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ABSTRACT

Music Information Retrieval (MIR) tasks on raw audio have traditionally been
tackled using convolutional neural networks (CNNs) and transformer-based mod-
els. While CNNs effectively capture local structures and transformers leverage
attention for long-range dependencies, both architectures come with computa-
tional and scalability challenges. In this study, we introduce a novel extension
of Mamba tailored to music. Our resulting method, MoMamba (Music Oriented
Mamba), is a lightweight Mamba-based music classification model. We evalu-
ate MoMamba’s performance across several benchmark MIR tasks. Our results
show that MoMamba consistently outperforms a number of baselines, including
an existing Mamba-based method, on all of the benchmark datasets we consid-
ered. Importantly, all models were trained from scratch without any pretraining,
making the performance gains especially notable since they cannot be attributed
to transfer learning. Additionally, our model’s performance rivals existing bench-
marks from models pretrained on much larger datasets. Our work highlights the
advantages of MoMamba in music analysis and retrieval such as accuracy and
inference time, encouraging further research into its capabilities within the MIR
domain.

1 INTRODUCTION

Extracting features from music is essential for understanding its structure, patterns, and meaning.
These features enable various applications, from classification and recommendation systems to com-
position and analysis (Copet et al. (2023); Dhariwal et al. (2020); Schedl et al. (2018); Hernandez-
Olivan & Beltran (2021)). By identifying musical characteristics, we can enhance both human and
machine interpretation, thereby improving organization, retrieval, and interaction with music.

Traditionally, deep learning approaches for music downstream classification tasks have relied heav-
ily on Convolutional Neural Networks (CNNs) (Elbir & Aydin (2020); Bian et al. (2019)). CNNs
are particularly effective in processing spectrogram representations of audio but struggle to capture
global context effectively. Convolutional Recurrent Neural Networks (CRNNs) (Choi et al. (2017))
combine CNNs for feature extraction with Recurrent Neural Networks (RNNs) for sequential mod-
eling. While CRNNs have demonstrated strong performance in MIR tasks (Choi et al. (2017)),
the design of the model inherently has challenges such as vanishing/exploding gradients and global
locality problems. More recently, attention-based models have emerged, leading to a shift toward
Audio Spectrogram Transformers (ASTs) (Gong et al. (2021)). They leverage self-attention mecha-
nisms to model long-range dependencies and capture global context. However, they come with high
computational cost, require substantial pretraining data, and have quadratic complexity.

Recently, SSMs have gained attention in natural language processing (NLP) due to their ability to
model long-range dependencies while maintaining computational efficiency (Gu & Dao (2024)).
Their success in NLP has sparked interest in their applicability to other sequential domains, includ-
ing audio and music processing. While the use of SSMs in audio is still in its early stages, recent
efforts have demonstrated their potential in various tasks. Notable work such as AudioMamba (Erol
et al. (2024)) has showcased promising results in classifying speech and sound effects, illustrating
SSMs’ ability to effectively model temporal structures in audio signals. These advancements sug-
gest that SSMs provide a viable alternative to traditional deep learning architectures, particularly
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for music-related applications where capturing both local and long-range dependencies is essen-
tial. Our method also outperforms ASTs on average in downstream tasks in terms of performance
and inference speed but we make significant changes compared to AudioMamba, which simply re-
places the transformer layers in ASTs with Mamba layers: we utilize the entire spectrogram without
patchification in order to keep the spectrogram as one intact sequence and remove the positional
encoding.

We note that pretrained foundational models have demonstrated strong performance on the MIR
tasks we consider (Li et al. (2024); Castellon et al. (2021); McCallum et al. (2022)). However, these
methods rely on large-scale external datasets, which makes it difficult to separate the effects of the
architecture from the benefits of pretraining. For this reason, our main comparisons are with non-
pretrained models, but we also provide the comparison to MERT (Li et al. (2024)) and pretrained
models from (McCallum et al. (2022)). Once large pretrained Mamba models become available, a
more direct comparison with other pretrained approaches will be possible.

We evaluate multiple model setups to determine the effects of each component. Based on these
experiments, our contributions include developing MoMamba, a Mamba-based music classification
model with a class token, and demonstrating its strong performance across multiple downstream
music tasks.

Our contributions:

• We develop a Mamba-based music classification model with a class token mechanism
(MoMamba): We leverage the Mamba architecture to process entire audio spectrograms,
and introduce a class token at the end of the sequence to enhance classification perfor-
mance. To our knowledge, we are the first to apply Mamba to these MIR downstream
tasks.

• We demonstrate that MoMamba achieves competitive performance on downstream
tasks: Through extensive experiments with training from scratch, MoMamba matches or
surpasses the performance of existing models on seven music classification benchmarks,
while also offering superior inference time when compared to ASTs and RNNs. MoMamba
also outperforms AudioMamba in every metric, and performs comparably to pretrained
foundational models that utilize orders of magnitude more training data.

2 RELATED WORK

Early deep learning approaches to raw audio music classification are primarily CNN-based, lever-
aging architectures such as ResNet18 (Elbir & Aydin (2020)) and DenseNet (Bian et al. (2019)).
These models typically process spectrograms that have been compressed into smaller images (e.g.,
128 × 128) before being fed into the network. In meter detection, ResNet18 demonstrates superior
performance to both traditional non-machine-learning techniques and supervised non-deep-learning
models (Abimbola et al. (2024)).

To address the sequential nature of music data, CRNNs serve as a hybrid approach (Choi et al.
(2017)), combining CNNs for feature extraction with RNNs for temporal modeling. This architec-
ture allows for more effective processing of spectrograms by capturing both spatial and sequential
patterns, making it particularly well-suited for MIR downstream tasks. By leveraging RNN compo-
nents such as LSTMs or GRUs, CRNNs improve upon pure CNN models by incorporating temporal
dependencies.

ASTs have emerged as a more effective alternative for audio-related tasks thanks to their attention
mechanism. Unlike CNNs, which rely on localized feature extraction, transformers process entire
sequences, enabling them to capture long-range dependencies and improve overall performance
(Gong et al. (2021)).

Transformer-based models have driven major advances in music generation and analysis, with no-
table impact on downstream MIR tasks. For example, MusicGen (Copet et al. (2023)) is an autore-
gressive transformer that uses EnCodec (Défossez et al. (2022)) for audio tokenization, and its inter-
nal representations have been shown to transfer effectively to tasks such as instrument recognition
and music tagging (Koo et al. (2024)). JukeBox (Dhariwal et al. (2020)) takes a different approach,
employing a sparse transformer over multi-scale VQ-VAE codes to generate raw audio with singing
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and achieving coherence over several minutes. Beyond generation, the learned representations from
JukeBox have also proven useful for MIR tasks like genre classification and emotion recognition
(Castellon et al. (2021)). Together, these works illustrate the versatility of transformer-based models
in capturing rich musical structure and providing transferable features for analysis.

However, training such models requires extensive datasets. For instance, MusicGen was trained on
20,000 hours of licensed music (Copet et al. (2023)), and JukeBox utilizes a dataset of 1.2 million
songs (Dhariwal et al. (2020)). This poses challenges for MIR tasks with limited labeled data, as
small datasets can lead to overfitting and hinder the models’ ability to generalize effectively. To
mitigate this, techniques such as data augmentation, transfer learning, and the use of synthetic data
have been explored.

More recently, pretrained models such as MERT (Li et al. (2024)) have been introduced as foun-
dation models for music understanding. MERT is trained on 160 thousand hours of music audio
and leverages self-supervised pretraining to provide general-purpose embeddings that have proven
highly effective across a range of MIR benchmarks. These models represent an exciting direction,
but their reliance on massive pretraining corpora raises questions about accessibility and applicabil-
ity in domains where such resources are unavailable.

AudioMamba (Erol et al. (2024)), a Mamba-based spectrogram classifier, performs well in speech
and sound effects (SFX) classification tasks. Furthermore, AudioMamba shows that Mamba-based
models are more memory efficient than transformer-based models. This success suggests that
Mamba-based architectures could offer advantages in sequential audio modeling. However, unlike
speech or short sound effects, music often contains long-range harmonic and rhythmic structures.
Since the general design of AudioMamba is very similar to ASTs, it ignores a main benefit of
Mamba-based models: the ability to process long spectrograms sequentially. We address this prob-
lem with the design of MoMamba. In this study, we explore Mamba-based architectures for MIR
tasks, evaluating their effectiveness across classification benchmarks to assess their viability against
other architectures.

3 MODEL APPROACH

State Space Models (SSMs) (Gu et al. (2021)) are mathematical models designed for sequence-to-
sequence transformations. In general, SSMs, including Mamba, map an input signal u ∈ RD to a
hidden state h ∈ RH , and then to an output signal y ∈ RD, where H is the hidden state size and D
is the number of channels.

3.1 PRELIMINARIES

There are four continuous parameters used in the Mamba model (Gu & Dao (2024)): ∆ ∈ R, A ∈
RH×H , B ∈ RH×D, C ∈ RD×H , where we use the frequency bins as channels. ∆ controls the
discretization resolution, A is the state transition matrix, B maps the input sequence to the hidden
state, and C maps the hidden state to the output state. Specifically, ∆ changes the focus on the
current timestep ut: larger values emphasize ut, while smaller values allow the previous state to
dominate. In Mamba, the parameters ∆, B, and C are dependent on the input signal. To apply
them effectively, the model must first be discretized, converting its continuous-time parameters into
discrete counterparts by using fixed formulas fa(∆, A) and fb(∆, A,B). Mamba’s discretization
(Gu & Dao (2024)) is formulated as:

A = fa(∆, A) = exp(∆A)

B = fb(∆, A,B) = (∆A)−1(A− I) · (∆B).
(1)

C does not need to be discretized since it is just a linear projection from the hidden state to the
output. Finally, we have four learnable parameters: ∆, A,B,C.

Once discretized, these parameters allow for efficient sequence modeling. When using spectrograms
with state space models, each frequency bin is processed independently using the same model pa-
rameters during the forward pass. Let u(d) ∈ RL be a sequence for the d-th frequency bin, where
L represents the number of timesteps in the spectrogram. The sequence transformation can be ef-
ficiently computed with the kernel K defined below. Using the discretized parameters, the SSM
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Figure 1: An overview of MoMamba. First, the spectrogram is projected to a higher dimension,
followed by the concatenation of the class token. Then, these features pass through the Mamba
layers. Finally, the class token is extracted and fed through the classification head. The final output
of the model is the class probability distribution.

updates its hidden state and computes the output as follows:

h
(d)
t = Ah

(d)
t−1 +Bu

(d)
t

y
(d)
t = Ch

(d)
t

K = (CB,CAB, . . . , CA
k
B, . . . )

y(d) = K · u(d).

(2)

The output y(d) ∈ RL learns information throughout the whole sequence. For more details, refer to
Gu & Dao (2024).

3.2 MOMAMBA ARCHITECTURE

MoMamba first projects the spectrogram generated from the audio sample into a higher-dimensional
space, then appends a class token. The resulting features pass through N bidirectional Mamba layers.
Afterward, the class token is extracted by selecting the final timestep of the latent representation.
Finally, the resulting vector is projected to the class dimension, and applying softmax produces a
probability distribution.

One of the main differences between MoMamba and AudioMamba is the length of each sample.
Since AudioMamba is evaluated on speech and sound effects, samples in their work are 10 seconds
long, resulting in a shorter spectrogram Erol et al. (2024). However, the spectrograms used for MIR
tasks are often longer, around 30 seconds or longer (Abimbola et al. (2023); Tzanetakis & Cook
(2002); Knees et al. (2015)). In addition, MoMamba removes the use of positional encoding, due to
the fact that Mamba processes the spectrogram sequentially across the temporal dimension. Further-
more, MoMamba does not patchify the input spectrogram, removing another reason to utilize posi-
tional encoding. By patchifying inputs and adding unnecessary positional encoding, AudioMamba
fails to exploit the strengths of SSMs. We provide ablations with these claims in Table 1. With these
changes to the overall structure, we show that MoMamba outperforms AudioMamba in MIR tasks.

3.2.1 CLASSIFICATION TOKEN

Rather than patching the spectrogram as in AudioMamba (Erol et al. (2024)), we keep the whole
sequence in order to preserve temporal continuity. The features are embedded into a higher-
dimensional space. Then, a class token is appended to the end of the sequence.

Classification tokens are regularly used in classification models such as BERT Devlin et al. (2019)
and AudioMamba (Erol et al. (2024)), where the information is aggregated into the token. Let
c ∈ RD be the classification tokens. We append this to the input signal u ∈ RL×D to form u′ =
(u0, u1, . . . , uL, c), where u′

i is the i-th timestep. From this, we can deduce that after one layer, the
forward Mamba calculates

yL+1 = c′ = CA
L+1

Bu′
0 + CA

L
Bu′

1 + · · ·+ CBc (3)
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and the backwards Mamba calculates

c′ = CA
L+1

Bu′
L + CA

L
Bu′

L−1 + · · ·+ CBc. (4)

Note that the backwards Mamba layer maintains the classification token at the end of the sequence.
From both layers, we now have two sequences: yforward ∈ RL+1×D and ybackward ∈ RL+1×D. To
combine these into one sequence, we concatenate on the channel dimension and then project back
to the original input shape. The final equation for one passthrough of a bidirectional block is

ybidirectional = Linear(Concat((yforward, ybackward)). (5)

After passing through all the bidirectional Mamba layers, we obtain youtput ∈ RL+1×D. Then, we
select only the classification token index, which contains the accumulation of the information from
the input sequence. The resulting classification token vector is then projected to the number of
classes.

3.2.2 MAMBA (SSM) LAYERS

After the embedding, the transformed data is passed through a stack of Bidirectional Mamba blocks,
shown in the middle group in Figure 1. Each block leverages state-space modeling to capture both
short- and long-term dependencies (Gu & Dao (2024)). Following each block, Layer Normalization
(Ba et al. (2016)) is applied to stabilize the input distribution for the subsequent block, and a Dropout
layer (Hinton et al. (2012)) is used for regularization. This block structure is repeated N times,
where N is the number of Mamba blocks, thereby increasing the model’s depth and capacity to
learn complex temporal patterns.

3.2.3 BIDIRECTIONAL MAMBA BLOCK

In each Bidirectional Mamba block, the model processes the sequential data in both forward and
backward directions. The classification token remains at the end of the sequence, allowing it to
aggregate information from both directions. The outputs from the forward and backward passes are
concatenated and passed through a linear layer to project back to the input shape.

3.2.4 CLASSIFICATION/REGRESSION HEAD

After passing through the Mamba layers, we extract the final timestep of the output sequence to get
the classification token and project it to match the class size using a fully connected layer. This step
ensures that the extracted representations are mapped to the appropriate number of output classes,
allowing the model to make accurate predictions.

For regression, we use a two-layer feedforward head with ReLU and dropout, projecting the embed-
ding to a single scalar via a sigmoid.

4 EXPERIMENTS

4.1 DATA PROCESSING

For each input audio sample, we generate a mel-spectrogram using Librosa’s (McFee et al. (2025))
methods to capture its frequency content over time. We generate the log-mel spectrograms with
128 mel bands using a 60 ms Hann window and a 10 ms hop size at a sampling rate of 44.1 kHz,
matching the spectrogram parameters of (Huang et al. (2022)). The STFT was computed with an
FFT size equal to the window length, and the resulting mel spectrograms were converted to the log
scale (dB) with the maximum power as the reference.

4.2 MODEL SETUP AND PARAMETERS

To prepare for training, we tune the learning rate, the embedding dimension size, and the number of
bidirectional Mamba blocks. The embedding dimensions and the number of bidirectional Mamba
blocks we searched through are 256, 512, 1024 and3, 4, 5, 6, respectively. We find that the number
of parameters is generally around 40 million for the best setup in each task.
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4.3 TRAINING AND TESTING

For each downstream task, we train each model from scratch. We also use data augmentation tech-
niques to increase the number of samples in our training set. For each task, the specifics of the
techniques will be described in the following paragraphs. For classification tasks, we use cross-
entropy loss, and for regression tasks, we use mean squared error loss. For all models, we use
AdamW (Loshchilov & Hutter (2019)) as our optimizer. To maintain data integrity, we carefully en-
sure that all augmented versions of a sample remain within the same split, preventing any potential
data leakage and preserving the validity of our evaluations.

4.4 BASELINE METHODS

We select multiple baseline models for comparisons. MusicResNet (Elbir & Aydin (2020) )is a
CNN-based model that was evaluated on GTZAN. However, they do not use the fault-filtered split
resulting in high scores. DenseNet (Bian et al. (2019)) has been shown to perform well on MIR tasks.
The CRNN (Choi et al. (2017)) combines CNNs and RNNs, resulting in promising performance. We
also compare to LSTM (Hochreiter & Schmidhuber (1997)) as an additional baseline. AST (Gong
et al. (2021)) has been shown to utilize transformers effectively for audio tasks. AudioMamba (Erol
et al. (2024)) has shown that Mamba can be applied to speech and sound effects tasks. We train
and evaluate each of these models from scratch on all of the following MIR problems. We also
hyperparameter-tune the models to evaluate their performance under our setup.

4.5 DATASETS AND DOWNSTREAM TASKS

To evaluate these models, we use seven different downstream tasks: meter classification, genre
classification, global key classification, emotion regression for valence and arousal, instrument clas-
sification, and pitch classification. We use the following commonly used datasets:

Meter2800 (MTR2800)
We use the Meter2800 dataset (Abimbola et al. (2023)), which includes 1200 samples each of 3-
meter and 4-meter, and 200 samples each of 5-meter and 7-meter. Every sample is 30 seconds long.
The samples are taken from various raw audio datasets, one example being GTZAN (Tzanetakis &
Cook (2002)). We pitch shift each sample in the training set by [−1, 0, 1] semitones and time-stretch
by a [0.75, 1, 1.25] multiplier, resulting in 9 augmented samples for each original sample.

GTZAN
We use the GTZAN dataset (Tzanetakis & Cook (2002)), a widely used benchmark for music genre
classification. However, we are aware of the well-documented issues with this dataset, including
mislabeled samples, duplicates, and potential distortions (Sturm (2014)). To mitigate these concerns
and ensure a more reliable evaluation, we adopt the train-test split proposed by Kereliuk et al. (Kere-
liuk et al. (2015)), which aims to address some of these limitations. The dataset consists of 1000
30-second audio samples, evenly distributed across 10 distinct genre classes, making it a balanced
dataset for classification tasks.

GiantSteps
We use the GiantSteps dataset, containing 604 samples, (Knees et al. (2015)) for testing and the
GiantSteps-MTG (Korzeniowski & Widmer (2017)) dataset, containing 1486 samples, for training
to follow the same setup as (Korzeniowski & Widmer (2017)) for global key classification. We
augment the training set by pitch-shifting each sample to the other 11 keys, improving the model’s
ability to generalize for this downstream task. When evaluating this task, we use the weighted score
proposed by Raffel et al. (2014), which takes into account the relationship between the predicted
and true key and mode of a given sample.

EmoMusic
For emotion regression tasks, we use the EmoMusic Dataset (Soleymani et al. (2013)), which con-
tains the mean valence and arousal score for 744 45-second samples. We use the given train-test
split. For this task, we concatenate the chromagram to the input spectrogram. Without concatenat-
ing the chromagram to the spectrogram, we found that many models fail to capture the harmonic
content necessary for learning meaningful valence representations. Additionally, we normalize the
labels to be in the range [0, 1].

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

NSynth
We use the NSynth dataset (Engel et al. (2017)), (305,979 samples), consisting of multiple pitches
and instruments. It also contains synthetic and acoustic versions of each instrument. Each sample is
monophonic and is 4 seconds in length. We did not use any data augmentation for this dataset. We
use the given train-test splits to allow direct comparison to existing benchmarks.

4.6 ABLATIONS ON MODEL DESIGN

We conduct a series of ablations to study the impact of different architectural design choices. Specif-
ically, we evaluate the model with and without a class token, vary the placement of the class token,
test the inclusion and removal of positional encodings, and compare unidirectional versus bidirec-
tional variants. These ablations allow us to isolate how each component contributes to performance
and provide insights into which design elements are most critical for capturing musical structure.

Model Setup NSynthP (Acc.)

MoMamba 0.937
+ Positional Encoding 0.887
- Class Token 0.835
+ Class Token (front of sequence) 0.017
+ Class Token (middle of sequence) 0.906
Unidirectional 0.903

Table 1: Ablation study on MoMamba design choices. Performance is measured on NSynth Pitch
classification (Accuracy).

Adding positional encoding to the model does not improve model performance. Bidirectionality
improves the performance of Mamba by a significant margin. Finally, placing the class token at the
front prevents effective aggregation of information, as reflected in the ablation study. More ablations
are located in the appendix (A.1).

5 RESULTS

5.1 ANALYSIS AND EVALUATION OF MOMAMBA

The results of MoMamba and other non-pretrained models presented in Table 2, with comparisons
to pretrained models reported separately in Table 3. Across all tasks, MoMamba consistently out-
performs other non-pretrained models and achieves competitive performance relative to pretrained
models. Considering the aggregated results, MoMamba exhibits a significantly higher average per-
formance than all other non-pretrained models. It demonstrates particularly strong results on note-
based classification tasks while maintaining comparable performance on more subjective tasks, such
as emotion prediction. These findings suggest that MoMamba’s architecture effectively captures
both local and long-range musical dependencies without relying on large-scale pretraining, and en-
abling it to represent both objective structural information and higher-level perceptual attributes of
music.

5.2 INFERENCE TIME COMPARISON OF MOMAMBA AND OTHER MODELS

We report inference time comparisons on a subset of tasks in the appendix (5). As expected, Mo-
Mamba and AudioMamba (Erol et al. (2024)) achieve significantly faster inference than AST (Gong
et al. (2021)), while remaining slower than lightweight CNN-based models such as MusicResNet
(Elbir & Aydin (2020)) and CRNN (GitYCC (2019)). Mamba-based models process full sequences
with linear-time complexity, enabling them to capture long-range dependencies more efficiently than
transformers, but at the cost of some raw speed compared to highly parallelized CNNs.

7
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Dataset MTR2800 GTZAN GS EMOV EMOA NSynthP NSynthI Average

Metric Acc. Acc. W. Acc. R2 R2 Acc. Acc.

MusicResNet 11 0.694 0.619 0.304 NA∗ NA∗ 0.206 0.016 —

DenseNet 21; 4 0.808 0.433 0.218 0.159 0.283 0.239 0.091 0.319

CRNN 14; 6 0.741 0.646 0.138 0.060 0.370 0.906 0.734 0.514

LSTM 20 0.672 0.366 0.302 0.120 0.427 0.745 0.719 0.479

AST 15 0.694 0.617 0.253 0.228 0.549 0.884 0.743 0.567

AudioMamba 13 0.650 0.567 0.451 0.064 0.193 0.897 0.716 0.505

MoMamba 0.827 0.667 0.556 0.355 0.538 0.937 0.774 0.665

Table 2: Accuracy metrics across multiple tasks for non-pretrained models: Meter Detection
(MTR2800), Genre Classification (GTZAN), Key Estimation (GS), Emotion Valence (EMOV),
Emotion Arousal (EMOA), NSynth Pitch (NSynthP), and NSynth Instrument (NSynthI). Bolded
numbers indicate the best performance in each column. The Average column shows the mean per-
formance across all tasks, considering only models with results available for every task. * indicates
that this model fails to perform on the task.

In summary, MoMamba provides an attractive middle ground for music classification: it delivers
strong performance with substantially lower inference cost than transformers, while retaining the
ability to capture global structure that CNNs often miss.

5.3 LIMITATIONS OF MAMBA

MoMamba achieves faster inference compared to RNNs and Transformers due to how SSMs oper-
ate, which allows it to process sequences efficiently without the sequential dependencies of RNNs or
the quadratic complexity of self-attention in Transformers. Unlike RNNs, which require sequential
updates, Mamba computes updates in parallel, significantly reducing latency. Additionally, it avoids
the expensive attention mechanism of transformers, making it more scalable for long sequences. De-
spite these advantages, CNNs offer better inference speed. CNNs leverage localized convolutions
and highly parallelized matrix operations, making them extremely efficient for structured data like
spectrograms. While Mamba offers a strong balance of speed and long-range modeling capability,
it trades some inference speed for improved performance on tasks requiring deeper contextual un-
derstanding, making it a better choice when capturing global dependencies is more important than
raw efficiency.

5.4 DISCUSSION

MoMamba’s performance across tasks highlights its strength in capturing long-range dependencies,
a crucial advantage over CNN-based models that rely on localized feature extraction. Unlike con-
volutional architectures, which struggle to represent global musical structures, Mamba effectively
learns key transitions and harmonic relationships over extended sequences.

While transformers have shown impressive results in music modeling, they require extensive pre-
training on large datasets to perform well. Training a transformer from scratch often leads to subop-
timal results due to its reliance on self-attention mechanisms, which demand vast amounts of data to
generalize effectively (Gong et al. (2021); Copet et al. (2023); Dhariwal et al. (2020)). In contrast,
MoMamba demonstrates strong performance even without pretraining, suggesting that its sequence
modeling approach is inherently more data-efficient. Moreover, its linear computational complex-
ity makes it scalable for long musical sequences compared to the quadratic cost of self-attention in
Transformers. These findings reinforce Mamba’s potential for real-time music analysis and suggest
that future work could further enhance its capabilities through large-scale pretraining.

We reiterate that MoMamba cannot be compared directly against large pretrained models; we are
not aware of any SSM pretrained on large music datasets. Future large-scale training of a Mamba
model will enable such comparisons.
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Model MTR2800 GTZAN GS EMOV EMOA NSynthp NSynthI

MoMamba 0.827 0.667 0.556 0.355 0.538 0.937 0.774

MERT-95MK-means 27 – 0.786 0.650 0.529 0.699 0.713 0.746

MERT-95M-publicK-means 27 – 0.728 0.673 0.597 0.725 0.704 0.756

MERT-330MRVQ-VAE 27 – 0.793 0.656 0.612 0.747 0.944 0.726

Musicset-Sup 29 – 0.835 0.286 0.566 0.726 0.793 0.731

Audioset-Sup 29 – 0.748 0.667 0.341 0.545 0.819 0.676

Musicset-ULarge 29 – 0.735 0.210 0.577 0.700 0.892 0.740

Audioset-ULarge 29 – 0.672 0.287 0.438 0.624 0.805 0.721

Musicset-USmall 29 – 0.686 0.508 0.389 0.668 0.824 0.714

Audioset-USmall 29 – 0.797 0.197 0.386 0.609 0.777 0.698

SOTA Excluding Above 0.790 1 – 0.743 [26] 0.617[9] 0.721 [5] – 0.782 [36]

Table 3: Comparison of MoMamba and related models versus state-of-the-art models across various
music-related tasks. Bolded numbers represent the best in the task and underlined represent the
second best.

5.5 COMPARISON TO AUDIOMAMBA

MoMamba achieves superior performance compared to AudioMamba (Table 2). A key distinction
lies in how the two models handle input structure: MoMamba processes the spectrogram as a contin-
uous sequence, thereby preserving the natural temporal order of the data. In contrast, AudioMamba
applies patchification, which disrupts global ordering and requires positional encodings to recover
sequence information. Our ablations (Table 1), as well as the original AudioMamba design (Erol
et al. (2024)), show that positional encodings do not improve and may possibly be detrimental to
the performance of Mamba-based models on MIR tasks. Moreover, MoMamba has half the number
of parameters as AudioMamba while acheiving superior performance. These results suggest that
maintaining the full spectrogram structure is more effective than patch-based representations for
MIR tasks.

5.6 COMPARISONS TO PRE-TRAINED MODELS

MoMamba demonstrates strong performance across multiple music-related tasks, notably outper-
forming the 95 million parameter MERT models on most benchmarks. This highlights its efficiency
despite having fewer parameters than some larger pretrained alternatives. MoMamba is competitive
to the pretrained models from McCallum et al. (2022), and surprisingly outperforms every Musicset
and Audioset model on the NSynth tasks. MoMamba also matches with the MERT (Li et al. (2024))
models on the NSynth tasks. To make a fair comparison, we would compare a pretrained Mamba-
based spectrogram model to the existing pretrained benchmarks, however, this is out of the scope of
this study and left for future work. Overall, MoMamba proves to be an efficient model that delivers
competitive performance despite training on small amounts of data.

6 CONCLUSION

State space models, specifically the Mamba model, are highly adept at capturing temporal dynamics
and complex patterns in sequential musical data, making them highly effective for downstream
MIR tasks. The Mamba architecture’s selective scan mechanism enhances predictive accuracy and
generalization, addressing key challenges in music analysis. These results underscore its potential
to serve as a versatile framework for advancing MIR research. Future work may explore pretraining
Mamba models on large datasets to compare with foundational models.
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A METHOD

A.1 MODEL ABLATIONS

Model Setup NSynthP acc. NSynthI acc. EmoMusicV R2 EmoMusicA R2

MoMamba 0.937 0.774 0.355 0.538

MoMamba (w. Unidirection) 0.903 0.660 0.192 0.479

+ Positional Encoding 0.887 0.755 0.270 0.477

- Class Token 0.835 0.738 0.036 0.481

+ Class Token (front of sequence) 0.017 0.209 0.036 0.009

+ Class Token (middle of sequence) 0.906 0.740 0.249 0.428

Table 4: Accuracy of different model setups on MIR tasks.

In addition to the ablations in section 4.6, we also tested the model setups on the NSynth instrument
and EmoMusic tasks to further solidify our claims. The consistency of the results further show the
robustness of the model setup. From this, we see that bidirectional Mamba with a class token at the
end of the sequence performs the best out of every setup.

The design of AudioMamba involves placing the classification token in the middle of the input
patchified spectrogram. The problem of not incorporating the entire spectrogram is addressed (13)
when placing the classification token in the middle of the sequence. The bidirectionality ensures
that the whole sequence is ”seen” by the classification token, the first half by the forward direction
and the second half by the backward direction. However, with MoMamba, we find that placing the
classification token at the end of the sequence results in better performance. This may be because
AudioMamba uses learnable positional embeddings, which, when the spectrogram is patchified,
could misrepresent the temporal order and limit the information the classification token receives.

B EXPERIMENT DETAILS

B.1 INFERENCE TIME

Model MTR2800 GTZAN GS

MusicResNet (11) 0.73 ± 6.41 0.59 ± 9.1 2.69 ± 18.28
DenseNet (21; 4) 11.23 ± 8.68 5.18 ± 5.12 7.84 ± 23.42

CRNN (14; 6) 1.79 ± 5.56 1.39 ± 4.16 3.85 ± 19.43

LSTM (20) 72.91 ± 1.99 70.64 ± 7.71 16.72 ± 6.70

AST (15) 495.67 ± 25.88 64.98 ± 3.60 6.44 ± 17.95

AudioMamba (13) 10.34 ± 7.18 15.58 ± 8.70 5.01 ± 24.12

MoMamba 6.11 ± 6.92 9.91 ± 2.45 3.29 ± 12.11

Table 5: Average inference times (ms) with standard deviations for three tasks: Meter Detection
(MTR2800), Genre Classification (GTZAN), and Key Estimation (GS). Bold numbers indicate the
fastest inference in each column. Each model’s inference time was recorded using a batch size of 32
and same data processing to avoid any confounding factors. Each model was evaluated on a 48 GB
L40 GPU.

B.2 DATA VISUALIZATION FOR EMOMUSIC

Below are the visualizations for both valence and arousal regression tasks for each non-pretrained
model on the test set. The R2 scores for each visualization are the values in table 2 Note that AST
does not learn to predict valence well even if it’s score is not the lowest, as it learns to predict the
average score every time. The red line indicates perfect predictions.
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Figure 2: MoMamba Valence Figure 3: MoMamba Arousal

Figure 4: AST Valence Figure 5: AST Arousal

Figure 6: CRNN Valence Figure 7: CRNN Arousal
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Figure 8: Densenet Valence Figure 9: Densenet Arousal

Figure 10: LSTM Valence Figure 11: LSTM Arousal

Figure 12: AudioMamba Valence Figure 13: AudioMamba Arousal
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C ETHICS AND REPRODUCIBILITY

C.1 ETHICS

We do not generate any data that infringes on copyrighted material, or replacing creative work from
human sources. We believe that our work can contribute positively to both researchers and users of
MIR technology.

C.2 REPRODUCIBILITY

All datasets used are publicly available. We also include a copy of both the regression and the
classification MoMamba model.

C.3 USE OF LLMS

We used LLMs to assist with creating the tables as well as fix minor grammar issues. LLMs were
not used in model architecture design and training.
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