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Abstract

Adversarial attacks against textual data has
been drawing increasing attention in both the
NLP and security domains. Current successful
attack methods for text typically consist of two
stages: word importance ranking and word re-
placement. The first stage is usually achieved
by masking each word in the sentence one at
a time and obtaining the resulting output prob-
ability of the target model. The second stage
involves finding synonyms to replace “vulner-
able” words by the order of ranking. In this pa-
per, we first explore the effects of employing
the model explanation tool LIME to generate
word importance ranking, which has the advan-
tage of taking the local information around the
word into account to obtain word importance
scores. We then propose Reinforce Attack, a
reinforcement learning (RL) based framework
to generate adversarial text. Notably, the at-
tack process is controlled by a reward func-
tion rather than heuristics as in previous meth-
ods to encourage higher semantic similarity
and lower query costs. Through automatic
and human evaluations, we show that our
LIME+Reinforce Attack method achieves bet-
ter or comparable attack success rate against
other state-of-the-art attack frameworks, while
the generated samples preserve significantly
higher semantic similarity.

1 Introduction

Deep neural networks have dominated computer
vision (CV) domain as well as natural language pro-
cessing (NLP) domain. However, studies (Good-
fellow et al., 2014; Biggio et al., 2017; Carlini
and Wagner, 2017) have shown that deep learn-
ing systems are vulnerable to adversarial examples.
Specifically, these adversarial examples are usually
generated by adding small perturbations to original
samples, which are unperceivable to human while
can mislead the neural networks to make wrong
prediction. While extensive studies have focused
on designing adversarial examples and defenses in

CV tasks (Goodfellow et al., 2014; Madry et al.,
2018; Xu et al., 2020), textual adversarial examples
are less investigated (Li et al., 2020; Zhang et al.,
2020; Wallace et al., 2019).

Compared to image data, textual data is discrete
and constrained by dictionary, which makes it more
difficult to perturb the input. Besides the ability
to fool the target model, the perturbed text input
should also satisfy three key utility-preserving prop-
erties: 1) human prediction consistency: predic-
tions made by human are still the same, 2) semantic
similarity: the perturbed example should be seman-
tically similar to the original, and 3) language flu-
ency: generated example should be grammatically
correct and fluent. For example, simply replacing
the character in words to make them grammatically
unrecognizable will result in unnatural sentences.

The state-of-the-art schema (Li et al., 2020) for
generating attack samples can be divided into two
steps: 1) find vulnerable words and rank them, 2)
replace the ranked words one by one to generate ad-
versarial samples. The first stage employs a method
called word importance ranking. In the case of at-
tacking BERT (Devlin et al., 2018), they mask all
the words in the input sentence one at a time and
obtain the corresponding output predictions of the
masked sentences from BERT. Then they obtain the
word importance rank by the impacts on the output
scores. As for the second stage, lexical substitute
models (Zhou et al., 2019) are considered to gener-
ate adversarial examples. However, there are two
significant drawbacks of the above framework: 1)
the word importance ranking via masking is naive
and not explainable, ii) the entire attack process
doesn’t take semantic similarity into consideration.

In this paper, firstly, we propose to generate word
importance ranking via LIME (Ribeiro et al., 2016),
a popular tool for explaining machine learning
(ML) classifiers. We show that simply switching
from masking to LIME can improve the attack per-
formance noticeably on some datasets. Secondly,



to enforce the semantic similarity between adver-
sarial sample and original sample, we introduce an
RL-based framework, namely Reinforce Attack,
for attacking the target model. RL has been previ-
ously applied to reading comprehension (Hu et al.,
2018), question answering (Liu et al., 2019), and
sentence simplification (Zhang and Lapata, 2017).
Specifically, we recast the attack process as a se-
quence tagging problem, where an agent is trained
to identify vulnerable words for substitution to max-
imize the reward function that encourage higher
semantic similarity and lower query cost. We con-
duct extensive experiments on four classification
datasets and one regression dataset to demonstrate
the effectiveness of our method. The contribution
of this paper is threefold:

* We propose to replace the naive word impor-
tance ranking method by LIME, which can
explain predictions of the target classifiers by
learning an interpretable model locally around
the prediction.

¢ We introduce Reinforce Attack, an RL-based
method that learns the optimal trade-off
among key metrics by maximizing the de-
signed reward function.

* Besides demonstrating superior attack perfor-
mance on classification tasks, we also extend
the adversarial attack to text regression task
successfully. To our knowledge, this is the
first work to show the generalizability of ad-
versarial attack to regression tasks.

2 Related Work

2.1 Adversarial Attacks in NLP

In NLP, DNNs are widely used in many tasks such
as text classification, machine translation, and ques-
tion answering. However, these DNN-based sys-
tems are vulnerable to adversarial attacks. Paper-
not et al. (Papernot et al., 2016) were the first
to show that text classifiers can be fooled by ad-
versarial examples, which were generated by sim-
ply adding noise to text. Subsequently, more re-
search efforts have been invested in this domain
to better understand the adversarial attacks and
potential defenses for different tasks, e.g., classi-
fication (Li et al., 2019), reading comprehension
(Jia and Liang, 2017), natural language inference
(Minervini and Riedel, 2018), machine translation
(Ebrahimi et al., 2018), question answering (Mu-
drakarta et al., 2018), argument reading compre-
hension (Niven and Kao, 2019), and link prediction

(Minervini et al., 2017).

More recently, transformer-based models (De-
vlin et al., 2018) have dominated various tasks in
NLP. These models have achieved high general-
ization power by pre-training on large corpus, out-
performing previous state-of-the-art DNNs by only
fine-tuning on task dataset. However, the wide
application of pre-trained models may also cause
serious security issues since one successful adver-
sarial attack can threat all models of the same archi-
tecture. Prior successful attack methods (Jin et al.,
2020) usually relied on heuristic replacement strate-
gies at the character or word level which makes it
challenging to find the optimal solutions in the vast
embedding space while simultaneously preserving
semantic consistency and language fluency. Li et al.
(Li et al., 2020) proposed BERT-Attack, an effec-
tive method to generate adversarial examples using
BERT. This attack outperforms the prior methods
in terms of both success rate and perturbation rate.

Compared with the aforementioned methods, we
explore the effects of employing LIME to generate
word importance ranking. Moreover, we propose
the RL-based Reinforce Attack framework, which
recasts the attack process as a sequence tagging
problem. Unlike heuristics based strategies, our
method is trained to maximize the reward function,
which represents the trade-off among key metrics.

2.2 RL for NLP

There exist several work that apply RL to NLP
tasks. Zhang et al. (Zhang and Lapata, 2017) ex-
plored the space of possible simplifications of sen-
tences while learning to optimize a reward function
that encourages outputs which are simple, fluent,
and preserve the meaning of the input. Liu ef al.
(Liu et al., 2019) combined Seq2Seq model with
deep reinforcement learning, defining a sequence
generator by optimizing a combination of imposed
reward functions. Moreover, Ammanabrolu et al.
(Ammanabrolu et al., 2020) introduced Q*BERT,
an agent that learns to build a knowledge graph of
the world by answering questions, which leads to
greater sample efficiency.

3 Methodology

In this section, we first elaborate on the process of
generating the adversarial example. Then we pro-
ceed to the details of our Reinforce Attack frame-
work.



3.1 Explanatory Model

Recently, researchers are increasingly interested in
explaining how ML classifiers (or models) work
since ML models have achieved remarkable per-
formances in many areas, e.g., security, education,
and economy. LIME (Ribeiro et al., 2016) is an
explanatory model that can explain any black-box
classifier with two or more classes by inputting
text, table, or image. Specifically, for a large-scale
pre-trained language model (e.g. BERT), given a
function that takes in text and outputs a logit prob-
ability for each class, LIME can explain the model
by presenting individual representative predictions.
Our key idea is that the explanations of LIME can
be leveraged to identify vulnerable words for adver-
sarial attack. Instead of considering each word one
by one as in previous work for finding vulnerable
words (Li et al., 2020; Jin et al., 2020), LIME uti-
lizes words around the chosen word, by obtaining
the prediction of the target model on these per-
turbed words and learning a linear model that ap-
proximates the model in the vicinity of the chosen
one. Then we follow LIME (Ribeiro et al., 2016)
and use the fidelity functions and complexity mea-
sures to get the importance value of the chosen
word. Hence, LIME considers local information
around the chosen word, not only a single word.

3.2 LIME + BERT-Attack

Our LIME-based method to generate adversarial ex-
amples consists of two stages: (i) important words
selection and (ii) word replacement.

3.2.1 Important Words Selection

We first pre-process the text and feed it into LIME
to obtain the important words. Specifically, we con-
struct a function that takes in text as input and calls
the target BERT model to generate logit probability
as output. Then LIME employs the constructed
function to predict the importance of all the words.

Note that there are no repeating words in the
output ranked list of the words. Then we can select
the first ¢ words in the rank list as the important
words. In our experiment, ¢ is simply set to n, the
length of input text.

3.2.2 Word Replacement

After we acquire the list of the important words,
we use a word replacement strategy similar to (Li
et al., 2020) to replace the words and use Algo-
rithm 1 to generate the adversarial examples. To

replace the words, we rely on the large-scale pre-
trained model, i.e., BERT, which can make the
generated sentences more fluent, grammar-correct,
and context-aware (Li et al., 2020) compared to
rule-based substitution methods (Ren et al., 2019;
Jin et al., 2020). Besides, the replacement process
needs only one forward pass, which is more ef-
ficient and does not scoring and constraining the
perturbations.

Algorithm 1 Adversarial examples generation

Input: S = [wo, w1, ..., wy] //Input sentence
Y < ground truth label
| + 0.25 x n //Maximum number of word substitutions

LIME(:) : S — [w,...] //The length of [w;,...] is ¢
Logit(:) : S — R //C is the number of classes
Output: S,q, //Adversarial example

1: I =|w;,..] < LIME(S) //q important words in descending order
2: PS9*K = top-K candidates for all words in I using BERT
3: ns = 0//Number of substituted words

4: for w; in I do

5: if ns > [ then

6: return False //Fail to generate adversarial example
7 else )

8: for P/ in P/ do

9: S" = [wo, w1, ..., wj—1, P..]

10: if argmaz(Logit(S’))! = Y then

11: return S,q, = S’ //Attack successful

12: else

13: if argmaz(Logit(S')) < argmaz(Logit(Sadv))

then

14: Saav = S’ //Update S,q,

15: ns+ =1

16: end if

17: end if

18: end for

19: end if

20: end for

We employ Algorithm 1 to generate the modified
text that can fool BERT. Specifically, this algorithm
takes as input the pre-processed text S and the
ground truth label Y. This pre-processed text S is
then fed into LI M E(-) whose output is a ranked
word list I. For each important word w; € I, we
leverage BERT to identify the top K replacement
candidates’ list P/. Let P be the list of all such
PJs. For every candidate in P, we filter P/ by a
set of stop words. Then, we replace w; with the
mask token ([_mk_)]). The adversarial sentence
S’ is obtained by replacing the mask token with the
corresponding candidate from top-K candidates,
subsequently. We measure the logit probability of
S’ by feeding it into the target model.

If the predicted class is not the ground truth label
Y, a successful adversarial sample is generated and
the algorithm terminates. Otherwise, the algorithm
compares the max values of the logit probabilities
for S’ and S,q,. If Logit(S’) is smaller, we update
S,4v With the contents of S’. The Sy, is initialized
with S. The intuition behind this procedure is that
the smaller the maximum value of logit probability



is, the more likely the target model will predict the
wrong label. The output of our algorithm is the gen-
erated adversarial example, S,4,. The algorithm
replaces [ words at maximum. If the number of
the replaced words n is more than [, the algorithm
will consider that the text cannot be converted to an
adversarial example. In our experiment, the value
of [ is set to 25% x n. By this constraint, we pre-
serve the semantic information of the original text
while keeping the adversarial attack effective. It
can be considered as a trade-off between the attack
success rate and semantic preservation of the input
text.

3.3 Reinforce Attack

Although the attack method described in Sec-
tion 3.2 outperforms the state-of-the-art attacks, it
does not optimize the trade-offs among key metrics,
including success rate, query number, perturbation
rate, and semantic similarity during the attack pro-
cess. Therefore, we propose a new attack dubbed
as Reinforce Attack, which is an RL-based frame-
work to optimize such trade-offs by maximizing a
reward function composed of the above metrics.

3.3.1 Framework

Our Reinforce Attack framework is illustrated in
Figure 1. As mentioned earlier, in this attack, our
key idea is to formulate the adversarial attack as a
sequence tagging task. There are only two labels:
0 and 1 for the tagging. Firstly, we vectorize the
input sentence using Glove embedding (Pennington
etal., 2014), a powerful word vector technique that
leverages both global and local statistics of a corpus.
Let X represent the vectorized sentence:

X:l‘l,:L'Q,... (l)

Secondly, we apply LIME to explain the classifi-
cation result of the input. The explanation is then
normalized and reused as attention scores:

o = (1,9, ... (2)
 LIMEJ]
&= maz(abs(LIME)) ©)

Thirdly, the input z; for the Agent is computed by:
zi = (0 * ;) @ history_actions  (4)

where @ represents concatenation operation. As
shown, we inject the information of LIME into our

Reinforce Attack by input attention mechanism.
Fourthly, if the action predicted by Agent is 0, it
will skip current word and move to the next. Other-
wise, it will get into attack process, which is guided
by the designed reward function. Finally, the Agent
is updated by the reward.

3.3.2 Reward Function

Our reward function takes into consideration all the
key metrics mentioned earlier in this section.

r(S) = MrA = \@rQ@ _\PRP A5 (5)

Where A, A2 AP A9 € [0,00), S’ is the ad-
versarial sentence, 74, r<, rr and r° correspond
to reward of attack success, query number, pertur-
bation rate and semantic similarity, respectively.

Attack Success: The success rate is the main met-
ric to evaluate the performance of adversarial at-
tack. Therefore, we consider attack success as the
fundamental component of the reward function. As
for the actual attack algorithm, we reuse the attack
process (lines 8-18) in Algorithm 1.

TA = mal‘(pori — Padv> 0) (6)

where p,,; is the original probability and p,g, is
the probability of adversarial sample.

Query Number: Query Number reflects the effi-
ciency of the attack model. While the attack reward
4 tries to encourage the model to generate mis-
leading samples, the query reward 7 ensures that
the attack success is not achieved at the cost of
high number of queries. Besides, restricting the
query number can also force the system to find
more vulnerable words for replacement.

Q- (7)

n
where Q is the number of queries and n is the length
of sentence.
Perturbation Rate: The ratio of perturbed words
to the text length is an important metric to evaluate
semantic similarity. We expect the attack model to
achieve success while replacing minimal number
of words. The reward % simply calculates the
perturbation rate to regularize the reward function.
=L ®)
where P is the number of perturbed words and n is
the length of sentence.
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Figure 1: Reinforce Attack Framework. T is the target model, S and S, are original and adversarial sentence
respectively, @ and P are query number and perturbation rate respectively.

Semantic Similarity: Finally, we consider the
Universal Sentence Encoder (USE) (Cer et al.,
2018) as another metric to evaluate semantic simi-
larity directly. It is a BERT-based encoder, which is
widely used to calculate similarity between a pair
of texts. 7% represents the output score of USE.

= USE(S, Sadv) (©))

where S and .S,4, are the original and adversarial
sentences, respectively.

3.3.3 Learning

Agent: We have designed a simple MLP agent to
identify vulnerable words to attack. As defined in
equation (4), z; represents the input of the agent.
a; = MLP(z) (10)
Here, a; is the predicted action. The MLP has two
hidden layers with 512 and 256 neurons, respec-
tively.
Policy: We employed deep Q-learning (Van Has-
selt et al., 2016) to train the agent. The agent in-
teracts with an environment through a sequence
of observations, actions and rewards. The goal of
the agent is to select optimal actions so that future
reward is maximized.
Q*(s,a) = max E[ri4yrep1+72repo+...| st, as, 7
1D
where Q*(s,a) is the maximum sum of rewards
r¢ decayed by ~ at each time step ¢, which relies
on the policy m = P(a|s) with the observation s;
and the action a;. During training, the samples
(or minibatches) of (s, a,r,s") ~ U(D) are drawn

uniformly at random from the pool of stored sam-
ples. The Q-learning update at iteration ¢ uses the
following loss function:

L; (91) = E(s,a,r,s/)NU(D) [(T—i_
ymax Q(s', d';0;) — Q(s, a; 6:))*)

where ~y is the discount factor that determines the
horizon of the agent, a’ and s’ are the target action
and state, respectively, 0; are the parameters of the
Q-network at iteration 4, and ¢; are the network
parameters to compute the target at iteration %.

12)

4 Evaluation

In this section, we illustrate the experiment setup
and the experimental results. Firstly, we introduce
the datasets for classification and regression tasks
followed by experiment setup. Secondly, we dis-
cuss the results of our experiments. Finally, we
evaluate the generated samples of our method by
human evaluation.

4.1 Dataset Description

We apply our method to both classification and
regression tasks. For classification, we follow the
configuration in (Li et al., 2020) to test on 1000
samples, which are the same splits used by (Jin
et al., 2020). As for regression, we split a subset of
1000 random samples from the dataset for testing.

4.1.1 Text Classification
We consider four different types of classification
datasets as in (Li et al., 2020).

* Yelp Review Dataset is constructed by consid-
ering both negative (stars 1 & 2) and positive



Table 1: Comparison with existing work.

Classification Method Original Acc  AvgLen Attacked Acc Perturb % Query Semantic Sim
GA (Alzantot et al., 2018) 45.7 4.9 6493 -
IMDB TextFooler (Jin et al., 2020) 90.9 215 13.6 6.1 1134 0.86
BERT-Attack (Li et al., 2020) 11.4 44 454 0.86
LIME + BERT-Attack* 4.1 3.0 527 0.80
LIME + Reinforce Attack™ 1.9 33 367 0.97
GA (Alzantot et al., 2018) 31.0 10.1 6137 -
Yelp TextFooler (Jin et al., 2020) 95.6 157 6.6 12.8 743 0.74
BERT-Attack (Li et al., 2020) 51 4.1 273 0.77
LIME + BERT-Attack* 11.1 4.7 352 0.46
LIME + Reinforce Attack™ 6.2 10.8 360 0.96
GA (Alzantot et al., 2018) 58.3 1.1 28508 -
Fake TextFooler (Jin et al., 2020) 97.8 885 19.3 11.7 4403 0.76
BERT-Attack (Li et al., 2020) 15.5 1.1 1558 0.81
LIME + BERT-Attack* 6.0 4.0 632 0.65
LIME + Reinforce Attack™ 2.6 4.4 549 0.98
GA (Alzantot et al., 2018) 51.0 16.9 3495 -
AG TextFooler (Jin et al., 2020) 94.2 43 12.5 22.0 357 0.57
BERT-Attack (Li et al., 2020) 10.6 15.4 213 0.63
LIME + BERT-Attack* 16.2 18.3 330 0.81
LIME + Reinforce Attack* 15.0 15.1 210 0.94
Regression Method Original MAE AvgLen Attacked MAE Perturb % Query Semantic Sim
Blog BERT-Attack (Li et al., 2020) 6.5 195 10.5 2.0 150 0.95
Reinforce Attack* - 14.0 39 199 0.97

(stars 3 & 4) reviews. We follow the steps in
(Zhang et al., 2015) to perform binary classifi-
cation task.

« IMDB Movie Review Dataset' consists of
both negative and positive reviews. We per-
form a binary classification task here as well.

+ AG’s News Dataset” contains news articles of
four different topics, namely World, Sports,
Business and Sci/Tech. We process it into a
four-class classification task.

* FAKE News Dataset is from Kaggle Fake
News Challenge®, which aims to identify un-
reliable news articles.

"https://datasets.imdbws.com/

Zhttps://www.kaggle.com/amananandrai/ag-news-
classification-dataset

3https://www.kaggle.com/c/fake-news/data

4.1.2 Text Regression

Blog Authorship Corpus consists of the collected
posts of 19,320 bloggers gathered from blog-
ger.com in August 2004. Each blog is labelled
with blogger’s self-provided gender, age, industry
and astrological sign. As in (Santosh et al., 2013),
we perform age prediction based on the text. The
ages of the bloggers range from 13 to 48.

4.2 Setup of Automatic Evaluation

To measure the quality of the generated samples
comprehensively, we set up extensive automatic
evaluation metrics as in (Li et al., 2020). The at-
tacked accuracy, which is the accuracy of target
model on adversarial samples, is the core metric
measuring the effectiveness of the attack model.
Besides, the perturbation rate is also vital since less
perturbation usually means more semantic consis-
tency. Furthermore, the query number per sample
is a key metric, which reflects the efficiency of the



Table 2: Human evaluation results.

Table 3: The ablation study on reward function

Dataset Accuracy Semantic Grammar

Original 0.86 1 3.39

IMDB BERT-Attack (Li et al., 2020) 0.21 0.82 3.24
LIME + BERT-Attack* 0.25 0.88 3.44

LIME + Reinforce Attack* 0.23 0.87 3.31

Original - 1 3.51

Blog Reinforce Attack® - 0.80 3.00

attack model. Finally, we also use Universal Sen-
tence Encoder (Cer et al., 2018) to measure the
semantic similarity between original sentence and
adversarial sample.

4.3 Hyperparameters

For the BERT-Attack framework, we reuse the
configuration in (Li et al., 2020). As for the re-
ward function, grid search is performed to find
the best weights. For \°, the candidates are
[0.001,0.01, 0.1, 1.0] while for other weights, the
range is set to be [0.5,1.0,1.5,2.0]. Eventually,
A9 AP A and \S are set to be 1.5, 1.0, 2.0, and
0.01, respectively, throughout all the experiments.

4.4 Experiment Results

We compare our method with three existing work:
GA (Alzantot et al., 2018), TextFooler (Jin et al.,
2020), and BERT-Attack (Li et al., 2020). In this
section, the target model is BERT-base, and the
attack model is also BERT-base.

Classification: As shown in Table 1, both our
LIME + BERT-Attack and LIME + Reinforce-
Attack outperform other methods on IMDB and
Fake datasets by a distinctive margin. However,
LIME didn’t improve the success rate of attack
models on AG and Yelp datasets, whose average
lengths are relatively smaller. This suggests that
the fidelity of LIME is discounted when sentences
are shorter. More analysis is provided in appendix
B.

Specifically, our Reinforce Attack achieves an
average attacked accuracy of about 6.4%, which is
a significant improvement compared with BERT-
Attack (10.7%) and LIME + BERT-Attack (9.4%).
Moreover, Reinforce Attack consistently outper-
forms other methods in terms of semantic similarity
by a large margin. The semantic similarity reward
% in Reinforce Attack plays a vital role in main-
taining high semantic consistency throughout the
attack process.

Regression: As for the regression dataset, LIME
can not be applied due to incompatibility. There-
fore we only compare the vanilla BERT-Attack and

Dataset Reward  Attacked Acc Perturb % Query Semantic Sim
r 10.7 7.3 385 0.90
rA 499 7.0 6.4 267 0.96
IMDB ;4 4¢P 14 3.2 272 0.95
rd + 1S 2.0 43 309 0.98
Combined 1.9 33 367 0.97

our Reinforce Attack.

Reinforce Attack achieves an attacked MAE of
14.0, outperforming BERT-Attack by 33%. It is
also noticeable that Reninforce Attack still main-
tains an impressive semantic similarity of 0.97 with
slightly higher perturbation rate and query number.
This shows the advantage of our Reinforce Attack,
which is controlled by the reward function to bal-
ance between the success rate and other metrics.

4.5 Human Evaluation

We perform human evaluation to further evaluate
the generated adversarial examples via Amazon
Turk. Specifically, we run three experiments to
measure the classification consistency, grammati-
cality, and semantic similarity, where three anno-
tators annotate each data point. We use the IMDB
dataset and Blog dataset for classification and re-
gression tasks respectively. We select 50 original
samples, 50 corresponding adversarial samples gen-
erated by BERT-Attack, and 50 samples generated
by our methods for each dataset. Firstly, we mix
samples and ask human judges to classify the senti-
ment of IMDB data for all four types of sentences.
Secondly, we ask the annotators to rate the gram-
maticality of the sentences from 1 to 5 (5 being
the best), following (Li et al., 2020). Finally, we
ask the annotators to compare the semantic simi-
larity of reference sentences with those generated
by the attack methods for both the IMDB and Blog
datasets. The scale is O to 1, where 1 is similar, O
is dissimilar and 0.5 is the middle, following (Jin
et al., 2020). As shown in Table 2, both our LIME
+ BERT-Attack and LIME + Reinforce Attack out-
perform the vanilla BERT-Attack on all three di-
mensions.

5 Discussions

5.1 Effects of LIME

As shown in Table 1, replacing the original word
importance ranking method with LIME resulted
in distinctive improvements on IMDB and Fake



datasets while LIME’s performances on Yelp and
AG with shorter sentences were less stable.

Some theoretical study (Slack et al., 2020;
Garreau and von Luxburg, 2020) found that
perturbation-based interpretability methods like
LIME and SHAP are not robust enough. Their
performances may vary from dataset to dataset.
Therefore, more research effort is needed to im-
proving the stability of LIME.

5.2 Importance of Reward Components

We also conduct ablation study of reward function
on IMDB dataset. As shown in Table 3, we tested
different combinations of the reward components
G.e. 74,79, 1P %) to demonstrate the correspond-
ing effects on the attack evaluation metrics.

The base reward is 7 whose performance can be
viewed as a lower bound. The effect of adding other
rewards to 7 is distinctive. More specifically, 74 +
r? reduces the query number by more than 100,
reaching the lowest at 267. 74 + ¥ outperforms
all other candidates in terms of attacked accuracy
and perturbation rate. r + r° attains the best
semantic similarity of 0.98. Intuitively, the impacts
of the reward components are consistent with our
expectations.

Moreover, the combination of all rewards
reached a satisfying trade-off among these eval-
uation metrics. Different results can be obtained by
simply manipulating the weights of each reward.

5.3 Transferability of Reinforce Attack

We validate the transferability of the adversarial
examples generated by our Reinforce Attack. For
this, we collect the adversarial samples generated
for IMDB and Blog datasets to attack other tar-
get models. The criterion of being a successfully
transferable adversarial example for IMDB is sim-
ply fooling the other target model while for Blog
we set a threshold for the increase of MAE (7.0,
about 25% of the age range) between predicted
age and true age. As shown in table 4, there exists
noticeable transferability among models on IMDB
dataset. However, the adversarial samples are less
transferable on Blog dataset. Note that our Rein-
force Attack exhibits more distinctive transferabil-
ity on classification dataset compared to previous
methods (Li et al., 2020; Jin et al., 2020).

5.4 Runtime Comparison

We use the AWS P3.2xlarge machine with 8 Intel
Xeon CPUs and 1 Nvidia Tesla v100 GPU (the

Table 4: Transferability of adversarial examples on
IMDB and Blog dataset. Row and column stand for
attack model and tested model respectively.

Dataset Model BERT-base DistilBERT Albert
BERT-base 0 0.63 0.51
IMDB  DistilBERT 0.64 0 0.50
Albert 0.48 0.50 0
Dataset Model BERT-base DistilBERT Albert
BERT-base 14.0 6.3 54
Blog  DistilBERT 5.5 11.0 5.6
~ Albert 6.3 5.6 15.8
Table 5: Runtime Comparison
Dataset Method Runtime(s/sample)
IMDB BERT-Attack (Li et al., 2020) 86
LIME+BERT-Attack* 130
LIME+ Reinforce Attack™® 179

configuration is different from that of (Li et al.,
2020)). The runtime analysis is shown in Table 5.
Since LIME takes slightly more time than the orig-
inal method to calculate word ranking, our LIME +
BERT-Attack is slower than BERT-Attack. More-
over, Reinforce Attack requires to calculate seman-
tic similarity during the generation process, which
is time-consuming.

6 Conclusion

In this paper, we first study the effects of replacing
naive word importance ranking method with the
model explanation tool, LIME, for text adversarial
attack. Experimental results suggest that although
the performance of LIME is not stable, it still gen-
erates more accurate ranking in some cases, which
leads to significantly higher success rate. Our em-
pirical analysis shows that the fidelity of LIME is
discounted when sentences are shorter.

Furthermore, we propose Reinforce Attack, an
RL-based attack schema to generate adversarial
texts. Unlike the previous methods which mostly
rely on heuristics to constrain the generated sam-
ples, our method is guided by a carefully designed
reward function to optimize the trade-off among
key metrics, including success rate, perturbation
rate, query number, and semantic similarity. Exten-
sive experiments, including automatic and human
evaluations, show that Reinforce Attack maintains
distinctively higher semantic similarity through
all the datasets in our experiment, while achiev-
ing comparable or better success rate against other
methods.
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A Qualitative Results

To illustrate qualitative results, we show four ex-
amples in Figure. 2: two examples from the IMDB
dataset and two examples from the Blog dataset.
The text in the green box is the original text; the
blue box text is the sentences generated by our
method. The red words in the green box and blue
box denote the important words, mask token, and
substitutes. We can find that our method can gen-
erate adversarial examples by changing few words
and without changing much semantic meanings for
both classification task and regression task. For
example, in the top-left example of Figure. 2, the
attack model only replaces one word “awful” into
“damned”. In the bottom-right example of figure. 2,
the word “everyone” is replaced by “all” and “send”
is replaced by “fire”. The semantic similarity is
high for the adversarial example and the original
text.

B Accuracy and sentence length

As shown in Figure. 3, when the length of sen-
tences is greater, the attacked accuracy of LIME+
Reinforce Attack is lower for IMDB, Yelp, Fake
datasets. However, when the length of sentence is
less than 140, the performance of our method is not
stable for AG dataset. One possible reason is that
the AG is four-classes classification task which is
different to other three two-classes classification
task. Hence, when the sentence length is greater,
the performance of our method is better.
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Figure 2: Four examples of generated adversarial examples. The left two examples are from the IMDB dataset,
and the right two examples are from the Blog dataset. The original text is in the green box, and the text adversarial
examples generated by LIME + Reinforce Attack is in the blue box. The red words in the green box, blue box
denote the vulnerable words and substitutes, respectively.
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Figure 3: The figures of the relationships between the attacked accuracy of LIME+ Reinforce Attack and the length
of the sentence for four classification datasets.
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