressively increasing SNR:** We reformulate VAR as a model that recursively reconstructs images of higher scales conditioned on low scales. The low resolution tokens  $I_n \in R^{n \times n}$  at a scale  $n$ , are obtained through downsampling from tokens of resolution  $I_N \in R^{N \times N}$  through  $I_n = M(n).I_0$ ,  $M(n) \in R^{n^2 \times N^2}$  is a matrix that performs a non-linear deterministic downsampling operation dependent on  $n$  and  $N$  is the maximum scale. At each scale  $n$ , the model  $f_\theta$  predicts the residual relative to the upsampled previous scale,

$$f_\theta(I_{n-1}, n) : (I_{n-1})_{\uparrow(n)} \rightarrow I_n - (I_{n-1})_{\uparrow(n)}, \quad (8)$$

where  $(I_{n-1})_{\uparrow(n)}$  denotes a upsampling operation that upscales  $I_{n-1}$  to the size of  $I_n$ . The exact transformation is provided in the supplementary material.

As the scale index  $n$  increases, the signal-to-noise ratio (SNR) of  $I_n$  also increases, with smaller  $n$  corresponding to coarser, noisier resolutions. Thus, the progressive downsampling of the original image  $I_N$  into multiple resolutions can be interpreted as a diffusion process as prescribed in D3PMs Austin et al. (2021) with deterministic transition matrix  $\mathbf{Q}$  as  $\mathbf{M}(n)$ . This behaviour is illustrated in Figure 3, showing how SNR improves through successive stages of the generation process.

The corresponding transformation for a diffusion model, for the transition from a state  $x_t \rightarrow x_{t-1}$ , brings in an effective transformation,

$$\sqrt{\alpha_t}x_0 + \sqrt{(1 - \alpha_t)}\epsilon_1 \rightarrow \sqrt{\alpha_{t-1}}x_0 + \sqrt{(1 - \alpha_{t-1})}\epsilon_2; \epsilon_1, \epsilon_2 \sim \mathcal{N}(0, I) \quad (9)$$

The extra information on a signal level brought by the model can be described as

$$\mathbf{p}_\theta(\mathbf{x}_t, t) : \sqrt{\alpha_t}x_0 + \sqrt{(1 - \alpha_t)}\epsilon_1 \rightarrow (\sqrt{\alpha_{t-1}} - \sqrt{\alpha_t})x_0, \quad (10)$$

where  $\sqrt{\alpha_{t-1} - \alpha_t} \rightarrow 0$  as  $t \rightarrow 0$ . Here  $\mathbf{p}_\theta(\cdot)$  is the diffusion model bringing this transformation. Comparing Equation (10) and Equation (8), we see that in both models, a parameterized network learns the residual signal information required at a particular SNR.

A model satisfying all the above three criteria could be broadly categorized as a difffusion model Bansal et al. (2023). However, conventional diffusion-based realization of this approach based on existing literature would ideally require all corresponding latents  $x_t$  to be of the same resolution. Although more efficient methods have been proposed Teng et al. (2023); Zheng et al. (2024), these methods still operate at a small number of resolutions, with each resolution having multiple diffusion steps. Here is where the efficiency of VAR comes into play. If VAR can be modified to be dependent on the previous scale alone, an efficient modelling of a discrete diffusion process becomes possible. This could be performed by converting the blockwise causal mask to a Markovian attention mask. The Markovian variant of VAR outperforms VAR over multiple datasets. We argue that this observation is because the Markovian variant of VAR acts like the exact formulation of a discrete diffusion model, resulting in a higher evidence lower bound (ELBO) than the autoregressive formulation. We refer to this model—with fixed start token, fixed transitions, and Markovian attention—as **Scalable Discrete Diffusion (SDD)**, and validate its effectiveness through distribution-matching experiments.

This observation further opens up multiple possibilities (1) An explainability aspect to VAR that connects it to discrete diffusion models, which suggests possibilities for how to better boost performance. (2) All the works and numerous research papers for enhancing discrete diffusion models can now be utilized for VAR variants for enhanced generation process. (3) VAR showed that the utilization of properties like classifier-free guidance (cfg) and scaling model size improved performance, but this was an empirical observation. We in turn explain why these design choices brought in improvements and how we can further enhance the performance of the models.

In the next section, we detail four different variants of design choice that can significantly boost the performance of a Markovian variant of VAR. Many of these are motivated by their counterparts from continuous and discrete diffusion models

### 3.3 HOW TO IMPROVE THE GENERATION PERFORMANCE AND EFFICIENCY

We present four different methods for enhancing the performance of our Markovian version of VAR:

270 **Table 1: Quantitative results compared to different generative models on the same training**  
 271 **setting:** We compare using FID and IS on conditional and unconditional generation tasks. Here, “-”  
 272 denotes that the model has not converged during the training process.

| Method            | Conditional         |                  |                     |                  | Unconditional       |                  |                     |                  |
|-------------------|---------------------|------------------|---------------------|------------------|---------------------|------------------|---------------------|------------------|
|                   | MiniImageNet        |                  | SUN                 |                  | FFHQ                |                  | AFHQ                |                  |
|                   | FID( $\downarrow$ ) | IS( $\uparrow$ ) |
| LDM               | 84.13               | 15.79            | 34.62               | 17.69            | 18.91               | 3.95             | 92.53               | 5.09             |
| DiT-L/2           | 57.55               | 31.29            | —                   | —                | 28.44               | 3.51             | —                   | —                |
| VAR               | 21.01               | 59.32            | 15.72               | 16.19            | 19.23               | 3.09             | 14.74               | 9.92             |
| <b>Ours: SRDD</b> | <b>16.76</b>        | <b>63.31</b>     | <b>13.26</b>        | <b>17.97</b>     | <b>17.37</b>        | <b>4.05</b>      | <b>13.14</b>        | <b>10.09</b>     |

281 **(a) Classifier free guidance:** Classifier-free guidance (cfg) has been widely studied in diffusion  
 282 models. Ho (2022) provided a probabilistic interpretation, showing that at each sampling step the  
 283 model generates outputs biased toward the conditional distribution while being pushed away from  
 284 the unconditional data distribution. This is defined formally as  $p(x|c) \sim \frac{p^{w+1}(x|c)}{p^w(x|\phi)}$  where  $\phi$  denotes  
 285 the unconditional distribution. In VAR, cfg was previously tuned in an ad-hoc manner, yielding an  
 286 empirical “optimal” value but without a consistent trend. In contrast, we show the effect of cfg for  
 287 SDD and the naive VAR model, as we can observe, making the model Markovian and presenting the  
 288 discrete diffusion perspective brings in a behaviour pattern for different cfg values and enables to  
 289 boost performance higher, similar to that observed in diffusion models.

290 **(b) Token resampling for enhanced generation:** Recent works in discrete diffusion for language  
 291 generation Nie et al. (2025); Sahoo et al. (2024) propose resampling low-probability tokens at each  
 292 timestep conditioned on the remaining context. We adopt this strategy in SDD, calling it Masked  
 293 Resampling (MR) and final models as SRDD: at each resolution in SDD, tokens with prediction  
 294 probability below 0.01 are resampled multiple times to improve generation quality. This process  
 295 refines the out-of-distribution tokens at each stage.

296 **(c) Simple resampling for enhanced generation.** Diffusion models also benefit from increasing the  
 297 number of sampling steps. Analogously, we enhance SDD by performing multiple sampling steps per  
 298 scale, effectively increasing the refinement depth.

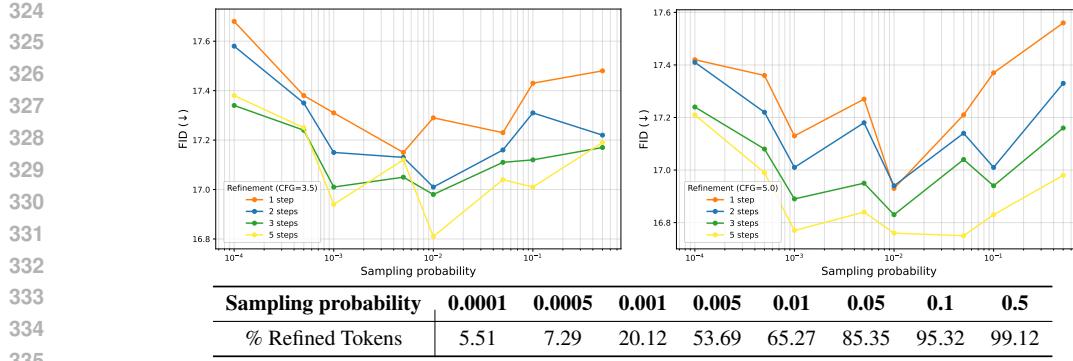
299 **(d) Distillation of VAR variants:** Distillation of diffusion models has been extensively studied.  
 300 Starting with progressive sampling Salimans & Ho (2022), DMDYin et al. (2024), multiple distillation  
 301 methods Meng et al. (2022; 2023) have been proposed for more efficient generation. In a similar  
 302 fashion we explore the effectiveness of progressive distillation in our variant of VAR. Starting with  
 303 a pretrained SDD model, as in diffusion, we skip certain scales as the distillation proceeds, which  
 304 inherently increases the SNR gap between consecutive scales. To replicate this in SDD, we drop  
 305 certain resolutions in VAR and upsample the previous resolution for the discrete latent tokens:  
 306  $h_i, w_i \rightarrow h_{i+m}, w_{i+m}; m > 1$ . We provide further analysis in the experiments section.

## 308 4 EXPERIMENTS

309 **Implementation Details.** We use the decoder-only Transformer design of VAR Tian et al. (2024). To  
 310 enforce the scale-wise Markovian dependency described above, we replace the block-wise causal  
 311 mask with a Markovian mask that lets tokens at scale  $s$  attend to all tokens from scale  $s-1$ . We reuse  
 312 the codebook and tokenizer of VAR: a single VQ codebook with vocabulary size  $V = 6,000$  shared  
 313 across all scales. The codebook is frozen during Transformer training. All models are trained with  
 314 AdamW ( $\beta_1 = 0.95$ ,  $\beta_2 = 0.05$ , weight decay 0.05) and a learning rate of  $10^{-4}$ . We employ a batch  
 315 size of 224 and clip gradients at a norm of 1.0. Training runs for 200 epochs on 4 NVIDIA A6000  
 316 GPUs. Apart from the Markovian mask and resampling, every hyper-parameter is kept identical to  
 317 the VAR configuration to ensure a fair comparison. **In our academic setting, we are limited to a**  
 318 **modest GPU budget; consequently, all ablations are conducted on the reduced datasets.**

### 320 4.1 EXPERIMENT RESULTS

321 Table 1 shows the comparison of SRDD with three strong generative baselines—LDM Rombach  
 322 et al. (2022), DiT-L/2 Peebles & Xie (2023), and the VAR Tian et al. (2024) which are Pre-trained  
 323 with 200 epochs—on four different benchmarks. SRDD approach yields the best FID and IS on



336 Figure 5: **Ablation study illustrating the effect of MR:** We experiment with different threshold  
337  $p_{\text{resample}}$  and the number of refinement steps (Zoom in for better view)

339 every dataset. Against the VAR, we observe that our method has relative FID drops of **20.2%** on  
340 MiniImageNet Dhillon et al. (2019), (21.01→16.76), **9.7%** on FFHQ Karras et al. (2019)(19.23  
341 →17.37). These improvements are accompanied by IS gains of **6.7%** and **31.1%**, respectively.  
342 DiT-L/2 and LDM trail far behind—e.g. on MiniImageNet DiT-L/2 obtains an FID of 57.55 and  
343 LDM achieves 84.13, more than 3× worse than ours—highlighting the data-efficiency advantage of  
344 our scale-wise Markovian design. We use the same number of epochs (200) to train all the models.

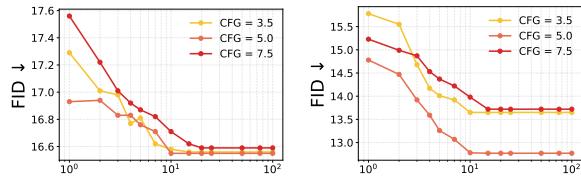
345 Figure 1 visualizes random generations from VAR (left block) and SRDD (right block). Across  
346 all three domains—MiniImageNet (top row), FFHQ (middle), and AFHQ (bottom)—our images  
347 exhibit noticeably sharper edges, cleaner textures and far fewer structural artifacts: The bird, lion  
348 and mice images from VAR suffer from blurred contours and texture collapse, whereas ours preserve  
349 fine feather patterns and realistic fur. Faces generated by SRDD contain consistent skin tones and  
350 symmetric facial features; VAR often produces mottled skin and asymmetries. Animal portraits  
351 (e.g., cat, dog, leopard) demonstrate higher fidelity in ear positioning, eye clarity and background  
352 coherence with our approach. Additional examples are provided in the supplementary material.

## 353 4.2 METHOD-WISE ANALYSIS

354 **Resampling** We perform token-level re-  
355 sampling during inference. At each refine-  
356 ment step, we (i) compute the acceptance  
357 probability for every latent token, (ii) re-  
358 sample tokens whose probability falls be-  
359 low a threshold  $p_{\text{resample}}$ , and (iii) feed the  
360 updated grid back into the scale-wise Trans-  
361 former decoder for another pass. We ab-  
362 late two factors: the threshold  $p_{\text{resample}} \in$   
363  $\{10^{-4}, \dots, 10^{-1}\}$  (Fig. 5) and the number of refinement iterations  $T \in \{10^0, \dots, 10^2\}$  as shown in  
364 (Fig. 6), under guidance scale,  $\text{cfg} = 3.5, 5.0, 7.5$ .

365 In Fig. 5 (top), FID decreases monotonically with the number of refinement steps for every threshold  
366 and on both  $\text{cfg}$  values. Across thresholds, the global optimum is reached at  $p_{\text{resample}} = 0.01$ : after  
367  $T = 5$  iterations we obtain an FID of 16.76 ( $\text{cfg} 5.0$ ) and 16.81 ( $\text{cfg} 3.5$ ). This setting refines  $\approx 65\%$   
368 of tokens per pass, striking a balance between coverage (enough tokens are revisited) and context  
369 preservation (35% of high-confidence tokens remain to guide the Transformer attention). Lower  
370 probabilities ( $p_{\text{resample}} < 0.005$ ) leave too many erroneous tokens untouched, whereas aggressive  
371 thresholds ( $p_{\text{resample}} \geq 0.05$ ) remove excessive context, leading to noisy conditioning and a mild  
372 FID regression. The trend is consistent across both guidance scales, indicating that the resampling  
373 mechanism interacts weakly with classifier-free guidance itself.

374 Fixing  $p_{\text{resample}} = 0.01$ , Fig. 6 reveals that when we increase the inference time, most of the quality  
375 gains occur in the first 15–25 passes; FID curves flatten afterwards on both MiniImageNet and SUN.  
376 This insight suggests that the vast majority of tokens reach the acceptance threshold within 15–25  
377 iterations; subsequent passes bring negligible improvements.



378 Figure 6: **Effect of refinement steps in MR:** Increasing  
379 MR steps leads to convergence.

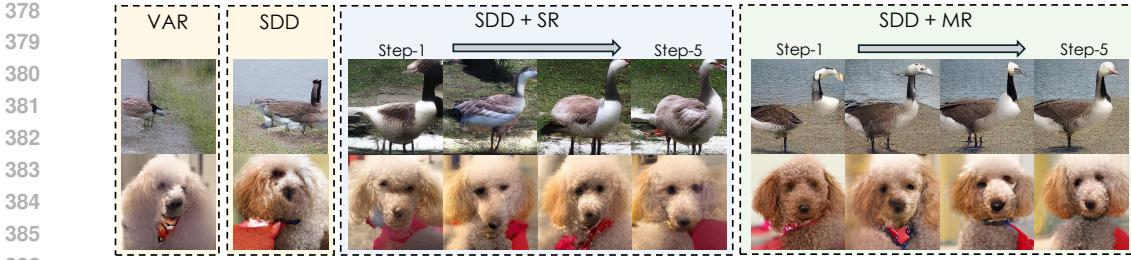


Figure 7: **Qualitative results illustrating impact of different components:** We present the results with each component and their impact.

We also perform simple resampling, inspired by self-refinement in diffusion models, where increasing the number of refinement steps improves quality. Similarly, SRDD benefits from additional self-refinement, as illustrated in Figure 7, which visualizes the contribution of each component to perceptual quality: VAR frequently distorts global geometry (warped goose torso, blurred dog muzzle) and leaves background noise. SDD conditions on the immediate scale, corrects semantics and coarse layout, yet results remain soft and lack high-frequency detail. SDD + SR,: resampling all tokens each pass sharpens the image but converges slowly and occasionally and get better results compared to SDD. SRDD (SDD + MR): our confidence-aware refinement masks only low-confidence tokens. Over five iterations (columns 1,2,3,5 from left to right), it progressively recovers fine boundaries (goose neck, toucan beak), restores textures (poodle fur), and suppresses background noise, ultimately producing the sharpest, mo:

**Classifier free guidance** Figure 8 evaluates the FID Heusel (2017) and IS Salimans (2016) obtained by the VAR, SDD, and two enhanced SDD that include Simple resampling (SR) and Token Resampling (MR), across a range of cfg scales. Moderate guidance is optimal for SDD. FID decreases monotonically from cfg 1 to cfg 5, reaching 17.99 on MINIIMAGENET. IS peaks at simultaneously at 63.28. Beyond cfg 5 both metrics plateau, mirroring the saturation behaviour reported for discrete diffusion models Schiff (2024). VAR collapses under strong guidance, leading to an increase in FID (20 → 27) and a decrease in IS (60 → 51) as cfg grows. We attribute this to over-conditioning: without an explicit noise schedule, large cfg values suppress token-level entropy and hinder the performance. Both SR and MR yield uniformly lower FID than SDD for cfg 1–4 and maintain near-optimal performance for cfg values 6–10. Iterative feedback re-injects stochasticity after each guidance pass, preventing the over-conditioning collapse predicted by theory Zhang (2024). These results validate the diffusion-theoretic interpretation of the Markovian factorisation.

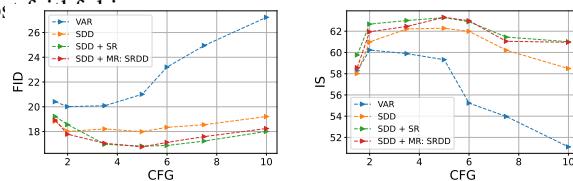


Figure 8: **Effect of cfg:** We present the effect of cfg on FID and IS.

**Distillation of VAR variants** Large Consistency Models (LCM) Luo et al. (2023b) demonstrate that a diffusion teacher can be distilled into a student that samples in fewer denoising steps. Since SDD is likewise a multi-scale generative process, we ask an analogous question: Can we remove intermediate scales without sacrificing realism?

Starting from pre-trained checkpoints of SDD on MiniImageNet, we fine-tune each model with the same cross-entropy objective but only on a subset of its original scales. Concretely, the full schedule  $\{1, 2, 3, 4, 5, 6, 8, 10, 13, 16\}$  is progressively pruned to  $\{1, 3, 5, 8, 13, 16\}$  and then to  $\{1, 5, 8, 13, 16\}$ . We always retain the highest two scales 13 and 16 because they encode high-frequency details that are irreplaceable in practice. Skipping every second scale (schedule 1–3–5–8–13–16) increases FID by only +0.02 (from 17.99 → 18.01) and leaves IS unchanged (61.98 → 62.01) at  $\text{cfg} = 5.0$ , confirming that early-stage redundancy. More aggressive pruning three consecutive early scales (1–5–8–13–16) yields a moderate FID of 19.48 and an IS of 61.99.

Like diffusion models, SDD can be time-compressed by pruning early coarse scales while preserving the final high-frequency stages. A 6-scale student (1–3–5–8–13–16) achieves a similar FID/IS as the 10-scale teacher, cutting inference cost by 20% without retraining from scratch. The SDD achieves a 1.75x speedup and a 3x reduction in memory usage. Moreover, incorporating scale distillation further improves inference latency and reduces the memory footprint compared to the original VAR. More pruning comparisons are shown in the supplementary

| Method                      | Conditional  |              |              |              | Unconditional |             |              |              |
|-----------------------------|--------------|--------------|--------------|--------------|---------------|-------------|--------------|--------------|
|                             | MiniImageNet |              | SUN          |              | FFHQ          |             | AFHQ         |              |
|                             | FID(↓)       | IS(↑)        | FID(↓)       | IS(↑)        | FID(↓)        | IS(↑)       | FID(↓)       | IS(↑)        |
| VAR                         | 21.01        | 59.32        | 15.72        | 16.19        | 19.23         | 3.09        | 14.74        | 9.92         |
| SDD                         | 18.03        | 60.99        | 15.29        | 16.23        | 18.89         | 3.05        | 14.03        | 9.97         |
| SDD + cfg                   | 17.99        | 62.28        | 14.31        | 17.05        | 18.89         | 3.05        | 14.03        | 9.97         |
| SDD + cfg + SR              | 16.82        | 63.28        | 14.01        | 17.51        | 17.62         | 3.89        | 13.52        | 9.66         |
| <b>SDD + cfg + MR: SRDD</b> | <b>16.76</b> | <b>63.31</b> | <b>13.26</b> | <b>17.97</b> | <b>17.37</b>  | <b>4.05</b> | <b>13.14</b> | <b>10.09</b> |

Table 3: **Ablation study across datasets:**  
 SR: Simple Resampling. MR: Mask Resampling. cfg: Optimized Classifier-Free Guidance.

### 4.3 ZERO-SHOT PERFORMANCE

Following the evaluation protocol of RePaint Lugmayr et al. (2022), we assess in-painting, out-painting, and super-resolution without task-specific fine-tuning. A set of 300 validation images is sampled from AFHQ validation set. For the first two tasks, we reuse the publicly released masks of Lugmayr et al. (2022); Table 2 compare the VAR with SDD across four metrics. SDD consistently outperforms the baseline: In-painting. LPIPS drops from 0.26 to 0.23 and FID from 29.92 to 28.79. Out-painting. Similar gains are observed with LPIPS 0.48 → 0.46 and FID 54.01 → 52.63. Super-resolution. SSIM rises from 0.403 to 0.411,dB, while PSNR improves from 18.01 to 18.06. The qualitative comparison is shown in Figure 1.

### 4.4 ABLATION STUDY

To disentangle the impact of the Markovian attention scheme, optimal cfg and the two resampling strategies shown in Secs. 3.3, we conduct ablations on all the benchmarks. Quantitative numbers are summarised in Table 3, while Figure 9 visualises an example for every setting.

Replacing causal masking with Markovian masking yields a consistent reduction in memory cost and improves visual quality on all four benchmarks. For instance, FID drops from 21.01 to 18.03 on MiniImageNet ( $-2.98, \approx 14\%$  relative), while IS rises from 59.32 to 60.99. Qualitatively (Fig. 9 (a)→(b)), SDD sharpens object boundaries and suppresses artifacts, which confirms that conditioning each scale only on its immediate predecessor is superior for high-quality synthesis, as all the unwanted low-frequency information is discarded in the Markovian style of SRDD. Further, best cfg 5.0 leads to improvement in visual result as shown in (Fig. 9 (b)→(c)).

We perform simple resampling at each scale. This refinement step recovers high-frequency details: FID is reduced by another 1.17 on MiniImageNet, and IS jumps to 63.28. Fig. 9 (c)→d shows crisper textures (e.g. sails and fur) and reduce the artifacts further. Replacing SR with our token-level mask resampling yields the best overall scores on *all* datasets. Relative to the VAR, FID improves by 20.2% on MiniImageNet (21.01→16.76) and 15.6% on SUN (15.72→13.26), while IS gains range from +6.7% to +31.1%. Notably, unconditional FFHQ reaches an IS of 4.05. Figure 9 (e) illustrates that MR selectively sharpens salient regions(the boat’s rigging, the dog’s face and the body) without introducing over-sharpening artifacts.

## 5 CONCLUSION

We revisited Visual Autoregressive Generation (VAR) through the lens of discrete diffusion and showed that its Markovian variant, SDD, is mathematically equivalent to a structured discrete diffusion process. This perspective explains the bridge between AR transformers and diffusion models, removes inefficiencies of causal conditioning, and enables principled use of diffusion techniques such as classifier-free guidance, token resampling, and scale distillation. Empirically, SDD achieves faster convergence, lower inference cost, and improved zero-shot performance across multiple benchmarks while retaining strong scaling properties. We believe this diffusion-based reinterpretation of VAR provides both theoretical clarity and practical efficiency, opening new directions for scalable and unified visual generation.

Table 2: **Zero-shot Performance:** We evaluate the zero shot performance on image reconstruction tasks

| Method     | Inpaint     |              | Outpaint    |              | SR           |              |
|------------|-------------|--------------|-------------|--------------|--------------|--------------|
|            | LPIPS ↓     | FID ↓        | LPIPS ↓     | FID ↓        | PSNR ↑       | SSIM ↑       |
| VAR        | 0.26        | 29.92        | 0.48        | 54.01        | 18.01        | 0.403        |
| <b>SDD</b> | <b>0.23</b> | <b>28.79</b> | <b>0.46</b> | <b>52.63</b> | <b>18.06</b> | <b>0.411</b> |



Figure 9: **Ablation Study:** Effect of different components of SRDD on performance.

Qualitatively (Fig. 9 (a)→(b)), SDD sharpens object boundaries and suppresses artifacts, which confirms that conditioning each scale only on its immediate predecessor is superior for high-quality synthesis, as all the unwanted low-frequency information is discarded in the Markovian style of SRDD. Further, best cfg 5.0 leads to improvement in visual result as shown in (Fig. 9 (b)→(c)).

We perform simple resampling at each scale. This refinement step recovers high-frequency details: FID is reduced by another 1.17 on MiniImageNet, and IS jumps to 63.28. Fig. 9 (c)→d shows crisper textures (e.g. sails and fur) and reduce the artifacts further. Replacing SR with our token-level mask resampling yields the best overall scores on *all* datasets. Relative to the VAR, FID improves by 20.2% on MiniImageNet (21.01→16.76) and 15.6% on SUN (15.72→13.26), while IS gains range from +6.7% to +31.1%. Notably, unconditional FFHQ reaches an IS of 4.05. Figure 9 (e) illustrates that MR selectively sharpens salient regions(the boat’s rigging, the dog’s face and the body) without introducing over-sharpening artifacts.

486 6 ETHICS STATEMENT  
487488 This work studies generative modeling from a theoretical and methodological perspective. All  
489 datasets used (Mini-ImageNet, SUN397, FFHQ, AFHQ) are publicly available and widely adopted in  
490 research, involving no human subjects or private data. While generative models may be misused to  
491 create harmful content, our contributions are intended solely to advance scientific understanding and  
492 efficiency of visual generation. We declare no conflicts of interest, and all results are reproducible  
493 with the code and checkpoints that will be released.  
494495 7 REPRODUCIBILITY STATEMENT  
496497 We have taken steps to ensure reproducibility of our results. The datasets are publicly available and  
498 described in the appendix. Model architecture, training details, and hyperparameters are provided  
499 in Section 4 and Appendix. We report all experimental protocols, ablations, and evaluation met-  
500 rics. Code, pretrained checkpoints, and instructions to reproduce our results will be released upon  
501 publication.  
502503 REFERENCES  
504505 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured  
506 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*  
507 *systems*, 34:17981–17993, 2021.508 Arpit Bansal, Eitan Borgnia, Hong-Min Chu, Jie Li, Hamid Kazemi, Furong Huang, Micah Goldblum,  
509 Jonas Geiping, and Tom Goldstein. Cold diffusion: Inverting arbitrary image transforms without  
510 noise. *Advances in Neural Information Processing Systems*, 36:41259–41282, 2023.512 Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic  
513 language model. In *Journal of machine learning research*, volume 3, pp. 1137–1155, 2003.  
514515 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind  
516 Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot  
517 learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020.518 Huiwen Chang, Han Zhang Chang, Lu Chen, Dimitris N Metaxas, William T Freeman, Xuejin  
519 Han, and Feng Li. Maskgit: Masked generative image transformer. In *Proceedings of the*  
520 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022. URL <https://arxiv.org/abs/2202.04200>.  
522523 Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee Jun, David Luan, and Ilya Sutskever.  
524 Generative pretraining from pixels. *Proceedings of the 37th International Conference on Machine*  
525 *Learning (ICML)*, 2020. URL <https://arxiv.org/abs/2006.12368>.  
526527 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for  
528 multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
529 *recognition*, pp. 8188–8197, 2020.530 Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for  
531 few-shot image classification. *arXiv preprint arXiv:1909.02729*, 2019.  
532533 Luis Herranz, Shuqiang Jiang, and Xiangyang Li. Scene recognition with cnns: objects, scales and  
534 dataset bias. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,  
535 pp. 571–579, 2016.536 Martin et al. Heusel. Gans trained by a two time-scale update rule converge to a local nash equilibrium.  
537 In *NIPS*, 2017.538 Jonathan Ho. Classifier-free diffusion guidance. *ArXiv*, abs/2207.12598, 2022. URL <https://api.semanticscholar.org/CorpusID:249145348>.  
539

540 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*  
 541 *neural information processing systems*, 33:6840–6851, 2020.

542

543 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Cassirer, Jack Rae, Jacob Menick,  
 544 Roman Ring, Tom Hennigan, Scott Huang, Eliza Rutherford, et al. Training compute-optimal  
 545 large language models. *arXiv preprint arXiv:2203.15556*, 2022.

546

547 Emiel Hoogeboom, Lasse Espeholt Nielsen, and Aaron van den Oord. Argmax flows and multinomial  
 548 diffusion: Learning discrete denoising diffusion models. In *International Conference on Learning  
 549 Representations (ICLR)*, 2022. URL <https://arxiv.org/abs/2102.05379>.

550

551 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom Brown, Benjamin Chess, Rewon Child, Scott  
 552 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.  
 553 *arXiv preprint arXiv:2001.08361*, 2020.

554

555 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative  
 556 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern  
 557 recognition*, pp. 4401–4410, 2019.

558

559 Hermann Kumbong, Xian Liu, Tsung-Yi Lin, Ming-Yu Liu, Xihui Liu, Ziwei Liu, Daniel Y Fu,  
 560 Christopher Re, and David W Romero. Hmar: Efficient hierarchical masked auto-regressive  
 561 image generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.  
 562 2535–2544, 2025.

563

564 Chence Lu, Yu Huang, Tete Xiao, Zhijian Li, Jianmin Bao, Dongdong Zhang, Dong Chen, Shimin  
 565 Gu, and Fang Wen. Dpm-solver: A fast ode solver for diffusion probabilistic models. *Advances in  
 566 Neural Information Processing Systems*, 35:12002–12016, 2022.

567

568 Chence Lu, Jianmin Bao, Dongdong Zhang, Zhuliang Zhang, Shimin Gu, Chen Dong, and Fang  
 569 Wen. Dpm-solver++: Fast sampling of diffusion probabilistic models with second-order solvers.  
 570 *International Conference on Learning Representations (ICLR)*, 2023.

571

572 Andreas Lugmayr, Martin Danelljan, Andrés Romero, Fisher Yu, Radu Timofte, and Luc Van  
 573 Gool. Repaint: Inpainting using denoising diffusion probabilistic models. *2022 IEEE/CVF  
 574 Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11451–11461, 2022. URL  
 575 <https://api.semanticscholar.org/CorpusID:246240274>.

576

577 Runtian Luo, Lingkai Kong, Shaojie Wei, Wenhao Chen, Shixiang Shane Gu, and Yue Zhang. Gibbs-  
 578 ddpm: Generating discrete data with a denoising diffusion model. In *International Conference on  
 579 Learning Representations (ICLR)*, 2023a. URL <https://arxiv.org/abs/2202.00817>.

580

581 Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu, Patrick von Platen, Apolinário Passos, Longbo Huang,  
 582 Jian Li, and Hang Zhao. Lcm-lora: A universal stable-diffusion acceleration module. *arXiv  
 583 preprint arXiv:2311.05556*, 2023b.

584

585 Chenlin Meng, Yang Song, Jiaming Song, and Stefano Ermon. Distillation of diffusion models using  
 586 a few synthetic samples. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022.  
 587 URL <https://arxiv.org/abs/2205.11487>.

588

589 Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim  
 590 Salimans. On distillation of guided diffusion models. In *Proceedings of the IEEE/CVF Conference  
 591 on Computer Vision and Pattern Recognition*, pp. 14297–14306, 2023.

592

593 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-  
 594 Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint arXiv:2502.09992*,  
 595 2025.

596

597 George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density  
 598 estimation. In *Advances in neural information processing systems*, volume 30, 2017.

599

600 Geoffrey Peebles and Shang Xie. Scalable diffusion models with transformers. *arXiv preprint  
 601 arXiv:2212.09748*, 2022.

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*  
 595 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.  
 596

597 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,  
 598 and Ilya Sutskever. Zero-shot text-to-image generation. *arXiv preprint arXiv:2102.12092*, 2021.

599 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 600 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference*  
 601 *on Computer Vision and Pattern Recognition*, pp. 10684–10695, 2022.

602 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David Fleet, and Mohammad Norouzi.  
 603 Palette: Image-to-image diffusion models. In *Proceedings of the International Conference on*  
 604 *Machine Learning*, volume 162, pp. 16182–16195. PMLR, 2022.

605

606 Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,  
 607 Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language  
 608 models. *Advances in Neural Information Processing Systems*, 37:130136–130184, 2024.

609 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In  
 610 *International Conference on Learning Representations (ICLR)*, 2022. URL <https://arxiv.org/abs/2202.00512>.

611

612 Tim et al. Salimans. Improved techniques for training gans. In *NIPS*, 2016.

613

614 Nathan et al. Schiff. Simple guidance mechanisms for discrete diffusion models. In *ICLR*, 2024.

615

616 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised  
 617 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,  
 618 pp. 2256–2265. pmlr, 2015.

619

620 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *International*  
 621 *Conference on Learning Representations (ICLR)*, 2021.

622

623 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
 624 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*  
 625 *arXiv:2011.13456*, 2020.

626

627 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

628

629 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.  
 Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv preprint*  
 630 *arXiv:2406.06525*, 2024.

631

632 Jiayan Teng, Wendi Zheng, Ming Ding, Wenyi Hong, Jianqiao Wangni, Zhuoyi Yang, and Jie Tang.  
 Relay diffusion: Unifying diffusion process across resolutions for image synthesis. *arXiv preprint*  
 633 *arXiv:2309.03350*, 2023.

634

635 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:  
 Scalable image generation via next-scale prediction. *Advances in neural information processing*  
 636 *systems*, 37:84839–84865, 2024.

637

638 Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,  
 639 Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw  
 audio. *arXiv preprint arXiv:1609.03499*, 2016a.

640

641 Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, and Alex Graves. Conditional  
 642 image generation with pixelcnn decoders. In *Advances in neural information processing systems*,  
 volume 29, 2016b.

643

644 Anton Voronov, Denis Kuznedelev, Mikhail Khoroshikh, Valentin Khrulkov, and Dmitry Baranchuk.  
 645 Switti: Designing scale-wise transformers for text-to-image synthesis. *arXiv preprint*  
 646 *arXiv:2412.01819*, 2024.

647

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete  
 diffusion models with inference-time scaling. *arXiv preprint arXiv:2503.00307*, 2025.

648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and Bill Freeman. Improved distribution matching distillation for fast image synthesis. *Advances in neural information processing systems*, 37:47455–47487, 2024.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 586–595, 2018.

Wei et al. Zhang. Unlocking the capabilities of masked generative models for image synthesis. *arXiv preprint arXiv:2410.13136*, 2024.

Wendi Zheng, Jiayan Teng, Zhuoyi Yang, Weihan Wang, Jidong Chen, Xiaotao Gu, Yuxiao Dong, Ming Ding, and Jie Tang. Cogview3: Finer and faster text-to-image generation via relay diffusion. In *European Conference on Computer Vision*, pp. 1–22. Springer, 2024.

## APPENDIX

## A DATASETS AND METRICS

We benchmark on two class-conditional datasets. **Mini-ImageNet** Dhillon et al. (2019), containing 50,000 training and 10,000 validation images. **SUN397** Herranz et al. (2016) comprises 108,753 images from 397 scene categories. For computational efficiency, we sample a balanced subset of 175 classes, retaining 150 images per class (26,250 images in total). To evaluate class-agnostic synthesis we adopt two face-centric datasets. **FFHQ** Karras et al. (2019) contains 70,000 high-quality human portraits, while **AFHQ** Choi et al. (2020) contains 15,000 animal faces spanning cats, dogs, and wildlife. All images are resized to  $256 \times 256$  before training. For the zero-shot analysis, we draw 300 validation samples from AFHQ and reuse the RePaint Lugmayr et al. (2022) masks. To quantify image fidelity and diversity, we generate 5,000 samples per model and evaluate using FID Heusel (2017) and IS Salimans (2016). For zero-shot editing tasks we report: **LPIPS** Zhang et al. (2018) and FID for in/out-painting, and **PSNR** and **SSIM** for super-resolution. Lower values are better for LPIPS and FID, whereas higher is better for IS, PSNR, and SSIM. **Due to computational constraints in our academic setting, all experiments are conducted on moderately sized datasets.**

## B FULL ALGORITHM OF FORWARD SAMPLING PROCESS IN VAR

Let  $f_\theta$  denote the VAR transformer network, let it operate at a scale  $n$ , with input  $i_{n-1}$ , at a scale  $n$ . The inference algorithm of VAR can be described as

$$\mathbf{f}_\theta(\mathbf{i}_{n-1}, \mathbf{n}) : i_{n-1} \rightarrow h_n \quad (11)$$

$$f_n = f_{n-1} + (h_n)_{\uparrow(N)} \quad (12)$$

$$i_n = (f_n)_{\downarrow(n+1)} \quad (13)$$

Here  $\downarrow(n+1)$  denotes downsampling of the output to a scale  $n-1$ .  $N$  is the largest scale in the sampling process. Other details remain the same as described in the section **Rethinking VAR Variants Through the Discrete Diffusion Lens**.

## C ANALYSIS

**Classifier free guidance** We observe in Fig. 10 the same guidance trend on the SUN 397 benchmark. **VAR peaks at a very mild scale.** A guidance weight of **cfg = 2** yields its best trade-off (FID  $\downarrow 15.55$ , IS  $\uparrow 16.76$ ); any further increase steadily harms generative quality, reaching FID 27, IS 12 at cfg 10. **Markovian factorisation stabilises guidance.** SDD remains flat until cfg 6, and both refinement heads suppress the residual drift. The mask-resampling variant (MR) attains the global optimum at **cfg = 5** with FID  $\downarrow 13.26$  and IS  $\uparrow 17.97$ , while staying within  $\pm 0.3$  FID across the whole 1.5–10 range. This robustness removes the need for dataset-specific tuning and further analysis of our diffusion-style interpretation: iterative resampling continually re-injects entropy, offsetting the over-conditioning collapse that plagues the original VAR decoder.

**Distillation of VAR variants** To further understand the distillation, we consider three more extreme schedules, visualised in Fig. 11.

- **×3 step (1–5–13–16).** Dropping two out of every three scales reduces decoder passes by  $2.5 \times$  but also degrades quality: FID jumps to 31.21 (cfg 3.5) and 29.83 (cfg 5.0), while IS decreases to 48.25/48.61. The student fails to reconstruct *both* low-frequency layout and high-frequency details—suggesting that coarse-to-fine refinement needs at least one *intermediate* scales.
- **Early-heavy (1–2–3–4–5–8–16).** Retaining a single high scale pass is insufficient: FID deteriorates to 39.91 (cfg 5.0) and IS collapses to 38.95. Qualitative inspection reveals blurry textures and colour bleeding, indicating that high-frequency content injected at scale 16 cannot overwrite errors accumulated during the densely sampled low-scale stages.

756     • **Random sparse (1-4-8-16).** A non-uniform, randomly spaced schedule performs worst  
 757       (FID 38.76, cfg 5.0). Without a consistent geometric progression, successive decoders  
 758       operate on feature maps whose receptive fields overlap poorly, breaking the iterative error-  
 759       correction mechanism that underpins multi-scale generation.

760     Across *all* settings, the Markovian variant (SDD) remains strictly better than the original VAR,  
 761     mirroring the trends. Consecutive low-resolution scales are largely redundant, but at least two  
 762     high-resolution scales are indispensable. A simple distillation of 1-3-5-8-13-16 is therefore  
 763     near-optimal—cutting inference time by **20%** while preserving perceptual quality within 8% of the  
 764     teacher.

766     D THEORETICAL EQUIVALENCE OF MARKOVIAN VAR AND DISCRETE  
 767       DIFFUSION

770     **Definition 1 (Markovian VAR)** *Let  $(x_0, \dots, x_N)$  denote the sequence of discrete latent images (or  
 771       token grids) from the coarsest scale 1 to the finest scale  $N$ , where  $x_0$  and  $x_N$  denote the original  
 772       image. For each  $n = 1, \dots, N$ , let  $M(n)$  be a non-linear deterministic downsampling transition  
 773       mapping  $x_{n+1}$  to the coarser representation  $x_n = M(n)x_{n+1}$ .*

774     A Markovian VAR model specifies:

- 776       • *a prior  $p(x_N)$  over the finest scale;*
- 777       • *a final stationary state  $x_1$ , which is  $\langle SOS \rangle$  in our case;*
- 779       • *for each  $n = 1, \dots, N$ , a conditional distribution  $p_\theta(x_{n+1} | x_n)$ , parameterized by a  
 780       transformer that is allowed to attend within scale  $n$  and only to the immediately coarser  
 781       scale  $n$  (Markovian attention across scales).*

782     Generation proceeds by sampling

$$784 \quad x_1 \sim p(x_1), \quad x_{n+1} \sim p_\theta(x_{n+1} | x_n) \quad \text{for } n = 1, \dots, N.$$

786     **Definition 2 (Discrete diffusion model)** *Let  $(x_0, \dots, x_N)$  be a sequence of discrete states and let  
 787        $Q_n$  be an absorption transition matrix. Define a forward Markov chain  $q(x_{1:N} | x_0)$  by*

$$788 \quad q(x_n | x_{n-1}) = x_{n-1}Q_n, \quad n = 1, \dots, N,$$

790     *i.e.,  $x_n$  is obtained by transitioning  $x_{n-1}$  through  $Q_n$ .*

791     Given a prior  $p(x_N)$  and reverse kernels  $p_\theta(x_{n-1} | x_n)$ , the associated discrete diffusion model is  
 792     the joint distribution

$$793 \quad p_\theta(x_0, \dots, x_N) = p(x_N) \prod_{n=1}^N p_\theta(x_{n-1} | x_n).$$

796     **Proposition 1 (Markovian VAR is a discrete diffusion model)** *Consider a Markovian VAR model  
 797       as in Definition 1 and the discrete diffusion model in Definition 2. Assume:*

- 800       1. **Deterministic forward chain.** For all  $n = 1, \dots, N$ ,  $q(x_n | x_{n+1}) = M(n)x_{n+1}$ , i.e., the  
 801       forward process is the fixed non-linear downsampling transition induced by  $M(n)$ .
- 802       2. **Shared reverse kernels.** The reverse kernels  $p_\theta(x_{n-1} | x_n)$  in the diffusion model coincide  
 803       with the Markovian VAR conditionals  $p_\theta(x_{n+1} | x_n)$ .
- 804       3. **Markovian VAR training loss.** The Markovian VAR is trained with the token-wise cross-  
 805       entropy loss

$$806 \quad \mathcal{L}_o(\theta) = - \sum_{n=1}^N \mathbb{E}_{q(x_N)} \mathbb{E}_{q(x_n | x_N)} \log p_\theta(x_{n+1} | x_n),$$

809     *where  $q(x_n | x_N)$  is obtained by running the deterministic forward chain from  $x_N$  down to  
 810       scale  $n$ .*

810  
811

Then:

812

813

1. The joint distribution of the Markovian VAR model is exactly a discrete diffusion model with forward kernel  $q$  and reverse kernel  $p_\theta$ :

814

815

$$p_\theta(x_0, \dots, x_N) = p(x_N) \prod_{n=1}^N p_\theta(x_{n-1} \mid x_n).$$

816

817

818

819

2. The discrete diffusion variational bound

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

$$\begin{aligned} \mathcal{L}_v = \mathbb{E}_{q(x_0)} \left[ \underbrace{D_{\text{KL}}(q(x_T \mid x_0) \parallel p(x_T))}_{L_T} + \sum_{t=2}^T \mathbb{E}_{q(x_t \mid x_0)} \underbrace{D_{\text{KL}}(q(x_{t-1} \mid x_t, x_0) \parallel p_\theta(x_{t-1} \mid x_t))}_{L_{t-1}} \right. \\ \left. - \underbrace{\mathbb{E}_{q(x_1 \mid x_0)} [\log p_\theta(x_0 \mid x_1)]}_{L_0} \right] \end{aligned}$$

satisfies

$$\mathcal{L}_v(\theta) = \mathcal{L}_o(\theta) + C,$$

where  $C$  is a constant independent of  $\theta$ .

In particular, minimizing the Markovian VAR training loss is exactly equivalent to maximizing the discrete diffusion ELBO. Thus, Markovian VAR is a discrete diffusion model in the D3PM sense with deterministic forward transitions.

## E LIMITATIONS

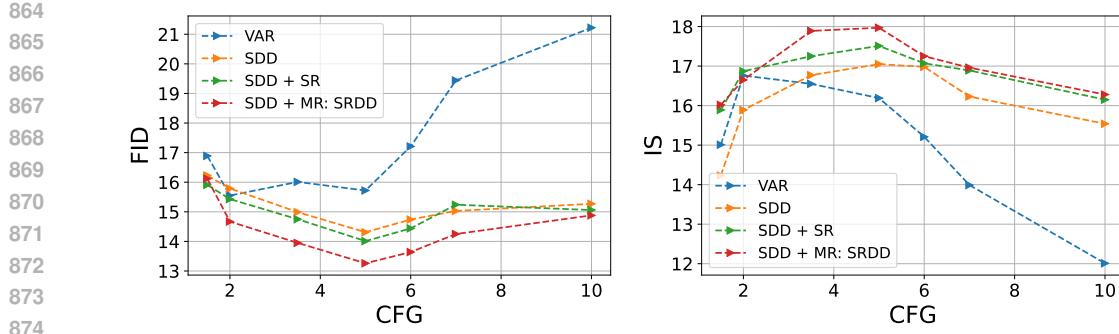
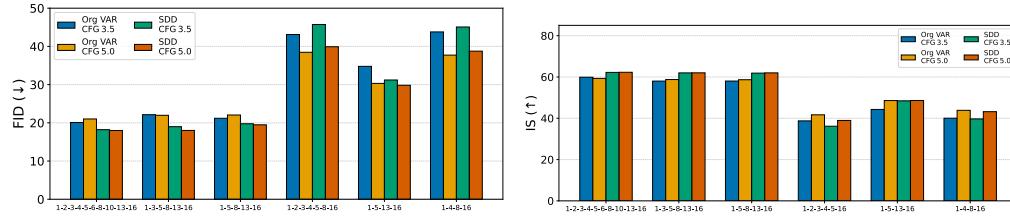
While our results are promising, the proposed SRDD framework still has several practical and scientific limitations that future work should address.

- **Compute budget.** All experiments were run on just 4 NVIDIA A6000 GPUs for 200 epochs. This constraint forced us to use reduced versions of the training datasets and limited the largest model size we could explore. Larger-scale training might uncover different failure modes or reveal further gains that we could not test in our setting.
- **Dataset scope.** We evaluate on four medium-scale image collections—Mini-ImageNet, SUN397 (subset), FFHQ, and AFHQ. We cover only  $256 \times 256$  resolution and a modest range of visual diversity. Consequently, it remains unclear how SRDD performs on very high-resolution images, highly complex scenes (e.g., ImageNet-1k, COCO), or video.
- **Codebook expressiveness.** Like VAR, we rely on a single VQ-VAE codebook. Although efficient, this discrete bottleneck can limit fine detail and color accuracy compared with continuous-latent diffusion models.

## F FUTURE WORK

Although *Scalable Refinement with Discrete Diffusion* (SRDD) already improves upon VAR across several axes and finds a closer interpretation with discrete diffusion models, we see at least four promising directions for further research:

- **Larger-scale pre-training and scaling laws.** Our results hint that SRDD follows the same parameter-quality trend observed in VAR. A systematic scaling over wider model sizes, sequence lengths, and token vocabularies could reveal precise scaling laws, guiding practitioners toward the most compute-efficient regimes Kaplan et al. (2020); Hoffmann et al. (2022).

Figure 10: **Effect of cfg on SUN397 Dataset:** We Present the effect of cfg on FID and IS ScoreFigure 11: **Effect of distillation on reducing the number of scales**

- **Learned resampling policies.** The current MR strategy uses a fixed probability threshold. Replacing this hand-tuned rule with a small policy network—trained to predict which tokens to resample given the decoder’s uncertainty—might yield further gains while cutting the number of refinement passes.
- **Continuous–discrete hybrid diffusion.** SRDD operates in a purely discrete latent space; continuous-time diffusion models excel in capturing fine textures. A hybrid pipeline that first runs SRDD at coarse scales and then applies a lightweight continuous decoder (e.g. a UNet) for final touch-ups could combine the speed of SRDD with the photorealism of continuous diffusion Song et al. (2020); Peebles & Xie (2022).
- **Leveraging advances in discrete diffusion theory.** We showed that the Markovian variant of VAR is theoretically and empirically equivalent to a discrete diffusion process. As the community uncovers new principles—e.g., refined noise schedules, tighter ELBO bounds, or more stable discretisations—these insights can be transferred to SRDD, offering a low-cost pathway to inherit future breakthroughs in discrete diffusion.

## G LLM USAGE

We acknowledge that Large Language Models (LLMs) were used to assist with refining the clarity of the writing in this manuscript.

918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936

DiT – L/2



937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952

VAR



953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968

## OURS: SRDD



969

Figure 12: Qualitative Comparison of DiT-L/2, VAR and Ours: SRDD; We do not compare with LDM because LDM model didn't converge

972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990

### LDM



991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006

### VAR



1007  
1008  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1020  
1021  
1022  
1023

### OURS: SRDD



1024  
1025

Figure 13: **Qualitative Comparison on AFHQ Datasets, LDM, DiT-L/2, VAR and SRDD:** DiT-L/2 didn't converge on AFHQ Datsets

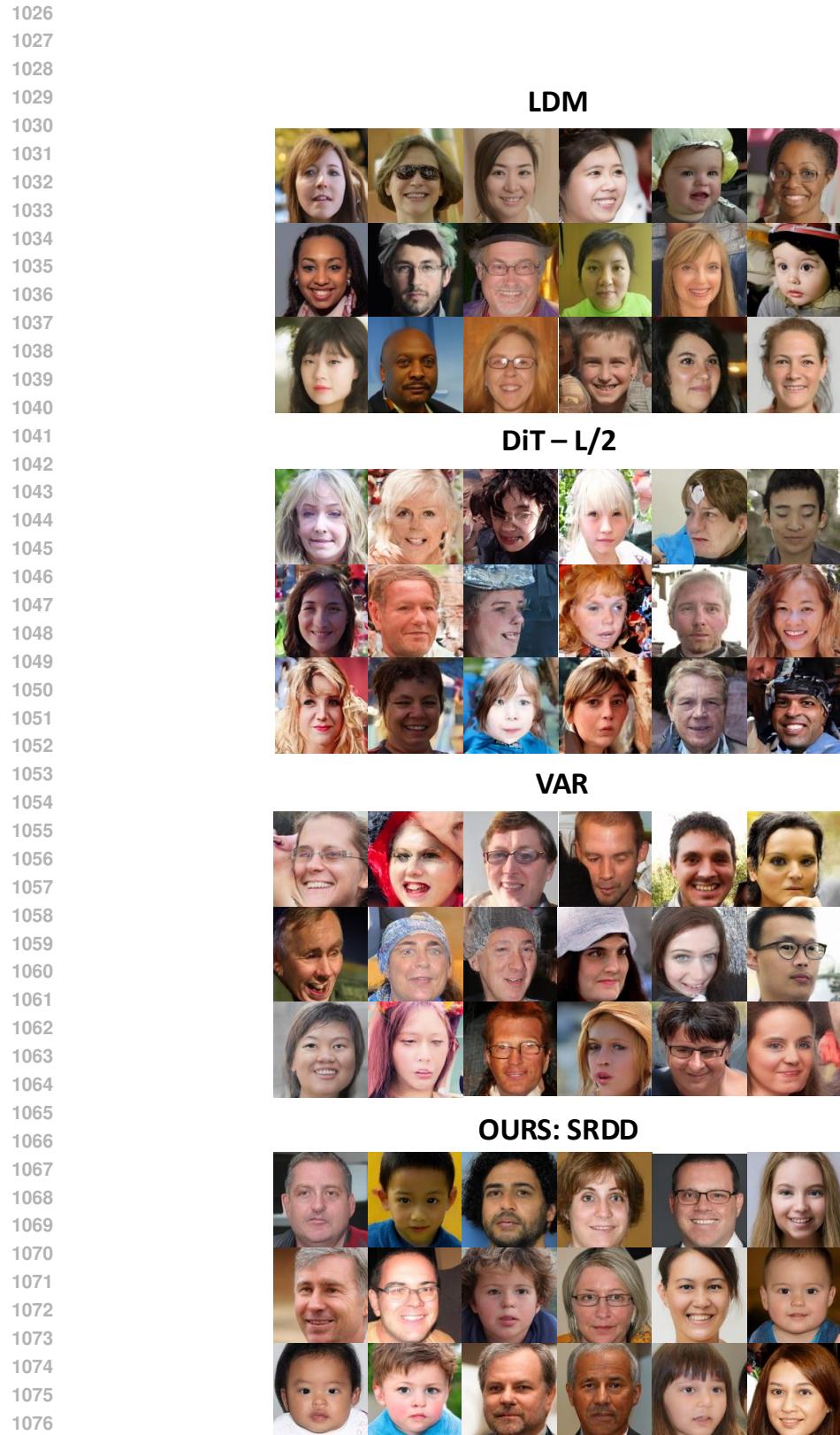


Figure 14: Qualitative Comparison of FFHQ Datasets LDM, DiT-L/2, VAR and SRDD

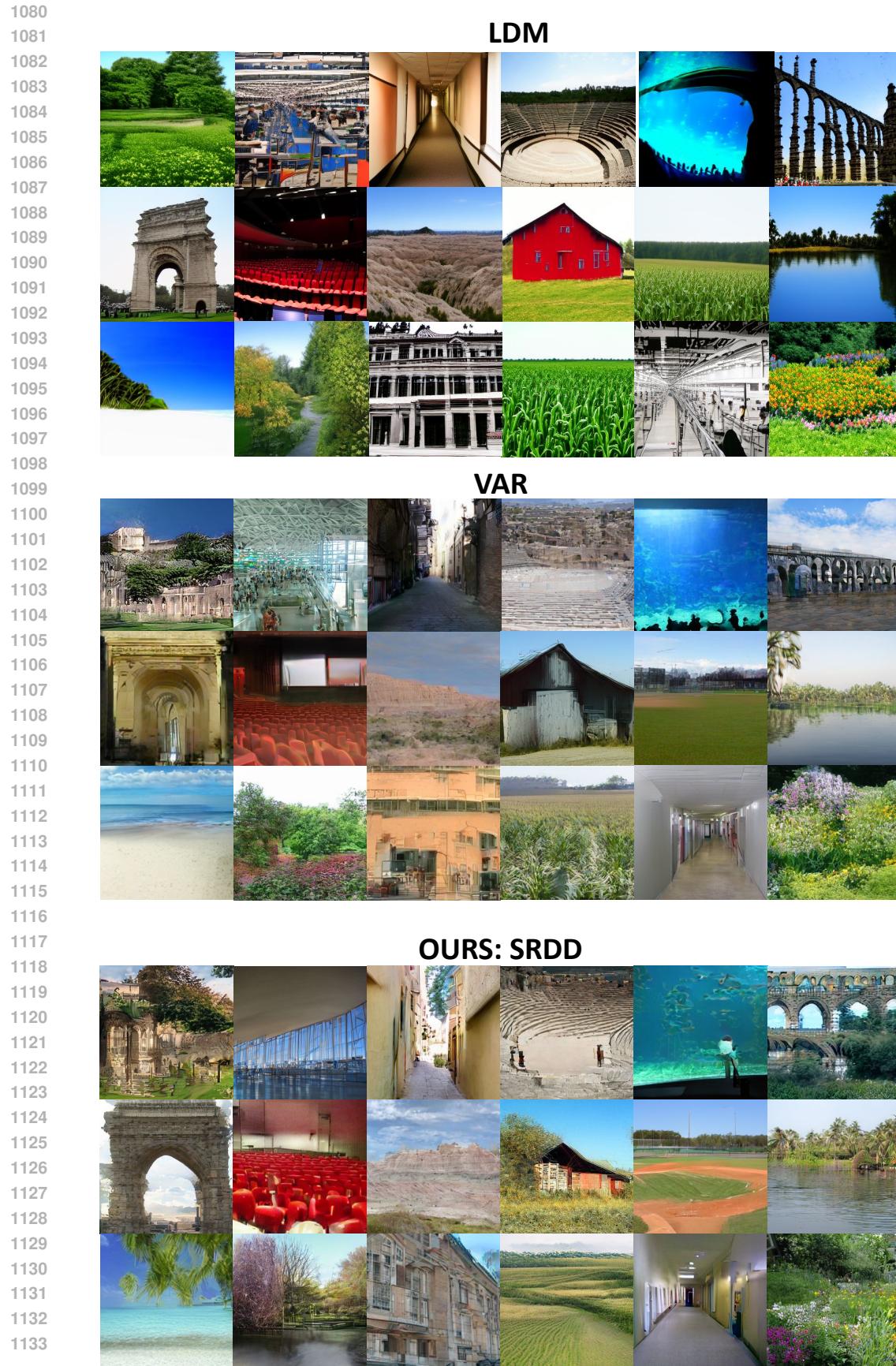


Figure 15: Qualitative Comparison on SUN397 Datasets, LDM, DiT-L/2, VAR and SRDD

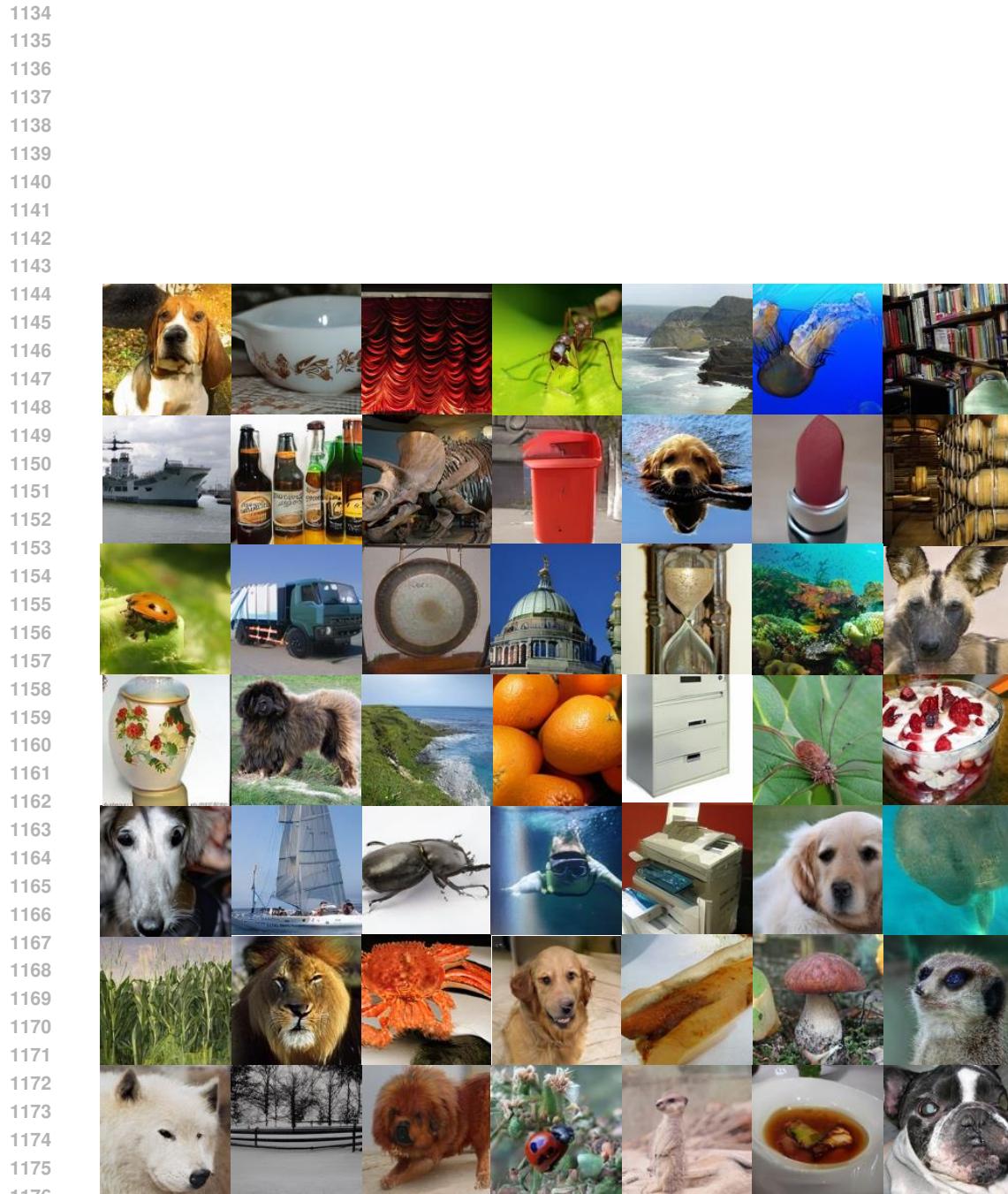


Figure 16: Non-curated example images generated by the proposed SRDD approach for the MiniImagenet Dataset

1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187

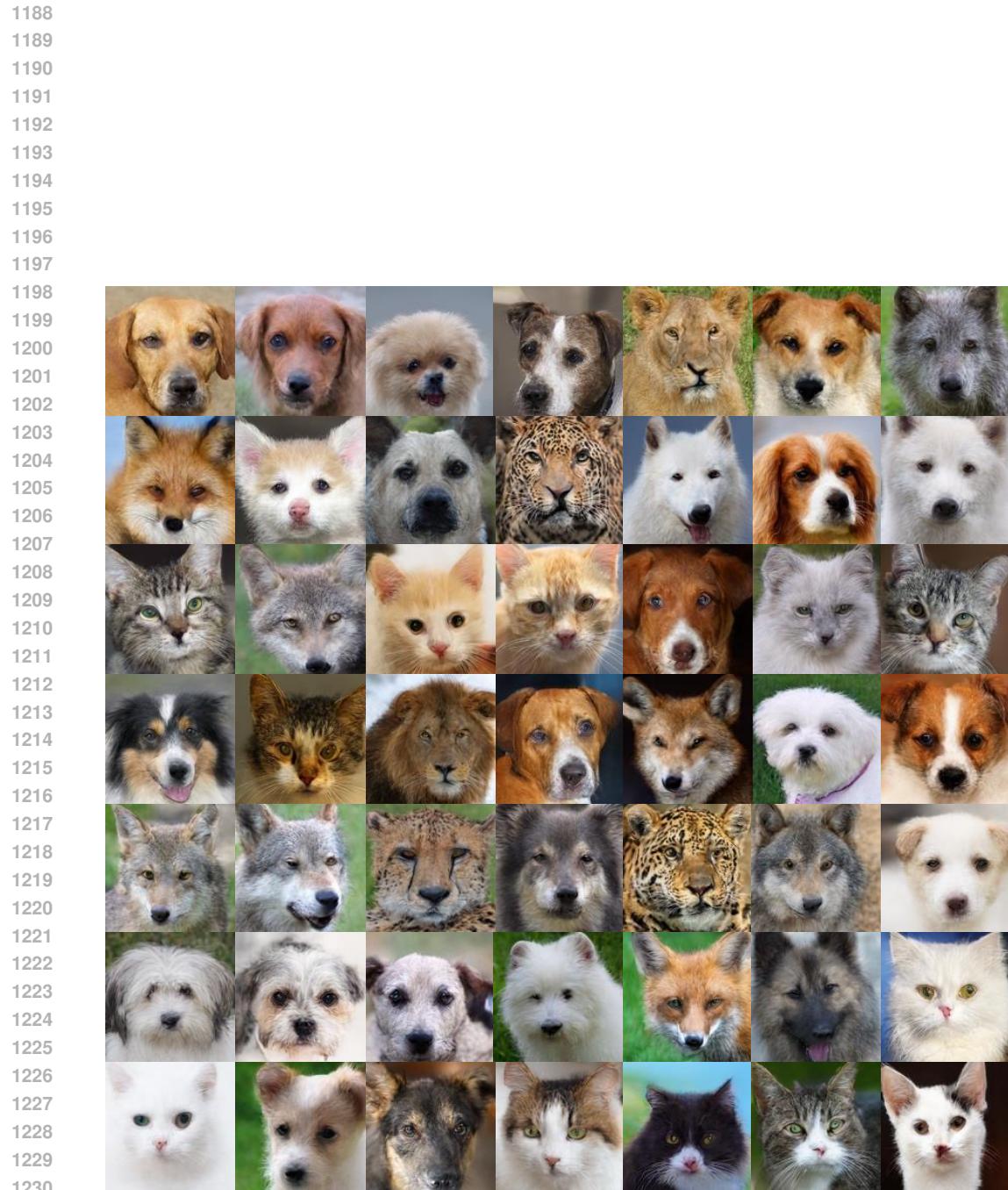


Figure 17: Non-curated example images generated by the proposed SRDD approach for the AFHQ Dataset

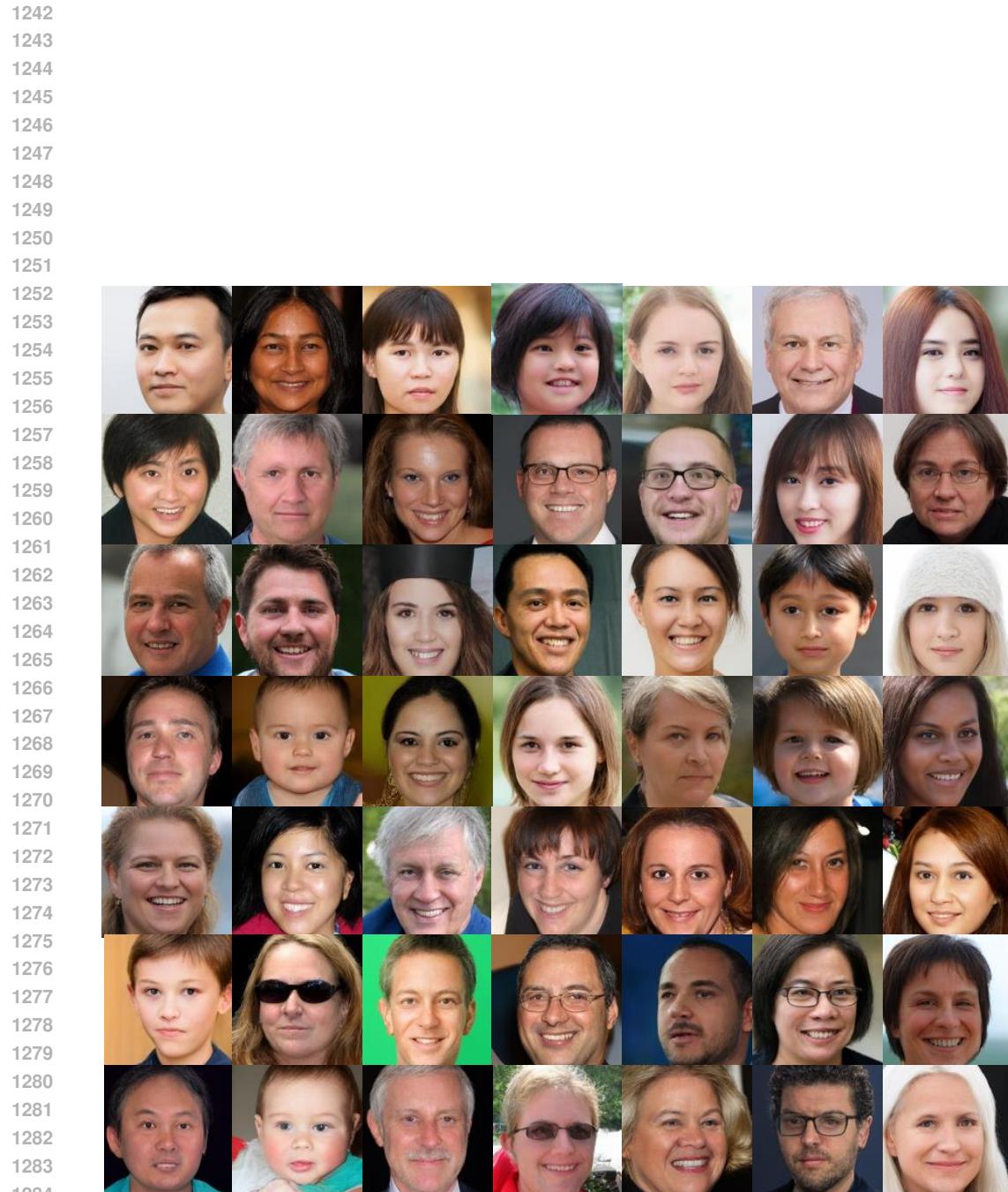


Figure 18: Non-curated example images generated by the proposed SRDD approach for the FFHQ Dataset