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ABSTRACT

The challenge of learning representations for quantum Hamiltonian systems re-
sides at the intersection of quantum information and learning theory. Viewed
through the lens of learning theory, this task can be regarded as the non-
commutative counterpart to learning graphical models. In our research, we design
and analyze adaptive learning algorithms, including the quantum iterative scaling
algorithm (QIS) and gradient descent (GD), for the Hamiltonian inference prob-
lem using adaptive Gibbs state oracles. Our principal technical contribution cen-
ters on a thorough analysis of their convergence rates, involving the establishment
of both lower and upper bounds on the spectral radius of the Jacobian matrix for
each iteration of these algorithms. Furthermore, we explore quasi-Newton meth-
ods to enhance the performance of both QIS and GD. Specifically, we propose
using Anderson mixing and the L-BFGS method for QIS and GD, respectively.
These quasi-Newton techniques exhibit remarkable efficiency gains, resulting in
orders of magnitude improvements in performance.

1 INTRODUCTION

The Hamiltonian of a quantum system holds a central role in quantum mechanics, governing the
system’s time evolution as dictated by Schrödinger’s equation as well as the system’s Gibbs state
at thermal equilibrium. Consequently, the task of learning the Hamiltonian for a specific quantum
system represents an important research topic in areas including quantum information, quantum
machine learning, and condensed matter physics. Algorithms designed for this learning task are
instrumental in characterizing and verifying quantum many-body systems and quantum computing
devices emerging with the active development of quantum hardware (Arute et al., 2019; Wu et al.,
2021).

In this paper, we consider adaptive learning algorithms designed for what we refer to as the Hamil-
tonian inference problem, a variant of the Hamiltonian learning problem extensively studied in the
literature (Wiebe et al., 2014a;b; Evans et al., 2019; Wang et al., 2017; Anshu et al., 2021; Amin
et al., 2018; Bairey et al., 2019; 2020; Haah et al., 2022). In the Hamiltonian learning problem
discussed in Anshu et al. (2021), for example, the objective is to determine the Hamiltonian de-
scription, denoted as H =

∑
j µjHj , by consuming copies of the Gibbs states ξH associated with

the corresponding Hamiltonian.1 In contrast, the Hamiltonian inference problem involves the com-
putation of the Hamiltonian from the input αj = 〈Hj ⊗ 1, ξH〉 using adaptive access to a Gibbs
state preparation oracle for Hamiltonians chosen by the learning algorithm from a linear family of
Hamiltonians having the same geometric connectivity as H . Two key distinctions set these two
problems apart. Firstly, the Hamiltonian inference problem requires a more powerful oracle capable
of generating the Gibbs state of a Hamiltonian chosen by the algorithm. In contrast, Hamiltonian
learning only uses the Gibbs states for the true Hamiltonian. Secondly, unlike the Hamiltonian learn-
ing problem, the Hamiltonian inference problem does not assume access to the entire Gibbs state
of the true Hamiltonian. For example, it does not have information about quantities like 〈O, ξH〉
for operators not in the span of Hj . This information may become crucial for certain approaches to
Hamiltonian learning (Qi & Ranard, 2019; Bairey et al., 2019; 2020). These two distinctions render
the two problems closely related but non-comparable.

In classical machine learning contexts, a related problem pertains to graphical models, specifically
concerning the learning of Markov random fields (Kindermann & Snell, 1980) or Boltzmann ma-

1The Gibbs state ξH is 1
Z
e−βH where Z is the partition function tr e−βH normalizing the state.
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chines (Ackley et al., 1985). The Hammersley-Clifford theorem establishes that any positive prob-
ability distribution satisfying the local Markov property can be represented as a Gibbs distribu-
tion (Lafferty et al., 2001). Hence, learning the model is equivalent to learning the parametriza-
tion of a classical Hamiltonian defining the Gibbs distribution (Li & Korb, 2020). In recent years,
sample-efficient and time-efficient algorithms with demonstrated effectiveness for specific classi-
cal graphical models have emerged (Ravikumar et al., 2010; Bresler, 2015; Hamilton et al., 2017;
Klivans & Meka, 2017; Vuffray et al., 2016). However, the challenge of extending these classi-
cal techniques into the quantum domain remains non-trivial, with ongoing nascent efforts in this
direction (Anshu et al., 2021; Haah et al., 2022).

Both the Hamiltonian inference problem and Hamiltonian learning problem are closely related to the
maximum entropy problem through the well-known Jaynes’ principle in statistical physics (Jaynes,
1957). Consider a family of Hamiltonian operators H(µ) =

∑m
j=1 µjHj , parameterized by a vector

of real numbers µ = (µj)
m
j=1 where the local terms Hj satisfy the condition ‖Hj‖ ≤ 1. Given

as input the average values α = (αj)
m
j=1, Jaynes’ principle ensures that α uniquely determines the

parameter vector µ in the sense that
〈
Hj , ξH(µ)

〉
= αj has unique solutions for µ where ξH(µ) =

1
Z(µ)e

−βH(µ) is the Gibbs state for Hamiltonian H(µ). Furthermore, the Gibbs state ξH(µ) is the
solution to the maximum entropy problem below in Fig. 1. In this sense, the Hamiltonian inference
problem is essentially the computational version of the Jaynes’ principle that aims to compute µ
given α as input.

Maximum entropy problem

maximize: S(ρ)

subject to: 〈Hj , ρ〉 = αj ,

ρ is a density matrix,

Dual problem

minimize: ln tr exp
(∑

j

λjHj

)
− λ · α

subject to: λj ∈ R.

Figure 1: The maximum entropy problem and its dual problem. Here, S(ρ) = − tr(ρ ln ρ) is the
von Neumann entropy of ρ.

Previous works have mainly focused on the Hamiltonian learning problem. Building upon Jaynes’
principle and several other important techniques, it was established in a recent breakthrough (Anshu
et al., 2021) that the sample complexity of the Hamiltonian learning problem exhibits polynomial
scaling with the number of qubits for quantum systems with geometric locality and a constant tem-
perature. The proof of this result relied on proving the strong convexity of the log-partition function
lnZ(µ), as expressed by the inequality ∇2

µ lnZ(µ) � γI where γ is a positive number. This result
will also be utilized to establish the convergence rate for algorithms considered in our paper for the
Hamiltonian inference problem. In another line of research, the Hamiltonian learning problem was
reduced to a linear equation problem (Bairey et al., 2019; 2020). The method is expected to work un-
der certain conditions of the Hamiltonian, yet a rigorous description of the condition and complexity
analysis for the algorithm to work are still unknown.

Given that the Hamiltonian inference problem is essentially the maximum entropy problem (Fig. 1),
it is a natural attempt to generalize classical learning algorithms for maximum entropy problems to
the quantum setting. Classically, generalized iterative scaling (GIS) and a close variant known as Im-
proved Iterative Scaling (IIS) are the most studied algorithms (Darroch & Ratcliff, 1972; Della Pietra
et al., 1997). These algorithms arise from statistics research and have rigorous analysis in terms of
their convergence proofs. For practical applications, however, quasi-Newton methods are known to
be the state-of-the-art solutions to the maximum entropy inference problem and parameter learning
of graphical models (Malouf, 2002). In this work, we explore quantum generalizations of both the
GIS algorithm and quasi-Newton methods for solving the Hamiltonian inference problem.

1.1 OUR CONTRIBUTIONS

This paper offers three key contributions. Firstly, we present the convergence rate analysis for both
Quantum Iterative Scaling (QIS) and Gradient Descent (GD) algorithms. This is achieved by repre-
senting the iteration’s Jacobian in a concise and explicit formula, which extends a fundamental result
from Liang et al. (2004). Secondly, we establish bounds on the eigenvalues of the Jacobian, proving
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polynomial convergence of both the QIS and GD algorithms. Lastly, we investigate two variants of
quasi-Newton methods that accelerate the iterative processes for QIS and GD, respectively, resulting
in significant performance improvements. In the following, we delve into a detailed discussion of
these three contributions.

1.1.1 EXPLICIT JACOBIAN FORMULA FOR ITERATIONS

The QIS algorithm we consider here is introduced in Ji (2022), and serves as a natural quantum
counterpart to the GIS algorithm. It is presented as a specialized variant of the approximate matrix
Legendre-Bregman projection algorithm, and the convergence proof of QIS was established by us-
ing the auxiliary function method and matrix inequalities (Ji, 2022). However, while the auxiliary
function method is versatile, it falls short in providing a precise assessment of the algorithms’ con-
vergence rates. To solve this problem, we perform a more tailored analysis of the QIS algorithm’s
convergence rate in this paper. In the classical case, a corresponding convergence analysis for the
GIS algorithm is detailed in Liang et al. (2004). This classical analysis leverages Ostrowski’s the-
orem, which bounds the convergence rate of an iterative procedure by the spectral radius of the
Jacobian matrix associated with the iteration. Our contribution extends the classical analysis to the
quantum setting and addresses the difficulty that the gradient of the exponential function for matri-
ces is much more involved than the classical counterpart. We provide a closed-form formula for the
Jacobian of the QIS iteration, generalizing the approach of Liang et al. (2004). The formula has a
concise form 1−P−1Lwhere P is a diagonal matrix whose entries are the mean values of operators
related toHj over the Gibbs state and L is the Hessian of the log-partition function. This connection
to the Hessian matrix L is crucial for the convergence proof.

The maximum entropy problem has a dual problem, which is an unconstrained optimization problem
regarding the log-partition function in Fig. 1. As a comparison, we consider the gradient descent
(GD) algorithm for the dual problem. The Jacobian of the GD update process can be computed as
1− ηL where L is the Hessian of the log-partition function and η is the step size of GD. In a sense,
the Jacobian of the QIS update rule, 1 − P−1L, can be seen as a mechanism to adaptively choose
the step size for different directions. This is the main advantage that QIS has over the GD algorithm.
Numerical simulations in Fig. 2 of Section 6 also show that QIS converges significantly faster than
GD.

1.1.2 UPPER AND LOWER BOUNDS FOR THE JACOBIAN

As our main technical contribution, we analyze the eigenvalues of the Jacobian matrix by establish-
ing both the lower and upper bounds for them.

First, we prove that all eigenvalues of the Jacobian are non-negative. This result is established by
proving an upper bound on the Hessian of the log-partition function L � P . The main difficulty
for proving such a bound arises from the fact that there is no simple explicit formula for the deriva-
tive of the matrix exponential function d

dse
H+sV . Hasting’s quantum belief propagation (Hastings,

2007) expresses the derivative d
dse

H+sV as the anti-commutator
{
eH+sV ,Φ(V )

}
for some quan-

tum channel Φ depending on H + sV and is the main technical tool used in many previous works
for addressing this difficulty. However, this form of quantum belief propagation is not applicable in
our case to prove the inequality because the anti-commutator form only guarantees the Hermitian
property of the derivative, while the inequality requires positivity. We propose a modified quantum
belief propagation operator (see Lemma C.3) to circumvent the problem.

Second, we show that the largest eigenvalue of the Jacobian is bounded away from 1 by making
a connection to the strong positivity of the log-partition function proven in Anshu et al. (2021),
a lower bound on the Hessian of the log-partition function. The upper and lower bounds of the
Jacobian together complete the convergence rate analysis of the QIS algorithm by using Ostrowski’s
theorem (Theorem B.1).

1.1.3 ACCELERATIONS

While the QIS and GD algorithms enjoy provable convergence analysis and are expected to con-
verge in a polynomial number of iterations for local Hamiltonians at constant temperature, it can
exhibit sluggish performance in practical scenarios. For classical learning of model parameters,
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quasi-Newton methods are recommended for solving the maximum entropy inference problems, as
suggested in a systematic comparison of classical maximum entropy inference algorithms performed
in Malouf (2002). Even though the convergence analysis is usually less established, quasi-Newton
methods are usually much faster in practice than iterative scaling and gradient descent algorithms.
In light of this, we investigate two families of quasi-Newton accelerations of the algorithms.

The first family of heuristic acceleration is based on the Anderson mixing method (Anderson, 1965).
The Anderson mixing algorithm is a heuristic method for accelerating slow fixed-point iterative algo-
rithms. It can be seamlessly integrated to work with the QIS algorithm as QIS is indeed a fixed-point
iteration. The Anderson mixing accelerated QIS algorithm (AM-QIS) has exactly the same computa-
tional requirement of the QIS algorithm in terms of the oracle access and the type of measurements
required on the quantum system. The second family is based on the BFGS method (Nocedal &
Wright, 2006; Yuan, 2015) and in particular the limited memory variant, L-BFGS is applied to the
GD algorithm (L-BFGS-GD). In our numerical simulations, we observed that AM-QIS and L-BFGS-
GD have comparable performance, usually faster by orders of magnitude than the standard QIS and
GD algorithms.

We believe that applying such quasi-Newton heuristics is important for quantum optimization algo-
rithms like the QIS algorithm considered here. While quantum computing offers a promising new
paradigm with the potential for substantial speedups in specific problems, the practical construction
of large-scale quantum computers is still in its early stages. Current quantum computing technology
has limitations in terms of scale and suffers from errors. Hence, quantum computing power remains
a scarce and valuable resource. Given this scenario, the careful optimization of resources required
to solve problems on quantum computers emerges as a critical task. The use of Anderson mixing
and BFGS for Hamiltonian inference algorithms and potentially for other fixed-point iterative quan-
tum algorithms represents an attempt to achieve such resource optimization. Notably, this approach
is not unique to quantum computing. In fact, the quasi-Newton method, which developed into an
important optimization heuristics, was initially developed by W. Davidon while working with early
classical computers, which often crashed before producing correct results. In response, he devised
faster heuristics to expedite calculations later known as the first quasi-Newton method! Quantum
computers are currently in its very early stages. They are unstable and prone to errors just like
classical computers in the early days; hence, such heuristic speedups may be critical for numerical
quantum algorithms.

2 PRELIMINARY

In this section, we introduce some notations used in this paper. For two real vectors x, y ∈ Rm,
we define x · y as

∑m
i=1 xiyi. We sometimes extend this notation to the case when y is a vector of

matrices and write, for example, λ · F to mean the summation
∑

j λjFj . For matrices A,B, define
〈A,B〉 = tr(A†B). We use A � B or B � A to mean A − B is a positive semidefinite matrix. A
density matrix ρ is a positive semidefinite matrix of unit trace. The set of density matrices on Hilbert
space X is denoted D(X ).

Suppose X is a finite-dimensional Hilbert space and f is a real convex function. We use ∆ to denote
the domain dom f of f , the interval on which f takes well-defined finite values. Then f extends
to all Hermitian operators in Herm∆(X ) as f(X) =

∑
k f(λk)Πk where X =

∑
k λkΠk is the

spectral decomposition of X . Denote the interior and boundary of ∆ as ∆int and ∆bd = ∆ \∆int

respectively. It is easy to see that the domain of matrix function f is Herm∆(X ), and the interior of
the domain is Herm∆int

(X ).

Given convex function f as above, the Bregman divergence for matrices is Df (X,Y ) = tr(f(X)−
f(Y ) − f ′(Y )(X − Y )), where X ∈ Herm∆(X ) and Y ∈ Herm∆int

(X ). An important case
we focus on in this paper is f(x) = x lnx − x. In this case, the matrix Bregman divergence
becomes the Kullback-Leibler divergence D(X,Y ) = tr(X lnX − X lnY − X + Y ) defined
for non-normalized matrices X,Y . When X,Y are positive semidefinite matrices of trace 1, it
recovers the Kullback-Leibler relative entropy D(X,Y ) = tr(X lnX −X lnY ). We will need the
matrix Bregman-Legendre projection L(Y,Λ) and Bregman-Legendre conjugate ℓ(Y,Λ) for convex
function f(x) = x lnx−x defined as L(Y,Λ) = exp(lnY +Λ), ℓ(Y,Λ) = tr exp(ln Y +Λ)−trY .
For Y ∝ 1, ℓ(Y,Λ) = tr exp(Λ) and we omit Y and write it as ℓ(Λ).
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In this paper, we consider spin Hamiltonians only and write them as H =
∑m

j=1Hj where Hj’s are
local terms acting on at most constant number of neighboring qubits according to certain interaction
geometry. For example, a ZZ term acting on the first two qubits is Z ⊗ Z ⊗

(
1⊗n−2

)
for Pauli

operator Z =

(
1 0
0 −1

)
. We often use ξH = 1

Z e
−βH to represent the Gibbs state of the Hamilto-

nian H for inverse temperature β specified in the context or β = 1 otherwise. Here Z = tr e−βH is
the partition function normalizing the state to have trace 1 and plays an important role in statistical
physics and also in our work.

3 QUANTUM ITERATIVE SCALING

This section presents a version of the Quantum Iterative Scaling (QIS) algorithm introduced in Ji
(2022) and discusses its applications in the Hamiltonian inference problem.

We first introduce some notations used in the following discussions. For a given list of Hermitian
matrices F = (Fj)

m
j=1, define the linear family of quantum states L (ρ0) as

{
ρ � 0 | 〈Fj , ρ〉 =

〈Fj , ρ0〉
}

. Define the exponential family E (σ0) as
{

1
Z exp(lnσ0 + λ · F )

}
. We introduce the new

notation Fj playing the role of Hj in the previous discussion as we will need certain normalization
conditions. In the end, we will choose Fj =

Hj+1

2m so Fj is a scaled linear shift of Hj such that
Fj � 0 and

∑
j Fj � 1.

We note that, in Ji (2022), the algorithms are designed for non-normalized matrices and, therefore,
there is no need to explicitly normalize Y (t) in the update. Here, we perform explicit normalization
to work with normalized quantum states and their von Neumann entropy. For Y (t) = exp(ln σ0+λ ·
F ), the normalization is equivalent to a linear update in the summation of the exponential function
Y (t) = exp(ln σ0 + λ · F − lnZ) where Z = trY (t). Hence, we have the following two methods
to handle the normalization. The first is to let the algorithm to find the normalization implicitly, and
this would require that 1 is in the span of the Fj’s. This will be the case if the assumption on Fj is
that

∑
j Fj = 1. The second is to perform the normalization explicitly as we did in the algorithm.

This approach is advantageous as it works for all Fj’s satisfying
∑

j Fj � 1 even if 1 is not in the
span of Fj’s.

An important special case of the algorithm is when σ0 = 1/d and D(ρ, σ0) = ln(d)− S(ρ) where
d is the dimension. Then, the minimization over the linear family is now exactly the maximum
entropy problem as in Fig. 1 with Hj = Fj , αj = 〈Fj , ρ0〉, and λj = −βµj . When all the operators
Fj’s are diagonal in the computational basis, the QIS algorithm recovers the GIS algorithm (see e.g.
Theorem 5.2 of Csiszár & Shields (2004)).

Algorithm 1 Quantum iterative scaling algorithm.
Require: ρ0, σ0 ∈ D(X ) such that D(ρ0, σ0) <∞.
Input: F = (F1, F2, . . . , Fk) ∈ Pos(X )

k and
∑k

j=1 Fj � 1.
Output: λ(1), λ(2), · · · such that

lim
t→∞

D
(
ρ0,L(σ0, λ(t) · F )

)
= inf

λ∈Rk
D
(
ρ0,L(σ0, λ · F )

)
.

1: Initialize λ(1) = (0, 0, . . . , 0).
2: for t = 1, 2, . . . , do
3: Compute Y (t) = L(σ0, λ(t) · F ).
4: for j = 1, 2, . . . , k do
5: δ

(t)
j = ln 〈Fj , ρ0〉 − ln

〈
Fj , Y

(t)/ trY (t)
〉
.

6: end for
7: Update parameters λ(t+1) = λ(t) + δ(t).
8: end for

To give some intuition behind the QIS algorithm, we define ξ(t) = Y (t)/ trY (t) and note that the
update in the QIS algorithm is simply δj = ln 〈Fj , ρ0〉 − ln

〈
Fj , ξ

(t)
〉
, which is zero when the
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linear family constraint 〈Fj , ρ〉 = 〈Fj , ρ0〉 is satisfied by ρ = ξ(t). In this case, the algorithm stops
updating λ in the j-th direction as expected. Otherwise, if the difference between the current mean
value

〈
Fj , ξ

(t)
〉

and the target value 〈Fj , ρ0〉 is big, so will be the update δj . The algorithm is, in this
sense, adaptive when compared to algorithms like multiplicative weight update algorithms (Arora
et al., 2012).

The maximum entropy problem has dual program in Fig. 1 which is an unconstrained problem.
Hence, it is also attractive to work with the dual using the gradient descent method (or corresponding
quasi-Newton methods discussed later in the paper). The gradient of the dual objective function is
∂

∂λj

(
ln ℓ(λ · F ) − λ · α

)
= 〈Fj , ξλ·F 〉 − αj , where ξλ·F is the Gibbs state for Hamiltonian λ · F .

Therefore, in gradient descent, the update in each step is η
(
αj −〈Fj , ξλ·F 〉

)
, where η is the learning

rate. This leads to the gradient descent algorithm in Algorithm 2.

Algorithm 2 Gradient descent algorithm for Kullback-Leibler divergence minimization.
Require: ρ0, σ0 ∈ D(X ) such that D(ρ0, σ0) <∞.
Input: F = (F1, F2, . . . , Fk) ∈ Pos(X )

k and
∑k

j=1 Fj � 1.
Output: λ(1), λ(2), · · · such that

lim
t→∞

D
(
ρ0,L(σ0, λ(t) · F )

)
= inf

λ∈Rk
D
(
ρ0,L(σ0, λ · F )

)
.

1: Initialize λ(1) = (0, 0, . . . , 0).
2: for t = 1, 2, . . . , do
3: Compute Y (t) = L(σ0, λ(t) · F ).
4: for j = 1, 2, . . . , k do
5: δ

(t)
j = η 〈Fj , ρ0〉 − η

〈
Fj , Y

(t)/ trY (t)
〉
.

6: end for
7: Update parameters λ(t+1) = λ(t) + δ(t).
8: end for

The QIS algorithm generally outperforms the bare-bones GD algorithm. Consider the update of the
QIS algorithm lnαj − ln 〈Fj , ξλ·F 〉, and the update of the GD algorithm η

(
αj − 〈Fj , ξλ·F 〉

)
, For

αj and 〈Fj , ξλ·F 〉 in (0, 1], the QIS update is more aggressive than the dual gradient descent for
learning rate η ≤ 1 while still guarantees the convergence. This effect is more evident when the
two numbers αj and 〈Fj , ξλ·F 〉 are small, which holds in most applications. We will later see that
choosing an appropriate learning rate will improve the performance of the GD algorithm considered
in Section 4, but it is still less efficient compared to QIS.

4 CONVERGENCE RATE

In this section, we analyze the geometric convergence rate for the QIS algorithm in Algorithm 1 for
the case when σ0 = 1/d. As a comparison, we will also analyze the convergence rate of the GD
algorithm (Algorithm 2).

We will come across several matrices which are defined here for later references. For λ and F ,

we define the corresponding Gibbs state as ξ =
exp(λ · F )
tr exp(λ · F )

, and for an operator O, we use

〈O〉 = tr(Oξ) to mean the average value of O with respect to ξ. Define diagonal matrix P =∑
j 〈Fj〉 |j〉〈j |. Finally, define L to be the Hessian of the log-partition function ln tr exp(λ · F )

with λ as the variables.

We have the following two results regarding the QIS and GD algorithms respectively, proved in
Appendix B.

Theorem 4.1. The Jacobian of the iterative update map λ(t) 7→ λ(t+1) of Algorithm 1 for σ0 = 1/d
is given by 1− P−1L for P and L defined above with λ = λ(t).

Theorem 4.2. The Jacobian of the iterative update map λ(t) 7→ λ(t+1) of Algorithm 2 is given by
1− ηL where L is the Hessian of the log-partition function defined above.
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By the Ostrowski theorem stated in Theorem B.1, the geometric convergence rate of the QIS algo-
rithm is, therefore, governed by the spectral radius of the Jacobian 1 − P−1L. Hence, we need to
prove bounds on the spectral radius. In Anshu et al. (2021), a non-trivial lower bound on L is proved
(see Theorem C.2), giving an upper bound of the spectral radius. To prove the lower bound, will
need the following result proved in Appendix C.
Theorem 4.3. Let P and L be matrices defined above. We have L � P .

We are now able to state the convergence rate of the QIS and GD algorithms.
Theorem 4.4. For Hamiltonian H =

∑m
j=1 µjHj where conditions of Theorem C.2 are satisfied

and Hj are traceless terms with norm ‖Hj‖ ≤ 1, the QIS algorithm with Fj =
1+Hj

2m and the GD
algorithm with the same choices of Fj and η = m solve the Hamiltonian inference problem with
geometric convergence rate 1− Ω

(
1

m2

)
.

Proof of Theorem 4.4. We consider the QIS algorithm first, which is the more difficult case. By
Theorem 4.1, JQIS = 1− P−1L. Hence, we can bound the spectral radius as

r
(
JQIS

)
= r

(
1− P−1L

)
= r

(
1− L1/2P−1L1/2

)
=

∥∥∥1− L1/2P−1L1/2
∥∥∥

Here, the second line follows from the fact thatAB andBA have the same set of eigenvalues and the
third step follows as L1/2P−1L1/2 is Hermitian. By definition, P is a diagonal matrix whose (j, j)-
th entry is 〈Fj , ξ〉 =

〈
1+Hj

2m , ξ
〉
≤ 1/m. Theorem 4.3 then implies that 1− P−1L has eigenvalues

in [0, 1] and
r
(
JQIS

)
= 1− λmin(L

1/2P−1L1/2) ≤ 1−mλmin(L). (1)

The Hamiltonian is H(µ) =
∑

j µj(2mFj − 1). Define λj = 2mµj , and H̃(λ) =
∑

j λjFj . We
have H̃(λ) = H(µ) + µΣ1 where µΣ =

∑
j µj =

∑
j λj/(2m). We compute

Lj,k =
∂2 ln tr exp(λ · F )

∂λj ∂λk

=
∂2 ln tr exp(λ · F )

∂µj ∂µk

∂µj

∂λj

∂µk

∂λk

=
1

4m2

∂2
(
ln tr exp(H(µ)) +

∑
j µj

)
∂µj ∂µk

=
1

4m2
∇2

µ ln tr exp(H(µ)).

By Theorem C.2, we have λmin(L) ≥ Ω
(

1
m3

)
. Together with Eq. (1), this completes the proof

using Theorem B.1.

By a similar calculation, we can prove the claim for the GD algorithm.

The above analysis shows that the QIS algorithm has a better geometric convergence rate even if we
set η = m in the GD algorithm. Numerical simulations in Section 6 also confirm this observation.
In some sense, the QIS algorithm is an adaptive gradient descent that can automatically choose the
appropriate learning rate for different dimensions as 〈Fj〉 may differ for each j.

5 ACCELERATION BY QUASI-NEWTON METHODS

The convergence analysis in Section 4 is of theoretical interest but polynomial convergence proved
there is usually not enough for practical applications. In this section, we explore the application
of quasi-Newton methods, which can significantly improve the efficiency of the adaptive learning
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algorithms considered in Section 3. In particular, we study two families of methods, the Anderson
mixing (Anderson, 1965) method and the BFGS method (Nocedal & Wright, 2006).

Anderson mixing (abbreviated as AM in the following) is a widely used method employed in nu-
merical and computational mathematics to accelerate the convergence of fixed-point iterations. It
particularly excels in scenarios where traditional iterative methods may converge slowly or strug-
gle to find solutions efficiently. The essence of the Anderson mixing algorithm lies in its ability to
dynamically combine and update a finite set of historical iterates. It adaptively selects a linear com-
bination of these historical iterates, leveraging the past information to guide the algorithm toward
convergence more effectively. This technique finds applications in various scientific and engineer-
ing domains, including quantum chemistry (Garza & Scuseria, 2012), machine learning (Sun et al.,
2021), and solving complex systems of equations (Brezinski et al., 2022), where it often delivers
substantial acceleration in computational tasks.

Applying the Anderson mixing method to the Hamiltonian inference problem, specifically to the
Quantum Iterative Scaling (QIS) algorithm, is straightforward due to the inherent nature of QIS
as a fixed-point iterative update algorithm. The Anderson-accelerated QIS (AM-QIS) algorithm
combines both the QIS iterative step and simple classical processing, so it has exactly the same
requirement as the standard QIS algorithm for the oracle access to the Gibbs state or the average
values. Since the fixed-point map g(x) in QIS iteration is a contraction, we can set the mixing
parameter βt ≡ 1 defined in Appendix D and the convergence of AM-QIS follows from the results
in Toth & Kelley (2015). We also use the Barzilai-Borwein (BB) method (Barzilai & Borwein, 1988)
for choosing the mixing parameter which turns out to be effective and provides further accelerations.

The BFGS method and the limited memory variant L-BFGS are the most influential among many
quasi-Newton methods. They are the recommended choice for learning graphical models in the
classical machine learning literature Malouf (2002). The BFGS method works with an unconstrained
optimization problem minx∈Rn f(x). The update in the BFGS algorithm has the form xk+1 =
xk − ηkHk∇f(xk), where ηk is the step size which can usually be found by line search, and Hk

is a matrix that is updated iteratively during the execution of the algorithm. We consider both a
fixed choice or the BB method for the initial approximation of the inverse Hessian H0 for a fair
comparison with AM. The application of BFGS methods to our problem is also straightforward as
the dual problem is an unconstrained optimization problem.

0 250 500 750 1000 1250 1500 1750 2000
Iterations

10 10

10 8

10 6

10 4

Lo
ss

QIS
GD
QIS_complete
GD_complete

Figure 2: Comparison of QIS and GD algorithms.
The loss in measured by the error in the objective
function of the maximum entropy problem.

AM and BFGS have different application sce-
narios. AM is an acceleration method for solv-
ing fixed-point problems and the approximation
Gt of the inverse Jacobian matrix is generally
not symmetric. In contrast, BFGS is an op-
timization method and constructs a symmetric
approximation Ht for the inverse Hessian ma-
trix. Since an optimization problem can usu-
ally be recast as a fixed-point problem, AM
also applies to solving optimization problems.
However, BFGS may be more efficient in some
cases due to the maintained symmetry structure
compared with AM.

6 EXPERIMENTS

We conducted numerical simulations to assess
the comparative efficiency of four approaches:
the standard QIS, the standard GD algorithm,
AM-QIS, and the L-BFGS-GD algorithm ap-
plied to the dual problem. In the experimental
setup, we adopted a method involving generating random Gibbs states for random local Hamiltoni-
ans, represented as H =

∑
j λjHj . Here, the local terms, denoted as Hj , consist of tensor products

of local Pauli operators, and the λj parameters are the values to be learned. These Hamiltonians
were then utilized to create Gibbs states ξH = 1

Z e
−βH . We feed the Gibbs states and their cor-

responding local average values αj = 〈Hj ⊗ 1, ξH〉 to the algorithms. In this way, we know the
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ground truth about the values of λj’s and the objective value of the optimization programs in Fig. 1,
and we choose to evaluate the algorithms’ performance by the error compared with the true objective
value.

The results are summarized in Figs. 2 and 3. In Fig. 2, we compare the performance of QIS and
GD algorithms. We can see that QIS algorithm is more efficient than GD algorithm regardless of
whether we ensure the completeness

∑
Fj = 1 or not. In Fig. 3, we compare the performance

of AM-QIS and L-BFGS-GD, both with and without the Barzilai-Borwein method. We can see
that AM-QIS and L-BFGS-GD are comparable in general. The standard QIS algorithm typically
required approximately 1500 iterations to achieve an error level of 10−6 ∼ 10−8 (measured using
the objective function of the maximum entropy problem). In contrast, the AM-QIS and L-BFGS
algorithms achieved the same accuracy with only about 8 (or 20) iterations with (or without) BB,
showcasing a remarkable speedup of two orders of magnitude. The efficiency of the AM-QIS algo-
rithm is stable and does not change much when the Hamiltonian is normalized and completed, while
the efficiency of L-BFGS-GD algorithm (in Fig. 3a) is observed to be sensitive in this regard.
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10 14

10 12

10 10

10 8

10 6

10 4

10 2

Lo
ss
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L-BFGS-GD
AM-QIS_complete
L-BFGS-GD_complete

(a) With BB method.

0 5 10 15 20 25 30 35 40
Iterations
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10 10
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L-BFGS-GD
AM-QIS_complete
L-BFGS-GD_complete

(b) Without BB method.

Figure 3: Comparisons of the AM-QIS and L-BFGS-GD algorithms. The Fig. 3a on the left uses the
Barzilai-Borwein method to choose the step size and Fig. 3b on the right uses fixed step size. The
dotted (red) and dashed (green) lines represent the performance of the algorithms when the input
Hamiltonian terms are complete satisfying

∑
j Fj = 1.

7 DISCUSSIONS

In this study, we considered adaptive learning algorithms for the Hamiltonian inference problem.
We examined the convergence of the quantum iterative scaling algorithm (QIS) and the gradient
descent (GD) algorithm for the dual problem. Furthermore, two quasi-Newton methods AM-QIS
and F-BFGS-GD are proposed.

The QIS algorithm iteratively updates the Hamiltonian parameters adaptively by comparing〈
Hj ⊗ 1, ξH(λ)

〉
and the target value αj . Therefore it requires an oracle to be able to prepare

ξH(λ) for the trial parameter λ. The use of Gibbs state oracle is generally a computationally de-
manding assumption, but if the physical system has exponentially decaying correlation and satisfy
certain Markov property, the preparation of the Gibbs state or its local observations could be effi-
cient (Brandão & Kastoryano, 2019; Kuwahara et al., 2020). Furthermore, the issue may be solved
or mitigated by combining quantum belief propagation algorithms proposed in Hastings (2007);
Leifer & Poulin (2008); Poulin & Hastings (2011) which present possible ways of computing the
value

〈
Hj ⊗ 1, ξH(λ)

〉
approximately without generating the full Gibbs state, thereby removing the

use of the adaptive Gibbs oracle. We leave the exploration of this possibility as future work.

In the proof of the upper bound of the Hessian of the log-partition function, we developed a modified
quantum belief propagation technique, which may be of independent interest. It is an interesting
problem to find more applications of this new tool.
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A PRIME AND DUAL DIVERGENCE MINIMIZATION PROBLEMS

The primal and dual formulation of the maximum entropy program in Fig. 1 is a special case of
the following duality result between two minimization problems of the Kullback-Leibler divergence
given in Fig. 4. The duality theorem of Ji (2022), or Jaynes’ principle, states that the following two
problems have the same minimizer which is the unique intersection point of the linear family L (ρ0)
and exponential family cl (E (σ0)) defined in Section 3. When σ0 is the maximally mixed state
1/d, the linear family minimization is the maximum entropy problem and the exponential family
minimization is a dual program in Fig. 1.

Linear family minimization

minimize: D(X,σ0)

subject to: X ∈ L (ρ0).

Exponential family minimization

minimize: D(ρ0, Y )

subject to: Y ∈ E (σ0).

Figure 4: Two optimization problems of the Kullback-Leibler divergence that are dual to each other.

B PROOFS FOR CONVERGENCE RATE

This section proves the explicit formulas for the Jacobian matrix of the iterations in QIS and GD
algorithms.

Proof of Theorem 4.1. We first prove two identities about the partial derivative of the function ℓ and
its natural logarithm.

∂

∂λj′
ℓ(λ · F ) = 〈Fj′ , exp(λ · F )〉 , (2)

∂

∂λj′
ln ℓ(λ · F ) = 〈Fj′ , ξ〉 , (3)

for ξ defined as

ξ =
exp(λ · F )
tr exp(λ · F )

. (4)

In fact, we have

∂

∂λj′
ℓ(λ · F ) = ∂

∂λj′
tr exp(λ · F )

= tr

∞∑
k=0

∂

∂λj′

(λ · F )k

k!

= tr

∞∑
k=1

k−1∑
j=0

(λ · F )k−j−1
Fj′(λ · F )j

k!

=
〈
Fj′ ,

∞∑
k=1

(λ · F )k−1

(k − 1)!

〉
= 〈Fj′ , exp(λ · F )〉 ,

where the second line follows from the Taylor expansion of the matrix expansion and the fourth line
is by the cyclic property of trace. This proves Eq. (2). Similarly, we have

∂

∂λj′
ln ℓ(λ · F ) = 1

ℓ(λ · F )
∂

∂λj′
ℓ(λ · F )

=
1

tr exp(λ · F )
〈Fj′ , exp(λ · F )〉

= 〈Fj′ , ξ〉 ,

13



Under review as a conference paper at ICLR 2024

where the second line follows from Eq. (2). This completes the proof of Eq. (3).

Now, for j = 1, 2, . . . , k, the update in the algorithm is

δj = ln 〈Fj , ρ0〉 − ln
〈
Fj , Y

(t)/ trY (t)
〉
.

Hence, for j, j′ ∈ {1, 2, . . . , k} and ξ defined in Eq. (4),

∂δj
∂λj′

=− 1

〈Fj , ξ〉
∂ 〈Fj , ξ〉
∂λj′

=− 1

〈Fj , ξ〉
∂

∂λj′

∂

∂λj
ln ℓ(λ · F )

=− P−1
j,j Lj,j′ .

For the second line, we used Eq. (3). Equivalently, the Jacobian matrix( ∂δj
∂λj′

)
j,j′

= −P−1L,

for matrices P and L defined in the statement of the theorem. The Jacobian JQIS of the QIS iteration
can be written as

JQIS = 1+
( ∂δj
∂λj′

)
j,j′

= 1− P−1L.

This completes the proof the theorem.

Proof of Theorem 4.2. In an iteration of the algorithm, we have

δj = η 〈Fj , ρ0〉 − η
〈
Fj , Y

(t)/ trY (t)
〉
.

The Jacobian JGD of each iteration has (j, j′) entry

1− η
∂

∂λj′
〈Fj , ξ〉

=1− η
∂

∂λj′

∂

∂λj
ln tr exp(λ · F )

=1− ηL.

This completes the proof.

We recall a theorem of Ostrowski which we will use to prove the convergence rate by bounding the
spectral radius of a Jacobian matrix.

Theorem B.1 (Ostrowski’s theorem (Ostrowski, 1966, Chapter 22)). Assume function f is differen-
tiable at the neighborhood of a fixed point ζ. For an iterative algorithm ζt+1 = f(ζt). A sufficient
condition for ζ to be a point of attraction is the spectral radius r(Jf ) < 1. Moreover, if ζ is an
attraction point, the geometric convergence rate of the iterative algorithm is given by

lim sup
t→∞

‖ζt+1 − ζ‖
‖ζt − ζ‖

= r(Jf ).

C BOUNDS ON THE HESSIAN MATRIX

In this section, we prove the upper bound on the Hessian of the log-partition function.

The proof uses a modified quantum belief propagation. The idea of quantum belief propagation was
studied in Hastings (2007) and we give a version of it in the following lemma. It specifies how the
matrix exponential function changes with perturbations of the matrix.
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Lemma C.1 (Quantum Belief Propagation (Hastings, 2007)). Suppose fβ(t) is the function whose
Fourier transform is

f̃β(ω) =
tanh(βω/2)

βω/2

and H(s) = H + sV for s ∈ [0, 1]. Define the quantum belief propagation operator

ΦH(s)(V ) =

∫ ∞

−∞
dt fβ(t) e

−iH(s)tV eiH(s)t.

Then
d

ds
exp(βH(s)) =

β

2

{
exp(βH(s)),ΦH(s)(V )

}
.

Here, we introduce a modified version of it to prove that if the perturbation is positive semidefinite,
then so is the derivative of the matrix exponential function. That is, the modified quantum belief
propagation expresses the derivative d

ds exp(βH(s)) so that its positivity is obvious for positive V .

The proof uses the Bochner’s theorem and we give a simple version of it which suffices for our
purpose.
Lemma C.2 (Bochner’s Theorem). A continuous function f(x) on the real line with f(0) = 1 is
positive-definite if and only if its Fourier transform is a probability measure on R.
Lemma C.3. Suppose gβ is a function whose Fourier transform is

g̃β(ω) =
eβω/2 − e−βω/2

βω

and H(s) = H + sV for s ∈ [0, 1]. Define the modified quantum belief propagation operator

ΨH(s)(V ) =

∫ ∞

−∞
dt gβ(t) e

−iH(s)tV eiH(s)t.

Then
d

ds
exp(βH(s)) = β exp

(βH(s)

2

)
ΨH(s)(V ) exp

(βH(s)

2

)
. (5)

Furthermore, gβ(t) is a probability density function over the real line and ΨH(s) is a completely
positive trace-preserving map.

Proof of Lemma C.3. Consider the spectrum decomposition of H(s) as H(s) =
∑

j λj |ψj 〉〈ψj |.

Using Duhamel’s formula, we have

d

ds
exp(βH(s)) =

∫ 1

0

dt etβH(s)
( d

ds
βH(s)

)
e(1−t)βH(s)

=β

∫ 1

0

dt etβH(s)V e(1−t)βH(s).

Hence, the (j, j′)-th entry of d
ds exp(βH(s)) in the basis of {|ψj 〉} is〈

ψj

∣∣ d

ds
exp(βH(s))

∣∣ψj′
〉
=βVj,j′

∫ 1

0

dt etβλj+(1−t)βλj′

=


eβλj − eβλj′

λj − λj′
Vj,j′ if λj 6= λj′

βeβλjVj,j′ o.w.

(6)

where Vj,j′ = 〈ψj |V |ψj′ 〉.
Now we simplify the right-hand side of Eq. (5). By the definition of ΨH(s)(V ), the (j, j′)-th entry
of ΨH(s)(V ) in the basis {|ψj 〉} is∫ ∞

−∞
dt gβ(t) e

−iλjtVj,j′e
iλj′ t = g̃β(λj − λj′)Vj,j′ .
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Hence, the (j, j′)-th matrix entry of right-hand side in the basis {|ψj 〉} can be written as

β eβ(λj+λj′ )/2 g̃β(λj − λj′)Vj,j′ =


eβλj − eβλj′

λj − λj′
Vj,j′ if λ 6= λj′

βeβλjVj,j′ o.w.

which is the same as the (j, j′)-th entry of the left-hand side by Eq. (6). This completes the proof of
Eq. (5). The fact that gβ(t) is a probability density function and the CPTP property of ΨH(s) follow
from the Bochner’s theorem applied to gβ and g̃β and the fact that g̃β(0) = 1.

To prove the bound in Theorem 4.3, we need two related results proved in Theorem C.1
and Lemma C.4 which we now prove.

Define matrices

∆ =
∑
j

∂ℓ(λ · F )
∂λj

|j〉〈j |,

Λ =
∑
j,j′

∂2ℓ(λ · F )
∂λj ∂λj′

|j〉〈j′|.

∆ is a diagonal matrix and Λ is the Hessian of the partition function Z = ℓ(λ · F ) = tr exp(λ · F ).
Theorem C.1. For Λ and ∆ defined above, we have Λ � ∆.

Proof of Theorem C.1. Choose H = lnY0 + λ · F , β = 1, s = 0, and V = Fj′ in Lemma C.3, we
have

Λj,j′ =

〈
Fj ,

∂

∂λj′
exp(H)

〉
=

〈
Fj , e

H/2 ΨH(Fj′) e
H/2

〉
≥ 0.

That is, all entries of matrix Λ (in the basis
(
|ψj 〉

)
) are non-negative.

Next, we prove that ∆− Λ is a diagonally dominant matrix. For all j′, the sum of the j′-th column
is

∆j′, j′ −
∑
j

Λj, j′ =
〈
Fj′ , e

H
〉
−

〈∑
j

Fj , e
H/2ΨH(Fj′)e

H/2

〉
≥

〈
Fj′ , e

H
〉
−
〈
ΨH(Fj′), e

H
〉

=
〈
Fj′ , e

H
〉
−
〈∫ ∞

−∞
dt g1(t)e

−iHtFj′e
iHt, eH

〉
=

〈
Fj′ , e

H
〉
−

∫ ∞

−∞
dtg1(t) Tr

(
e−iHtFj′e

iHteH
)

=
〈
Fj′ , e

H
〉
−
∫ ∞

−∞
dtg1(t) Tr

(
Fj′e

H
)

=
〈
Fj′ , e

H
〉
−
〈
Fj′ , e

H
〉
= 0.

In the above, the inequality follows from
∑

j Fj � 1, the positivity of eH/2ΨH(Fj)e
H/2 and the

cyclic property of the trace. The fifth line uses the commutativity of eiHt and eH and the cyclic
property of the trace. The last line follows from the fact that g1(t) is the probability density function
by the Bochner’s theorem.

The claim in the theorem now follows by the well-known matrix theory result that diagonally domi-
nant matrices are positive semidefinite.

Lemma C.4. For matrices ∆,Λ defined above and Q =
∑

j,j′ 〈Fj〉 〈Fj′〉 |j〉〈j′|, we have the
following identity

Λ = Z(L+Q).
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Proof. By definition, we have

Lj,j′ =
∂2

∂λj ∂λj′
lnZ

=
1

Z2

(
Z

∂2Z

∂λj ∂λj′
− ∂Z

∂λj

∂Z

∂λj′

)
=

1

Z
Λj,j′ − 〈Fj〉 〈Fj′〉 ,

or equivalently Λ = Z(L+Q) in the matrix form.

We are now ready to prove the main result stated in Theorem 4.3.

Proof of Theorem 4.3. By Lemma C.4, we have

L =
Λ

Z
−Q.

Hence, Theorem C.1 implies that

L =
Λ

Z
−Q � ∆

Z
−Q = P −Q.

As Q is outer product of vector
∑

j 〈Fj〉 |j〉, it is a rank-1 and positive semidefinite matrix. There-
fore, we have

L � P −Q � P

which completes the proof.

Finally, we will also need a lower bound on L, for which we recall a result about the strong convexity
of the log-partition function from Anshu et al. (2021).
Theorem C.2 (Theorem 6 of Anshu et al. (2021)). Let H(µ) =

∑m
j=1 µjHj be an ℓ-local Hamilto-

nian over a finite dimension lattice. For a given inverse temperature β, there are constants c, c′ > 3
depending on the geometric property of the lattice such that

∇2
µ ln tr

(
e−βH(µ)

)
� e−O(βc)βc′

m
1.

D DISCUSSIONS ON QUASI-NEWTON METHODS

In this section, we give some details of the Anderson mixing method and L-BFGS method.

The algorithm interpolates history information in order to speed up a fixed-point iteration. More
concretely, suppose g : Rd → Rd is a contraction and we are interested in finding the fix-point x =
g(x). The standard fix-point iterative algorithm is to compute xt+1 = g

(
xt
)

for t = 0, 1, 2, . . ., until
a stopping criteria is met. Anderson mixing accelerates the iteration by using the history information
of the previous iterative steps. A relatively small history size m ≥ 0 is chosen and we define mt =
min{m, t}. In our numerical implementation, we use m = 10. Define the residual rt = g

(
xt
)
− xt

and two matrices Xt, Rt ∈ Rd×m storing the historical information

Xt =
(
∆xt−mt

,∆xt−mt+1, . . . ,∆xt−1

)
,

Rt =
(
∆rt−mt ,∆rt−mt+1, . . . ,∆rt−1

)
.

Then, the Anderson accelerated iteration can be written succinctly as xt+1 = xt +Gtrt where

Gt = βtI − (Xt + βtRt)
(
RT

t Rt

)−1
RT

t .

Here, βt is the mixing parameter.

It is pointed out in Fang & Saad (2009) that Gt approximates the inverse of the Jacobian of g and
Anderson mixing method can be thought of as a quasi-Newton method satisfying multi-secant equa-
tions. We note that there is a matrix inverse in the above formula for Gt which can be implemented
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using Moore-Penrose pseudo-inverse. For stability and efficiency concerns, we found that the AM
algorithms have the best performance in our numerical simulations when using a relative condition
number of 1e−7 in the pseudo-inverse, a cutoff threshold that sets small singular values of the ma-
trix to zero. This is easily implemented by setting the rcond parameter of the pinv function in
numpy.linalg package for Python implementations.

The BFGS method is one of the most popular quasi-Newton methods that can be applied to uncon-
strained optimization problems minx∈Rn f(x). It is also known as the variable metric algorithm as
first proposed by Davidon (Davidon, 1991; Yuan, 2015). The algorithm maintains the approximate
Hessian Hk+1 of the optimization problem. The update rule of the algorithm is

xt+1 = xt − ηtHt∇f(xt),

and the update rule of Ht is

Ht+1 =
(
1− sty

T
t

yTt st

)
Ht

(
1− yts

T
t

yTt st

)
+
sts

T
t

yTt st
,

where st = xt+1 − xt, yt = ∇f(xt+1) − ∇f(xt) and H0 is a predefined initial approximation of
the inverse Hessian matrix. We refer readers to Nocedal & Wright (2006) for a discussion on how
the BFGS update is derived. To optimize the memory usage, the limited memory version of BFGS
called L-BFGS (Liu & Nocedal, 1989) is used. Since using line search for choosing ηt can incur
additional function evaluations in each iteration, we use ηt ≡ 1 and only tune H0 in the numerical
simulation.

Both the AM and the BFGS methods employed our numerical simulation can be further strengthened
by using a heuristics invented by Barzilai and Borwein (Barzilai & Borwein, 1988) to choose the βt
in AM and H0 in BFGS. In AM, we set

βt = −
∆rTt−1∆xt−1

∆rTt−1∆rt−1
,

which solves minβ ‖∆xt−1 + β∆rt−1‖2. In BFGS, we set

H0 =
yTt−1st−1

yTt−1yt−1
1

to be the initialization of the approximate inverse Hessian in the t-th iteration (Nocedal & Wright,
2006, Pages 143 and 178).
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