
Under review as a conference paper at ICLR 2023

DO NOT TRAIN IT: A LINEAR NEURAL ARCHITECTURE
SEARCH OF GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural architecture search (NAS) for Graph neural networks (GNNs), called NAS-
GNNs, has achieved significant performance over manually designed GNN ar-
chitectures. However, these methods inherit issues from the conventional NAS
methods, such as high computational cost and optimization difficulty. More im-
portantly, previous NAS methods have ignored the uniqueness of GNNs, where
the non-linearity has limited effect. Based on this, we are the first to theoretically
prove that a GNN fixed with random weights can obtain optimal outputs under
mild conditions. With the randomly-initialized weights, we can then seek the
optimal architecture parameters via the sparse coding objective and derive a novel
NAS-GNNs method, namely neural architecture coding (NAC). Consequently, our
NAC holds a no-update scheme on GNNs and can efficiently compute in linear
time. Empirical evaluations on multiple GNN benchmark datasets demonstrate that
our approach leads to state-of-the-art performance, which is up to 200× faster and
18.8% more accurate than the strong baselines.

1 INTRODUCTION

Remarkable progress of graph neural networks (GNNs) has boosted research in various domains,
such as traffic prediction, recommender systems, etc., as summarized in (Wu et al., 2021). The
central paradigm of GNNs is to generate node embeddings through the message-passing mecha-
nism (Hamilton, 2020), including passing, transforming, and aggregating node features across the
input graph. Despite its effectiveness, designing GNNs requires laborious efforts to choose and tune
neural architectures for different tasks and datasets (You et al., 2020), which limits the usability of
GNNs. To automate the process, researchers have made efforts to leverage neural architecture search
(NAS) (Liu et al., 2019a; Zhang et al., 2021b) for GNNs, including GraphNAS (Gao et al., 2020),
Auto-GNN (Zhou et al., 2019), PDNAS (Zhao et al., 2020) and SANE (Zhao et al., 2021b). In this
work, we refer the problem of NAS for GNNs as NAS-GNNs.

While NAS-GNNs have shown promising results, they inherit issues from general NAS methods
and fail to account for the unique properties of GNN operators. It is important to understand the
difficulty in general NAS training (e.g., architecture searching and weight evaluation). Based on the
searching strategy, NAS methods can be categorized into three types: reinforcement learning-based
methods (Zoph & Le, 2017), evolutionary algorithms-based methods (Jozefowicz et al., 2015), and
differential-based methods (Liu et al., 2019a; Wu et al., 2019a) Both reinforcement learning-based and
evolutionary algorithm-based methods suffer from high computational costs due to the need to re-train
sampled architectures from scratch. On the contrary, the weight-sharing differential-based paradigm
reuses the neural weights to reduce the search effort and produces the optimal sub-architecture directly
without excessive processes, such as sampling, leading to significant computational cost reduction
and becoming the new frontier of NAS.

However, the weight sharing paradigm requires the neural weights to reach optimality so as to
obtain the optimal sub-architecture based on its bi-level optimization (BLO) strategy (Liu et al.,
2019a), which alternately optimizes the network weights (outputs of operators) and architecture
parameters (importance of operators). First, it is hard to achieve the optimal neural weights in
general due to the curse of dimensionality in deep learning, leading to unstable searching results, also
called the optimization gap (Xie et al., 2022). Second, this paradigm often shows a sloppy gradient
estimation (Bi et al., 2020a;b; Guo et al., 2020b) due to the alternating optimization, softmax-based

1

Under review as a conference paper at ICLR 2023

estimation, and unfairness in architecture updating. This type of work suffers from slow convergence
during training and is sensitive to initialization due to the wide use of early termination. If not worse,
it is unclear why inheriting weights for a specific architecture is still efficient—the weight updating
and sharing lack interpretability.

100 101 102

Running Time (Min) in log base 10

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

RS
BayesianGraphNAS

GraphNAS-WS

SANE
NAC

Figure 1: Accuracy vs. running time on
Cora. NAC (ours) outperforms the leading
methods significantly in both accuracy and
speed (in minutes).

Is updating the GNN weights necessary? Or, does up-
dating weights contribute to optimal GNN architecture
searching? Existing NAS-GNN methods rely on updat-
ing the weights, and in fact, all these issues raised are
due to the need to update weights to the optimum. Unlike
other deep learning structures, graph neural networks be-
have almost linearly, so they can be simplified as linear
networks while maintaining superior performance (Wu
et al., 2019b). Inspired by this, we find that the untrained
GNN model is nearly optimal in theory. Note that the
first paper on modern GNNs, i.e., GCN (Kipf & Welling,
2017a), already spotted this striking phenomenon in the
experiment, but gained little attention. To the best of
our knowledge, our work is the first to unveil this and
provide theoretical proof. The issues mentioned before
may not be as much of a concern given no weight update
is needed, making NAS-GNN much simpler.

In this paper, we formulate the NAS-GNN problem as a sparse coding problem by leveraging the
untrained GNNs, called neural architecture coding (NAC). We prove that untrained GNNs have
built-in orthogonality, making the output dependent on the linear output layer. With no-update
scheme, we only need to optimize the architecture parameters, resulting in a single-level optimization
strategy as opposed to the bi-level optimization in the weight-sharing paradigm, which reduces the
computational cost significantly and improves the optimization stability. Much like the sparse coding
problem (Zhang et al., 2015), our goal is also to learn a set of sparse coefficients for selecting operators
when treating these weights collectively as a dictionary, making sharing weights straightforward and
understandable. Through extensive experiments on multiple challenging benchmarks, we demonstrate
that our approach is competitive with the state-of-the-art baselines, while decreasing the computational
cost significantly, as shown in Fig. 1.

In summary, our main contributions are:

- Problem Formulation: We present (to our best knowledge) the first linear complexity NAS
algorithm for GNNs, namely NAC, which is solved by sparse coding.

- Theoretical Analysis: Our NAC holds a no-update scheme, which is theoretically justified by the
built-in model linearity in GNNs and orthogonality in the model weights.

- Effectiveness and Efficiency: We compare NAC with state-of-the-art baselines and show superior
performance in both accuracy and speed. Especially, NAC brings up to 18.8% improvement in
terms of accuracy and is 200× faster than baselines.

2 RELATED WORK AND PRELIMINARIES

Graph Neural Networks (GNNs) are powerful representation learning techniques (Xu et al., 2019)
with many key applications (Hamilton et al., 2017). Early GNNs are motivated from the spectral
perspective, such as Spectral GNN (Bruna et al., 2014) that applies the Laplacian operators directly.
ChebNet (Defferrard et al., 2016) approximates these operators using summation instead to avoid a
high computational cost. GCN (Kipf & Welling, 2017b) further simplifies ChebNet by using its first
order, and reaches the balance between efficiency and effectiveness, revealing the message-passing
mechanism of modern GNNs. Concretely, recent GNNs aggregate node features from neighbors
and stack multiple layers to capture long-range dependencies. For instance, GraphSAGE (Hamilton
et al., 2017) concatenates nodes features with mean/max/LSTM pooled neighbouring information.
GAT (Velickovic et al., 2018) aggregates neighbor information using learnable attention weights.
GIN (Xu et al., 2019) converts the aggregation as a learnable function based on the Weisfeiler-Lehman
test instead of prefixed ones as other GNNs, aiming to maximize the power of GNNs.

GNNs consist of two major components, where the aggregation step aggregates node features of
target nodes’ neighbors and the combination step passes previous aggregated features to networks to

2

Under review as a conference paper at ICLR 2023

generate node embeddings. Mathematically, we can update node v’s embedding at the l-th layer by

hl
v = ϕ

(
W l · o

({
hl−1
v ,∀u ∈ N(v)

}))
, (1)

where N(v) denotes the neighbours of v. W l denotes the trainable weight shared by all nodes at the
l-layer. ϕ is an activation function (with ReLU as default). A main difference of different GNNs lies
in the design of the the aggregation functions, o(·). As GNNs have a large design space (You et al.,
2020), this makes it challenging for the architecture search.

Neural Architecture Search (Xie & Yuille, 2017) generally includes three major parts, i.e., search
spaces, search strategies, and evaluation methods. Recent advances adopt weight-sharing (Xie et al.,
2022) to avoid (re-)training from scratch as in previous methods, where any architecture can share the
weights directly for evaluation without re-training. In particular, making the weights and architectural
parameters differentiable (Liu et al., 2019a; Luo et al., 2018) further improves the training efficiency.
Although efficient, weight-sharing NAS has genetic issues that are caused by its bi-level optimization,
including over-fitting and inaccurate gradient estimation (Xie et al., 2022), making these methods
collapse unexpectedly. A variety of methods are proposed to address this from different perspectives,
while mainly adding regularization towards weights, such as using k-shot (Su et al., 2021), paths
dropout (Bender et al., 2018), sampling paths (Guo et al., 2020a), sparsity (Zhang et al., 2021a).
However, these cures are still within the bi-level optimization framework, which can at best alleviate
the problem but not directly tackle it. In this work, we propose NAC, a linear (i.e., single-level)
optimization paradigm, to address the issues in weight-sharing NAS.

Concretely, consider WS-NAS defined by {A,W}, where A and W denote the search space and
weights of neural networks, respectively. WS-NAS addresses two subproblems of these two space al-
ternatively using a bi-level optimization framework (Liu et al., 2019a), including weight optimization
and architecture optimization as shown in the following.

α∗ = argmax
α

Mval (w
∗(α),α) ; s.t. w∗(α) = argmin

w
Ltrain (α,w), (2)

where L denotes a loss function in the training set. M denotes an evaluation metric, such as
accuracy, in the validation set. Optimizing separately, WS-NAS avoids the potential biased caused by
imbalance dimensionality between w and α, i.e., the neural weights and the architecture parameters.
DARTS (Liu et al., 2019a) further converts the discrete search space into a differentiable one with

the help of the softmax function that is writing as
exp(α(i,j)

o)∑
o′∈O exp

(
α

(i,j)

o′

) , where O represents the search

space consisting of all operators. Thus, we can get the importance of each operator in the format of
probability. However, it is difficult to reach the optimal state for the objectives defined in Eq. (2)
simultaneously, because achieving optimality in deep neural networks is still an open question, and
the gradient w.r.t. α is intractable (Xie et al., 2022). In practice, researchers often apply early
stopping to tackle it, which leads to unexpected model collapse (Zela et al., 2020) and initialization
sensitivity (Xie et al., 2022). Another line of work (Chen et al., 2021) (Shu et al., 2021) uses neural
tangent kernels (NTK) to search the network structure, called training-free NAS and focuses on
CNN architectures. These hold strong assumptions when analyzing due to the need for infinite width
of networks, and thus far from reality. In contrast, we do not have such an assumption by taking
advantage of the built-in linearity in GNNs to get untrained GNNs to work.

NAS for Graph Neural Networks: Many NAS methods have been proposed and adapted for GNNs,
such as GraphNAS (Gao et al., 2020), Auto-GNN (Zhou et al., 2019), and SANE (Zhao et al.,
2021b), and thus enable learning an adaptive GNN architecture with less human effort. Methods like
Auto-GNN and GraphNAS adopt reinforcement learning (RL) for searching, and thus suffer from
the expensive computational cost. Thanks to the weight-sharing policy, SANE (Zhao et al., 2021b)
avoids heavy retraining processes in RL methods, which leads to superior performance in general.
However, this type of work also faces issues from the weight-sharing differential framework, such
as bias optimization and instability due to bi-level optimization. In this work, our proposed method
NAC focuses on the NAS for GNNs, and we use GraphNAS and SANE as our main baselines.

Sparse Coding (Zhang et al., 2015) is a well-studied topic, and its goal is to learn an informative
representation as a linear combination from a collection of basis or atom, which is called a dictionary
collectively. The standard SC formulation is written as follows:

min
D,Γ

L(V,D,Γ) = ∥V −DΓ∥2F , s.t. ∀i, ||Γ·i||0 ≤ τ0;∀j, ∥D·j∥2 = 1, (3)

3

Under review as a conference paper at ICLR 2023

where Γ is the sparse coefficient vector, D is the dictionary, τ0 is a value to control the sparsity. The
first constraint is to encourage a sparse representation on Γ and the second constraint is to normalize
the atoms in the dictionary. NAS aims to find a small portion of operators from a large set of operators,
making it a sparse coding problem in nature. We, therefore, reformulate the NAS-GNN problem as a
sparse coding problem.

3 NETWORK ARCHITECTURE CODING (NAC) FOR NAS-GNN

To find the best-performing architecture, we introduce a novel NAS-GNN paradigm, Neural Archi-
tecture Coding (NAC), based on sparse Coding, which requires no update on the neural weights
during training. Technical motivation for NAC stems from the observation that an untrained GNN
performs well, and training it might not provide extra benefit. In the remainder of this section, we
provide a theoretical analysis of why no-update GNNs are preferred (Section. 3.1) and propose a new
NAS-GNN paradigm based on our theorems by leveraging untrained GNNs (Section. 3.2).

3.1 ANALYSIS OF NO-UPDATE SCHEME IN GNNS

In the performance analysis of GNNs, the nonlinear activation function ϕ defined in Eq. (1) is often
skipped. Following (Wu et al., 2019b), we simplify a GNN as F = A . . . A(AXW1)W2 . . . WL

= ALX
∏L

l=1 Wl, where A is the adjacency matrix, Wl is the neural weight at the l-th layer from a
total number of layers, L. We then obtain the final output as Out = FWo by passing a linear layer
Wo . At the t-th iteration, we denote the GNN weight at the l-th layer as Wl(t) and the theoretical
output layer weight as W̃o(t). By initializing the network for all layers, i.e., [W1:L,Wo], we aim to
train the network to get the optimal weights, denoted as [W ∗

1:L,W
∗
o], where we assume the optimal

weight can be obtained at +∞-th iteration: W ∗
l = Wl(+∞). We use gradient descent as the default

optimizer in GNNs.

We now provide our first main theorem to investigate why an untrained GNN model can attain the
same performance as the optimal one.

Theorem 3.1. Assume Wl(0) is randomly initialized for all l ∈ [1, L], if
∏L

l=1 Wl(0) is full rank,
there must exist a weight matrix for the output layer, i.e., W̃o, that makes the final output the same as
the one from a well-trained network:

A
L
X

L∏
l=1

W
∗
l W

∗
o = A

L
X

L∏
l=1

Wl(0)W̃o. (4)

Proof. Because
∏L

l=1 Wl(0) is a full-rank matrix,
∏L

l=1 Wl(0) is invertible. We can define W̃o by

W̃o
def
== (

L∏
l=1

Wl(0))
−1

L∏
l=1

W
∗
l W

∗
o , (5)

Hence, by multiplying
∏L

l=1 Wl(0) and ALX on both sides in Eq. (5), we can attain Eq. (4).

This theorem implies that the output layer alone can ensure the optimality of the network even when
all previous layers have no updates. Next, we show that training in the standard setting of GNNs is
guaranteed to reach the desired weight of the output layer, i.e. W̃o, under mild conditions. We begin
by providing the theorem from (Gunasekar et al., 2018).

Theorem 3.2 (From (Gunasekar et al., 2018)). Assume we have the following main conditions: 1)
the loss function is either the exponential loss or the log-loss; 2) gradient descent is employed to
seek the optimal solution; and 3) data is linearly separable. When defining a linear neural network as
Y = XW1W2.....WL = X

∏L
l=1 Wl = Xβ, we always have the same optimal weight regardless

of the number of layers when using gradient descent,

β∗ = argmin
β

∥β∥2, s.t. Xβ ⊙ s ≥ 1, (6)

where s is the ground-truth label vectors with elements as 1 or −1; 1 denotes a vector of all ones; ⊙
denotes the element-wise product.

This theorem suggests that the optimal weights obtained by the gradient descent are the same
regardless of how many layers are in the network, which is equivalent to finding a max-margin

4

Under review as a conference paper at ICLR 2023

separating hyperplane. Following this, we prove that W̃o can be obtained based on the above
conditions:
Theorem 3.3. Assume a GNN model has either the exponential loss or the log-loss, the desired weight
W̃o is secured when updating with gradient descent and initializing

∏L
l=1 Wl(0) as an orthogonal

matrix. Mathematically, we have Ŵo(+∞) = Ŵo
∗
= W̃o.

Proof. We first frame the simplified GNNs as ALX
∏L

l=1 Wl = (ALX)(
∏L

l=1 Wl). According to
Theorem. 3.2, we define the corresponding β as β =

∏L
l=1 Wl. When using the gradient descent to

optimize Wl and Wo, we have the optimized β as β∗ =
∏L

l=1 W
∗
l ·W ∗

o . The obtained β∗ can be
viewed as the max-margin hyperplane to separate data ALX according to Theorem. 3.2. Omitting
the output layer, we let the untrained GNN model as ALX

∏L
l=1 Wl(0) = ALXO and assume

O =
∏L

l=1 Wl(0) is an orthogonal square matrix. Denoting a complete GNN model as ALXOWo,
the optimized output weight, i.e. Ŵ ∗

o , becomes the max-margin separating hyperplane of ALXO
because it is also trained by gradient descent. Here, we fix the Wl(0) during training to maintain its
orthogonality. We know that the max-margin hyperplane of any data remains the same if and only if it
takes orthogonal transformations, resulting in the following equivalence: OŴo

∗
= β∗ =

∏L
l=1 W

∗
l ·

W ∗
o . Finally, we get Ŵo

∗
= O−1

∏L
l=1 W

∗
l W

∗
o = (

∏L
l=1 Wl(0))

−1
∏L

l=1 W
∗
l W

∗
o = W̃o.

In summary, our proposed theorems prove that a GNN with randomly initialized weights can make
the final output as good as a well-trained network, where one needs to update the overall network
with gradient descent and initialize networks with orthogonal weights. Apart from the optimality,
another immediate benefit of this no-update scheme is that the computational cost will be significantly
reduced. This is of particular importance when the budget is limited, as the main computational cost
of NAS comes from this update.

In this work, we treat the entire NAS supernet as a general GNN model where each layer is a mixture
of multiple operators. The above theorems show that one can approximate the optimal output by
using the network without training, where we only need to update the final linear layer of the supernet.
This finding motivates us to learn architectures by taking advantage of randomly initialized networks.

We want to emphasize that real-world scenarios can break the optimal conditions, such as the high
complexity of data and the early stopping of the training. Even though, our strategy still provides
near-optimal performance, if not the best, in experiments.

3.2 ARCHITECTURE SEARCHING VIA SPARSE CODING

Building on the above theorems, we present a novel NAS-GNN paradigm in which an untrained
GNN model can also yield optimal outputs under mild conditions in the following. This optimality
allows us to waive the effort to design complicated models for updating weights and makes us focus
on architecture updates. At a high level, the ultimate goal of NAS is to assign the coefficients of
unimportant operators as zeros and the important ones as non-zeros. Towards this, searching the
optimal architecture is equivalent to finding the optimal sparse combination of GNN operators, i.e.,
α. Notably, one of the most successful algorithms for this purpose is sparse coding (Olshausen &
Field, 1997), which has strong performance guarantees.

What matters most when we reformulate the NAS problem as a sparse coding problem over a
dictionary defined on GNN operators? According to the research in sparse coding (Aharon et al.,
2006; Tropp, 2004; Candes et al., 2006), its performance depends on the quality of the dictionary. In
particular, the most desirable property is mutual coherence or orthogonality. High incoherence in
the dictionary tends to avoid ambiguity in the solution and improve optimization stability, resulting
in optimal or at least sub-optimal solutions. We prove a dictionary that is defined on deep neural
networks has built-in orthogonality, as shown in the theorem below.
Theorem 3.4. Let the neural weights of each operator in a deep neural network be an atom and stack
them column-wisely, we can guarantee the existence of an orthogonal dictionary.

Please see Appendix A.2 for more details. This theorem implies that the obtained weights are
qualified to be a dictionary due to the built-in high dimensionality in deep neural networks. Taking

5

Under review as a conference paper at ICLR 2023

inspiration from this, we propose a new NAS paradigm called neural architecture coding as follows:

min
α

LCE (y, f(z)) + ∥z− hL∥2F + ρ∥α∥1,

where


hl
v = ϕ

[
W l · ōl

({
hl−1
u ,∀u ∈ N(v)

})]
ōl(x) = olα̂l =

∑K
k=1

αlk

||αl||2 o
lk(x)

ol = [ol1(x), ol2(x), . . . , olK(x)]

(7)

where ρ is the sparsity hyperparameter, f(·) is a linear function as the final output layer, e.g., MLP,
h represents all nodes’ embeddings, and LCE defines the Cross-Entropy loss function. Here, we
set the number of GNN operators to K and the number of hidden layers to L. olk denotes the k-th
operator at the l-th layer and its output is a vector; αlk denotes the scalar coefficient for operator
k at lth-layer and thus αl ∈ Rk ; ol is the weight vector from all operators at the l-th layer. hl

v
denotes the embedding of the node v at the l-th layer , where its neighborhood aggregation process is
performed as the weighted summation of the outputs from all operators as ōl(x). y is the node label.

Algorithm 1 The NAC algorithm

Require: The search space A;
Ensure: The architecture α

1: Randomly initializing W l, for l = 1, . . . , L; set α = 1;
2: while t = 1, . . . , T do
3: Performing the feature aggregation at each layer as ōl(x) = olα̂l =

∑K
k=1

αlk
||αl||2

olk(x);
4: Computing hl

v = ϕ
[
W l · ōl

({
hl−1
u , ∀u ∈ N(v)

})]
;

5: Optimizing α based on the objective function in Eq. (7) w.r.t. α under the fixed dictionary o ;
6: Updating Wo based on the objective function in Eq. (7) w.r.t. Wo under fixed α;
7: end while
8: Obtain the final architecture {α∗} from the trained α via an argmax operation at each layer;

It is important to note that, rather than computing the optimal neural weight for olk like previous
NAS methods explicitly, we use randomly initialized weights instead and focus on optimizing the
combination coefficient α, i.e. architecture parameters. The desired optimal embedding z is then
used for downstream applications, such as node classification. In practice, we often let z = hL for
computational convenience, which makes the loss of the second term to be zero.

The sparsity regularization ||α||1 allows us to rank the importance of the operator directly, alleviating
inaccurate gradient estimation such as softmax (Garg et al., 2021). We want to emphasize that this
regularization does not break the requirement of using gradient descent. Since the architecture, i.e., α,
is fixed when updating the output layer weights, we can use gradient descent for updating as required,
so the theorems in Section. 3.1 hold.

3.3 IMPLEMENTATION DETAILS AND COMPLEXITY ANALYSIS

The overall algorithm is presented at Algorithm 1. Computing NAC consists of two major parts: the
forward pass and the backward pass. Given the search space, the computation of the forward is then
fixed and regarded as a constant. Therefore, the computational complexity mainly focuses on the
backward pass in the NAC algorithm. In summary, the algorithmic complexity of NAC is O(T ∗ |α|),
where |α| is the size of α. Please refer to Appendix A.3 for more details about the implementation.

4 EXPERIMENTS

We conduct experiments to address the following issues: (1) How does NAC perform in comparison
to the leading baselines? (2) How does the no-update scheme affect other methods? (3) Is NAC
robust? Sec. 4.2-Sec. 4.5 answer the above questions accordingly.

4.1 EXPERIMENT SETUP

Datasets. We performed experiments on transductive learning for node classification (Zhao et al.,
2021b). For this setting, we use four benchmark datasets: CiteSeer (Giles et al., 1998), Cora (Kipf &
Welling, 2016), PubMed (Sen et al., 2008), and Computers (McAuley et al., 2015). Also, we follow
the data partition setting (training/validation/testing) as in (Zhao et al., 2021b). For more details

6

Under review as a conference paper at ICLR 2023

about transductive learning task and introduction of each dataset, please refer to Appendix A.1 for
more details.

Methods. Following (Zhao et al., 2021b), we compare our NAC with the following strong baselines:
1) Random Search (RS) (Bergstra & Bengio, 2012) and 2) Bayesian Optimization (BO) (Jones et al.,
1998), 3) GraphNAS (Gao et al., 2020): a popular reinforcement learning-based (RL) method, 4)
GraphNAS-WS (Zhao et al., 2021b): a variant of GraphNAS with weight sharing, and 5) SANE (Zhao
et al., 2021b). Among all baselines, the first two are hyperparameter optimization (HPO) methods (Yu
& Zhu, 2020). GraphNAS and GraphNAS-WS are two popular methods following the weight
sharing paradigm while SANE is the most recent work on automated GNNs using the weight-sharing
differential paradigm, which is the closest one to our work. We also evaluate NAC-updating, i.e.,
NAC with weight updates, to compare it with the proposed one with no-update scheme.

Search space. We select a list of node aggregators (i.e., operators) in GNNs to form the search
space. More specifically, they include the following seven aggregators: multi-layer perceptrons
(MLP), GCN (Kipf & Welling, 2017b), GAT (Velickovic et al., 2018), GIN (Xu et al., 2019),
Geniepath (Liu et al., 2019b), Graphsage (Hamilton et al., 2017), and ChebNet (Defferrard et al.,
2016). Note that MLP is a special aggregator with fixed frequency when viewing GNNs from
a spectrum perspective (Balcilar et al., 2020). Besides, Graphsage and GAT contain different
aggregation functions, i.e., maximum and LSTM. We apply all these variations as operators in the
experiments. Note that we do not include the layer aggregators like skip-connection in our search
space. The underlying rationale is that recent research (Zela et al., 2020; Chen & Hsieh, 2020; Liang
et al., 2019) finds that NAS models converge to skip-connection much faster than other operators due
to its parameter-free nature. This introduces biased searching and yields poor generalization. Our
experiments ensure that the search space is the same for all baselines.

We do not include layer-wise aggregators like JKNets (Xu et al., 2018) in the main experiment. As
we show in Sec. 3.1, our theory is built upon the classical GNN framework, which equals matrix
multiplication. JKNets cannot be represented in this framework, which contradicts our assumptions.

Evaluation Metrics. The proposed approaches aim to boost the ability to learn efficacious archi-
tecture for downstream tasks. The classification accuracy and the runtime (i.e., wall-clock time)
are two widely used metrics in NAS research to measure the model performance and efficiency,
respectively (Zhang et al., 2021a). The reported results are the average of the best results in 4 runs
from different random seeds.

We set the runtime of NAC, SANE, and GraphNAS as the time they take to obtain the final ar-
chitectures with 100 epochs1. The runtime of RS and Bayesian is fixed to the time of 100 times
trial-and-error processes.

Table 1: Experimental results on the compared methods: our NAC attains superior performance in both
accuracy (%) and efficiency (in minutes).

CiteSeer Cora PubMed Computers
Accuracy Time Accuracy Time Accuracy Time Accuracy Time

RS 70.12±2.36 14.4 71.26±4.68 30.6 86.75±0.82 187.8 77.84±1.35 8.75
BO 70.95±1.62 18 68.59±6.66 31.2 87.42±0.68 189.6 77.46±2.02 17.65
GraphNAS 68.69±1.30 253.8 71.26±4.90 245.4 86.07±0.51 1363.8 73.97±1.79 86.37
GraphNAS-WS 65.35±5.13 80.4 72.14±2.59 161.4 85.71±1.05 965.4 72.99±3.44 42.47
SANE 71.84±1.33 4.2 84.58±0.53 10.2 87.55±0.78 107.4 90.70±0.89 0.72

NAC 74.62±0.38 1.2 87.41±0.92 1.2 88.04±1.06 9.0 91.64±0.14 0.23
NAC-updating 74.17±1.18 4.2 86.62±1.14 3.6 88.10±0.86 25.8 90.89±1.10 0.70

4.2 COMPARISON RESULTS

Results in Table 1 and Fig. 1 show that NAC attains superior performance than all baselines regarding
both accuracy and efficiency. More specifically, we observe the following.

- In terms of model performance, our NAC beats all baselines and attains up to 2.83%improvement
over the best baseline, i.e., SANE, while attaining up to 18.8% improvement over the Bayesian
method, the best HPO method. Thanks to our non-updating scheme, it prompts the outputs near the
optimal to make the selection of the best-performing architecture reliable, as opposed to biased

1The running time for the Computers dataset is measured on a single GPU, which is different from all other
three datasets.

7

Under review as a conference paper at ICLR 2023

optimization in others. We notice that in one case, NAC is slightly worse than NAC-updating,
about 0.06%. This case reminds us that the optimal condition can get compromised due to the high
complexity of the data. Still, NAC holds for near-best performance, demonstrating its robustness.
Empirical results corroborate our theories in Section. 3.1 that non-updating scheme is preferred.
The underlying assumption of RL-based and BO-based methods is to obtain an accurate estimation
of the distribution of the search space. However, these methods rely on random sampling to perform
the estimation, thus have no guarantee of the search quality due to the high complexity in the search
space. For instance, RL-based methods are sometimes even worse than RS-based methods, pure
randomly sampled, implying the unreliability of such estimation under a limited budget. WS-based
methods couple the architecture search and the weight training, so they struggle to train the network
to be optimal and obtain a biased network due to oscillations between the two components.

- In terms of model efficiency, our NAC achieves superior performance, around 10× faster than
SANE and up to 200× time faster than GraphNAS. Our non-updating scheme requires nearly no
weight update, thus giving NAC an incomparable advantage in reducing the computation cost. All
previous NAS methods need to update neural weights, for example, RL-based costs the most due
to retraining the network from scratch at each time step, and WS-based costs the least by reusing
neural weights.

4.3 NO-UPDATE SCHEME AT WORK

To further validate our no-update scheme, we evaluate its effect on other weight-sharing methods.
Since SANE attains the best performance among all baselines, we test the no-update scheme on SANE
as SANE∗, i.e., SANE with fixed neural weights. Results in Table 3 show that SANE∗ outperforms
the one with updates. This result implies that we can improve the performance of NAS-GNN methods
by simply fixing the weights with random initialization. This yields a much lower computational cost
in the training.

Table 2: Performance comparison between SANE, NAC+ and
NAC.

CiteSeer Cora PubMed Computers
Acc(%) Acc(%) Acc(%) Acc(%)

SANE 71.84±1.33 84.58±0.53 87.55±0.78 90.70±0.89

NAC+ 71.76±2.08 87.27±1.20 87.59±0.22 91.07±0.71

NAC 74.62±0.38 87.41±0.92 88.04±1.06 91.64±0.14

0 8 16 24 32
0.0

0.3

0.5

0.8

1.0

Sorted Index

S
ca
le
d
E
ig
en
va
lu
e

NAC(Orthogonal)

NAC(Normal)

NAC(Uniform)

Figure 2: Visualization of the sorted
eigenvalues of weights of NAC with dif-
ferent initialization.

4.4 ABLATION STUDIES

Initialization: Recall that in Sec. 3.1, a prerequisite is the orthogonality on the neural weights matrix.
This makes the initialization critical to the final performance. To investigate the effect of initialization,
we try three types of initialization methods, including normal, uniform, and orthogonal. Table 4
shows that NAC with orthogonal initialization outperforms other two cases of initialization. The
results again confirm our theory.

To get a better understanding of the reason, we visualize the eigenvalues of
∏L

l=1 Wl on different
initialization cases in Figure 2. The results show that the eigenvalues of NACs with normal and
uniform initialization decay accordingly. This makes the input feature tends to project to the subspace
spanned by the top-ranked eigenvectors, which results in feature distortion and leads to performance
degeneration. In contrast, when NAC with orthogonal initialization, the eigenvalues are distributed
uniformly, which ensures the spanned space does not bias toward any particular eigenvectors.

In summary, NAC with orthogonal initialization attains the best performance and confirms our
theory. In addition, results from non-orthogonal initializations are still better than other baselines,
demonstrating the robustness of NAC.

The linear output layer: Recall that for a given linear output layer, there exists the optimal weight,
i.e. W̃o, to secure the optimal output according to Theorem. 3.1. Nevertheless, obtaining optimal
weights in a deep learning algorithm is an open question due to its high dimensionality. Often, in
practice, we train the network with early stopping, especially in NAS methods. Therefore, obtaining
the optimal weights for the output layer is not possible. Is training the output layer necessary? This

8

Under review as a conference paper at ICLR 2023

Table 3: Comparison between SANE and SANE∗ (w/o. weight updates).

CiteSeer Cora Pubmed Computers
Acc(%) Acc(%) Acc(%) Acc(%)

SANE 71.84±1.33 84.58±0.53 87.55±0.78 90.70±0.89

SANE∗ 71.95±1.32 85.46±0.76 88.12±0.35 90.86±0.80

Table 4: Comparison of NAC with different initializations.

CiteSeer Cora PubMed Computers
Acc(%) Acc(%) Acc(%) Acc(%)

Kaiming Normal 71.12±2.45 86.85±0.78 87.52±0.72 91.05±0.80

Kaiming Uniform 72.06±2.24 86.99±1.03 87.68±0.97 88.52±3.01

Orthogonal 74.62±0.38 87.41±0.92 88.04±1.06 91.64±0.14

10 40 70 100 130 160 190 220 250
65.0

70.0

75.0

80.0

Epoch

A
cc
u
ra
cy

SANE
NAC

Figure 3: Convergence for SANE
and NAC in terms of accuracy.
NAC converges much faster than
SNAE in only around 20 epochs.

experiment attempts to answer this by comparing NAC with and without training the output layer.
Note that we fix all other layers with random weights. By default, NAC is the one without training
any layers in the whole paper, including the output layer. On the contrary, NAC+ is the one with
training the output layer. Here, we set the number of epochs as 100. In Table. 2, we can find that the
performance of NAC+ is in the middle between SANE and NAC. On the one hand, training the linear
layer may not be worthwhile because it is impossible to get the desired optimal weights. On the other
hand, results with and without training the output layer are always better than SANE, suggesting the
superiority of the no-update scheme in general. To further demonstrate this, we implement multiple
experiments by training the last layer with different epochs, as shown in Appendix. A.4.3.

Sparsity effect: We also conduct experiments to test how sparsity affect the search quality of NAC.
The hyperparameter ρ is to control the sparsity of the architecture parameter α. We test the effect by
varying its value in a considerably large range, i.e., [0.001, 10]. The results show that the performance
varies little w.r.t. ρ. This indicates that NAC is insensitive to the sparsity hyperparameter.

Random seeds: By default, researchers report the average or the best result from different random
seeds, this often lead to poor reproducibility. We now present the effect of random seeds on this
topic. In particular, we implement the experiment on multiple random seeds and observe a stable
performance of NAC.

The experimental results show that NAC is robust to both sparse hyperparameter selection and random
seeds. Please refer to Appendix A.4 for more details.

4.5 ANALYSIS OF CONVERGENCE

A notable benefit of the NAC framework is its guaranteed convergence from the sparse coding
perspective. To verify this, Fig. 3 offers a convergence comparison between NAC and SANE from
the Pubmed dataset by showing the accuracy on the retrained network acquired at each training
epoch. NAC shows substantially faster convergence than SANE, which take around 20 and 80 epochs,
respectively. Due to the BLO strategy, SANE suffers strong oscillation when optimizing two variables,
i.e., the architecture and neural weights, which consumes more epochs to converge.

5 CONCLUSION

We present the first linear complexity NAS algorithm for GNNs, namely NAC. Our NAC is solved by
sparse coding and holds no-update scheme for model weights in GNNs because GNNs embed the
built-in model linearity and orthogonality for the model weights. Extensive experiments demonstrate
that our NAC can achieve higher accuracy (up to 18.8%) and much faster convergence (up to 200×)
than SOTA NAS-GNNs baselines.

Several promising directions can be considered. We can further explore more deep neural networks
that satisfy the mild condition of our NAC to extent its usability. We can investigate more on the
efficiency of different subgradient methods for solving the sparse coding objective. We also intend to
investigate how to jointly learn the search space and architectural representation to further enhance
the expressive ability of searched architectures.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The supplemental material includes the code for our experiments. An detailed description of the
datasets used in the experiments is provided in Appendix A.1.

REFERENCES

M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311–4322, 2006.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
ICLR, 2020.

Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. Understanding
and simplifying one-shot architecture search. In ICML, 2018.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305, feb 2012. ISSN 1532-4435.

Kaifeng Bi, Changping Hu, Lingxi Xie, Xin Chen, Longhui Wei, and Qi Tian. Stabilizing darts with
amended gradient estimation on architectural parameters. CoRR, abs/1910.11831, 2020a.

Kaifeng Bi, Lingxi Xie, Xin Chen, Longhui Wei, and Qi Tian. Gold-nas: Gradual, one-level,
differentiable. CoRR, abs/2007.03331, 2020b.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruction
from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2):
489–509, 2006.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021.

Xiangning Chen and Cho-Jui Hsieh. Stabilizing differentiable architecture search via perturbation-
based regularization. In ICML, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, 2016.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop, 2019.

Hans Fischer. A history of the central limit theorem: from classical to modern probability theory.
Springer, 2011.

Wenjiang J Fu. Penalized regressions: the bridge versus the lasso. Journal of computational and
graphical statistics, 7(3):397–416, 1998.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graph neural architecture search. In
IJCAI, 2020.

Shivam Garg, Samuele Tosatto, Yangchen Pan, Martha White, and A Rupam Mahmood. An alternate
policy gradient estimator for softmax policies. arXiv preprint arXiv:2112.11622, 2021.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–98, 1998.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

10

Under review as a conference paper at ICLR 2023

Ronghao Guo, Chen Lin, Chuming Li, Keyu Tian, Ming Sun, Lu Sheng, and Junjie Yan. Powering
one-shot topological NAS with stabilized share-parameter proxy. In ECCV, 2020a.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In ECCV, 2020b.

William L. Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 14(3):1–159, 2020.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13(4), 1998.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration of recurrent
network architectures. In ICML, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings, 2017a.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017b.

Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen Zhuang, and
Zhenguo Li. DARTS+: improved differentiable architecture search with early stopping. CoRR,
abs/1909.06035, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
ICLR, 2019a.

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In AAAI, 2019b.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In NeurIPS, 2018.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311–3325, 1997. ISSN 0042-6989.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

J Ranstam and JA Cook. Lasso regression. Journal of British Surgery, 105(10):1348–1348, 2018.

Mark Schmidt, Glenn Fung, and Romer Rosales. Optimization methods for l1-regularization.
University of British Columbia, Technical Report TR-2009-19, 2009.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008. doi: 10.1609/aimag.
v29i3.2157.

Shirish Krishnaj Shevade and S Sathiya Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

11

Under review as a conference paper at ICLR 2023

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. Nasi: Label-
and data-agnostic neural architecture search at initialization. arXiv preprint arXiv:2109.00817,
2021.

Xiu Su, Shan You, Mingkai Zheng, Fei Wang, Chen Qian, Changshui Zhang, and Chang Xu. K-shot
NAS: learnable weight-sharing for NAS with k-shot supernets. In ICML, 2021.

D. ter Haar. Mathematical foundations of statistical mechanics. a. i. khinchin. Science, 110(2865):
570–570, 1949.

J.A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on
Information Theory, 50(10):2231–2242, 2004.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In CVPR, 2019a.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019b.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4–24, Jan 2021. ISSN 2162-2388.

Lingxi Xie and Alan L. Yuille. Genetic CNN. In ICCV, 2017.

Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Lanfei Wang, Zhengsu Chen, An Xiao,
Jianlong Chang, Xiaopeng Zhang, and Qi Tian. Weight-sharing neural architecture search: A battle
to shrink the optimization gap. ACM Comput. Surv., 54(9):183:1–183:37, 2022.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462. PMLR, 10–15 Jul 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICML, 2019.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances in
Neural Information Processing Systems, 33, 2020.

Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and applications.
CoRR, abs/2003.05689, 2020.

Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, and Frank Hutter.
Understanding and robustifying differentiable architecture search. In ICLR, 2020.

Xinbang Zhang, Zehao Huang, Naiyan Wang, Shiming Xiang, and Chunhong Pan. You only search
once: Single shot neural architecture search via direct sparse optimization. IEEE Trans. Pattern
Anal. Mach. Intell., 43(9):2891–2904, 2021a.

Zheng Zhang, Yong Xu, Jian Yang, Xuelong Li, and David Zhang. A survey of sparse representation:
algorithms and applications. IEEE access, 3:490–530, 2015.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey. In
IJCAI, 2021b.

Huan Zhao, Lanning Wei, quanming yao, and Zhiqiang He. Efficient graph neural architecture search,
2021a. URL https://openreview.net/forum?id=IjIzIOkK2D6.

12

https://openreview.net/forum?id=IjIzIOkK2D6

Under review as a conference paper at ICLR 2023

Huan Zhao, Quanming Yao, and Weiwei Tu. Search to aggregate neighborhood for graph neural
network. In ICDE, 2021b.

Yiren Zhao, Duo Wang, Xitong Gao, Robert Mullins, Pietro Lio, and Mateja Jamnik. Probabilistic
dual network architecture search on graphs. arXiv preprint arXiv:2003.09676, 2020.

Kaixiong Zhou, Qingquan Song, Xiao Huang, and Xia Hu. Auto-gnn: Neural architecture search of
graph neural networks. CoRR, abs/1909.03184, 2019.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

13

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 DATASET DETAILS

In the transductive learning task, node features and edges between nodes in the whole datasets were
known beforehand. We learn from the already labeled training dataset and then predict the labels of
the testing dataset. Three benchmark datasets were used in this setting: CiteSeerr (Giles et al., 1998),
Cora (Kipf & Welling, 2016) and PubMed (Sen et al., 2008). All of the three benchmark datasets
are citation networks. In citation networks, each node represents a work, and each edge shows the
relationship between two papers in terms of citations. The datasets contain bag-of-words features for
each node, and the goal is to categorize papers into various subjects based on the citation. In addition
to the three benchmark datasets, we also employ another dataset Amazon Computers (McAuley et al.,
2015). Amazon Computers is a subset of the Amazon co-purchase graph, where nodes represent
commodities and edges connect them if they are frequently purchased together. Product reviews
are encoded as bag-of-word feature vectors in node features, and class labels are assigned based on
product category.

In the inductive task, several graphs are used as training data, while other completely unseen graphs
are used as validation and test data. For the inductive setting, we use the PPI Hamilton et al. (2017)
dataset as benchmark dataset. The task of PPI dataset is to classify the different protein functions.
It consists of 24 graphs, with each representing a different human tissue. Each node has properties
such as positional gene sets, motif gene sets, and immunological signatures, ant gene ontology sets
as labels. Twenty graphs are chosen for training, two graphs for validation, and the remaining for
testing. For the inductive task, we use Micro-F1 as the evaluation metric.

The used datasets are concluded in Table 5.
Table 5: The Statistics of Datasets

Transductive Inductive
CiteSeer Cora PubMed Computers PPI

#nodes 2708 3327 19717 13752 56944
#edges 5278 4552 44324 245861 818716
#features 1433 3703 500 767 121
#classes 7 6 3 10 50

A.2 PROOF OF THEOREM 3.4 FOR THE DICTIONARY ORTHOGONALITY IN NAC

Theorem A.1. Let the neural weights of each operator in a deep neural network be an atom and stack
them column-wisely, we can guarantee the existence of an orthogonal dictionary.

Proof. Given a dictionary H ∈ Rn×K , where n is the number of nodes and K is the number of
opearators in each layer, we have its mutual coherence computed as follows,

φ = max
hi,hj∈H,i̸=j

∣∣∣∣〈 hi

∥hi∥2
,

hj

∥hj∥2

〉∣∣∣∣ , (8)

where φ ∈ [0, 1], and ⟨·⟩ denotes inner product. Here, each atom, hi, is the weights from an operator.
The minimum of φ is 0 and is attained when there is an orthogonal dictionary, while the maximum is
1 and it attained when there are at least two collinear atoms (columns) in a dictionary.

Let Ei = hi

∥hi∥2
and Ej =

hj

∥hj∥2
, by Central Limit Theorem (Fischer, 2011), we know that

⟨Ei, Ej⟩ /
√
n converges to a normal distribution, i.e.,

⟨Ei, Ej⟩ = lim
n→∞

√
nZ, (9)

where Z is a standard normal distribution. Consider Ē as the mean value of all ⟨Ei, Ej⟩. With
weak law of large numbers (a.k.a. Khinchin’s law) (ter Haar, 1949), for any positive number ε, the
probability that sample average Ē greater than ε converges 0 is written as

lim
n→∞

Pr
(∣∣Ē∣∣ ≥ ε

)
= 0 (10)

14

Under review as a conference paper at ICLR 2023

This implies that the probability that the inner product of Ei and Ej is greater than ε close to zero
when n → ∞. In other words, the probability that Ei and Ej are nearly orthogonal goes to 1 when
their dimensionality is high. Therefore, the coherence of this dictionary reaches the minimum at a
high dimensionality that holds for deep neural networks naturally.

A.3 EXPERIMENTAL IMPLEMENTATION DETAILS

Environment. We implement experiments related to accuracy on Citeseer, Cora, and PubMed using
PyTorch (Paszke et al., 2019) (version 1.10.2+cpu) on a CPU server that has a 48-core Intel Xeon
Platinum 8260L CPU, and experiments on Amazon Computers using PyTorch (version 1.10.2+gpu)
on a GPU server with four NVIDIA 3090 GPUs (24G). Speed-related experiments on Citeseer, Cora,
and PubMed were measured using PyTorch (version 1.4+cpu) on a CPU server with a ten-core Intel
Xeon Platinum 8255C CPU, 40G RAM, and 500G DRAM. Speed-related experiments on Amazon
Computers were measured using PyTorch (version 1.10.2+gpu) on a GPU server with four NVIDIA
3090 GPUs (24G). Operators used in the experiments are from the built-in functions of PyG (version
2.0.2) (Fey & Lenssen, 2019).

Searching configuration. In our experiments we adopt 3-layer GNN as the backbone. Unless
specified, our experiments follow the same settings for searching architectures as SANE (Zhao et al.,
2021b) :

- Architecture optimizer. We use Adam for training the architecture parameters α. We set the
learning rate as 0.0003 and the weight decay as 0.001. Also, the β1 and β2 are fixed as 0.5 and
0.999, respectively. All runs a constant schedule for training, such as 100 epochs.

- Weight optimizer. We use SGD to update models’ parameters, i.e., w. The learning rate and
SGD momentum are given as 0.025 and 0, respectively, where the learning rate has a cosine decay
schedule for 100 epochs. We fix the weight decay value, i.e. set ρ1 = 0.0005.

- Batch size. For transductive tasks, we adopt in-memory datasets, and the batch_size is fixed as
the size of the dataset themselves.

The configuration for retraining phase. At the retraining state, we adopt Adam as the optimizer
and set the scheduler with cosine decay to adjust the learning rate. The total number of epochs is
fixed 400 for all methods for fairness. Please refer to the setting of SANE (Zhao et al., 2021b) and
EGAN (Zhao et al., 2021a) for more details as we follow this in our experiment.

For CiteSeer dataset, we set the initial learning rate as 0.005937 and weight decay as 0.00002007.
The configuration for models is as follows: hidden_size = 512, dropout = 0.5, and using ReLU
as the activation function.

For Cora dataset, we set the initial learning rate as 0.0004150, and weight decay as 0.0001125. In
model, we set hidden_size = 256 , dropout = 0.6, and use ReLU as the activation function.

For PubMed dataset, we set the initial learning rate as 0.002408 and weight decay as 0.00008850.
As for the model, we have hidden_size = 64 and dropout = 0.5, and use ReLU as the activation
function.

For Amazon dataset, we set the initial learning rate as 0.002111 and weight decay as 0.000331.
As for the model, we have hidden_size = 64 and dropout = 0.5, and use elu as the activation
function.

For PPI dataset, we set the initial learning rate as 0.00102 and weight decay as 0. As for the model,
we have hidden_size = 512 and dropout = 0.5, and use Relu as the activation function.

Solving L1 regularization. The L1 regularization, also known as Lasso Regression (Least Absolute
Shrinkage and Selection Operator), adds an absolute value of the magnitude of the coefficient as a
penalty term to the loss function (Ranstam & Cook, 2018). Using the L1 regularization, the coefficient
of the less important feature is usually decreased to zero, sparsifying the parameters. It should be
noted that since ||α||1 is not differentiable at α = 0, the standard gradient descent approach cannot
be used.
Despite the fact that the loss function of the Lasso Regression cannot be differentiated, many
approaches to problems of this kind, such as (Schmidt et al., 2009), have been proposed in the
literature. These methods can be broadly divided into three groups: constrained optimization
methods, unconstrained approximations, and sub-gradient methods.

15

Under review as a conference paper at ICLR 2023

Since subgradient methods are a natural generalization of gradient descent, this type of methods can
be easily implemented in Pytorch’s framework. Lasso Regression can be solved using a variety of
subgradient techniques; details on their implementation can be found in (Fu, 1998) and (Shevade &
Keerthi, 2003).

Computational Complexity Estimation of NAC. The computation of NAC has two major parts: the
forward pass and the backward pass. Given the search space, the computation of the forward is then
fixed and regarded as a constant. Therefore, the computational complexity mainly focuses on the
backward pass in the NAC algorithms.
The main version of our work does not need to update weights, but only to update architectural
parameter α during the training process. Therefore, the algorithmic complexity is as O(T ∗ ∥α∥),
which is a linear function w.r.t α. The dimension of α is often small, which makes the model easy
to scale to large datasets and high search space. When updating weights of the linear layer, the
complexity is estimated as O(T ∗ (∥α∥+ ∥Wo∥)). The dimension of Wo is a constant number, that
equals the number of classes. Therefore, the complexity is almost the same as the main version of
NAC, where the complexity is O(T ∗ ∥α∥+ ∥Wo∥).
When updating weights, similar to DARTS, the complexity is estimated as O(T ∗ (∥α∥ + ∥w∥)).
The dimension of w is often much larger than α, therefore, the complexity is dominated by updating
w, where the complexity is O(T ∗ ∥w∥). Since the dimension of α is much smaller than w, the
complexity of NAC is much less than this type of methods.

Approximate Architecture Gradient. Our proposed theorems imply an optimization problem with
α as the upper-level variable and Wo as the lower-level variable:

α∗ = argmax
α

M (W ∗
o (α),α)

W ∗
o (α) = argmin

Wo

L(α,Wo),
(11)

Following (Liu et al., 2019a), we can adopt a First-order Approximation to avoid the the expensive
inner optimization, which allows us to give the implementation in the algorithm 1.

A.4 ABLATION STUDIES

A.4.1 THE EFFECT OF SPARSITY

Our model uses the hyperparameter ρ to control the sparsity of the architecture parameter α, where a
large sparsity is to enforce more elements to be zero. We investigate the effect of this hyperparameter
by varying its value in a considerably large range, such as [0.001, 10]. We first present the accuracy
of different sparse setting in Fig. 4. We find that the results vary little in a considerably wide range,
this indicates our models are insensitive to sparsity hyperparameter in general.

A.4.2 THE EFFECT OF RANDOM SEEDS

Random seeds often play an importance role in traditional NAS methods as it affects the initialization
significantly. People often report the average or the best results under different random seeds, this may
lead to poor reproducibility. To the best our knowledge, this is for the first we explicitly demonstrate
the effect of random seeds in this subject. We run experiments on several random seeds and report
the results of NAC on Pubmed dataset, as shown in Fig. 5. In particular, we implement multiple
combinations of random seeds and sparsity to observe the variation on performance. Note that we
round the values to integer to fit the table. In all these combinations, we have the average and variance
as 87.32% and 0.9%, respectively. The average performance is comparable to the best results from
all competitive results, which indicates the stability of NAC.

A.4.3 THE EFFECT OF TRAINING ON THE FINAL LINEAR LAYER

Our proposed theorems prove that a GNN with randomly initialized weights can make the final output
as good as a well-trained network when initializing networks with orthogonal weights and updating
the total network using gradient descent. In practice, we find it difficult to determine at what training
epoch the optimal weight parameters can be obtained through training linear layer. We noticed that
most of the time, the untrained weights in the initial state can often already exceed the accuracy that
can be obtained from the weights after multiple epochs of training the final linear layer, as shown in

16

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 910
sparse

50

60

70

80

90

Ac
c

tag = NAC(Orthogonal)

0 1 2 3 4 5 6 7 8 910
sparse

tag = NAC(Normal)

0 1 2 3 4 5 6 7 8 910
sparse

tag = NAC(Uniform)

(a) CiteSeer

0 1 2 3 4 5 6 7 8 910
sparse

60

70

80

90

100

Ac
c

tag = NAC(Orthogonal)

0 1 2 3 4 5 6 7 8 910
sparse

tag = NAC(Normal)

0 1 2 3 4 5 6 7 8 910
sparse

tag = NAC(Uniform)

(b) Cora

0 1 2 3 4 5 6 7 8 910
sparse

60

70

80

90

100

Ac
c

tag = NAC(Orthogonal)

0 1 2 3 4 5 6 7 8 910
sparse

tag = NAC(Normal)

0 1 2 3 4 5 6 7 8 910
sparse

tag = NAC(Uniform)

(c) PubMed

Figure 4: Sensitivity study of the sparsity. Results are with varying sparsity (x-axis) and different
initialization NAC methods (i.e., normal, uniform and orthogonal). The variation is small, showing
the robustness of our model w.r.t the sparsity.

Fig. 6. Therefore, we further omit the training of the final linear layer. It is important to note that this
approximation is based on our proposed theorems in which most of the intermediate layers do not
require training.

A.5 RUNTIME OF EACH METHOD ON A SINGLE GPU SERVER

Apart from the running time on the CPU, we also measure the running time for all methods on a GPU
platform, where we use PyTorch (version 1.10.2+gpu) on a GPU server with four NVIDIA 3090
GPUs (24G), as shown in Table 6. These results are consistent with the ones in Table 1, demonstrating
our advantage in speed.

A.6 PERFORMANCE ON INDUCTIVE TASKS

To validate the effectiveness of our approach to the Inductive task, we performed a set of experiments
on the PPI dataset. The experimental results are concluded in Table 7. The experimental results show
that our proposed method effectively outperforms the best baseline method by about 4% in terms of
Micro-F1 score. Besides, our method achieves an 8× speedup in terms of running time than SANE.
Also, the non-updating scheme of the NAC approach exceeds the NAC-updating method effectively.

17

Under review as a conference paper at ICLR 2023

sp
ar
se

seed

3 1 5 2 0 4

0.
00

1
0.
01

1.
0

10
.0

0.
0

0.
1

88 86 89 87 88 87

88 86 87 87 87 87

88 89 88 88 88 87

88 88 89 87 88 87

85 89 87 88 87 87

85 86 87 87 87 87

86

88

Figure 5: The effects of random seeds of NAC on the accuracy, where x-axis denotes the random
seeds and y-axis denotes the sparsity. NAC performs stably with random seeds.

0 20 40 60 80 100
85

86

87

88

89

Traning Epochs of Linear Layer

A
cc

(%
)

NAC

Figure 6: The effects of training final linear layer of NAC on the accuracy, where x-axis denotes
the training epochs of the final linear layer and y-axis denotes the averaged accuracy of acquired
architecture α using the corresponding weights.

18

Under review as a conference paper at ICLR 2023

Table 6: Timing results of the compared methods and our NAC method in one the same GPU server. NAC
attains superior performance in efficiency (in seconds).

CiteSeer Cora PubMed Computers

RS 196.00 328.00 461.00 900.00
BO 225.00 355.00 462.00 878.00
GraphNAS 6193.00 6207.00 6553.00 8969.00
GraphNAS-WS 947.00 1741.00 2325.00 4343.00
SANE 35.00 41.00 43.00 43.00

NAC 14.00 14.00 15.00 14.00
NAC-updating 42.00 31.00 36.00 42.00

Experiments on the PPI dataset further validate the effectiveness and superiority of our proposed
method.
Table 7: Experimental results on the compared methods: our NAC attains superior performance on PPI dataset
in both Micro-F1 score (%) and efficiency (in hours).

PPI(Micro-F1(%)) PPI(Time(h))

SANE 91.01±6.83 2.50
NAC 95.16±0.03 0.31
NAC-updating 94.47±7.09 4.68

A.7 SEARCHED ARCHITECTURES FOR EACH DATASET OF OUR METHOD

We visualize the searched architectures (top-1) by NAC on different datasets in Fig.7.

• For Citeseer dataset, the searched result is GAT||GCN||Chebconv;
• For Cora dataset, the searched result is GIN||GIN||GCN;
• For Pubmed dataset, the searched result is GCN||GAT_Linear||Geniepath;
• For Amazon Computers dataset, the searched result is Geniepath||GCN||SAGE;
• For PPI dataset, the searched result is Chebconv||GAT_COS||Chebconv;

x

GAT

GCN

Cheb

ŷ

(a) CiteSeer

x

GIN

GIN

GCN

ŷ

(b) Cora

x

GCN

GAT linear

Geniepath

ŷ

(c) PubMed

x

Geniepath

GCN

SAGE

ŷ

(d) Amazon Computers

x

Cheb

GAT cos

Cheb

ŷ

(e) PPI
Figure 7: The searched architectures of NAC on benchmark datasets.

19

	Introduction
	Related work and Preliminaries
	Network Architecture Coding (NAC) for NAS-GNN
	Analysis of No-update Scheme in GNNs
	Architecture Searching via Sparse Coding
	Implementation Details and Complexity Analysis

	Experiments
	Experiment Setup
	Comparison Results
	No-update Scheme at Work
	Ablation Studies
	Analysis of Convergence

	Conclusion
	Appendix
	Dataset Details
	Proof of Theorem 3.4 for the Dictionary Orthogonality in NAC
	Experimental Implementation Details
	Ablation Studies
	The Effect of Sparsity
	The Effect of Random Seeds
	The Effect of Training on The Final Linear Layer

	Runtime of each method on a single GPU Server
	Performance on Inductive Tasks
	Searched Architectures for Each Dataset of our method

