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ABSTRACT

We deal with the task of sampling from an unnormalized Boltzmann density ρD by
learning a Boltzmann curve given by energies ft starting in a simple density ρZ .
First, we examine conditions under which Fisher-Rao flows are absolutely contin-
uous in the Wasserstein geometry. Second, we address specific interpolations ft
and the learning of the related density/velocity pairs (ρt, vt). It was numerically
observed that the linear interpolation, which requires only a parametrization of the
velocity field vt, suffers from a ”teleportation-of-mass” issue. Using tools from
the Wasserstein geometry, we give an analytical example, where we can precisely
measure the explosion of the velocity field. Inspired by Máté and Fleuret, who
parametrize both ft and vt, we propose an interpolation which parametrizes only
ft and fixes an appropriate vt. This corresponds to the Wasserstein gradient flow
of the Kullback-Leibler divergence related to Langevin dynamics. We demon-
strate by numerical examples that our model provides a well-behaved flow field
which successfully solves the above sampling task.

1 INTRODUCTION

In this paper, we consider the problem of sampling from a Boltzmann density ρD = e−fD/ZD

with unknown normalizing constant ZD. Our approach is in the spirit of recent developments in
generative modelling and aims to construct a curve ρt = e−ft/Zt interpolating between a simple
density ρZ and the target ρD, i.e. ρ0 = ρZ and ρ1 = ρD. If such curve admits a velocity field vt
and there exists a solution φ of

∂tφt = vt(φt), φ0 = Id where (φt)♯(ρZdx) = ρtdx, (1)

then we can use φ1 and ρZ to sample from ρD. An important question is, whether for a given
family of functions ft, such velocity fields exists. While, for a fixed time t, the existence of such
velocity fields is well established, see e.g. Laugesen et al. (2014), global existence with integrability
of v : [0, 1] × Rd → Rd in time and space is addressed in this paper. This is directly related to the
question whether a large class of Fisher-Rao curves ρt is absolutely continuous in the Wasserstein
geometry, and in particular, fulfills a continuity equation. This can be reduced to finding solutions of
a certain family of PDEs. With the appropriate Hilbert spaces at hand, we show the existence of the
solutions of these PDEs and the existence of an integrable velocity field vt in time and space which
admits moreover a minimality property of ∥vt∥L2(Rd,ρt).

Determining φ1 requires both finding a curve ft and the associated vector field vt. One way is to
choose a curve interpolating between fZ and fD first and then to learn the velocity field. For the
linear interpolation ft = (1 − t)fZ + tfD, using above considerations, we show that there indeed
exists an integrable velocity field implying the absolute continuity of the curve in the Wasserstein
space. Yet, it was numerically shown that the corresponding velocity field is often badly behaved
as noted in (Máté & Fleuret, 2023, Figure 4 and 6). We highlight by an analytic example the
bad regularity of this flow and show in particular that its velocity field may have an exploding
norm ∥vt∥L2(Rd,ρt). Another approach, recently proposed by Máté & Fleuret (2023), considers
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ft = (1− t)fZ+ tfD+ t(1− t)ψt with unknown ψt and learns (ψt, vt) simultaneously. Henceforth,
we refer to this method as the ”learned interpolation”. However, it is theoretically unclear whether
the learned curve is well-behaved or the velocity field is optimal with respect to the above norm. As
an alternative approach, we propose instead to deal directly with a well-behaved and mathematically
accessible curve on [0, T ] and consider the parameterization ft = T−t

T fD + tψt. Fixing the velocity
field as vt := ∇(ft − fZ), we only have to learn ψt. The resulting PDE is the well-known Fokker-
Planck equation related to Langevin dynamics which has a solution with Boltzmann densities ρt,
if, e.g., ρZ is a Gaussian. Then, the corresponding SDE is the Ornstein-Uhlenbeck (OU) process.
Here, the backward ODE of (1) must be applied for sampling. Finally, we learn the networks for the
above three cases and demonstrate by numerical examples the effectiveness of our approach.

Contributions.

1. We prove for the first time that under mild conditions every reasonable curve of Boltz-
mann densities is an absolutely continuous Wasserstein curve, see Theorems 1 and 2 and
Appendix A. In particular, this includes the linear interpolation.

2. We verify by a nontrivial analytic example that the velocity field corresponding to the
linear interpolation can admit an exploding norm ∥vt∥L2(Rd,ρt), leading to a ”non-smooth”
particle transport, see Figure 1 and Appendix B.

3. We propose to learn a curve using the parameterization ft = T−t
T fD + tψt, which we call

”gradient flow interpolation” by the following reason. With an appropriate velocity field
which can be computed directly from ft, this resembles the Wasserstein gradient flow of
the Kullback-Leibler divergence with fixed second argument ρZ . This curve can be also
described as the Fokker-Planck equation of a Langevin SDE.

4. We learn the networks for the linear, learned and gradient flow interpolations and demon-
strate the performance of these three methods on certain sampling problems.

Related Work. Classical approaches for sampling from an unnormalized density are based on
the Markov Chain Monte Carlo (MCMC) method, see Gilks et al. (1995), including variants as
the Hamiltonian Monte Carlo (HMM) in Hoffman & Gelman (2014) or the Metropolis Adjusted
Langevin Algorithm (MALA) in Girolami & Calderhead (2011). Arising problems with the correct
distribution of mass among different modes lead to the use of importance sampling Neal (2001) and
sequential Monte Carlo samplers Moral et al. (2006).
Newer approaches include the simulation of gradient flows of probability measures. In Chen
et al. (2024) Gaussian mixtures are used to approximate the Fisher-Rao gradient flow of the
Kullback-Leibler (KL) divergence. This corresponds to a time rescaling of the linear interpolation.
In Nüsken (2024); Maurais & Marzouk (2024) they approximate the latter curve by kernelizing the
associated Poisson equation and simulating a corresponding interacting particle system. Closely
related Stein variational gradient descent Liu & Wang (2016) kernelizes the Wasserstein gradient
flow of the reverse KL divergence. Recently in Chehab & Korba (2024) they consider a different
path which they term the ”dilation path”. The associated vector field is given as the gradient of
the dilation of the target density. The convolution of the density of the dilation path with (scaled)
Gaussian kernels corresponds to the density of an Ornstein-Uhlenbeck process.
Recently, (stochastic) normalizing flows have been widely used to sample from unnormalized
densities Noé et al. (2019); Wu et al. (2020); Hagemann et al. (2022). In Midgley et al. (2023)
this problem is tackled without using a curve of probability measures by augmenting normalizing
flows, which are trained using an α-divergence loss, with annealed importance sampling. In Xu
et al. (2024) the Wasserstein gradient flow of KL(·, ρD) is approximated. They learn a network for
approximating the corresponding JKO scheme. In a similar approach in Hertrich & Gruhlke (2024)
a functional F with minimum ρD is considered. They then learn a vector field by approximating
a JKO scheme for the Wasserstein gradient flow of F and combine it with an importance based
rejection method. They focus on F being the Kullback-Leibler divergence with target distribution
ρD. Using KL for sampling is a natural choice and it is shown in Chen et al. (2023) that it is the
only f -divergence such that the Wasserstein gradient flow does not depend on the normalization
constant of ρD.
Note that parametrizing the vector field using the score ∇ log pt is common practice for sampling
via SDEs. A method that generates samples and scores from trajectories of the Fokker Planck
equation of certain SDEs is presented in Boffi & Vanden-Eijnden (2023). In Vargas et al. (2024)
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the vector field is learned by using the KL divergence on the path measures of a forward and
corresponding backward SDE assuming knowledge of ∇ log pt. In Zhang & Chen (2022) they
formulate the sampling problem in terms of a stochastic control problem and explicitly include the
score into the parametrization of the vector field. The stochastic control viewpoint is also used
in (Berner et al., 2024, Section 3) where the KL divergence between path measures associated to
a controlled and an uncontrolled SDE is used to approximate the score of e.g. an OU process.
A different approach to approximating the same process using the KL on path measures is
formulated in Vargas et al. (2023a). Another way of approximating a flow ending in ρD is to
consider the variance exploding diffusion SDE as done in Akhound-Sadegh et al. (2024), or to
consider the time reversal of a pinned Brownian motion as in Vargas et al. (2023b); Reu et al. (2024).

The authors of Máté & Fleuret (2023) present a loss based on the continuity equation and the spe-
cial form e−ft

Zt
of Boltzmann densities. This loss allows for using fixed interpolations ft and only

learning vt as well as learning ft and vt simultaneously. Using a fixed interpolation and a loss based
on the continuity equation also shows up in the physics informed neural networks (PINN) literature,
see e.g. Albergo & Vanden-Eijnden (2024). When finishing this paper, we became aware of the
recent preprint of Sun et al. (2024) and the workshop paper Sun et al. comparing a variety of PDE
based sampling methods. They included a similar approach as the one proposed here, using the
same parametrization to simulate an Ornstein-Uhlenbeck SDE. However, coming from the Wasser-
stein perspective, we came to the conclusion that the associated gradient flow path is especially
well-behaved. We simulate the corresponding ODE and highlight its benefits.
For the proof that many Boltzmann density curves are absolutely continuous Wasserstein curves, the
main object of interest is

−∇ · (ρt∇st) = (αt − αt) ρt, t ∈ [0, 1] (2)
which relates Fisher-Rao curves and Wasserstein absolutely continuous curves. Here ∇st corre-
sponds to the vector field of a Wasserstein absolutely continuous curve and αt− ᾱt for ᾱt = Eρt

[αt]
corresponds to the gradient in the Fisher-Rao geometry. This equation was studied for a fixed time
t in various contexts. In nonlinear filtering it is used to study weak solutions of nonlinear filters, see
e.g. (Laugesen et al., 2014, Section 2.1). Their theory for fixed time steps t can be generalized to the
case of a time dependent equation as seen in Section A. The close relationship between the Poincaré
inequality and fixed time solutions of (2) is discussed in Dhara & Kałamajska (2015).

2 WASSERSTEIN FLOWS OF BOLTZMANN DENSITIES

2.1 GENERAL BACKGROUND

Let P(Rd) denote the space of probability measures on Rd. For µ ∈ P(Rd), let Lp(Rd, µ), p ∈
[1,∞), denotes the Banach space of (equivalence classes of) real-valued functions on Rd with finite
norm ∥f∥Lp(Rd,µ) :=

(∫
Rd |f |p dµ

)1/p
, and Lp(Rd,Rd, µ) be the Banach space of Borel vector

fields v : Rd → Rd with finite norm ∥v∥Lp(Rd,Rd,µ) := (
∫
Rd |∥v∥|p dµ)1/p, where ∥ · ∥ is the

Euclidean norm on Rd. For the Lebesgue measure, we skip the µ in the notation. The space P2(Rd)
of probability measures having finite second moments equipped with the Wasserstein(-2) metric

W2(µ0, µ1) := min
π∈Γ(µ0,µ1)

(∫
Rd×Rd

∥x− y∥2 dπ(x, y)
) 1

2

,

where Γ(µ0, µ1) denotes the set of couplings or plans π ∈ P(Rd × Rd) having marginals µi ∈
P2(Rd), i = 0, 1, is a complete metric space. In complete metric spaces, we can consider absolutely
continuous curves depending on the metric of the space. In the above Wasserstein space, a weakly
continuous curve µ : [0, 1] → P2(Rd), t 7→ µt is absolutely continuous, if there exists a Borel
vector field v : [0, 1]×Rd → Rd with

∫ 1

0
∥vt∥L2(Rd,Rd,µt) dt <∞ such that the continuity equation

∂tµt +∇ · (µtvt) = 0 (3)
is fulfilled in the sense of distributions 1 see, e.g. Ambrosio et al. (2005). While for fixed µt there
are many vector fields such that the continuity equation is fulfilled, there exists a unique one such

1∫ 1

0

∫
Rd ∂tϕ + ⟨∇xϕ, vt⟩ dµtdt = 0 for all ϕ ∈ C∞

c

(
(0, 1)× Rd

)
where C∞

c ((0, 1) × Rd) denotes the
space of smooth and compactly supported functions.
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that ∥vt∥L2(Rd,µt) becomes minimal for almost every t ∈ [0, 1]. In other words, if µt fulfills the
continuity equation for some vector field, then there exists a unique vector field that solves

argmin
vt∈L2(Rd,Rd,µt)

∫
Rd

∥vt∥2 dµt s.t. ∂tµt +∇ · (µtvt) = 0. (4)

Moreover, this optimal vector field is determined by the condition that vt ∈ Tµt
P2(Rd) for almost

every t ∈ [0, 1], with the regular tangent space

TµP2(Rd) := {∇ϕ : ϕ ∈ C∞
c (Rd)}

L2(Rd,µ)
, (5)

where the right-hand side is the closure in the Banach space L2(Rd, µ), see (Ambrosio et al., 2005,
§ 8). Finally, if µt is an absolutely continuous curve with Borel vector field vt such that for every
compact Borel set B ⊂ Rd it holds

∫ 1

0
supB ∥vt∥+ Lip(vt, B) dt <∞, then there exists a solution

φ : [0, 1]× Rd → Rd of
∂tφ(t, x) = vt(φ(t, x)), φ(0, x) = x (6)

which fulfills µt = φt,♯µ0 := µ0 ◦ φ−1
t , see e.g. (Ambrosio et al., 2005, Proposition 8.1.8).

2.2 WASSERSTEIN MEETS FISHER-RAO FLOWS

In the following, we are interested in absolutely continuous probability measures with respect to
the Lebesgue measure, i.e., the space Pac(Rd) := {µ = ρdx : ρ ∈ L1(Rd), ρ ≥ 0,

∫
Rd ρdx =

1} and we will address such measures just by their densities. Moreover, we will only consider
Boltzmann/Gibbs densities depending on functions f : [0, 1] × Rd → R with e−ft ∈ L1(Rd) and
f(·, x) ∈ C1([0, 1]) for all x ∈ Rd and ∂tf(t, ·) ∈ L2(Rd, ρt) such that

ρt :=
e−ft

Zt
, Zt :=

∫
Rd

e−ft dx. (7)

In this case, straightforward computation gives

∂tµt = ∂tρt = − (∂tft − Eρt
[∂tft]) ρt, (8)

where it maybe useful to note that Eρt [∂tft] = −∂t logZt. This differential equation is a Fisher-Rao
flow equation. More precisely, a weakly continuous curve ρ : [0, 1] → Pac(Rd), t 7→ ρt is a Fisher-
Rao curve, if there exists a measurable map α : [0, 1]×Rd → R such that αt := α(t, ·) ∈ L2(Rd, ρt)
and we have in a distibutional sense

∂tρt = (αt − ᾱt)ρt, ᾱt := Eρt [αt]. (9)

Obviously, (8) delivers a Fisher-Rao curve with αt := −∂tft. For more information on Fisher-
Rao flows see, e.g., Gallouët & Monsaingeon (2017); Wang & Li (2022). We are interested in
the question under which conditions a Fisher-Rao curve determined by (8) is also an absolutely
continuous curve in the Wasserstein space. For later purposes, note that for Boltzmann densities (7),
the second summand of the continuity equation (3) reads as

∇ · (µtvt) = ∇ · (ρtvt) = (−⟨∇ft, vt⟩+∇ · vt) ρt. (10)

Nevertheless, using (8), for our Fisher-Rao curves the continuity equation becomes

(∂tft − Eρt
[∂tft]) ρt = ∇ · (ρtvt), (11)

and in the ideal case that we can find a vector field vt = ∇st, compare (5), this can be rewritten as
the family of Poisson equations

(∂tft − Eρt
[∂tft]) ρt = ∇ · (ρt∇st), (12)

which needs to be solved for st. For fixed time t, the solution of the Poisson equation has already
been examined, e.g., in Laugesen et al. (2014) and for more recent work, see also Reich (2011);
Taghvaei & Mehta (2023). However, the pointwise solution for each fixed t does not ensure that
(ρt,∇st) gives rise to an absolutely continuous Wasserstein curve, since by definition this requires
additional properties of ∇xs : [0, 1] × Rd → Rd, globally in t: i) ∇xs is Borel measurable on
[0, 1] × Rd, and ii) t 7→ ∥∇xs(t, ·)∥2L2(ρt,Rd) ∈ L1([0, 1]). If also, iii) ∇xs(t, ·) ∈ Tρt

P2(Rd) for
a.e. t ∈ [0, 1], then it is known that the velocity field ∇xs is the optimal one in the sense of (4).
To our best knowledge, the following two theorems, which are detailed in Appendix A, tackle a
rigorous solution of this problem for the first time.
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Theorem 1. Assume that ρ determined by
∫
[0,1]×Rd f(t, x) dρ =

∫ 1

0

∫
Rd f(t, x) dρtdt satisfies a

so-called partial Poincaré inequality, see Definition A.7, for some K > 0, and that 1
ρ is locally

integrable. Furthermore, suppose that αt − αt ∈ L2([0, 1] × Rd,ρ). Then, there exists a unique
weak solution s in a certain Hilbert space X 1

0 of the problem∫ 1

0

∫
Rd

⟨∇st,∇ψt⟩dρtdt =
∫ 1

0

∫
Rd

ψt (αt − αt) dρtdt, for all ψ ∈ X 1
0 . (13)

Theorem 2. Let ρ0, ρ1 ∈ P(Rd) and assume that ρt is a Fisher-Rao curve defined by (9), Let ρ and
α satisfy the assumptions of Theorem 1. Then, ρt is a Wasserstein absolutely continuous curve with
vector field ∇xs, where s ∈ X 1

0 is the unique weak solution of (13). If ρt is bounded from above, it
holds that ∇xst ∈ TρtP2(Rd) for a.e. t ∈ [0, 1]. Furthermore, it holds that∫ 1

0

∫
Rd

∥∇xst∥2 dρtdt ≤ K

∫ 1

0

∫
Rd

(αt − αt)
2
dρtdt. (14)

Note that by the Benamou-Brenier formula, see (Ambrosio et al., 2005, Equation 8.0.3), the left-
hand side of (14) is an upper bound for the Wasserstein distance W 2

2 (ρ0, ρ1), while the double-
integral on the right-hand side defines the Fisher-Rao action of ρt.

3 NEURAL SAMPLING FROM BOLTZMANN DENSITIES

Our aim is to sample from a Boltzmann measure µD = ρD dx, where we only have access to
fD : Rd → R, but not to the normalization constant ZD, by following a measure flow starting in
a simple to sample measure µZ = ρZ dx like the standard Gaussian one. We apply the continuity
equation (11) of Fisher-Rao curves, which can be rewritten by (10) and division by ρt > 0 as

∂tft − Eρt
[∂tft]︸ ︷︷ ︸
Ct

= −⟨∇ft, vt⟩+∇ · vt. (15)

Indeed every spatially constant function Ct which fulfills the above equation must be of the form
Ct = Eρt

[∂tft], see Máté & Fleuret (2023). This enables us to learn Ct, so that (15) does no longer
depend on normalization constants. We will deal with the following parameterizations of ft and vt
and how to learn them:

1. linear interpolation: ft := (1− t)fZ + tfD ↪→ learn vt,

2. learned interpolation by Máté and Fleuret: ft := (1 − t)fZ + tfD + t(1 − t)ψt ↪→ learn
(ψt, vt),

3. gradient flow interpolation: ft := T−t
T fD + tψt, vt := ∇(ft − fZ) ↪→ learn ψt.

While by definition the first two settings interpolate between ρZ and ρD and ρ0 = ρZ , ρ1 = ρD, we
will see that the newly proposed third variant interpolates between ρD and ρZ by the choice of vt,
i.e., ρ0 = ρD and limT→∞ ρT = ρZ . In practice we reparametrize the latter curve into unit time,
see Remark 4.

3.1 LINEAR & LEARNED INTERPOLATION

Linear interpolation. The simplest interpolation is the linear one ft := (1 − t)fZ + tfD, i.e.,
ρt ∝ ρ1−t

0 ρt1. Under suitable conditions on the end points this density fulfills the assumptions of
Theorem 2, see Corollary A.17 in the Appendix, and is therefore a Wasserstein curve. By (8), it also
defines a Fisher-Rao curve, and the corresponding Fisher-Rao flow equation (9) is given by

∂tρt = (f0 − f1 − Eρt
[f0 − f1]) ρt = −

(
log(

ρ0
ρ1

)− Eρt
[log(

ρ0
ρ1

)]
)
ρt.

Note that, ρt is even a Fisher-Rao gradient flow of the negative log likelihood, see also Maurais &
Marzouk (2024), given by ENLL(ρ) := −Eρ

[
log(ρ1

ρ0
)
]
.

5



Published as a conference paper at ICLR 2025

There are a variety of approaches for approximating the vector field corresponding to the linear
interpolation. In Maurais & Marzouk (2024); Nüsken (2024) a kernel-based method for solving
(12) was proposed. In Máté & Fleuret (2023) they propose to solve (15) which in case of the linear
interpolation becomes

f1 − f0 − Ct + ⟨∇ft, vt⟩ − ∇ · vt = 0. (16)
This equation has many solutions vt for the same ρt, and in order to enforce uniqueness we could
demand that vt = ∇st.
This approach leads to learning neural networks (vθ1t , C

θ2
t ) by minimizing the loss function

L(θ) := Et∈U [0,1],x∈U [a,b]d [E(θ, x, t)] , (17)

E(θ, x, t) := |f1 − f0 − Cθ2
t + ⟨∇ft, vθ1t ⟩ − ∇ · vθ1t |2, θ := (θ1, θ2).

Remark 3. Since the approximation of high dimensional integrals is difficult Máté & Fleuret (2023)
propose to use an iterative approach by solving the ODE ∂tφ

θ′

t = vθ
′

t (φθ′

t ), φθ′

0 = Id for θ′ from
the previous minimization and to solve

L(θ) := Et∈U [0,1],z∼ρ0
[E(θ, φθ′

t (z), t)].

Heuristically this penalizes E(θ, x, t) stronger in regions where the intermediate solution has more
mass. Finally, sampling can be done – assuming sufficient regularity of the learned vθit – by simu-
lating the ODE (6).

Figure 1: Evolution of the probability densities ρt ∝ ρ1−t
0 ρt1, where ρ0 ∝ e−|x| and ρ1 ∝

e−2min{|x|,|x−m|} for m = 50. For different values of m see 5.

A teleportation issue with the linear interpolation. Máté & Fleuret (2023) gave examples, where
for an asymmetric constellation of target and prior measure, this path transports mass into distant
modes only at very late times (sometimes referred to as mode switching) which may cause problems
while learning the corresponding vector field. Mathematically, this corresponds to the fact that the
vector field vt(x) develops a singularity in x ∈ Rd for late times t, see (Máté & Fleuret, 2023,
Figure 6). In this work, we demonstrate that this phenomenon is more severe: even when averaging
over the space x, the norm ∥vt∥L2(ρt) of the optimal field (4) explodes for late times t. For an
example in R1 involving a Laplacian ρ0 ∝ e−|x| centered at 0 and a Laplacian-like distribution
ρ1 ∝ e−2min{|x|,|x−m|} with a mode at 0 and a second mode at m > 0, see Figure 1, we are able to
give an explicit and analytic formula for the calculation of ∥vt∥L2(ρt) in the Appendix B. Using this
formula (37), we demonstrate that ∥vt∥L2(ρt) explodes when t is close to 1, and that this explosion
happens more severely and at later times, the further the second mode m > 0 is away from 0, see
Figure 2.

Learned Interpolation. To cope with the above disadvantages of the linear interpolation, Máté &
Fleuret (2023) proposed to parameterize also the flow by ft := (1− t)f0 + tf1 + t(1− t)ψt with a
neural network ψθ1

t and to minimize according to (15) the above loss with

E(θ, x, t) := |∂tfθ1t (x)− Cθ3
t + ⟨∇fθ1t , vθ2t ⟩ − ∇ · vθ2t |2, θ := (θ1, θ2, θ3). (18)

and
L(θ) := Et∈U [0,1],z∼ρ0

[E(θ, φθ′

t (z), t)],

where φθ′

t (z) is as in Remark 3 a trajectory of the intermediate solution. Note that in general there
are infinitely many solutions of (16) and neither the parameterized curve ρt nor the vector field vt is
unique. Further vθ2t obtained in this way may not be minimal in any sense. The proof of the validity
of the interpolation with respect to Theorem 2 is future work.
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m = 5 m = 15 m = 30 t = 1

Figure 2: In the first three figures, the evolution of ∥vt∥2L2(ρt)
belonging to the path in Figure 1 is de-

picted for different values of the second modem > 0. For largerm, the norm ∥vt∥2L2(ρt)
approaches

the limit ∥v1∥2L2(ρ1)
at later times, hence with a steeper slope. The last figure shows the log scale of

∥v1∥2L2(ρ1)
depending on m. It demonstrates that ∥v1∥L2(ρ1) roughly grows exponentially with m.

3.2 GRADIENT FLOW INTERPOLATION

Recall that the linear interpolation of the energies f0, f1 leads to a multiplicative interpolation of
densities ρt(x) ∝ ρZ(x)

1−tρD(x)t. Note that this does not take account of any local behaviour
of ρZ , ρD in a neighbourhood of x, resulting in irregular behavior of the vector field as shown in
Figure 1 and 2. In contrast, widely used paths in generative modelling Song et al. (2021); Lipman
et al. (2023) originate from an interpolation of densities via (spatial) convolutions ρt ∼ ρZ(

·
at
) ∗

ρD( ·
bt
) for time schedules at, bt, corresponding to an interpolation Xt = atZ + btX0 of associated

independent random variables Z ∼ ρZ , X0 ∼ ρD on the spatial level. We aim to learn such a curve
and an associated vector field.

In this paper, we propose to use ft := T−t
T fD + tψt and vt := ∇(ft − fZ) and to parameterize ψt

by a neural network. Then, equation (15) becomes

∂tft − Eρt [∂tft] + ⟨∇ft,∇(ft − fZ)⟩ −∆(ft − fZ) = 0. (19)

Indeed, we will show in the paragraph below that this equation makes perfect sense, in particular, it
has a solution for ρZ ∼ N (0, 1). Then we can compute (ψθ1

t , C
θ2
t ) for fθ1t := T−t

T fD + tψθ1
t by

minimizing the loss L in (17) with the function

E(θ, x, t) := |∂tfθ1t − Cθ2
t + ⟨∇fθ1t ,∇(fθ1t − fZ)⟩ −∆(fθ1t − fZ)|2, θ := (θ1, θ2). (20)

Finally, to sample from the target distribution, we simulate the ODE (6) backwards on [0, T ] to
obtain φ̃ : [0, T ]× Rd → Rd satisfying

∂tφ̃(t, x) = −vt(φ̃(t, x)), φ̃(T, x) = x

which fulfills µt = φ̃T−t,♯µZ .

Relation to Wasserstein gradient flows. Equation (19) is well-known in connection with Wasser-
stein gradient flows. A Wasserstein gradient flow is an absolutely continuous curve whose vector
field vt = −gradρt

F ∈ Tρt
(P2(Rd)) is given by the negative Wasserstein gradient (or more gener-

ally, subdifferential) of a function F : P2(Rd) → R. Then, the continuity equation

∂tρt −∇ ·
(
ρtgradρt

F
)
= 0 (21)

produces a flow towards a minimizer of F . A prominent example, see, e.g. (Ambrosio et al., 2005,
Chapter 10.4), is F (ρ) := KL(ρ|ρZ) arising from the Kullback-Leibler divergence which has the
unique minimizer ρZ . Since it is easy to show, see (Ambrosio et al., 2005, Lemma 10.4.1), that
gradρt

F = ∇ log ρt

ρZ
, we can be rewrite (21) as

∂tρt = −∇ · (ρt(∇ log ρZ −∇ log ρt)) , ρ0 = ρD, (22)

which is also known as the Fokker-Planck equation. Inserting ρt := e−ft/Zt results exactly in (19).
The existence and uniqueness of a solution of (22) is shown in (Ambrosio & Savaré, 2007, Theorem
6.6). However, it is not clear if Boltzmann densities stay Boltzmann densities, i.e. if the densities ρt
are strictly positive for all t. But in the special case, when ρZ is a Gaussian, this is the case as we
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will see next.
There is a close relation between (22) and SDEs, namely the Langevin SDE

dXt = ∇ log ρZ(Xt)dt+
√
2dBt (23)

corresponds to the Fokker-Planck equation (22), see e.g., (Chewi et al., 2024, Chapter 6.2), i.e.,
Xt ∼ ρt. For ρZ ∝ N (0, Id), (23) becomes dXt = −Xtdt +

√
2dBt which is an Ornstein-

Uhlenbeck (OU) process, and a minimizer of (20) is (up to a constant) log pt of the corresponding
Fokker-Planck equation. In (Sun et al., 2024, Equation (18)) the loss (20) is derived from this
process. This Ornstein-Uhlenbeck process has the closed form solution

Xt = e−tZ + e−tX0, Z ∼ N
(
0, (e2t − 1)Id

)
, X0 ∼ ρD,

where Z is independent from X0, see (Herrmann & Massin, 2019, Eq. (2.4)). From the closed form
solution it follows that ρt ∼ N

(
0, (1− e−2t)Id

)
∗ ρD (et·) > 0, and thus ρt ∝ e−ft which implies

that (19) has a solution.
Remark 4. To obtain dynamics on the unit interval for the gradient flow interpolation we apply an
approach from the score based diffusion literature Song et al. (2021). We use a linear time schedule
β(t) := βmin + t (βmax − βmin) and the associated SDE

dXt = −1

2
β(t)Xtdt+

√
β(t)dBt X0 ∼ ρ1. (24)

The SDE (24) has a closed form solution given by

Xt =
√
1− e−g(t)Z + e

−g(t)
2 X0, (25)

where g(t) :=
∫ t

0
β(s) ds and Z ∼ N (0, Id). As done in Song et al. (2021) we choose βmin = 0.1

and βmax = 20. These choices ensure that the distribution of X1 is approximately N (0, Id). Note
that in contrast, finite-time interpolations as the linear one do not incur such a mixing error. We
then aim to learn the solution of the associated Fokker-Planck equation, this corresponds to setting
vt :=

β(t)
2 ∇(ft − ∥·∥2

2 ).

The following example illustrates the behavior of the three interpolations, when learning the corre-
sponding vector fields.
Example 5. Motivated by an example in Máté & Fleuret (2023) and incorporating the idea of our
teleportation example with asymmetrically diverging modes, we choose a standard Gaussian source
distribution and the target distribution

1

3
N ([4, 4], 1) +

2

3
N ([−m,−m], 1) .

For the linear and learned interpolations, we consider both sampling from uniform domains and
sampling from the trajectories as described in Remark 3. For the gradient flow interpolation, we
sample points uniformly and interpolate them with samples from our latent distribution according
to formula (25). The results are reported in Figure 3. Note that, in case of the learned interpolation,
the mode collapse could be eventually alleviated by choosing a different source distribution with a
larger support and/or heavier tails.

4 EXPERIMENTS

In this section we apply the different approaches to common sampling problems. We compare the
performance of using the linear, learned or gradient flow interpolation.
For both the linear interpolation and the learned interpolation, we can choose to learn the vector
field directly, or learn a potential and obtain the vector field as its gradient. In practice, we choose
to parameterize it directly as in Máté & Fleuret (2023). Note that in practice for the gradient flow
interpolation we apply Remark 4. Furthermore we improve performance by using learned schedul-
ing function g(t), satisfying g(0) = 1 and g(1) = 0, and parametrizing the corresponding ft as
ft := g(t)fD + tψt .

A major design choice is at which points to evaluate the pointwise error E(θ, x, t). For the gradient
flow interpolation, we chose the sampling strategy described in Example 5. For the linear and learned

8
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linear (uniform) linear (trj) learned (uniform) learned (trj) gradient flow

linear (uniform) learned (uniform) gradient flow

Figure 3: Sampling results for m = 8 (top) and m = 15 (bottom) as in Example 5: source (black),
target (red) and estimated (blue). We cannot learn a meaningful vector field for the linear interpola-
tion for both sampling strategies. Sampling along the trajectories (”trj”) leads to mode collapse for
the learned interpolation. While the learned interpolation with uniform sampling covers the modes
for m = 8, increasing m leads to mode collapse. In contrast, the gradient flow interpolation does
not mode collapse for both m.

interpolation we experimented both with sampling from uniform domains, or sampling along the
trajectory as in Máté & Fleuret (2023). We found in our experiments that the method employed in
Máté & Fleuret (2023) led to better performance.

In the following, we evaluate the methods using the effective sample size, negative log likelihood
and the energy distance Székely & Rizzo (2013). See D for further details on the implementation
and evaluation.

Gaussian Mixture Model. We use the experimental setup from Midgley et al. (2023). The target
distribution consists of a mixture of 40 evenly weighted Gaussians in 2 dimensions. The means are
distributed uniformly over [−40, 40]2. In Figure 4 we plot the countour lines of the target distribu-

ground truth linear learned gradient flow

Figure 4: Results for a Gaussian Mixture Model with 40 modes. For the linear and learned interpo-
lation we showed the results for σ = 30, for the gradient flow interpretation we used σ = 1.

tion as well as 1000 samples from the simulated flow and the ground truth, respectively. For this
experiment an important factor is the choice of latent distribution. We restricted ourselves to using
a Gaussian latent distribution. However as outlined in Section 3.1 the linear interpolation faces dif-
ficulties when some modes are far away from the latent while others are close. In order to mitigate
this problem, we experimented with using varying standard deviations σ; the impact of this choice
is visualized in D. In contrast, the gradient flow interpolation works well when starting in a standard
Gaussian which is what we do.

Many Well Distribution. As target distributions we consider a 8 and 16-dimensional many well
distribution similarly to the implementation of the target energy from Midgley et al. (2023). More

9
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ESS ↑ NLL ↓ Energy ↓
linear (σ = 30) 0.183± 0.05 8.657 ± 0.012 0.247± 0.016

learned (σ = 20) 0.605 ± 0.316 6.894± 0.005 0.058± 0.006

learned (σ = 30) 0.922± 0.002 6.913 ± 0.003 0.121± 0.009

gradient flow (σ = 1) 0.992 ± 5e-5 6.864 ± 0.005 0.0021 ± 0.001

Table 1: Comparison of effective sample size (ESS), negative log likelihood (NLL), and the energy
distance for different interpolations. Arrows indicate if ascending/descending values are better.

precisely, let

log pm,d(x) =

m∑
i=1

(
−x4i + 6x2i +

1

2
xi

)
+

d∑
i=m+1

−1

2
x2i + constant.

The term −x4i + 6x2i + 1
2xi creates two modes with unequal weights and the number of overall

modes of pm,d is 2m. Then our 8 dimensional many well distribution is p4,8 and the 16 dimensional
target distribution is p4,16. The results in Table 2 show that both the learned and gradient flow in-
terpolations significantly outperform the linear interpolation for both dimensions. While the learned
and gradient flow interpolations are competitive in d = 8, the learned interpolation works better in
d = 16. The latter behavior might be due to greater flexibility, since both the curve and the vector
field are parametrized separately. Here the choice of latent distribution is not as relevant as starting
in a standard Gaussian is sufficient for all methods, since the modes of the many well distribution
are concentrated close to zero.

8-dimensional - p4,8 16-dimensional - p4,16
Interpolation ESS ↑ NLL ↓ Energy ↓ ESS ↑ NLL ↓ Energy ↓
Linear 0.985± 0.016 9.689 ± 0.01 0.278 ± 0.003 0.998±3e-5 21.85 ± 0.01 0.201 ± 0.002

Learned 0.999± 1e-5 6.876 ± 0.01 9e-5 ± 3e-5 0.998± 3e-5 18.24± 0.01 1e-4 ± 3e-5

Gradient Flow 0.991± 3e-4 6.989 ± 0.01 8e-4 ± 1e-4 0.544± 0.005 20.53 ± 0.17 0.009 ± 4e-4

Table 2: Comparison of effective sample size (ESS), negative log likelihood (NLL), and energy dis-
tance for different interpolations, evaluated for the 8-dimensional and 16-dimensional experiments
with m = 4. Note that the ESS is only meaningful in relation with the Energy.

5 CONCLUSIONS

Discussion. We studied different paths in the probability space in order to sample from unnormal-
ized densities and compared their behaviour and computibility. The linear interpolation of energies
suffers from an exploding vector field, and learning the vector field and energy path simultaneously
(learned interpolation) in practice solves this problem. However, there is no theoretical knowledge
about the path which we want to approximate and in turn no conclusions about the regularity of the
corresponding vector field can be drawn. In contrast, the proposed gradient flow approach allows for
a thorough mathematical description of the velocity field and the path itself, opening the doors for a
rigorous analysis via Wasserstein gradient flows and Fokker-Planck equations. We show numerical
performance on sampling from Gaussian mixture models and a many well distribution. Furthermore
we close a gap in the literature by showing that a large class of Fisher Rao curves and in particular
curves of Boltzmann densities are in fact absolutely continuous curves in the Wasserstein geome-
try. Hence the existence of a corresponding vector field driving the evolution is implied, justifying
sampling from the target density via solving an ODE.

Limitations and Outlook. The methods proposed require knowledge of the domain of the target
distribution. Furthermore computation of divergences and Laplacians is expensive in high dimen-
sions, requiring the use of e.g. Hutchinsons trace estimator. These issues can be addressed by
developing more efficient strategies to sample points at which to evaluate the loss E(θ, x, t), such
as combining uniform sampling and trajectory based sampling. From a theoretical point of view
further investigation of the behaviour and regularity of the gradient flow path is needed, especially
the behaviour of the norm ∥vt∥L2(ρt) would be of interest.
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L. Ambrosio and G. Savaré. Gradient flows of probability measures. In Handbook of differential
equations: evolutionary equations, volume 3, pp. 1–136. Elsevier, 2007.
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A WASSERSTEIN MEETS FISHER-RAO: SOLUTION OF A FAMILY OF POISSON
EQUATIONS

We will show that under mild assumptions on f , the Fisher-Rao curve ρt from (8) is also a Wasser-
stein absolutely continuous curve with a tangent vector field ∇st2. In order to do that, we will

2Overall, let ∇ := ∇x denote differentiation in direction x ∈ Rd.
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describe st as the unique solution of a Poisson equation in a suitable Hilbert space X 1
0 . More pre-

cisely, we show that there exists a unique s ∈ L2([0, 1] × Rd;ρ) (with ρ given by Definition A.1)
such that ∇st := ∇s(t, ·) fulfills the Poisson equation

∇ · (ρt∇st) =
(
∂tf − Eρt

[∂tf ]
)
ρt (26)

in a distributional sense in X 1
0 . For fixed time t, this has already been done, e.g., in Laugesen et al.

(2014) and Vargas et al. (2024). But note that a pointwise-in-time treatment does not allow us to
conclude Wasserstein absolute continuity of our curve ρt. Therefore, we generalize their methods to
a global-in-time ansatz; see also the discussion at the end of Section A. In particular, under suitable
assumptions on f , we find a unique weak solution s of (26) such that

1. ∇xs is Borel measurable on [0, 1]× Rd,

2. t 7→ ∥∇xs(t, ·)∥2L2(ρt)
∈ L1([0, 1]), i.e.,

∫ 1

0
∥∇xs(t, ·)∥2L2(ρt)

dt <∞,

3. ∇xs(t, ·) ∈ TρtP2(Rd) for a.e. t ∈ [0, 1].

These conditions ensure that the Fisher-Rao curve (8) is absolutely continuous in the Wasserstein
sense, and that the velocity field ∇xs is the optimal one fulfilling the continuity equation w.r.t. our
curve ρt as described in (4).

As a by-product, we obtain the estimate∫ 1

0

∫
Rd

∥∇xs(t, ·)∥2 dρtdt ≤ K

∫ 1

0

∫
Rd

(αt − αt)
2
dρtdt,

linking (an upper bound of) the Wasserstein-2 distance W 2
2 (ρ0, ρ1) on the one side, and the Fisher-

Rao action on the other.

Next we will define the appropriate spaces for our analysis.

A.1 PREREQUISITES FOR SOLVING THE POISSON EQUATION

Definition A.1. Let t 7→ ρt be a weakly continuous curve [0, 1] → Pac(Rd). Then, for all Borel
measurable B ⊆ Rd, the map t 7→ ρt(B) is measurable: Indeed, it is the pointwise limit of con-
tinuous, hence measurable maps t 7→

∫
Rd fk dρt with appropriate fk. Thus, ρ defined by the disin-

tegration
∫
[0,1]×Rd f(t, x) dρ =

∫ 1

0

∫
Rd f(t, x) dρtdt, is a probability measure on [0, 1] × Rd, see

e.g., (Ambrosio et al., 2005, Chapter 5.3).
Definition A.2. Let ρdx ∈ Pac(Rd) with density ρ. We consider the Sobolev space

H1(ρ) :=
{
f ∈ L2(Rd, ρ) : the weak derivative ∂xi

f (w.r.t. L) exists and

∂xi
f ∈ L2(ρ), ∀i ∈ {1, . . . , d}

}
with inner product ⟨f, g⟩H1(ρ) := ⟨f, g⟩L2(ρ)+ ⟨∇f,∇g⟩L2(ρ,Rd). Furthermore, define the space of
Sobolev functions with zero mean by

H1
0 (ρ) :=

{
f ∈ H1(ρ) :

∫
Rd

f dρ = 0

}
.

Lemma A.3. Assume that ρdx ∈ Pac(Rd) and 1
ρ ∈ L1,loc(Rd). Then, (H1(ρ), ⟨·, ·⟩H1(ρ)) is a

Hilbert space and H1
0 (ρ) is a closed subspace.

Proof. The first claim is (Kufner & Opic, 1984, Theorem 1.11). For the second claim note that for
fn → f in H1(ρ) with fn ∈ H1

0 (ρ), we have that∣∣∣∣∫
Rd

f dρ

∣∣∣∣ = |⟨f, 1⟩L2(ρ)| ≤ |⟨f − fn, 1⟩L2(ρ)|+ |⟨fn, 1⟩L2(ρ)|

≤ ∥fn − f∥H1(ρ) + 0 → 0.

14
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Definition A.4. Consider a weakly continuous curve [0, 1] → Pac(Rd), t 7→ ρt, and the associated
measure ρ ∈ Pac([0, 1]× Rd) given by Definition A.1. Define

H1
x(ρ) :=

{
f ∈ L2([0, 1]× Rd,ρ) : the weak derivative ∂xi

f exists and

∂xi
f ∈ L2(ρ), ∀i ∈ {2, . . . , d+ 1}

}
with respect to the inner product ⟨f, g⟩H1

x(ρ)
:= ⟨f, g⟩L2(ρ)+ ⟨∇xf,∇xg⟩L2(ρ), where f = f(t, x),

g = g(t, x). Now, consider the subspace

X 1
0 :=

{
s ∈ H1

x(ρ) : s(t, ·) ∈ H1
0 (ρt) for almost every t ∈ [0, 1]

}
.

For s ∈ X 1
0 we will also write st for denoting the function s(t, ·).

Lemma A.5. Assume that 1
ρ ∈ L1,loc([0, 1]× Rd). Then, the space H1

x(ρ) is a Hilbert space, and
X 1

0 is a closed subspace of H1
x(ρ).

Proof. The Hilbert space property ofH1
x(ρ) again follows by (Kufner & Opic, 1984, Theorem 1.11)

and we only prove the closedness of X 1
0 . Now, let (sn) ⊂ X 1

0 be a sequence with sn → s in H1
x(ρ).

Then, ∫ 1

0

∫
Rd

|sn(t, ·)− s(t, ·)|2 + ∥∇xsn(t, ·)−∇xs(t, ·)∥2 dρtdt→ 0.

This implies pointwise convergence for a.e. t ∈ [0, 1] (along a subsequence), i.e.,∫
Rd

|sn(t, ·)− s(t, ·)|2 + ∥∇xsn(t, ·)−∇xs(t, ·)∥2 dρt → 0 for a.e. t ∈ [0, 1].

Thus, we have that sn(t, ·) → s(t, ·) converges in H1(ρt) for almost all t ∈ [0, 1]. Since H1
0 (ρt) is

closed, we have that the limit s(t, ·) is in H1
0 (ρt) for a.e. t.

Definition A.6. On X 1
0 we define an bilinear form by setting

⟨f, g⟩X 1
0
= ⟨∇xf,∇xg⟩L2(ρ).

Definition A.7. We say that a probability measure ρ fulfills the partial Poincaré inequality (PPI) if
there exists K > 0 such that

∥g∥2L2(ρ)
≤ K∥∇xg∥2L2(ρ)

(PPI)

for all g ∈ X 1
0 . Note that usually it is formulated as V arµ[g] ≤ K∥∇xg∥2L2(µ)

, but since we have
Eρt

[gt] = 0 for g ∈ X 1
0 both notions coincide.

Note that the above definition is more general than the pointwise Poincaré inequality used in Vargas
et al. (2024), since we can allow single time points t, where the inequality may fail.

Lemma A.8. Assume that ρ fulfills the (PPI), and that 1
ρ ∈ L1,loc([0, 1]×Rd). Then, (X 1

0 , ⟨·, ·⟩X 1
0
)

is a Hilbert space.

Proof. We have to show that ⟨·, ·⟩X 1
0

is positive definite and X 1
0 is complete. The first claim follows

directly from the (PPI). The second follows from the fact that ∥ · ∥H1
x(ρ)

≤
√
K + 1∥ · ∥X 1

0
≤√

K + 1∥ · ∥H1
x(ρ)

and X 1
0 is closed in H1

x(ρ).

This assumption (PPI) is usually fulfilled in our setting as we discuss in the following.

Lemma A.9. (Bakry et al., 2008, Corollary 1.6) Let µ = e−V (x) dx be a probability measure on Rd

and assume that V ∈ C2(Rd) such that V is lower bounded. Assume furthermore that there exists
η > 0, R̃ ≥ 0 such that for all ∥x∥ > R̃ we have

⟨x,∇V (x)⟩ ≥ η∥x∥.

15
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Then, there exists a constant C = C
(
d, η, ∥V ∥L∞(B(R)), ∥∇V ∥L∞(B(R))

)
> 0, where R :=

max{ 2d
η , R̃}, such that for all ϕ ∈ H1

0 (µ), it holds∫
Rd

ϕ2(x) dµ ≤ C

∫
Rd

∥∇ϕ∥2 dµ.

The constant C can be estimated as follows: Let β := βV,R := 2∥V ∥L∞(B(R)). There exist
C1,η,R, C2,η,R, C3,η,R > 0 (not depending on V ) and a universal constant D > 0 such that

C ≤ 4d

η2

(
1 +

(
C1,η,R + C2,η,R∥∇V ∥L∞(B(R)) + C3,η,R

)
DR2eβ

)
.

Proof. We first show the claim for all smooth ϕ ∈ C∞(Rd)∩H1(µ) with zero mean. Unfortunately
in (Bakry et al., 2008, Corollary 1.6), the constants are not explicitly computed which is why we
track them here. They consider for γ = η/2 the function given by W (x) = Wη,R(x) := eγ∥x∥ for
∥x∥ > R, and smooth continuation for ∥x∥ ≤ R. They show that, if for L := ∆ − ⟨∇V,∇·⟩, it
holds that

LW ≤ −θW (x) + bχB(R),

then, the inequality V arµ[ϕ] ≤ C
∫
Rd ∥∇ϕ2∥dµ is true with constant C = 1

θ (1 + bκR), where the
constant κR can be estimated by DR2eβ . We are left to upper bound the constants θ and b. Let
∥x∥ ≤ R. Then, we have that

|LW (x)| ≤ |∆W (x)|+|⟨∇V (x),∇W (x)| ≤ ∥∆W∥L∞(B(R))+∥∇V ∥L∞(B(R))∥∇W∥L∞(B(R)),

and for ∥x∥ > R, by choice of R,

LW (x) =
η

2

(
d− 1

∥x∥
+
η

2
− ⟨x,∇V ⟩

∥x∥

)
W (x) ≤ η

2

(
d− 1

R
+
η

2
− η

)
W (x)

≤ η

2

(
η(d− 1)

2d
− ηd

2d

)
W (x) = −η

2

4d
W (x),

and thus the claim is true for ϕ ∈ C∞(Rd)∩H1(µ) with zero mean, using the constants θ = η2

4d > 0
and b = C1,η,R+C2,η,R∥∇V ∥L∞(B(R))+C3,η,R, where C1,η,R := ∥∆Wη,R∥L∞(B(R)), C2,η,R :=
∥∇Wη,R∥L∞(B(R)) and C3,η,R := θ∥Wη,R∥L∞(B(R)).
In order to extend this result to ϕ ∈ H1

0 (µ), note that C∞
c (Rd) is dense in H1(Rd), see (Adams &

Fournier, 2003, Cor. 3.23). Since by assumption, V is lower bounded, i.e., e−V is upper bounded,
C∞

c (Rd) is also dense in H1(µ) by Lebesgue’s dominated convergence theorem. Now take a se-
quence (ϕn) ∈ C∞

c (Rd) converging to ϕ in H1(µ). Then, also ϕ̃n := ϕn −
∫
Rd ϕn dµ converges to

ϕ in H1(µ), and ϕ̃n ∈ C∞(Rd) ∩H1(µ) has zero mean. The first part now yields the claim.

For the specific path ρt given by the linear potential interpolation Vt = (1 − t)f0 + tf1, the disin-
tegration measure ρ fulfills the partial Poincaré inequality (PPI) given suitable assumptions on the
end points f0, f1, as the next proposition shows.

Proposition A.10. Let f0, f1 ∈ C2(Rd) be lower bounded such that there exists α, η > 0 and
R̃ > 0 such that for all ∥x∥ ≥ R̃ it holds the drift condition

⟨x,∇fi(x)⟩ ≥ η∥x∥, i = 0, 1, (27)

and the linear growth condition
fi(x) ≥ α∥x∥, i = 0, 1. (28)

Let Vt = (1−t)f0+tf1 and ρt = Z−1
t e−Vt for Zt =

∫
Rd e

−Vt dx, and ρ as in Definition A.1. Then,
ρ satisfies the partial Poincaré inequality (PPI), i.e., there exists C > 0 such that for all ϕ ∈ X 1

0 it
holds ∫

[0,1]×Rd

ϕ2 dρ ≤ C

∫
[0,1]×Rd

∥∇xϕ∥2 dρ.
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Proof. First note that by the lower boundedness and linear growth assumption (28) on f0, f1, the
normalization constant Zt is well-defined, and ρt is indeed a probability measure for all t ∈ [0, 1].
Further note that ρ exists if ρt is weakly continuous, see again Definition A.1. We now show the
weak continuity of ρt:
Let g be a bounded and continuous function on Rd. By the linear growth (28) of f0, f1 and domi-
nated convergence, the map t 7→ Zt =

∫
Rd e

−Vt dx is continuous on [0, 1]. Since it is also strictly
positive on [0, 1], also its inverse t 7→ Z−1

t is continuous on [0, 1]. By the same token, the map
t 7→

∫
Rd ge

−Vt dx is continuous, and altogether, t 7→ ρt is weakly continuous.
In order to prove the inequality, we conclude by (27) that ⟨x,∇Vt(x)⟩ ≥ (1 − t)η∥x∥ + tη∥x∥ ≥
η∥x∥ for all ∥x∥ ≥ R̃. Let R := max{ 2d

η , R̃} and note that for V (t, x) := Vt(x)+ ln(Zt), it is now
easy to check that V (t, ·) ∈ C2(Rd), ∥∇xV ∥L∞([0,1]×B(R)) <∞ and β := 2∥V ∥L∞([0,1]×B(R)) <
∞. Then, by Proposition A.9 we know that∫

Rd

ϕ(t, ·)2 dρt ≤ C

∫
Rd

∥∇xϕ(t, ·)∥2 dρt

for all ϕ ∈ X 1
0 and all t ∈ [0, 1], with a constant C which does not depend on t, hence the claim.

Remark A.11. (i) Gaussian distributions given by fi := 1
2σ2 ∥x −m∥2 satisfy the assumptions of

Proposition A.10.
(ii) In Proposition A.10, the regularity assumptions on the end points, i.e., f0, f1 ∈ C2(Rd) can be
relaxed. It is enough to assume that there exist sequences of functions (f0,n), (f1,n) ⊂ C2(Rd),
which converge pointwise to f0 and f1, respectively, such that the assumptions of Proposition A.10
are satisfied uniformly in n and such that ∥∇xVn∥L∞ , ∥Vn∥L∞ are bounded in n.
Hereby, also the Fisher-Rao curve given by linear interpolation of f0 := ∥x∥ and f1 :=
min{∥x∥, ∥x − m∥} with m ∈ Rd, i.e., the interpolation between two Laplacian (type) distribu-
tions, satisfies (PPI).

A.2 EXISTENCE OF A SOLUTION TO THE POISSON EQUATION

Now, we consider the Poisson equation (26) in a slightly more abstract manner: Showing that a given
Fisher-Rao flow ρt is also a Wasserstein absolutely continuous curve requires solving the following
(family of) PDEs

−∇ · (ρt∇st) = (αt − αt) ρt, t ∈ [0, 1], (29)
for the vector field vt = ∇st satisfying a suitable integrability condition. Here, α ∈ L2(ρ), αt :=
α(t, ·) and αt := Eρt

[αt] are given.

In order to do that, we look to find a weak solution to (29) in the space X 1
0 .

Definition A.12. An element ϕ ∈ X 1
0 is called a weak solution to (29) if it satisfies,∫ 1

0

∫
Rd

⟨∇ϕt,∇ψt⟩dρtdt =
∫ 1

0

∫
Rd

ψt (αt − αt) dρtdt, ∀ψ ∈ X 1
0 . (30)

Note that for ψ ∈ C∞
c ((0, 1)×Rd) it holds for g(t) := Eρt

[ψ(t, ·)] that ψ−g ∈ X 1
0 . Since ∇x(g) =

0 =
∫ 1

0

∫
Rd g(t)(αt − αt) dρtdt, we have that (30) is also fulfilled for all ψ ∈ C∞

c ((0, 1)× Rd).

We can now prove Theorem 1 from Section 2.2, which provides a solution to the Poisson problem
(29) globally in time t ∈ [0, 1].
Theorem A.13. Assume that ρ from Definition A.1 satisfies (PPI) for some K > 0, and that 1

ρ ∈
L1,loc([0, 1] × Rd). Furthermore, assume that αt − αt ∈ L2(ρ), i.e., ∥αt − αt∥2L2(ρ)

≤ C < ∞.
Then, there exists a unique weak solution s ∈ X 1

0 to (29). Moreover, s satisfies the following
inequality ∫ 1

0

∫
Rd

∥∇s∥2 dρtdt ≤ K

∫ 1

0

∫
Rd

(αt − αt)
2
dρtdt. (31)

Proof. Let A : X 1
0 → R be defined as

Aψ :=

∫ 1

0

∫
Rd

ψt (αt − αt) dρtdt.
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Therefore, we can rewrite our system of PDEs (29) as

⟨s, ψ⟩X 1
0
= Aψ, ∀ψ ∈ X 1

0 . (32)

Clearly, A is a linear operator. Since ρ satisfies (PPI) the following holds:

|Aψ|2 =

∣∣∣∣∫ 1

0

∫
Rd

ψt (αt − αt) dρtdt

∣∣∣∣2 =

∣∣∣∣∣
∫
[0,1]×Rd

ψt(x) (αt(x)− αt(x)) dρ(t, x)

∣∣∣∣∣
2

≤
(∫

(αt − αt)
2
dρ

)
·
(∫

|ψt|2 dρ
)
≤ C

∫ 1

0

∫
Rd

|ψt|2 dρtdt

≤ C K

∫ 1

0

∫
Rd

∥∇ψt∥2 dρtdt = C K∥ψ∥2X 1
0
.

By Lemma A.8, the space X 1
0 is a Hilbert space. Applying the Riesz Representation theorem, there

exists a unique element s ∈ X 1
0 satisfying (32).

Remark A.14. Note that in the case of Fisher-Rao flows, α satisfies

∂tρt = (αt − αt) ρt, t ∈ [0, 1].

Then, the Fisher-Rao action AFR(ρt) of ρt is given by
∫ 1

0
∥αt − αt∥2L2(ρt)

dt. Hence, the r.h.s. of
(31) can be described by KAFR(ρt).
Lemma A.15. Let ρ be such that ρt is bounded (from above) for a.e. t ∈ [0, 1]. Then, for s ∈ X 1

0
we have that ∇st ∈ TρtP2(Rd) for a.e. t ∈ [0, 1].

Proof. For a.e. t, since ρt is bounded from above by assumption, C∞
c (Rd) is dense inH1(ρt). Now,

st ∈ H1(ρt) immediately yields the claim ∇st ∈ Tρt
P2(Rd) = {∇ϕ : ϕ ∈ C∞

c (Rd)}
L2(ρt)

.

It follows the proof of Theorem 2 from Section 2.2, which says that certain Fisher-Rao curves are
indeed also Wasserstein absolutely continuous curves.
Theorem A.16. Let ρ0, ρ1 be probability densities on Rd and assume that ρt is a Fisher-Rao curve
defined by

∂tρt = (αt − αt)ρt,

such that ρ and α satisfy the assumptions of Theorem A.13.

Then, ρt is a Wasserstein absolutely continuous curve with vector field ∇xs, where s ∈ X 1
0 is the

unique weak solution of (30). If ρt is bounded for a.e. t, we have that ∇xst ∈ Tρt
P2(Rd) for a.e.

t ∈ [0, 1], i.e., for every other vector field vt satisfying the continuity equation for ρt, we have that
∥vt∥L2(ρt) ≥ ∥∇xst∥L2(ρt) for a.e. t ∈ [0, 1].

Furthermore, it holds that∫ 1

0

∫
Rd

∥∇xst∥2 dρtdt ≤ K

∫ 1

0

∫
Rd

(αt − αt)
2
dρtdt. (33)

Note that by the Benamou-Brenier formula, see (Ambrosio et al., 2005, Equation 8.0.3), the left-hand
side of (33) is an upper bound for the Wasserstein distance W 2

2 (ρ0, ρ1), while the double-integral
on the right-hand side defines the Fisher-Rao action AFR of ρt.

Proof. Using (αt−αt)ρt = ∂tρt and Theorem A.13, we can conclude that ρt satisfies the continuity
equation

∂tρt +∇ · (ρtvt) = 0 (34)
with a Borel vector field vt := ∇st in the sense of distributions. Note that by construction, s ∈ X 1

0 ,
and hence, the gradient ∇xs is already a Borel-measurable vector field on [0, 1] × Rd such that
∇xst ∈ L2(ρt) for a.e. t ∈ [0, 1]. Further, (31) implies that t 7→ ∥∇st∥L2(ρt) ∈ L1([0, T ]).

Together with the fact that ρt is weakly continuous, we infer by (Ambrosio et al., 2005, Theorem
8.3.1) that ρt is Wasserstein absolutely continuous. By Lemma A.15, it holds that ∇st ∈ Tρt

P2(Rd),
if ρt is bounded for a.e. t. In this case, (Ambrosio et al., 2005, Proposition 8.4.5) immediately
implies that ∇st has minimal norm ∥∇st∥L2(ρt) among all Borel vector fields vt fulfilling (34).
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Let us apply the above result to the curve given by linear interpolation of the energy functions f0, f1.

Corollary A.17. Let f0, f1 ∈ C2(Rd) be lower bounded by some γ ∈ R such that the conditions
(27) and (28) of Propostion A.10 are satisfied for some α, η > 0. Further, for simplicity, assume
that f0, f1 have at most polynomial growth outside a ball, i.e., there exists R > 0 such that

|fi(x)| ≤M∥x∥k for all ∥x∥ > R, i = 0, 1. (35)

Then, Theorem A.16 can be applied to the Fisher-Rao curve ρt given by Vt = (1 − t)f0 + tf1 and
ρt = Z−1

t e−Vt with Zt =
∫
Rd e

−Vt dx.

Proof. First, by the drift condition (27) and linear growth (28), the measure ρ satisfies (PPI) by
Proposition A.10. Furthermore, in Proposition A.10 we showed that t 7→ Z−1

t is continuous on
[0, 1], hence (t, x) 7→ ρt(x) = Z−1

t e−Vt(x) is strictly positive and continuous on [0, 1]×Rd. There-
fore, it immediately follows that 1

ρ ∈ L1,loc([0, 1]× Rd).

We are left to check the L2-condition on αt = −∂tVt = f0−f1. First, since t 7→ Z−1
t is continuous

on [0, 1], hence bounded, it follows together with (28) and (35) that

|αt| ≤ Z−1
t

∫
Rd

|f0 − f1|e−Vt dx

≤ Z−1
t

∫
∥x∥≤R

|f0 − f1|e−Vt dx + Z−1
t

∫
∥x∥>R

|f0 − f1|e−Vt dx

≤ C1

∫
∥x∥≤R

|f0 − f1|e−γ dx + C2M

∫
∥x∥>R

∥x∥ke−α∥x∥ dx

≤ C <∞,

with a constant C > 0 not depending on t. Hence, αt ∈ L2(ρ), and we are left to prove αt ∈ L2(ρ).
But this follows by the similar arguments

Z−1
t

∫
Rd

|f0 − f1|2e−Vt dx ≤ Z−1
t

∫
∥x∥≤R

|f0 − f1|2e−Vt dx + Z−1
t

∫
∥x∥>R

|f0 − f1|2e−Vt dx

≤ C1

∫
∥x∥≤R

|f0 − f1|2e−γ dx + C2M
2

∫
∥x∥>R

∥x∥2ke−α∥x∥ dx

≤ C <∞,

again, with a constant C > 0 not depending t. Integrating over t ∈ [0, 1] yields αt ∈ L2(ρ), and
hence, all assumptions of Theorem A.16 are fulfilled.

Remark A.18. Hence, the Fisher-Rao curves defined by linear interpolation Vt = (1− t)f0 + tf1
are absolutely continuous in the Wasserstein sense, e.g., in the cases (see also Remark A.11)

• Gaussian distributions given by fi := 1
2σ2 ∥x−m∥2,

• Laplacian distributions given by fi := 1
σ∥x−m∥,

• Laplacian type distributions given by fi := min{∥x∥, ∥x−m∥}.

Let us briefly discuss the differences between the theory developed here, and the prior results from
Laugesen et al. (2014); Vargas et al. (2024).

• In Vargas et al. (2024), they assume that ρt ∈ C∞([0, 1],Rd) and α ∈ C∞([0, 1] × Rd)
and a Poincaré inequality for each time t. We need much weaker conditions: we assume
that t 7→ ρt is weakly continuous, ρ =

∫
ρtdt fulfills a (partial in x) Poincaré inequality

and α ∈ L2(ρ). In particular, we allow single time points t, where the Poincaré inequality
might fail for ρt.

• Our solution ϕ is an element of H1(ρ) ⊂ L2([0, 1] × Rd;ρ) and thus automatically mea-
surable on the whole time domain t ∈ [0, 1]. This makes it possible to show that ∇ϕt(x)
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is a Borel vector field with regularity in time which implies absolute continuity of the flow
ρt in the Wasserstein geometry. In contrast, Vargas et al. (2024) only considers a solution
for every single t ∈ [0, 1] without any regularity in t. This is a result already shown in
(Laugesen et al., 2014, Thm. 2.2) and motivated our investigation into a framework across
the time t.

• Furthermore, we give precise mild assumptions under which the partial Poincaré inequality
is satisfied. In particular, we cover the case of the linear interpolation. As a result we obtain
that these curves are absolutely continuous in the Wasserstein geometry.

B TELEPORTATION ISSUE WITH THE LINEAR INTERPOLATION

In this section we want to demonstrate that the norm ∥vt∥L2(ρt) of the (optimal) velocity field (4)
belonging to the Fisher-Rao path given by linear interpolation ft := (1 − t)f0 + tf1, explodes for
times t close to 1, when the measures ρ0 and ρ1 are asymmetrical to each other.

In the following, we restrict ourselves to the one-dimensional setting R1, in order to exploit the
isometry from the Wasserstein space P2(R1) into the convex cone C ⊂ L2(0, 1) of quantile func-
tions, also see (Duong et al., 2024, Section 3). For the sake of self-containedness, we give a short
introduction of the necessary tools: For µ ∈ P2(R) we define its cumulative distribution function
(CDF) by

Fµ(x) := µ(−∞, x], x ∈ R,

and its left-continuous quantile function

Qµ(s) := min{x ∈ R : F (x) ≥ s}, s ∈ (0, 1).

Then, it holds the isometric property

W 2
2 (µ, ν) =

∫ 1

0

|Qµ(s)−Qν(s)|2 ds for all µ, ν ∈ P2(R). (36)

Now, by (Ambrosio et al., 2005, Theorem 8.3.1), the norm ∥vt∥L2(ρt) of the optimal field vt belong-
ing to an absolutely continuous Wasserstein curve ρt can be characterized by the metric derivative
of the curve via

∥vt∥L2(ρt) = |ρ′(t)| := lim
s→t

W2(ρt, ρs)

|t− s|
for a.e. t ∈ [0, 1].

Using the aforementioned isometry (36) and Komura’s theorem, it holds for a.e. t ∈ [0, 1]

lim
s→t

W2(ρt, ρs)

|t− s|
= lim

s→t

∥Qρt −Qρs∥L2(0,1)

|t− s|
= ∥∂t(Qρt

)∥L2(0,1).

Hence, if we can explicitly compute the quantiles Qρt
(and its time derivative), we get an analytic

representation of ∥vt∥L2(ρt) via

∥vt∥2L2(ρt)
=

∫ 1

0

(
∂t(Qρt

)(s)
)2

ds. (37)

In order to do so, we choose the prior and target measures the following way: Let f0(x) := |x|
and f1(x) := 2min{|x|, |x − m|}, where the second mode m > 0 is fixed for the moment. By
Corollary A.17 and Remark A.18, the Fisher-Rao curve ρt given by linear interpolation of f0, f1 is
Wasserstein absolutely continuous. Now, it is straightforward (but tedious) to explicitly calculate
the CDF and quantile function of ρt:

First, since ρt ∝ ρ1−t
0 ρt1 and 2min{|x|, |x−m|} = |x|+ |x−m| −

∣∣|x| − |x−m|
∣∣, we obtain

ρt ∝ e−|x|−t|x−m|+t||x|−|x−m|| for all x ∈ R, t ∈ [0, 1],

up to a normalization constant Zt which we calculate below.
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Calculating the CDF of ρt. By dissolving the absolute values on suitable subintervals, we obtain
for the CDF

Zt · Fρt
(x) =

1

1 + t
ex(1+t), x ≤ 0,

Zt · Fρt
(x) =

2

1 + t
− 1

1 + t
e−x(1+t), 0 ≤ x ≤ m

2
,

Zt ·Fρt
(x) =

2

1 + t
−
( 1

1 + t
+

1

−1 + 3t

)
e−

m
2 (1+t)+

1

−1 + 3t
ex(−1+3t)−2tm,

m

2
≤ x ≤ m,

Zt · Fρt(x) =
2

1 + t
−
( 1

1 + t
+

1

−1 + 3t

)
e−

m
2 (1+t)

+
( 1

1 + t
+

1

−1 + 3t

)
e−m(1−t) − 1

1 + t
e−x(1+t)+2tm, x ≥ m,

where the normalization constant is hence given by

Zt = Zt · Fρt(∞) =
2

1 + t
−

( 1

1 + t
+

1

−1 + 3t

)
e−

m
2 (1+t)

+
( 1

1 + t
+

1

−1 + 3t

)
e−m(1−t).

Calculating the quantile function of ρt. Since Fρt
(·) is continuous and strictly increasing, its

inverse is given by F−1
ρt

= Qρt
. A simple calculation now yields

Qρt
(s) =

1

1 + t
ln

(
Zt(1 + t)s

)
, 0 < s ≤ s1,

Qρt
(s) = − 1

1 + t
ln

(
− Zt(1 + t)s+ 2

)
, s1 ≤ s ≤ s2,

Qρt(s) =
ln
(
(−1 + 3t)(sZt − 2

1+t + ( 1
1+t +

1
−1+3t )e

−m
2 (1+t))

)
+ 2tm

−1 + 3t
, s2 ≤ s ≤ s3,

Qρt
(s) =

− ln
(
Zt(1 + t)(1− s)

)
+ 2tm

1 + t
, s3 ≤ s < 1.

Here, the subintervals are given by

s1 =
1

Zt(1 + t)
,

s2 =
1

Zt

( 2

1 + t
− 1

1 + t
e−

m
2 (1+t)

)
,

s3 =
1

Zt

( 2

1 + t
− (

1

1 + t
+

1

−1 + 3t
)e−

m
2 (1+t) +

1

−1 + 3t
e−m(1−t)

)
.

Calculating the time derivative ∂tQρt
and the norm ∥vt∥2L2(ρt)

. Using standard differentiation
rules, the time derivative ofQρt can be computed separately on each subinterval (si, si+1). Since the
resulting derivatives become unbearably long, we only include them in the Supplementary Material.
Nevertheless, they can be computed analytically as elementary functions, and be inserted into the
desired integral (37). By numerical integration, we can finally approximate the norm ∥vt∥2L2(ρt)

arbitrarily close. The computed results are depicted in Figure 2 for different values of the mode
m > 0; roughly speaking, for late times t ∼ 1, the norm of the velocity field grows exponentially
with m.

On a side note, the integration of ∂tQρt only on the subintervals (s1, s2) and (s2, s3) contributes
to the explosion of ∥vt∥2L2(ρt)

. Intuitively, this corresponds to the fact that mass gets shifted very
abruptly mainly in the areas x ∈ (0, m2 ) and (m2 ,m) for late times t.

On related work. The teleportation issue described here has been discussed in other works under
the term mode switching or label switching, see, e.g., Woodard et al. (2009); Syed et al. (2022);
Phillips et al. (2024); Chehab & Korba (2024); Noble et al. (2024). We complement these mostly
empirical observations by theoretical results.
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Figure 5: Evolution of probability densities ρt for m ∈ {1, 5, 15, 50}.
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C ALGORITHMS

Algorithm 1 Learning vθt , C
θ
t in (17) for xi sampled from trajectories.

Parameters and Networks: θ = (θ1, θ2) and vθ1t , C
θ2
t .

Functions : ft = (1− t)f0 + tf1, v
θ1
t , C

θ2
t .

Loss: E(θ, x, t) := |f1 − f0 − Cθ2
t + ⟨∇ft, vθ1t ⟩ − ∇ · vθ1t |2

Algorithm:
for i = 1, ..., N do

grad = 0
for l = 1, ..., n do

Draw xj ∼ ρZ , 1 ≤ j ≤ m
ODEsolve xjtl as solution of ∂xjt = vθt (x

j
t ), x

j
0 = xj at time points tl ∈ [0, 1]

Detach xjtl from computational graph
grad+= ∇θ

∑n
i=1

∑m
j=1 E(θ, x

j
tl
, tl)

end for
Update vθ1t , C

θ2
t using grad

end for
Output: vθ1t , C

θ2
t .

Algorithm 2 Learning fθ1t , vθ2t , C
θ3
t in (18) for xi sampled from trajectories.

Parameters and Networks: θ = (θ1, θ2, θ3) and ψθ1
t , v

θ2
t , C

θ3
t .

Functions: fθ1t = (1− t)f0 + tf1 + (1− t)tψθ1
t , v

θ2
t , C

θ3
t .

Loss: E(θ, x, t) := |∂tfθ1t (x)− Cθ3
t + ⟨∇fθ1t , vθ2t ⟩ − ∇ · vθ2t |2

Algorithm:
for i = 1, ..., N do

grad = 0
for l = 1, ..., n do

Draw xj ∼ ρZ , 1 ≤ j ≤ m
ODEsolve xjtl as solution of ∂xjt = vθt (x

j
t ), x

j
0 = xj at time points tl ∈ [0, 1]

Detach xjtl from computational graph
grad+= ∇θ

∑n
i=1

∑m
j=1 E(θ, x

j
tl
, tl)

end for
Update fθ1t , vθ2t , C

θ3
t using grad

end for
Output: fθ1t , vθ2t , C

θ3
t .

Algorithm 3 Learning ψθ1
t , C

θ2
t in (19) as done in Section 4.

Networks: ψθ1
t , C

θ2
t

Parameters and functions: θ = (θ1, θ2) and ft = (1− t)f1 + tψθ1
t , C

θ2
t .

Loss: E(θ, x, t) := |∂tfθ1t − Cθ2
t + ⟨∇fθ1t ,∇(fθ1t − fZ)⟩ −∆(fθ1t − fZ)|2

Algorithm:
for i = 1, ..., N do

Draw xj1 ∼ ρZ , 1 ≤ j ≤ m and xj0 ∈ Ua,b, 1 ≤ j ≤ m uniformly
Draw tj ∈ [0, 1], 1 ≤ j ≤ m uniformly and use (25) to set xjtj
grad = ∇θ

∑m
j=1 E(θ, x

j
tj , tj)

Update ψθ1
t , C

θ2
t using grad

end for
Output: ψθ1

t , C
θ2
t .
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D ADDITIONAL DETAILS ON THE EXPERIMENTS

Implementation and evaluation details. We implement the algorithms in Pytorch Paszke et al.
(2019). For both experiments we use standard MLPs with ”swish” activation functions. For the
linear and learned interpolations we parameterize the vector fields directly. The learned interpolation
also uses the same network for ψ. The linear interpolation uses the same network for the time
dependent function Ct. For the learned and gradient flow interpolations we implement Ct using the
same network with less parameters. The gradient flow interpolation also uses a smaller network for
the time scheduling function g as defined in Section 4. In case of normalized energy functions we
can omit the parametrization of Ct for the learned and gradient flow interpolations. We simulate the
corresponding ODEs using the torchdiffeq Chen (2018) package with the Runge-Kutta adaptive step
size solver (”dopri5”). For the linear and learned interpolation we use 50 time steps along which
the loss is computed and the gradients are accumulated with a batch size of 256. For the gradient
flow interpolation we sample 4096 particles at random uniform time points and therefore do not
accumulate gradients. We adjusted the number of iterations such that all methods ran approximately
the same time on the same hardware.

We compute log weights of the generated samples by using the continuous change of variables
formula and the corresponding implementation from Chen (2018). We evaluate the methods by
generating 5 ∗ 104 samples and log weight and computing the effective sample size, negative log
likelihood and energy distance. We report mean and standard deviation over 10 evaluation runs. The
effective sample size is computed as in Midgley et al. (2023). We compute the energy distance using
the GeomLoss library Feydy et al. (2019). For the target energy functions and plotting utilities we
use the code provided in Midgley et al. (2023).

The gradient flow interpolation faced some difficulty in the many well experiment when, while
sampling, particles entered regions of very low density. This could severely affect sampling times
when using the adaptive step size solver. Therefore we also used an Euler scheme and resampled a
given batch if a NaN error is raised. This happens approximately for 0.01% of the particles.

Choice of latent distribution. The linear and learned interpolations depend significantly on the
choice of initial distribution. In the following we visualize and compare numerically the results
when starting in Gaussians with different standard deviations. Note that when using a small standard
deviation not all modes are recovered. On the other hand choosing a very large standard deviation
leads to the modes close to 0 not receiving enough mass.

σ = 10 σ = 20 σ = 30 σ = 40

Figure 6: Results for the linear interpolation for different values of σ.

ESS ↑ NLL ↓ Energy ↓
σ = 10 0.002 ± 0.003 7.071 ± 0.005 2.887 ± 0.021

σ = 20 0.063 ± 0.07 7.362 ± 0.005 0.592 ± 0.005

σ = 30 0.183± 0.05 8.657 ± 0.012 0.247± 0.016

σ = 40 0.092 ± 0.001 12.909 ± 0.023 0.554± 0.008

Table 3: Comparison of effective sample size, negative log likelihood, and the energy distance for
the linear interpolation with initial distribution being a Gaussian with standard deviation σ.
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σ = 10 σ = 20 σ = 30 σ = 40

Figure 7: Results for the learned interpolation for different values of σ.

ESS ↑ NLL ↓ Energy ↓
σ = 10 0.009 ± 0.011 7.275 ± 0.005 1.253 ± 0.017

σ = 20 0.605 ± 0.316 6.894± 0.005 0.058± 0.006

σ = 30 0.922± 0.002 6.913 ± 0.003 0.121± 0.009

σ = 40 0.139 ± 0.052 7.779 ± 0.012 0.531± 0.014

Table 4: Comparison of effective sample size, negative log likelihood, and the energy distance for
the learned interpolation with initial distribution being a Gaussian with standard deviation σ.
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