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Abstract

Causal discovery from observational data, especially for count data, is essential
across scientific and industrial contexts, such as biology, economics, and network
operation maintenance. For this task, most approaches model count data using
Bayesian networks or ordinal relations. However, they overlook the inherent
branching structures that are frequently encountered, e.g., a browsing event might
trigger an adding cart or purchasing event. This can be modeled by a binomial
thinning operator (for branching) and an additive independent Poisson distribution
(for noising), known as Poisson Branching Structure Causal Model (PB-SCM).
There is a provably sound cumulant-based causal discovery method that allows the
identification of the causal structure under a branching structure. However, we show
that there still remains a gap in that there exist causal directions that are identifiable
while the algorithm fails to identify them. In this work, we address this gap by
exploring the identifiability of PB-SCM using the Probability Generating Function
(PGF). By developing a compact and exact closed-form solution for the PGF of PB-
SCM, we demonstrate that each component in this closed-form solution uniquely
encodes a specific local structure, enabling the identification of the local structures
by testing their corresponding component appearances in the PGF. Building on
this, we propose a practical algorithm for learning causal skeletons and identifying
causal directions of PB-SCM using PGF. The effectiveness of our method is
demonstrated through experiments on both synthetic and real datasets.

1 Introduction

Causal discovery from observational data, particularly for count data is a crucial task that arises
in numerous applications, including biology (Wiuf and Stumpf [2006]), economic (Weiß and Kim
[2014]), network operation maintenance (Qiao et al. [2023], Cai et al. [2022]), etc. Much effort has
been made to model and discover the causal structure from count data. One line of research models
the count data as a type of Poisson Bayesian network (Park and Raskutti [2015, 2017]) or ordinal
functional model (Ni and Mallick [2022]), based on which various types of discovering methods are
investigated. However, the Bayesian network and ordinal modeling ignore the inherent branching
structure among the counting relationship, which is frequently encountered in real world (Weiß
[2018]). Take Fig. 1 (a) as an example, in online shopping, the purchasing event can be inherited
from browsing, cart added, or promotion event, which exhibits a branching structure such that website
browsing (X1) may lead to either purchasing (X4) directly without adding to the cart, or adding
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Figure 1: (a) An example of the causal graph of count data in an online shopping service. (b)
An illustration of the branching structure inherent in count data, where browsing events trigger
subsequent events that are summarized as counts.

to the cart (X2) followed by purchasing (X4), as depicted in Fig. 1 (b). Accurately modeling and
identifying the underlying causal mechanisms–particularly the branching structure inherent in these
count variables–are of interest for providing valuable insights to service providers.

Branching structure modeling is well studied across various domains, notably within the context of
the integer-value autoregressive model (Weiß [2018], Al-Osh and Alzaid [1987], McKenzie [1985]).
Most of these studies model the relationship among count variables utilizing a thinning operator ‘◦’
(Steutel and van Harn [1979]). For instance, the causal pair X1 → X4 in Fig. 1(a) can be modeled
as follows: X4 = α ◦ X1 + ϵ where α ◦ X1 :=

∑X1

n=1 ξ
(α)
n , ξ(α)n

i.i.d.∼ Bernoulli(α), ϵ ∼ Pois(µ).
That is, the thinning operator models the branching of an event, e.g., a website browsing event
leads to a purchase with probability α, while the Poisson noise models the exogenous event. Such
modeling can be formalized as the Poisson Branching Structure Causal Model (PB-SCM) (Qiao et al.
[2024b]). Recently, Qiao et al. [2024b] further explores the identifiability of PB-SCM and proposes
a likelihood-based heuristic searching method for learning causal skeleton and a cumulant-based
method for identifying causal direction. Although some identifiability results are developed by
Qiao et al. [2024b] using cumulant, we show that there still remains a gap in that there exist causal
directions that are identifiable while the algorithm fails to identify them. For example, the current
approach cannot fully identify the causal directions among X1, X2, and X3 in Fig. 1 (a). Moreover,
the likelihood-based heuristic searching method requires extensive coefficient estimating and structure
searching suffering from computational complexity and potential convergence issues.

In this paper, we aim to develop the identifiability of the Poisson Branching Structural Causal Model
(PB-SCM) using the Probability Generating Function (PGF) as the characterization of the distribution.
Specifically, we first develop the closed-form solution for the PGF of PB-SCM which establishes
the connection with the causal structure. With this connection, we find that each component in this
closed-form solution is directly associated with a unique local structure, enabling us to learn the
skeleton and analyze causal asymmetries without the need for the entire structure. Based on this, we
provide an exact pseudo-polynomial time causal structure learning algorithm (i.e., polynomial in
the magnitude of the observed variables). We demonstrate the effectiveness of the proposed causal
discovery method using synthetic data and real-world data.

Our contributions are threefold. 1) We develop the closed-form solution for PGF of PB-SCM and
establish a connection between the closed-form solution of PGF and the graphical patterns. 2) We
exploit the closed-form solution of PGF to identify the causal skeleton as well as the causal direction
of PB-SCM, which allows us to identify the adjacency and causal direction directly. 3) We propose
a practical structure learning algorithm and demonstrate its efficiency and effectiveness through
synthetic and real-world data experiments.

2 Related work

For brevity, we review causal discovery methods that are applicable and fully identifiable on ob-
servational discrete data. Numerous methods and theories have been developed for learning causal
structure from observational data (Spirtes et al. [2000], Zhang et al. [2018], Glymour et al. [2019], Cai
et al. [2018b], Qiao et al. [2024a]). In particular, for discrete data, one can employ constraint-based
methods (Pearl [2009], Spirtes et al. [1995]), score-based methods (Chickering [2002], Tsamardinos
et al. [2006]) to identify the causal structure by exploring the conditional independence relation
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among variables, but the conditional independence relation can only identify up to the Markov
equivalent class (Pearl [2009]). Recently, numerous approaches have been developed for categorical
or ordinal data that can identify beyond Markov equivalent class (Cai et al. [2018a], Ni [2022], Ni and
Mallick [2022], Peters et al. [2010], Leonelli and Varando [2023], Figueiredo and Oliveira [2023]).
However, these methods are rarely suitable for count data. Although some recent works explore the
Poisson Bayesian network for the Poisson data (Park and Raskutti [2015, 2017]), and further extend
it to the zero-inflated Poisson data (Choi et al. [2020]), there still remains a gap in the identifiability
of the Possion branching structure model.

3 Poisson Branching Structural Causal Model

In this section, we first introduce the Poisson branching structural causal model (PB-SCM), and then
we introduce the preliminary of PGF.

3.1 Problem Formulation

Let X = {X1, . . . , Xd} denote a d-dimensional random count vector, of which the causal relationship
consists of a causal directed acyclic graph (DAG) G(V,E) with the vertex set V = {1, 2, ..., d} and
edge set E. We use Pa(i) = {j|j → i ∈ E}, Ch(i) = {j|i→ j ∈ E} and Des(i) = {j|i⇝ j ∈ E}
denote the sets of parents, children and descendants of vertex i in G(V,E). We assume that any
variable in X satisfies the following Poisson Branching Structural Causal Model (PB-SCM):

Definition 1 (Poisson Branching Structural Causal Model). For each random variable Xi ∈ X, let
ϵi ∼ Pois(µi) be the noise component of Xi, Xi is generated by:

Xi =
∑

j∈Pa(i)

αj,i ◦Xj + ϵi, (1)

where αj,i ∈ (0, 1] is the coefficient from vertex j to i, and α ◦Xi is a Binomial thinning operator

such that α ◦Xi =
∑Xi

n=1 ξ
(α)
n , where ξ

(α)
n

i.i.d.∼ Bernoulli(α), independently of Xi.

The formulation is consistent with the existing literature, such as Qiao et al. [2024b], Al-Osh and
Alzaid [1987]. We further assume that the faithfulness assumption, the causal Markov assumption,
and the causal sufficient assumption hold. These assumptions are commonly used in constraint-based
causal discovery methods, e.g., PC algorithm (Spirtes et al. [2000]). With these assumptions, we
formalize our goal as follows:

Goal. Given i.i.d. samples D = {x(j)
1 , . . . , x

(j)
d }mj=1 from the joint distribution P (X) generated by

PB-SCM, our goal is to identify the unknown causal structure G from D.

3.2 Preliminary

To develop the identifiability of PB-SCM, we resort to using the probability generating function as
the proxy to analyze the distribution and its asymmetry property. Here, we recall the definition of the
probability generating function:

Definition 2 (Probability Generating Function). Given discrete random vector X = [X1, ..., Xd]
T

taking values in the non-negative integers Z⩾0, the probability generating function of X is defined
as:

GX(z) = E[zX1
1 · · · z

Xd

d ] =

∞∑
x1,...,xd=0

p(x1, ..., xd)z
x1
1 · · · z

xd

d , (2)

where p is the probability mass function of X. The power series converges absolutely at least for all
complex vectors z = [z1, ..., zd]

T ∈ Cd with max{|z1|, ..., |zd|} ⩽ 1.

Since the PGF is uniquely defined by the probability mass function, such uniqueness of the power
series expansion will in turn define the probabilities, meaning that the analysis of the distribution can
be conducted on PGF as a proxy (Johnson et al. [2005]).
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Figure 3: Illustration of the graphical implication in the closed-form solution for the PGF of PB-SCM.
Here, αi,jTXj

(1) indicates that Xj is reached from Xi, while (1−αi,j)TXj
(0) indicates the opposite.

4 Structure Learning of PB-SCM Using Probability Generating Function

In this section, we demonstrate how to utilize PGF to identify causal structures. We first develop
the closed-form solution for the PGF of PB-SCM, which has a compact and exact representation
capturing the global structure information. Building on this, we delve into the components of the
expansion of the PGF’s closed form, demonstrating that each component in PGF is connected to a
specific local structure. To effectively capture these components, we develop a local PGF. Finally,
based on such a connection, we present theoretical results regarding the graphical implications of the
component captured by local PGF, which can be used to discover causal structures.

4.1 Motivating Example

X2

X1

X3

α1,2 α1,3

α2,3

Figure 2: Example
triangular structure.

Before the formal discussion, we first present a motivating example illustrating
how PGF helps analyze the identifiability of PB-SCM.

Taking the triangular structure in Fig. 2 as an example, the corresponding
closed form of PGF is given in Fig. 3. We can observe that the closed form
of the PGF can be separated into three parts, starting at X1, X2, and X3,
respectively. Each part of PGF encapsulates the path information in the overall
causal structure. For example, considering the term z1z2z

2
3 in 4⃝, the z23

represents that there are two paths from X1 to X3 if the path α1,2, α2,3, α1,3 are ‘open’. By this,
one can deduce that for the reserved direction, e.g., X3 → X2, such a term z23 will not exist, which
justifies that the causal direction between X2, X3 is identifiable.

Another attractive property of the PGF is the ability to analyze the local behavior of the structure. For
example, by properly setting z1 approach 0, we can deduce whether the exist of adjacency between
X2, X3 by testing whether the term z2z3 exists as shown in term 6⃝. Furthermore, as shown in Fig. 1,
by analyzing the local PGF, we can show that the causal direction X1 → X2 ← X3 is identifiability
while the previous cumulant-based method (Qiao et al. [2024b]) can not.

In light of the connection between PGF and the causal structure, we can develop a PGF-based method
to effectively identify the causal structure. In the following section, we first demonstrate how the PGF
encapsulates the causal structure by developing the closed-form solution of the PGF. Then, benefiting
from the local analysis of PGF, we address the identifiability gap of PB-SCM and present a more
general identifiability result.
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4.2 Closed Form Solution of Probability Generating Function

In order to analyze the identifiability of PB-SCM, we first establish a fundamental theorem that
provides the closed-form solution for the PGF of PB-SCM:
Theorem 1 (Closed-form solution for PGF of PB-SCM). Given a random vector X = [X1, ..., Xn]

T

following PB-SCM, let z(j) = {zl|l ∈ Des(j) ∪ {j}}, the PGF of P (X) is given by GX(z) =∏
i∈[d] Gϵi

(
zi ×

∏
j∈Ch(i)Gi,j(z(j))

)
, where

Gi,j(z(j)) =

{
GB(αi,j)

(
zj ×

∏
k∈Ch(j) Gj,k(z(k))

)
,Ch(j) ̸= ∅

GB(αi,j)(zj) ,Otherwise
, (3)

in which Gϵi(·) is the PGF of Poisson noise ϵi and GB(αi,j)(·) is the PGF of Bernoulli distribution
with parameter αi,j .

The main idea of the proof is to decompose the expectation of PGF according to the causal structure,
e.g., a conditional expectation in PGF can be derived as E

[
z
α1,3◦ϵ1
3 |ϵ1

]
= GB(α1,3)(z3)

ϵ1 since
α1,3 ◦ ϵ1|ϵ1 ∼ Binomial(n = ϵ1, p = α1,3). Applying the above rule recursively with the law of
expectation, we can obtain Theorem 1. The overall proof is given in Appendix A.1.

Theorem 1 reveals the inherent relationship between the causal structure and the close-formed solution
of PGF. To see this connection more concretely, we further develop the following theorem:
Theorem 2. Given a random vector X = [X1, ..., Xd]

T following PB-SCM, the PGF of P (X) can
be expressed by:

GX(z) =
∏
i∈[d]

exp{µi × (TXi
(1)− 1)}, (4)

where TXi
(1) = zi

∑
s∈{0,1}|Ch(i)|

∏
j∈Ch(i) α

sj
i,jTXj

(sj), TXi
(0) = 1 and α

sj
i,j = αi,j if sj = 1 and

α
sj
i,j = 1− αi,j if sj = 0.

Theorem 2 provides a more compact closed-form solution for the PGF of PB-SCM. Intuitively, it
consists of different path information starting at different vertex. Taking the triangular structure in
Fig. 3 as an example, the closed-form solution of PGF can be expressed as follows:

GX(z) = exp
{
µ1 × [(1− α1,2)(1− α1,3)z1︸ ︷︷ ︸

1⃝

+α1,2(1− α1,3)(1− α2,3)z1z2 + α1,2α2,3(1− α1,3)z1z2z3︸ ︷︷ ︸
2⃝

+ α1,3(1− α1,2)z1z3︸ ︷︷ ︸
3⃝

+α1,2α1,3(1− α2,3)z1z2z3 + α1,2α2,3α1,3z1z2z
2
3︸ ︷︷ ︸

4⃝

]− µ1

}

× exp
{
µ2 × [(1− α2,3)z2︸ ︷︷ ︸

5⃝

+α2,3z2z3︸ ︷︷ ︸
6⃝

]− µ2

}
× exp{µ3 × ( z3︸︷︷︸

7⃝
−1)},

(5)
which is the combination of three main terms TX1

(1), TX2
(1), and TX3

(1) given in Theorem 2. Here
TXi

(1) contains all possible path information from Xi to all its descendants while TXi
(0) denotes the

vertex is ‘close’ which will not be reached at the current path. Theorem 2 shows that for each TXi
(1),

it enumerates all possible combinations of ‘open’ and ‘close’ of the children of Xi recursively. For
example, in terms 3⃝, we have X2 ‘close’ and X3 ‘open’ such that only z3 appears in this term and
we obtain α1,3(1 − α1,2)z1z3. Formally, we provide the graphical implication of the closed-form
solution of PGF as follows:
Proposition 1 (Graphical implication of closed-form solution of PGF). Given a random vector
X = [X1, ..., Xd]

T following PB-SCM, for any subgraph G(L,E) with the subset of vertices L ⊆ V
such that the i-th vertex is the root vertex in G(L,E), a component Czi

∏
j∈L\{i} z

pj

j with constant
C ̸= 0, exponent pj ∈ Z+ exits in TXi(1), if and only if there exists a subgraph G(L,E′) with subset
of the edges E′ ⊆ E such that for each j ∈ L \ {i}, there are at least pj directed paths from Xi to
Xj in the subgraph G(L,E′).

Proposition 1 reveals the graphical implication of each term in the closed-form solution of PGF that
each term is related to a number of directed paths in a certain subset graph. In particular, for the
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highest order, in terms 4⃝, z1z2z23 indicates that there are two paths from X1 to X3 and one path
from X1 to X2 in this triangular structure, which implies that X1, X2 is the cause of X3 offering
a way to identify the causal direction by detecting whether z23 exists. In fact, the cumulant-based
method is exactly the method that identifies the causal direction by detecting the highest order of zi
using cumulant (Qiao et al. [2024b]).

However, one drawback of detecting the highest order is that the highest order of zi does not always
contain full identification for PB-SCM. For example, in Fig. 1 (a), since z1z2z

2
4 , z2z3z

2
4 has the

order of 2 while z1z2, z2z3 only has an order of 1, we can only conclude the causal direction
from X1, X2, X3 to X4 but not causal relation among X1, X2, X3 using merely the highest order.
Fortunately, the causal structure X1 → X2 ← X3 remains identifiable since the term z1z2z3 does
not exist in the PGF. This indicates that there is no directed path starting from any vertex that passes
through all three vertices X1, X2, X3. In this case, we can conclude that it must be the collider
structure and allows us to identify the causal structure by detecting whether such a term exists.
Another drawback of detecting the highest order term is that it requires multiple derivatives of PGF
or complex construction with higher order cumulant, hindering the analysis of the identifiability. In
this work, benefiting the local property of the PGF, we explore a consistent way to identify the causal
structure while only lower-order information is required.

4.3 Local Probability Generating Function

One of the attractive properties of PGF is the ability to isolate and examine some specific components
by strategically setting the other variables z approach zero within the probability generating function,
which allows us to investigate the local structure and devise a practical structure learning algorithm.
Formally, we define the following local PGF:
Definition 3 (Local Probability Generating Function). Given random vector X = [X1, ..., Xd]

T

following PB-SCM and its PGF GX(z). The local PGF of vertices L ⊂ [d] is the pointwise limit of
GX(z) as the z\L approach 0, z\L = {zi|i ∈ [d] \ L}, denoted as: GL

X(z) = limz\L→0 GX(z).

The local PGF can be constructed using the original PGF by setting the limit of z. By this, similarly
to Theorem 2, we have the following closed-form solution for the local PGF:
Theorem 3. Given a random vector X = [X1, ..., Xn]

T following PB-SCM and its PGF GX(z).
For a subset L ⊂ [d] of the set of vertices, and the set of the children of vertex i within L, denoted by
ChL(i) = Ch(i) ∩ L, the local PGF of L can be expressed by:

GL
X(z) =

∏
i∈L

exp
{
µi ×

(
TL
Xi

(1)− 1
)} ∏

i∈[d]\L

exp{−µi}, (6)

where TL
Xi

(1) = zi
∑

s∈{0,1}|ChL(i)|

∏
j∈ChL(i)

α
sj
i,jT

L
Xj

(sj)
∏

j∈Ch(i)\ChL(i)
(1− αi,j) and TL

Xi
(0) = 1.

Taking Fig. 3 as an example, the local PGF of vertices L = {X2, X3} is G
{X2,X3}
X =

exp{−µ1} exp{µ2[(1− α2,3)z2 + α2,3z2z3]− µ2) exp{µ3z3 − µ3}. Such local probability gener-
ating function allow us to analysis and to identify the local structure, e.g., the term z2z3 in the local
PGF G

{X2,X3}
X represent the adjacent relation between X2 and X3.

In the following sections, we will further explore the identifiability of several specific structures that
serve as fundamental local structures within a graph.

4.4 Identifiability

In this section, we address the identifiability of the PB-SCM using the PGF. Our focus is on identifying
three fundamental local structures to reconstruct the causal graph from causal skeleton to causal
direction: (i) the adjacent relation, (ii) the local triangular structure, and (iii) the local collider
structure.

Adjacent relation. We first address the identifiability of the adjacent relation, which is involved in
identifying the causal skeleton. For each pair of vertices Xi, Xj ∈ X, the component zizj appears in
the PGF if and only if Xi and Xj are adjacent, indicating that there exists a path either from Xi to
Xj or from Xj to Xi. Therefore, we can detect the adjacency relation by testing whether the second
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partial derivative ∂2 logG
{i,j}
X (z)

∂zi∂zj
equal to zero in a local structure. In order to construct a hypothesis

test for such a condition, we formulate the condition as a rank condition. Formally, the adjacent
relation can be identified using the following theorem:
Theorem 4 (Identifiability of adjacent vertices). Let Xi, Xj ∈ X be two arbitrary vertices with the

corresponding local PGF G
{i,j}
X (z). Define the matrix A{i,j} =

G
{i,j}
X (z)

∂G
{i,j}
X (z)

∂zi
∂G

{i,j}
X (z)

∂zj

∂2G
{i,j}
X (z)

∂zi∂zj

 with

zi, zj approach 1, the condition Rank(A{i,j}) = 1 if and only if Xi is non-adjacent to Xj .

Intuitively, Theorem 4 identify the adjacent relation by detecting the existence of zizj in the logarithm
of the PGF, i.e., the TXi(i) inside the exponential function. By this, the identification of the causal
skeleton is given. Next, we show the identifiability of a local triangular structure.

Triangular structure. For any three vertices Xi, Xj , Xk ∈ X forming a triangular structure. Such a
structure must have one and only one vertex with an in-degree of 2. This asymmetry is captured by
the second-order derivative of local PGF, e.g., zizjz2k where Xk has an in-degree of 2. By this, the
causal direction Xi → Xk and Xj → Xk in the local triangular structure is identifiable as follows:
Theorem 5 (Identifiability of local triangular structure). Let Xi, Xj , Xk ∈ X form a trian-
gular structure with the corresponding local PGF G

{i,j,k}
X (z). Define the matrix B{i,j,k} =G

{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zk
∂G

{i,j,k}
X (z)

∂zk

∂2G
{i,j,k}
X (z)

∂z2
k

 with zi, zj , zk approach 1, the condition Rank(B{i,j,k}) = 2 if and

only if Xk is the vertex with an in-degree of 2 in this triangular structure, i.e., Xi Xk Xj .

Note that the causal direction in the triangular structure is not fully identifiable because it does not
exhibit asymmetry and can always construct an equivalent PGF in the reversed direction which is also
discussed in Qiao et al. [2024b]. Next, we consider the identifiability of the local collider structure,
which is also referred to as the unshielded collider structure.

Local collider structure. Given three adjacent vertices Xi−Xj−Xk. If they form a collider structure
Xi → Xj ← Xk, the corresponding pattern in the closed-form solution of PGF is zizj + zjzk but
no zizjzk, reflecting the absence of non-block path among these three vertices. Thus we have
∂2 logG

{i,j,k}
X (z)

∂zi∂zk
= 0. Similarly, we can construct a rank condition for identifying such local collider

structure using the following theorem:
Theorem 6 (Identifiability of local collider structure). Let Xi, Xj , Xk ∈ X be three adja-
cent vertices with the corresponding local PGF G

{i,j,k}
X (z). Define the matrix C{i,j,k} =G

{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zi
∂G

{i,j,k}
X (z)

∂zk

∂2G
{i,j,k}
X (z)

∂zi∂zk

 with zi, zj , zk approach 1, the condition Rank(C{i,j,k}) = 1 if and

only if the vertices Xi, Xj , Xk form the structure Xi → Xj ← Xk.

Combining the identifiability in Theorem 5 and Theorem 6 of the local structure, we conclude the
following graphical implication of the identification of PB-SCM.
Theorem 7 (Graphical implication of identifiability). Given a pair of adjacent vertices Xi, Xj ∈ X
following PB-SCM, the causal direction of Xi → Xj is identifiable if there exists a vertex Xk ∈
X \ {Xi, Xj} such that Xk → Xj .

4.5 Learning Causal Structure of PB-SCM Using Probability Generating Function

In this section, we propose a practical algorithm for learning the causal structure of PB-SCM using
PGF. Note that the probability generating function can be estimated by employing the empirical
probability generating function (Nakamura and Pérez-Abreu [1993]). The algorithm is given in Alg.
1. Our algorithm involves two steps: learning the skeleton of DAG G using the result developed in
Theorem 4 and inferring the causal direction using the results developed in Theorem 5 and 6.

Learning Causal Skeleton. To learn the causal skeleton, following the Theorem 4, we construct
the matrix A{i,j} for each pair of vertices Xi, Xj ∈ X, and assess its rank to determine adjacency

7



between the vertices (Line 2-4). Notably, learning the causal skeleton is efficient because each pair of
vertices requires only one examination.

Algorithm 1: Causal Discovery for PB-SCM
Using Probability Generating Function
Input: Data set D
Output: Causal Graph G

1 G← empty graph;
// Learning Causal Skeleton

2 for each pair of vertices i, j in G do
3 if Rank condition Rank(A{i,j}) ̸= 1 then
4 Add undirected edge “Xi −Xj” in G

based on Theorem 4.

// Learning Causal Direction
5 for each triangular Xi, Xj , Xk ∈ G do
6 if Rank condition Rank(B{i,j,k}) ̸= 1 then
7 Orient “Xi → Xk ← Xj” in G based

on Theorem 5.

8 for each structure Xi −Xj ← Xk ∈ G or
Xi −Xj −Xk ∈ G do

9 if Rank(C{i,j,k}) = 1 then
10 Orient “Xi → Xj ← Xk” in G based

on Theorem 6.

11 Return G

Learning Causal Direction. Given the skele-
ton, we orient the causal direction following the
Theorem 5 and Theorem 6. Our initial focus
is on orienting within triangular structures. For
each triangular structure, we enumerate the ma-
trix B{i,j,k} to test whether Xk has indegree of
two based on Theorem 5 and orient Xi → Xk

and Xj → Xk if detected (Line 5-7). After the
orientation in the triangular structure, we focus
on orienting the remaining undirected edges fol-
lowing Theorem 6. Specifically, for each undi-
rected edge Xi−Xj , we first consider testing the
causal direction in a pattern like Xi−Xj ← Xk.
Then, we consider testing the causal direction
in pattern Xi − Xj − Xk. Such a test is con-
ducted by constructing the matrix C{i,j,k} and
to test whether the rank is 1, and then orient
Xi → Xj ← Xk if detected (Line 8-10).

Rank Test. To test the rank of A{i,j},B{i,j,k}

and C{i,j,k}, we employ a rank test by testing
whether the second (minimum) eigenvalue λ2 is
zero, i.e., H0 : λ2 = 0 v.s. H1 : λ2 ̸= 0. Since
the trace of the matrix converges to a normal
distribution based on the central limit theorem, and thus the sum of eigenvalues is also Gaussian.
Thus, if H0 is true, we approximate the eigenvalue as a normal distribution with zero mean. We further
employ bootstrap method (Efron and Tibshirani [1994]) to estimate the variance of such distribution
by calculating the bootstrapping statistic λ+

2 from N resampling datasetD+ ∈ {D+
i |D

+
i=1,..,N ⊂ D, }

and estimate the variance of λ+
2 . Building on this, the p-value of λ2 from the original dataset can be

obtained.

Complexity Analysis. In the step of learning skeleton, we determine whether each pair of vertices
is adjacent by testing the rank of the matrix following Theorem 4, and hence the complexity of
skeleton learning is O( 12d(d− 1)). In the step of learning causal direction, we consider the complete
graph, where there are

(
d
3

)
= d(d−1)(d−2)

6 triangular structures, and for each triangular structures,
we test the rank of the matrix for three vertices following Theorem 5, and hence the complexity is
O(d(d−1)(d−2)

2 ). Similarly, in orienting collider structures from a complete graph, we choose three
adjacent vertices and test the rank once following Theorem 6, hence the complexity isO(d(d−1)(d−2)

6 ).
Therefore, the total complexity is O( 12d(d− 1) + 2d(d−1)(d−2)

3 ).

5 Experiment

5.1 Synthetic Experiments

In this section, we test our proposed method on synthetic data. We first conduct control experiments
on synthetic data to evaluate the sensitivity of our method to sample size and different indegree
rates. Following this, we present case studies involving 3, 4, and 5 vertices to further illustrate the
identifiability of our approach. The baseline methods include the cumulant-based method (Cumulant)
(Qiao et al. [2024b]), OCD (Ni and Mallick [2022]), PC (Spirtes et al. [2000]), GES (Chickering
[2002]).

Sensitivity Experiment In the sensitivity experiment, we synthesize data with fixed parameters
while traversing the target parameter. The default settings are as follows, sample size=30000, number
of vertices=10, indegree rate=3.0, range of causal coefficient αi,j ∈ [0.1, 0.3], range of the mean of
Poisson noise µi ∈ [0.05, 0.15]. Each simulation is repeated 15 times.
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Table 1: Sensitivity to Avg. In-degree Rate.

F1↑ SHD↓
Avg. In-degree 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5

Ours 0.74± 0.05 0.81± 0.07 0.86± 0.03 0.89± 0.04 9.67± 1.99 8.33± 2.28 6.40± 1.68 5.27± 1.39
Cumulant 0.73± 0.03 0.77± 0.02 0.80± 0.04 0.83± 0.03 13.40± 1.28 14.10± 1.51 13.00± 2.37 13.20± 2.23

PC 0.60± 0.17 0.62± 0.11 0.54± 0.12 0.60± 0.12 9.90± 3.45 11.80± 2.48 15.90± 3.91 16.10± 3.21
GES 0.48± 0.14 0.48± 0.11 0.41± 0.11 0.37± 0.10 14.90± 4.48 19.50± 4.61 25.90± 4.18 30.5± 4.06
OCD 0.23± 0.22 0.27± 0.23 0.28± 0.16 0.37± 0.14 16.10± 3.70 19.40± 5.50 23.60± 4.62 24.30± 4.67

Table 2: Sensitivity to Sample Size.

F1↑ SHD↓
Sample Size 5000 15000 30000 50000 5000 15000 30000 50000

Ours 0.75± 0.09 0.82± 0.04 0.86± 0.03 0.87± 0.04 11.50± 3.34 9.27± 2.37 6.40± 1.68 5.87± 1.25
Cumulant 0.72± 0.04 0.78± 0.02 0.80± 0.04 0.80± 0.03 19.90± 3.35 15.00± 1.41 13.00± 2.49 13.60± 2.63

PC 0.45± 0.11 0.54± 0.11 0.54± 0.13 0.66± 0.09 19.50± 4.30 15.70± 3.77 15.90± 4.12 13.00± 2.79
GES 0.39± 0.10 0.44± 0.20 0.41± 0.11 0.43± 0.22 23.70± 4.14 22.70± 7.85 25.90± 4.41 24.10± 8.84
OCD 0.30± 0.12 0.35± 0.18 0.28± 0.16 0.38± 0.20 21.90± 3.35 20.80± 4.57 23.60± 4.62 20.90± 5.74

In the control experiments on the average in-degree given in Table 1, as the average in-degree controls
the sparse of causal structure, the higher the in-degree rate, the less sparse in causal structure leading
to a decrease of performance of the baseline methods, PC, GES and OCD. In contrast, our method and
Cumulant show improved performance as they benefit from the denser structure which provides more
identifiable structures. Additionally, our method outperforms Cumulant by overcoming identifiability
limitations through leveraging PGF, demonstrating better performance.

In the control experiments on sample size presented in Table 2, our method’s performance improves
with increasing sample sizes, consistently outperforming all baseline methods. Furthermore, it
surpasses Cumulant under the same conditions due to its efficient identification of directions in local
structures without relying on high-order statistics, thus enhancing accuracy.

Case Study To demonstrate the identifiability of the proposed PGF-based method, we present case
studies using causal graphs with 3, 4, and 5 vertices. The results of our method and the baseline
methods are summarized in Table 3.

Table 3: Case studies of causal graphs with in total 3, 4, and 5 vertices, respectively. Red undirected
edges indicate that adjacency has been learned but the direction cannot be determined, while red
directed edges indicate incorrectly learned directions.

Causal Graph Ours Cumulant PC GES OCD

X2

X1

X3 X2

X1

X3 X2

X1

X3 X2

X1

X3 X2

X1

X3 X2

X1

X3

X4

X1 X2 X3

X4

X1 X2 X3

X4

X1 X2 X3

X4

X1 X2 X3

X4

X1 X2 X3

X4

X1 X2 X3

X1 X2

X3

X4

X5

X1 X2

X3

X4

X5

X1 X2

X3

X4

X5

X1 X2

X3

X4

X5

X1 X2

X3

X4

X5

X1 X2

X3

X4

X5

Generally, our PGF-based method successfully identifies almost all the edges, except for X1 → X2

in the graphs with 3 and 5 vertices. This is because there is neither a vertex with an indegree of 2
to provide causal asymmetry, nor an additional vertex to form the local collider structure, which
aligns with our theoretical results. Notably, the cumulant-based method fails to identify the structure
X1 → X2 ← X3 in the 4-vertex graph and the edge X4 → X5 in the 5-vertex graph, as it cannot
leverage low-order information. This limitation, however, is successfully addressed by the PGF-based
method, which can utilize such information effectively. Regarding other baseline methods, PC
and GES encounter difficulties in identifying the Markov equivalent class, while OCD illustrates
identifiability issues in PB-SCM.
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5.2 Real World Experiments

In this section, we evaluate the performance of our proposed method on two real-world datasets to
assess its effectiveness in realistic scenarios.

F

Y1 Y2 R

S

Figure 4: Football Event
Graph (F : Foul, Y1: Yellow
card, Y2: Second yellow card,
R: Red card, S: Substitution)

Football Events Dataset We test the proposed method on a real-
world football events dataset1, which includes 941,009 events from
9,074 games across Europe. The experiment focused on analyzing
the causal relationships between specific events such as Foul, Yellow
card, Second yellow card, Red card, and Substitution, as depicted in
Fig. 4. The goal is to identify causal relationships from the counts
of these events.

In detail, we orientate in the local triangular structures Y1 − Y2 − F ,
Y2 − R − F , and the local collider structure Y1 − S − R. As a
result, Our method successfully identifies adjacent vertex Foul −
First Yellow Card and other six causal directions, which is consistent with our theoretical result.

Shopping Mall Paid Search Campaign Count Data We also evaluate our method using a shopping
mall paid search campaign dataset2. This dataset contains information from a five-month paid search
campaign for a U.S. shopping mall, spanning from July to November 2021. In this analysis, we focus
on the count variables Impressions, Clicks, and Conversions, which represent fundamental count data
in e-commerce scenarios. These variables exhibit the following causal relationships: Impressions→
Clicks, Clicks→ Conversions, and Impressions→ Conversions, forming a triangular structure.

Our experimental results demonstrate that the proposed method successfully identifies the adjacent
relation between Impressions and Clicks, and the other two causal directions. These results align
with our theoretical findings, suggesting that the method has the potential to be applied to real-world
scenarios involving count data.

6 Conclusion

In this work, we investigate the identifiability of the Poisson branching structural causal model using
the probability generating function. We derive a nontrivial closed-form solution for the PGF of
PB-SCM and further establish the connection between the closed-form solution of PGF to the causal
structure, showing that the closed-form solution of PGF encompasses the path information with
various subgraphs. With this connection, we employ the local property of PGF and propose a simple
yet efficient way to identify the local causal structure of PB-SCM by constructing a matrix with
rank test. By this, we provide a practical algorithm and a hypothesis test approach for testing the
causal structure and verifying the effectiveness of the algorithm via synthesis and real-world data.
The proposed theoretical results take a meaningful step in understanding the causal mechanism and
completing the identifiability result of PB-SCM.

The main limitation of this work is that the explicit estimation of the probability generating function
does not scale well to the number of nodes. Developing a sample-efficient estimating method could
be a promising direction. In addition, causal faithfulness and sufficient assumption may restrict the
usage of this work in a border scenario, which needs to be processed with extra detection steps to
eliminate the effect.
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A Proof of Closed-Form Solution for PGF of PB-SCM

A.1 Proof of Theorem 1

Theorem 1 (Closed form of PGF within PB-SCM). Given a random vector X = [X1, ..., Xn]
T

following PB-SCM, let z(j) = {zl|l ∈ Des(j) ∪ {j}}, the PGF of P (X) is given by GX(z) =∏
i∈[d] Gϵi

(
zi ×

∏
j∈Ch(i)Gi,j(z(j))

)
, where

Gi,j(z(j)) =

{
GB(αi,j)

(
zj ×

∏
k∈Ch(j) Gj,k(z(k))

)
,Ch(j) ̸= ∅

GB(αi,j)(zj) ,Otherwise
, (A.1)

in which Gϵi(·) is the PGF of Poisson noise ϵi and GB(αi,j)(·) is the PGF of Bernoulli distribution
with parameter αi,j .

A.1.1 An Illustrative Example for Deriving the Closed Form

Before formal proof, we first provide an intuition of proof through a detailed example. Deriving
the closed form of a multivariate PGF involves decomposing the expectation using the law of total
expectation. This ensures that each decomposed expectation involves only one random variable,
each of which has a closed-form PGF, as most univariate PGFs admit a closed form. We first
introduce some closed forms of univariate PGFs used in the proof. Specifically, the univariate PGFs
of the Poisson and Bernoulli distributions are given by: Gϵ(z) = E[zϵ] = exp{µ(z − 1)} when
ϵ ∼ Poisson(µ) and GB(α)(z) = E[zx] = 1− α+ αz where x ∼ B(α), the Bernoulli distribution
with parameter α.

Consider the triangular structure in Fig. 5, the corresponding PGF is expressed as follows:

GX(z) = E
[
zX1
1 zX2

2 zX3
3

]
= E

[
zϵ11 z

α1,2◦ϵ1+ϵ2
2 z

α2,3◦α1,2◦ϵ1+α2,3◦ϵ2+ϵ3
3

]
. (A.2)
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X2

X1

X3

α1,2 α1,3

α2,3

X1 = ϵ1

X2 = α1,2◦X1 + ϵ2

X3 = α1,3◦X1 + α2,3◦X2 + ϵ3

Figure 5: Example triangular structure.

Since PB-SCM is a kind of additive noise model, we can represent each variable by the noise of
ancestors with the corresponding coefficient along with the causal path. Next, since noises are
independent of each other, by rearranging the components that share the same noise, we can further
decompose the expectation:

GX(z) = E
[
zϵ11 z

α1,2◦ϵ1
2 z

α1,3◦ϵ1
3 z

α2,3◦α1,2◦ϵ1
3

]
E
[
zϵ22 z

α2,3◦ϵ2
3

]
E [zϵ33 ] . (A.3)

This form reveals the underlying causal mechanism, where the power of zj in the expectation
involving zϵii is the noise component from Xi to Xj with the corresponding path coefficients. That is,
each expectation captures the noise’s potential influences, along with their respective causal paths.

To analyze this expression more closely, we focus on the first expectation involving zϵ11 in Eq. A.3. By
applying the law of total expectation, we decompose this expectation, ensuring that each decomposed
inner expectation depends on only one variable:

E
[
zϵ11 z

α1,2◦ϵ1
2 z

α1,3◦ϵ1
3 z

α2,3◦α1,2◦ϵ1
3

]
= E

[
zϵ11 E

[
z
α1,3◦ϵ1
3 |ϵ1

]
E
[
z
α1,2◦ϵ1
2 z

α2,3◦α1,2◦ϵ1
3 |ϵ1

]]
= E

[
zϵ11 E

[
z
α1,3◦ϵ1
3 |ϵ1

]
E
[
z
α1,2◦ϵ1
2 E

[
z
α2,3◦α1,2◦ϵ1
3 |α1,2 ◦ ϵ1

]
|ϵ1
]]
.

(A.4)

An immediate observation from Eq. A.4 is that, to establish conditional independence and decompose
the expectation, we condition the variables following the causal order (ϵ1 corresponds to X1 and
α1,2 ◦ ϵ1 corresponds to X2), thereby encapsulating the graph structure within the PGF.

Next, each decomposed expectation involves only one variable, e.g., E
[
z
α1,3◦ϵ1
3 |ϵ1

]
is the PGF of

α1,3 ◦ ϵ1|ϵ1 ∼ Binomial(n = X, p = α), has a closed form PGF GB(α1,3)(z3)
ϵ1 . Similar to other

expectations, we can finally obtain the closed form of GX(z):

GX(z) = E
[
[z1 ×GB(α1,3)(z3)]

ϵ1 × E
[
[z2 ×GB(α2,3)(z3)]

α1,2◦ϵ1 |ϵ1
]]

= E
[
[z1 ×GB(α1,3)(z3)×GB(α1,2)(z2 ×GB(α2,3)(z3))]

ϵ1
]

= Gϵ1(z1 ×GB(α1,3)(z3)×GB(α1,2)(z2 ×GB(α2,3)(z3))).

(A.5)

Note that, E
[
[z2 ×GB(α2,3)(z3)]

α1,2◦ϵ1 |ϵ1
]

is a PGF of α1,2 ◦ ϵ1|ϵ1 where the input is z2 ×
GB(α2,3)(z3). Similar to this, we have:

E
[
zϵ22 z

α2,3◦ϵ2
3

]
= E

[
zϵ22 E

[
z
α2,3◦ϵ2
3 |ϵ2

]]
= E

[
zϵ22 GB(α2,3)(z3)

ϵ2
]
= Gϵ2(z2GB(α2,3)(z3)),

(A.6)
and E [zϵ33 ] = Gϵ3(z3). Then the close form of PGF of Fig. 5 is as follows:

GX(z) =Gϵ1(z1 ×GB(α1,3)(z3)×GB(α1,2)(z2 ×GB(α2,3)(z3)))

×Gϵ2(z2 ×GB(α2,3)(z3))×Gϵ3(z3).
(A.7)

Therefore, to derive the closed form of PGF, we need to apply the law of total expectation following
the causal order, which constructs a recursive formula. To formalize this in a recursive formula, we
further define some graphical concepts.

Notation. We use Pi⇝j =
{
P i⇝j
k

}|Pi⇝j |

k=1
denotes the set of all directed paths from vertex i to j,

where P i⇝j
k = (i, k1, k2, ..., kp, j), p = |P i⇝j

k | − 2, denote the k-th directed path from vertex i to j.
For each directed path P i⇝j

k , we use Ai⇝j
k = (αi,k1

, αk1,k2
, . . . , αkp,j) denote the corresponding

coefficients sequence of path P i⇝j
k . We let Pi⇝i = {P i⇝i} also be a valid directed path for

simplicity. Besides, we use Ai⇝j
k ◦ Xi := αkp,j ◦ · · · ◦ αk1,k2

◦ αi,k1
◦ Xi denote to perform a

consecutive thinning operation on Xi based on the path sequence.
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A.1.2 Formal Proof

Following the definitions, the PGF of joint distribution P (X1, ..., Xn) under PB-SCM is given by
GX(z) = E[zX1

1 · · · zXn
n ]. Since PB-SCM is a kind of additive noise model, we can represent each

variable by the noise of ancestors with the corresponding coefficient sequence along with the directed
path:

Xi =
∑

h∈An(i)

|Ph⇝i|∑
p=1

Ah⇝i
p ◦ ϵh + ϵi, (A.8)

where An(i) denotes the set of ancestors of vertex i.

Next, by rearranging the components that share the same noise, we can further decompose the
expectation as noises are independent of each other:

GX(z) = E
[
z
∑

h∈An(1)

∑|Ph⇝1|
p=1 Ah⇝1

p ◦ϵh+ϵ1
1 × · · · × z

∑
h∈An(n)

∑|Ph⇝n|
p=1 Ah⇝n

p ◦ϵh+ϵn
n

]

= E

∏
i∈[n]

[
zϵii

∏
j∈Des(i)

z
∑|Pi⇝j |

p=1 Ai⇝j
p ◦ϵi

j

] =
∏
i∈[n]

E

zϵii ∏
j∈Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

 ,

(A.9)

where Des(i) is the descendent set of vertex i.

We start by introducing the following Lemmas.

Lemma 1. For each E
[
zϵii
∏

j∈Des(i)

∏|P i⇝j |
p=1 z

Ai⇝j
p ◦ϵi

j

]
, we have:

E

zϵii ∏
j∈Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

 = Gϵi

zi
∏

j∈Ch(i)

E

zξ(αi,j)
n

j

∏
k∈Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

 .

(A.10)

Proof. We first condition ϵi using the law of total expectation and obtain:

E

zϵii ∏
j∈Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

 = E

zϵii E

 ∏
j∈Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

∣∣∣ϵi


= E

zϵii E

 ∏
j∈Ch(i)

(
z
αi,j◦ϵi
j

∏
k∈Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦αi,j◦ϵi
k

)∣∣∣ϵi


(A.11)

Now, regarding the definition of thinning operation αi,j ◦ X =
∑X

n=1 ξ
(αi,j)
n , where ξ

(αi,j)
n ∼

Bernoulli(α) are i.i.d. Bernoulli random variables, Eq. A.11 can be rewritten as follows:

E

zϵii ∏
j∈Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

 = E

zϵii ∏
j∈Ch(i)

E

z∑ϵi
n=1 ξ

(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
∑ϵi

n=1 Aj⇝k
p ◦ξ

(αi,j)
n

k

∣∣∣ϵi


= E

zϵii ∏
j∈Ch(i)

E

 ϵi∏
n=1

zξ
(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

ϵi∏
n=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

∣∣∣ϵi


= E

zϵii ∏
j∈Ch(i)

E

 ϵi∏
n=1

zξ
(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

∣∣∣ϵi
 .

(A.12)
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Since we condition the ϵi, which can be regarded as a constant in the expectation, we have:

E

zϵii ∏
j=Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

 = E

zϵii ∏
j∈Ch(i)

E

zξ
(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

ϵi ∣∣∣ϵi


= E

zϵii ∏
j∈Ch(i)

E

zξ(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

ϵi
= E

zi
∏

j∈Ch(i)

E

zξ(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

ϵi ,

(A.13)

which is the PGF of ϵi, with the input being zi
∏

j∈Ch(i) E
[
zξ

(αi,j)
n

j

∏
k=Des(j)

∏|P j⇝k|
p=1 z

Aj⇝k
p ◦ξ

(αi,j)
n

k

]
.

Therefore, we finally have:

E

zϵii ∏
j=Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j

 = Gϵi

zi
∏

j∈Ch(i)

E

zξ(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

 .

(A.14)
This completes the proof of Lemma 1.

Lemma 2. Let Gi,j(z(j)) = E
[
zξ

(αi,j)
n

j

∏
k=Des(j)

∏|P j⇝k|
p=1 z

Aj⇝k
p ◦ξ

(αi,j)
n

k

]
, we have:

Gi,j(z(j)) =

{
GB(αi,j)

(
zj ×

∏
k∈Ch(j) Gj,k(z(k))

)
,Ch(j) ̸= ∅

GB(αi,j)(zj) ,Otherwise
. (A.15)

Proof. (i) If Ch(j) = ∅, which means vertex j has no descendant, we have:

Gi,j(z(j)) = E

zξ(αi,j)
n

j

∏
k=Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

 = E
[
zξ

(αi,j)
n

j

]
, (A.16)

where ξ
(αi,j)
n is the Bernoulli distribution with parameter αi,j . Therefore, E

[
zξ

(αi,j)
n

j

]
is the PGF of

Bernoulli(αi,j) with input zj , we have Gi,j(z(j)) = E
[
zξ

(αi,j)
n

j

]
= GB(αi,j)(zj).

(ii) If Ch(j) ̸= ∅, we condition the Bernoulli variable ξ
(αi,j)
n , and obtain:

Gi,j(z(j)) = E

zξ(αi,j)
n

j E

 ∏
k∈Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k |ξ(αi,j)
n


= E

zξ(αi,j)
n

j

∏
k∈Ch(j)

E

zαj,k◦ξ
(αi,j)
n

k

∏
l∈Des(k)

|Pk⇝l|∏
p=1

z
Ak⇝l

p ◦αj,k◦ξ
(αi,j)
n

l

∣∣∣ξ(αi,j)
n


(A.17)
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Similar to Lemma 1, we have αj,k ◦ ξ
(αi,j)
n =

∑ξ
(αi,j)
n

n=1 ξ
(αj,k)
n . Therefore, Eq. A.17 can be rewritten

as follows:

Gi,j(z(j)) = E

zξ(αi,j)
n

j

∏
k∈Ch(j)

E


zξ

(αj,k)
n

k

∏
l∈Des(k)

|Pk⇝l|∏
p=1

z
Ak⇝l

p ◦ξ
(αj,k)
n

l

ξ
(αi,j)
n

|ξ(αi,j)
n




= E

zξ(αi,j)
n

j

∏
k∈Ch(j)

E

zξ(αj,k)
n

k

∏
l∈Des(k)

|Pk⇝l|∏
p=1

z
Ak⇝l

p ◦ξ
(αj,k)
n

l

ξ
(αi,j)
n



= E


zj

∏
k∈Ch(j)

E

zξ(αj,k)
n

k

∏
l∈Des(k)

|Pk⇝l|∏
p=1

z
Ak⇝l

p ◦ξ
(αj,k)
n

l

ξ
(αi,j)
n

 ,

(A.18)
which is the PGF of Bernoulli variable ξ

(αi,j)
n . Therefore, we have

Gi,j(z(j)) = GB(αi,j)

zj
∏

k∈Ch(j)

E

zξ(αj,k)
n

k

∏
l∈Des(k)

|Pk⇝l|∏
p=1

z
Ak⇝l

p ◦ξ
(αj,k)
n

l

 , (A.19)

where E
[
zξ

(αj,k)
n

k

∏
l∈Des(k)

∏|Pk⇝l|
p=1 z

Ak⇝l
p ◦ξ

(αj,k)
n

l

]
is Gj,k(z(k)) according to the definition, that is

Gi,j(z(j)) = GB(αi,j)

(
zj ×

∏
k∈Ch(j)

Gj,k(z(k))

)
, (A.20)

which completes the proof of Lemma 2.

Regarding to the Eq. A.9, by leveraging the Lemma 1, we have:

GX(z) =
∏
i∈[n]

E

zϵii ∏
j∈Des(i)

|P i⇝j |∏
p=1

z
Ai⇝j

p ◦ϵi
j


=
∏
i∈[n]

Gϵi

zi
∏

j∈Ch(i)

E

zξ(αi,j)
n

j

∏
k∈Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

j

 (A.21)

Next, according to the Lemma 2, we have:

GX(z) =
∏
i∈[n]

Gϵi

zi
∏

j∈Ch(i)

E

zξ(αi,j)
n

j

∏
k∈Des(j)

|P j⇝k|∏
p=1

z
Aj⇝k

p ◦ξ
(αi,j)
n

k

 =
∏
i∈[n]

Gϵi

zi
∏

j∈Ch(i)

Gi,j(z(j))


(A.22)

where Gi,j(z(j)) =

{
GB(αi,j)

(
zj ×

∏
k∈Ch(j) Gj,k(z(k))

)
,Ch(j) ̸= ∅

GB(αi,j)(zj) ,Otherwise
. This completes the proof.

A.2 Proof of Theorem 2

Theorem 2. Given a random vector X = [X1, ..., Xd]
T following PB-SCM, the PGF of P (X) can

be expressed by:
GX(z) =

∏
i∈[d]

exp{µi × (TXi
(1)− 1)}, (A.23)

where TXi
(1) = zi

∑
s∈{0,1}|Ch(i)|

∏
j∈Ch(i) α

sj
i,jTXj

(sj), TXi
(0) = 1 and α

sj
i,j = αi,j if sj = 1 and

α
sj
i,j = 1− αi,j if sj = 0.
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Proof. According to Theorem 1, we have

GX(z) =
∏

i∈[n]
Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
. (A.24)

Since Gϵi(· ) is the PGF of Poisson noise ϵi, we have:

GX(z) =
∏

i∈[n]
exp

{
µ

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))− 1

)}
. (A.25)

Therefore, to complete the proof, it suffices to show that:

TXi
(1) = zi ×

∏
j∈Ch(i)

Gi,j(z(j)) (A.26)

holds for each vertex in the recursive process.

We proceed by structural induction. Specifically, we first show that Eq. A.26 holds for the leaf
vertices. Then, assuming that the expression holds for each child vertex j of a parent vertex i (i.e.,
j ∈ Ch(i)), we demonstrate that the expression also holds for the parent vertex i.

Base case Given an arbitrary leaf vertex l, since Ch(l) = ∅ and by the definition of TXl
(1), we

have TXl
(1) = zl × 1. Therefore, Eq. A.26 holds for the leaf vertex.

Inductive Step Next, Assuming that for each child vertex j of i, the following holds: TXj
(1) =

zj ×
∏

k∈Ch(j) Gj,k(z(k)). Our goal is to prove the TXi(1) = zi ×
∏

j∈Ch(i) Gi,j(z(j)).

When Ch(i) ̸= ∅, according to the definition of Gi,j(z(j)), we have:∏
j∈Ch(i)

Gi,j(z(j)) =
∏

j∈Ch(i)
GB(αi,j)

(
zj ×

∏
k∈Ch(j)

Gj,k(z(k))

)
=
∏

j∈Ch(i)

(
1− αi,j + αi,jzj ×

∏
k∈Ch(j)

Gj,k(z(k))

)
.

(A.27)

By expanding Eq. A.27, we have:∏
j∈Ch(i)

Gi,j(z(j)) =
∑

S⊆Ch(i)

 ∏
j∈Ch(i)\S

(1− αi,j)
∏
j∈S

αi,j

zj
∏

k∈Ch(j)

Gj,k(z(k))

 , (A.28)

where S represents all subsets of Ch(i), corresponding to all possible combinations of child vertices
of vertex i.

Next, regarding the definition of TXi
(1), since α

sj
i,j =

{
αi,j sj = 1

1− αi,j sj = 0
, we have:

TXi
(1) = zi

∑
s∈{0,1}|Ch(i)|

∏
j∈Ch(i)

α
sj
i,jTXj

(sj)

= zi
∑

S⊆Ch(i)

 ∏
j∈Ch(i)\S

α0
i,jTXj (0)

∏
j∈S

α1
i,jTXj (1)


= zi

∑
S⊆Ch(i)

 ∏
j∈Ch(i)\S

(1− αi,j)
∏
j∈S

αi,j

zj
∏

k∈Ch(j)

Gj,k(z(k))

 ,

(A.29)

given TXj
(1) = zj ×

∏
k∈Ch(j) Gj,k(z(k)). Then, comparing Eq. A.28 and Eq. A.29, we find that:

TXi
(1) = zi

∏
j∈Ch(i)

Gi,j(z(j)). (A.30)

Substituting back into A.25, we have:

GX(z) =
∏

i∈[n]
exp

{
µi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))− 1

)}
=
∏

i∈[n]
exp{µi(TXi

(1)− 1)},
(A.31)

which completes the proof.
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A.3 Proof of Theorem 3

Theorem 3. Given a random vector X = [X1, ..., Xn]
T following PB-SCM and its PGF GX(z).

For a subset L ⊂ [d] of the set of vertices, and the set of the children of vertex i within L, denoted by
ChL(i) = Ch(i) ∩ L, the local PGF of L can be expressed by:

GL
X(z) =

∏
i∈L

exp
{
µi ×

(
TL
Xi

(1)− 1
)} ∏

i∈[d]\L

exp{−µi}, (A.32)

where TL
Xi

(1) = zi
∑

s∈{0,1}|ChL(i)|

∏
j∈ChL(i)

α
sj
i,jT

L
Xj

(sj)
∏

j∈Ch(i)\ChL(i)
(1− αi,j) and TL

Xi
(0) = 1.

Proof. According to the definition of Local PGF, we have:

GL
X(z) = lim

z\L→0

∏
i∈[d]

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
= lim

z\L→0

∏
i∈L

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

) ∏
j∈[d]\L

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)

= lim
z\L→0

∏
i∈L

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

) ∏
j∈[d]\L

lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
.

(A.33)
Since zj approaches zero for each j ∈ [d] \ L, we have:∏

j∈[d]\L

lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
(A.34)

=
∏

j∈[d]\L

lim
z\L→0

exp

{
µj

(
zj ×

∏
k∈Ch(j)

Gj,k(z(k))− 1

)}
=

∏
j∈[d]\L

exp{−µj}. (A.35)

Therefore, we have:

logGL
X(z) = lim

z\L→0

∏
i∈L

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

) ∏
j∈[d]\L

exp{−µi}. (A.36)

Next, we consider the lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)Gi,j(z(j))

)
. According to Theorem 2, it can be

expressed as follows :

lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
= lim

z\L→0
exp{µi(TXi

(1)− 1)}

= exp

{
µi

(
lim

z\L→0
TXi

(1)− 1

)}

= exp

µi ×

zi lim
z\L→0

∑
s∈{0,1}|Ch(i)|

∏
j∈Ch(i)

α
sj
i,jTXj

(sj)− 1

 .

(A.37)

Next, we are going to show that, when lim
z\L→0

TXj
(sj) = TL

Xj
(sj), we have

lim
z\L→0

TXi
(1) = zi

∑
s∈{0,1}|ChL(i)|

∏
j∈ChL(i)

α
sj
i,jT

L
Xj

(sj)
∏

j∈Ch(i)\ChL(i)

(1− αi,j) = TL
Xi

(1). (A.38)

Let ChL(i) = Ch(i) ∩ L, we have:

lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)

= lim
z\L→0

exp

µi ×

zi
∑

s∈{0,1}|Ch(i)|

∏
j∈ChL(i)

α
sj
i,jTXj

(sj)
∏

j∈Ch(i)\ChL(i)

α
sj
i,jTXj

(sj)− 1

 .

(A.39)
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In scenarios where j ∈ Ch(i) \ ChL(i) and sj = 1, considering that zj ∈ z\L and zj → 0, (that is,
zj approach to zero for those vertices j /∈ L) ,we have:

lim
z\L→0

TXj (sj) = lim
z\L→0

zj
∑

s∈{0,1}|Ch(j)|

∏
k∈Ch(j)

αsk
j,kTXk

(sk) = 0. (A.40)

Otherwise, when j ∈ ChL(i), we have:

lim
z\L→0

TXj
(sj) = lim

z\L→0
zj

∑
s∈{0,1}|Ch(j)|

∏
k∈Ch(j)

αsk
j,kTXk

(sk)

= zj
∑

s∈{0,1}|Ch(j)|

∏
k∈Ch(j)

αsk
j,k lim

z\L→0
TXk

(sk)

= zj
∑

s∈{0,1}|Ch(j)|

∏
k∈Ch(j)

αsk
j,kT

L
Xk

(sk),

(A.41)

and when j ∈ Ch(i) \ ChL(i) and sj = 0, we have lim
z\L→0

TXj
(0) = 1. Therefore, we have:

lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)

= exp

µi ×

zi
∑

s∈{0,1}|ChL(i)|

∏
j∈ChL(i)

α
sj
i,j lim

z\L→0
TXj (sj)

∏
j∈Ch(i)\ChL(i)

(1− αi,j)− 1


= exp

µi ×

zi
∑

s∈{0,1}|ChL(i)|

∏
j∈ChL(i)

α
sj
i,jT

L
Xj

(sj)
∏

j∈Ch(i)\ChL(i)

(1− αi,j)− 1

 .

(A.42)

According to the definition of TL
Xi

, we obtain:

lim
z\L→0

Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
= exp

{
µi ×

(
TL
Xi

(1)− 1
)}

. (A.43)

By substituting Eq. A.43 into Eq. A.36, we finally have:

logGL
X(z) =

∏
i∈L

exp
{
µi ×

(
TL
Xi

(1)− 1
)} ∏

i∈[d]\L

exp{−µi}, (A.44)

which completes the proof.

A.4 Proof of Proposition 1

Proposition 1 (Graphical implication of closed-form PGF). Given a random vector X =
[X1, ..., Xd]

T following PB-SCM, for any subgraph G(L,E) with the subset of vertices L ⊆ V
such that the i-th vertex is the root vertex in G(L,E), a component Czi

∏
j∈L\{i} z

pj

j with constant
C ̸= 0, exponent pj ∈ Z+ exits in TXi

(1), if and only if there exists a subgraph G(L,E′) with subset
of the edges E′ ⊆ E such that for each j ∈ L \ {i}, there are at least pj directed paths from Xi to
Xj in the subgraph G(L,E′).

Proof. We consider the subgraph G(L,E′) as a local structure associated with the node set L.
According to Theorem 3, we have:

TL
Xi

(1) = zi
∑

s∈{0,1}|ChL(i)|

∏
j∈ChL(i)

α
sj
i,jT

L
Xj

(sj)
∏

j∈Ch(i)\ChL(i)

(1− αi,j) (A.45)

We select a subset of edges E′ ⊆ E, indicating that edges in E′ are ‘open’ and edges in E \ E′

are ‘closed’ within the local structure containing the vertex set L. This means that edges not
included in E′ are considered non-existent in the subgraph. Consequently, in Eq. A.45, we have: (1)
α
sj=1
i,j TL

Xj
(sj = 1) if the edge i → j is in E′, and (2) αsj=0

i,j TL
Xj

(sj = 0) if the edge i → j is not
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in E′. That is, each subset E′ corresponds to an element in {0, 1}|ChL(i)|, representing a possible
combination of whether each edge is ‘open’ or is ‘close’.

We describe the term Czi
∏

j∈L\{i} z
pj

j through a recursive process. Initially considering the children
of Xi, there exists a term in TL

Xi
(1) as follows:

zi
∏

j∈ChL(i)

i→j∈E′

α1
i,jT

L
Xj

(1)
∏

j∈ChL(i)

i→j /∈E′

α0
i,jT

L
Xj

(0)
∏

j∈Ch(i)\ChL(i)

(1− αi,j)

= zi
∏

j∈ChL(i)

i→j∈E′

αi,jzj

 ∑
s∈{0,1}|ChL(j)|

∏
k∈ChL(j)

α
sk
j,kT

L
Xk

(sk)

 ∏
j∈ChL(i)

i→j /∈E′

(1− αi,j)
∏

j∈Ch(i)\ChL(i)

(1− αi,j)

︸ ︷︷ ︸
Constant coefficient

= C × zi
∏

j∈ChL(i)

i→j∈E′

zj

 ∑
s∈{0,1}|ChL(j)|

∏
k∈ChL(j)

α
sk
j,kT

L
Xk

(sk)


(A.46)

Continuing from the Eq. A.46, for each term in the product expansion, we can similarly expand based
on the children of Xj . This expansion includes the following term:

C × zi
∏

j∈ChL(i)

i→j∈E′

zj

( ∏
k∈ChL(j)

j→k∈E′

α1
j,kT

L
Xk

(1)
∏

k∈ChL(j)

j→k/∈E′

α0
j,kT

L
Xj

(0)
∏

k∈Ch(j)\ChL(j)

(1− αj,k)

︸ ︷︷ ︸
Constant coefficient

)

= C × zi
∏

j∈ChL(i)

i→j∈E′

zj

 ∏
k∈ChL(j)

j→k∈E′

zk
∑

s∈{0,1}|ChL(k)|

∏
l∈ChL(k)

α
sl
k,lT

L
Xl

(sl)
∏

l∈Ch(k)\ChL(k)

(1− αk,l)


= C × zi

∏
j∈ChL(i)

i→j∈E′

zj
∏

k∈ChL(j)

j→k∈E′

zk

 ∑
s∈{0,1}|ChL(k)|

∏
l∈ChL(k)

α
sl
k,lT

L
Xl

(sl)
∏

l∈Ch(k)\ChL(k)

(1− αk,l)


(A.47)

The term “zi
∏

j∈ChL(i)
i→j∈E′

zj
∏

k∈ChL(j)
j→k∈E′

zk” describes how Xi can reach its descendants Xk, through

the children Xj . This shows that all reachable vertices are expressed in the form of the product
of z variables, indicating that in the subgraph G(L,E′), the number of paths Xi takes to reach its
descendants k ∈ Des(i) is given in the power of zk. Thus, the corresponding term for the subgraph
G(L,E′), Czi

∏
j∈L\{i} z

pj

j , is included in TXi(1), where pj represents the number of paths from
Xi to Xj in the subgraph G(L,E′). Conversely, if such a subgraph G(L,E′) does not exist, then
TXi(1) will not contain such a term Czi

∏
j∈L\{i} z

pj

j , since the number of directed paths from i to
j is less then pj . This completes the proof.

B Proof of Identifiability

We first introduce the following necessary Lemmas for our proof.

Lemma 3. Given two vertices i, j ∈ V and the corresponding local PGF G
{i,j}
X (z), ∂2 logG

{i,j}
X (z)

∂zi∂zj
=

0 if and only if vertex i is non-adjacent to vertex j.

Lemma 4. Given three vertices i, j, k ∈ V and the corresponding local PGF G
{i,j,k}
X (z),

∂2 logG
{i,j,k}
X (z)

∂zi∂zk
= 0 if and only if vertices i, j, k form the structure i→ j ← k.

Lemma 5. Given three vertices i, j, k ∈ V and the corresponding local PGF G
{i,j,k}
X (z),

∂2 logG
{i,j,k}
X (z)

∂z2
k

̸= 0 if and only if vertices i, j, k form the structure i → k ← j and vertex i is
adjacent to vertex j.
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The proofs of Lemma 3, Lemma 4, and Lemma 5 are deferred to section B.5.

B.1 Proof of Theorem 4

Theorem 4 (Identifiability of adjacent vertices). Let Xi, Xj ∈ X be two arbitrary vertices with the

corresponding local PGF G
{i,j}
X (z). Define the matrix A{i,j} =

G
{i,j}
X (z)

∂G
{i,j}
X (z)

∂zi
∂G

{i,j}
X (z)

∂zj

∂2G
{i,j}
X (z)

∂zi∂zj

 with

zi, zj approach 1, the condition Rank(A{i,j}) = 1 if and only if Xi is non-adjacent to Xj .

Proof. Considering the partial derivative of logG{i,j}
X (z), we have

∂ logG
{i,j}
X (z)

∂zi
=

1

G
{i,j}
X (z)

∂G
{i,j}
X (z)

∂zi
(B.1)

∂2 logG
{i,j}
X (z)

∂zi∂zj
=

1

G
{i,j}
X (z)

∂2G
{i,j}
X (z)

∂zi∂zj
− 1(

G
{i,j}
X (z)

)2 ∂G{i,j}
X (z)

∂zi

∂G
{i,j}
X (z)

∂zj
(B.2)

If part If vertex i in non-adjacent to vertex j, according to Lemma 3, we have ∂2 logG
{i,j}
X (z)

∂zi∂zj
= 0,

that is
1

G
{i,j}
X (z)

∂2G
{i,j}
X (z)

∂zi∂zj
− 1(

G
{i,j}
X (z)

)2 ∂G{i,j}
X (z)

∂zi

∂G
{i,j}
X (z)

∂zj
= 0. (B.3)

By rearranging the equation, we obtain:

G
(i,j)
X (z)

∂2G
(i,j)
X (z)

∂zi∂zj
−

∂G
(i,j)
X (z)

∂zi

∂G
(i,j)
X (z)

∂zj
= 0. (B.4)

Notably, Eq. B.4 is the determinant of matrix A{i,j} =

G
{i,j}
X (z)

∂G
{i,j}
X (z)

∂zi
∂G

{i,j}
X (z)

∂zj

∂2G
{i,j}
X (z)

∂zi∂zj

, and the

det(A{i,j}) = 0 means that the rank of matrix A{i,j} is 1, i.e., Rank
(
A{i,j}) = 1. This com-

pletes the proof of the if part.

Only If part If Rank(A{i,j}) = 1, we have det(A{i,j}) = 0, which means:

G
{i,j}
X (z)

∂2G
{i,j}
X (z)

∂zi∂zj
−

∂G
{i,j}
X (z)

∂zi

∂G
{i,j}
X (z)

∂zj
= 0 (B.5)

Divide both sides by
(
G

{i,j}
X (z)

)2
. we have:

1

G
{i,j}
X (z)

∂2G
{i,j}
X (z)

∂zi∂zj
− 1(

G
{i,j}
X (z)

)2 ∂G{i,j}
X (z)

∂zi

∂G
{i,j}
X (z)

∂zj
= 0 (B.6)

Comparing to Eq. B.2, we have ∂2 logG
{i,j}
X (z)

∂zi∂zj
= 0. Therefore, according to Lemma 3, Xi is

non-adjacent to Xj . This completes the proof of Theorem 4.

B.2 Proof of Theorem 5

Theorem 5 (Identifiability of triangle structure). Let Xi, Xj , Xk ∈ X form a triangu-
lar structure with the corresponding local PGF G

{i,j,k}
X (z). Define the matrix B{i,j,k} =
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G
{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zk
∂G

{i,j,k}
X (z)

∂zk

∂2G
{i,j,k}
X (z)

∂z2
k

 with zi, zj , zk approach 1, the condition Rank(B{i,j,k}) = 2 if and

only if Xk is the vertex with an in-degree of 2 in this triangular structure, i.e., Xi Xk Xj .

Proof. Considering the second order partial derivative of logG{i,j,k}
X (z) with respect to zk, we have

∂ logG
{i,j,k}
X (z)

∂zk
=

1

G
{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zk
(B.7)

∂2 logG
{i,j,k}
X (z)

∂z2k
=

1

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂z2k
− 1(

G
{i,j,k}
X (z)

)2
(
∂G

{i,j,k}
X (z)

∂zk

)2

(B.8)

If part If Xi, Xj , Xk form the triangular where Xk is the vertex with indegree of 2, according to

Lemma 5, we have ∂2 logG
{i,j,k}
X (z)

∂z2
k

̸= 0, that is

1

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂z2k
− 1(

G
{i,j,k}
X (z)

)2
(
∂G

{i,j,k}
X (z)

∂zk

)2

̸= 0. (B.9)

By rearranging the equation, we obtain:

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂z2k
−

(
∂G

{i,j,k}
X (z)

∂zk

)2

̸= 0, (B.10)

Notably, Eq. B.10 is the determinant of matrix B{i,j,k} =

G
{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zk
∂G

{i,j,k}
X (z)

∂zk

∂2G
{i,j,k}
X (z)

∂z2
k

, and the

det(B{i,j,k}) ̸= 0 means the rank of matrix B{i,j,k} is full rank, i.e., Rank
(
B{i,j,k}) = 2. This

completes the proof of the if part.

Only if part If Rank
(
B{i,j,k}) = 2, we have

det
(
B{i,j,k}

)
= G

{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂z2k
−

(
∂G

{i,j,k}
X (z)

∂zk

)2

̸= 0. (B.11)

Divide both sides by
(
G

{i,j,k}
X (z)

)2
, we have

1

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂z2k
− 1(

G
{i,j,k}
X (z)

)2
(
∂G

{i,j,k}
X (z)

∂zk

)2

̸= 0, (B.12)

and hence we have ∂2 logG
{i,j,k}
X (z)

∂z2
k

̸= 0. According to Lemma 4, the vertex Xi, Xj , Xk form the

triangular where Xk is the vertex with an in-degree of 2, i.e., Xi Xk Xj . This completes the
proof of the only if part.

B.3 Proof of Theorem 6

Theorem 6 (Identifiability of collider structure). Let Xi, Xj , Xk ∈ X be three adjacent
vertices with the corresponding local PGF G

{i,j,k}
X (z). Define the matrix C{i,j,k} =G

{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zi
∂G

{i,j,k}
X (z)

∂zk

∂2G
{i,j,k}
X (z)

∂zi∂zk

 with zi, zj , zk approach 1, the condition Rank(C{i,j,k}) = 1 if and

only if the vertices Xi, Xj , Xk form the structure Xi → Xj ← Xk.
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Proof. The proof of Theorem 6 is similar to that of Theorem 4. Consider the partial derivative of
logG

{i,j,k}
X (z), we have

∂2 logG
{i,j,k}
X (z)

∂zi∂zk
=

1

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂zi∂zk
− 1(

G
{i,j,k}
X (z)

)2 ∂G{i,j,k}
X (z)

∂zi

∂G
{i,j,k}
X (z)

∂zk

(B.13)

If part If vertex i, j, k form the structure i → j ← k, according to Lemma 4, we have
∂2 logG

{i,j,k}
X (z)

∂zi∂zk
= 0, that is

1

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂zi∂zk
− 1(

G
{i,j,k}
X (z)

)2 ∂G{i,j,k}
X (z)

∂zi

∂G
{i,j,k}
X (z)

∂zk
= 0. (B.14)

By rearranging the equation, we obtain:

G
(i,j,k)
X (z)

∂2G
(i,j,k)
X (z)

∂zi∂zk
−

∂G
(i,j,k)
X (z)

∂zi

∂G
(i,j,k)
X (z)

∂zk
= 0. (B.15)

Notably, Eq. B.15 is the determinant of matrix C{i,j,k} =

G
{i,j,k}
X (z)

∂G
{i,j,k}
X (z)

∂zi
∂G

{i,j,k}
X (z)

∂zk

∂2G
{i,j,k}
X (z)

∂zi∂zk

, and the

det(C{i,j,k}) = 0 means the rank of matrix C{i,j,k} is 1, i.e., Rank
(
C{i,j,k}) = 1. This completes

the proof of the if part.

Only if part If Rank(C{i,j,k}) = 1, we have det(C{i,j,k}) = 0, which means:

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂zi∂zk
−

∂G
{i,j,k}
X (z)

∂zi

∂G
{i,j,k}
X (z)

∂zk
= 0 (B.16)

Divide both sides by
(
G

{i,j,k}
X (z)

)2
. we have:

1

G
{i,j,k}
X (z)

∂2G
{i,j,k}
X (z)

∂zi∂zk
− 1(

G
{i,j,k}
X (z)

)2 ∂G{i,j,k}
X (z)

∂zi

∂G
{i,j,k}
X (z)

∂zk
= 0 (B.17)

Regarding to Eq. B.13, we have ∂2 logG
{i,j,k}
X (z)

∂zi∂zk
= 0, according to Lemma 4, vertices i, j, k form the

structure i→ j ← k.

B.4 Proof of Theorem 7

Theorem 7 (Graphical Implication of Identifiability). Given a pair of adjacent vertices Xi, Xj ∈ X
following PB-SCM, the causal direction of Xi → Xj is identifiable if there exists a vertex Xk ∈
X \ {Xi, Xj} such that Xk → Xj .

Proof. Given a pair of adjacent vertices such that Xi → Xj , suppose there exists Xk ∈ X\{Xi, Xj}
such that Xk → Xj . We consider two cases: (i) Xi is adjacent to Xk and (ii) Xi is non-adjacent to
Xk: (i) If Xi is adjacent to Xk, then Xi, Xj , Xk form a triangular structure where Xi → Xj ← Xk.
According to Theorem 5, we can identify that Xj is the vertex with an indegree of 2, confirming that
Xi → Xj ; (ii) If Xi is non-adjacent to Xk, then Xi, Xj , Xk form a collider structure Xi → Xj ←
Xk. This structure can be identified according to Theorem 6, which completes the proof.

B.5 Proof of Lemma 3, 4 and 5

We first introduce some notations and necessary lemmas concerning the limits of the local PGF.
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Notation. For simplify, we define G∗
ϵi(z(i)) := Gϵi

(
zi ×

∏
j∈Ch(i) Gi,j(z(j))

)
as the component

involving ϵi of PGF. According to Theorem A.1, we have GX(z) =
∏

i∈[n] G
∗
ϵi(z(i)).

Lemma 6. Considering the limit of function G∗
ϵi(z(i)) as zi → 0, we have limzi→0 G

∗
ϵi(z(i)) = e−µi .

Proof. Since G∗
ϵi(z(i)) = Gϵi

(
zi ×

∏
j∈Ch(i) Gi,j(z(j))

)
, where Gϵi(· ) is the PGF of Poisson

noise ϵi, we have:

G∗
ϵi(z(i)) = lim

zi→0
Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
= Gϵi(0) = e−µi , (B.18)

which completes the proof.

Lemma 7. Considering the limit of function Gi,j(z(j)) as zj → 0, we have limzj→0 Gi,j(z(j)) =
1− αi,j .

Proof. Since Gi,j(z(j)) = GB(αi,j)

(
zj ×

∏
k∈Ch(j) Gj,k(z(k))

)
, where GB(αi,j)(· ) is the PGF of

Bernoulli distribution with parameter αi,j , we have:

lim
zj→0

GB(αi,j)

(
zj ×

∏
k∈Ch(j)

Gj,k(z(k))

)
= GB(αi,j)(0) = 1− αi,j , (B.19)

which completes the proof.

B.5.1 Proof of Lemma 3

Proof. According to the definition of local PGF, we have

G
{i,j}
X (z) = lim

z\{i,j}→0
GX(z) = lim

z\{i,j}→0

∏
l∈[d]

G∗
ϵl
(z(l)) (B.20)

According to Lemma 6, we have limzl→0 G
∗
ϵl
(z(l)) = e−µl for l ̸= i, j, consequently, we have:

G
{i,j}
X (z) = lim

z\{i,j}→0
G∗

ϵi(z(i))G
∗
ϵj (z(j))

∏
l∈[d]\{i,j}

G∗
ϵl
(z(l))

= lim
z\{i,j}→0

G∗
ϵi(z(i))G

∗
ϵj (z(j))

∏
l∈[d]\{i,j}

lim
z\{i,j}→0

G∗
ϵl
(z(l))

= lim
z\{i,j}→0

G∗
ϵi(z(i))G

∗
ϵj (z(j))

∏
l∈[d]\{i,j}

e−µl

(B.21)

If part. Suppose vertex i is not adjacent to vertex j, we have:

lim
z\{i,j}→0

G∗
ϵi(z(i)) = lim

z\{i,j}→0
Gϵi

(
zi ×

∏
k∈Ch(i)

Gi,k(z(k))

)
. (B.22)

Since j /∈ Ch(i), therefore zk ∈ z\{i,j} for all k ∈ Ch(i), we have:

lim
z\{i,j}→0

G∗
ϵi(z(i)) = Gϵi

(
zi ×

∏
k∈Ch(i)

lim
z\{i,j}→0

Gi,k(z(k))

)
, (B.23)

where

lim
z\{i,j}→0

Gi,k(z(k)) = lim
z\{i,j}→0

GB(αi,k)

(
zk ×

∏
l∈Ch(k)

Gk,l(z(l))

)
= GB(αi,k)(0) (B.24)

Substituting Eq.B.24 into Eq. B.23, we have

lim
z\{i,j}→0

G∗
ϵi(z(i)) = Gϵi

(
zi ×

∏
k∈Ch(i)

GB(αi,k)(0)

)
= exp

{
µizi ×

∏
k∈Ch(i)

(1− αi,k)− µi

}
.

(B.25)
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The derivation of lim
z\{i,j}→0

G∗
ϵj (z(j)) is similar to lim

z\{i,j}→0
G∗

ϵi(z(i)), it follows that,

lim
z\{i,j}→0

G∗
ϵj (z(j)) = exp

{
µjzj ×

∏
k∈Ch(j)

(1− αj,k)− µj

}
. (B.26)

Substituting Eq. B.25 and Eq. B.26 into Eq.B.21, we have

G
{i,j}
X (z) = lim

z\{i,j}→0
G∗

ϵi(z(i))G
∗
ϵj (z(j))

∏
l∈[d]\{i,j}

e−µl

= exp

µizi ×
∏

k∈Ch(i)
(1− αi,k) + µjzj ×

∏
k∈Ch(j)

(1− αj,k)−
∑
l∈[d]

µl

 .

(B.27)
Taking the logarithm of Eq. B.27, we obtain:

logG
{i,j}
X (z) = µizi ×

∏
k∈Ch(i)

(1− αi,k) + µjzj ×
∏

k∈Ch(j)
(1− αj,k)−

∑
l∈[d]

µl. (B.28)

Consequently, Taking the partial derivative of Eq. B.28, we finally have:

∂ logG
{i,j}
X (z)

∂zi
= µi ×

∏
k∈Ch(i)

(1− αi,k), (B.29)

∂2 logG
{i,j}
X (z)

∂zi∂zj
= 0, (B.30)

which completes the proof of the if part.

Only if part. We prove by contradiction, i.e., suppose that j is a child vertex of vertex i, we aim to

prove that ∂2 logG
{i,j}
X (z)

∂zi∂zj
̸= 0.

We first consider G∗
ϵi(z(i)) in Eq. B.21, since j ∈ Ch(i), we have

lim
z\{i,j}→0

G∗
ϵi(z(i)) = lim

z\{i,j}→0
Gϵi

zi ×Gi,j(z(j))×
∏

k∈Ch(i)\j

Gi,k(z(k))


= Gϵi

zi × lim
z\{i,j}→0

Gi,j(z(j))×
∏

k∈Ch(i)\j

lim
z\{i,j}→0

Gi,k(z(k))


= Gϵi

zi × lim
z\{i,j}→0

Gi,j(z(j))×
∏

k∈Ch(i)\j

GB(αi,j)(0)

 .

(B.31)

We next focus on lim
z\{i,j}→0

Gi,j(z(j)):

lim
z\{i,j}→0

Gi,j(z(j)) = lim
z\{i,j}→0

GB(αi,j)

(
zj ×

∏
k∈Ch(j)

Gj,k(z(k))

)
= GB(αi,j)

(
zj ×

∏
k∈Ch(j)

lim
z\{i,j}→0

Gj,k(z(k))

)
= GB(αi,j)

(
zj ×

∏
k∈Ch(j)

GB(αj,k)(0)

)
= 1− αi,j + αi,jzj

∏
k∈Ch(j)

GB(αj,k)(0).

(B.32)

Substituting Eq. B.32 into Eq. B.31, we have:

lim
z\{i,j}→0

G∗
ϵi(z(i)) = Gϵi

zi ×
(
1− αi,j + αi,jzj

∏
k∈Ch(j)

GB(αj,k)(0)

)
×

∏
k∈Ch(i)\j

GB(αi,k)(0)


= exp

 ∏
k∈Ch(i)

(1− αi,j)µizi +
∏

k∈Ch(i)\j

(1− αi,k)
∏

k∈Ch(j)

(1− αj,k)µiαi,jzizj − µi

 .

(B.33)
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Next, we consider G∗
ϵj (z(j)) in Eq. B.34, as i /∈ Ch(j), therefore zk ∈ z\{i,j} for all k ∈ Ch(j).

Similar to the if part, we have

lim
z\{i,j}→0

G∗
ϵj (z(j)) = exp

 ∏
k∈Ch(j)

(1− αj,k)µjzj − µj

 . (B.34)

Substituting Eq. B.33 and Eq. B.34 into Eq. B.21 and taking the logarithm of it, we have

logG
{i,j}
X (z) =

∏
k∈Ch(i)

(1− αi,j)µizi +
∏

k∈Ch(j)

(1− αj,k)µjzj

+
∏

k∈Ch(i)\j

(1− αi,k)
∏

k∈Ch(j)

(1− αj,k)µiαi,jzizj −
∑
l∈[d]

µl.
(B.35)

Since the presence of zizj , we have

∂2 logG
{i,j}
X (z)

∂zi∂zj
=

∏
k∈Ch(i)\j

(1− αi,k)
∏

k∈Ch(j)

(1− αj,k)µi ̸= 0, (B.36)

which completes the proof of the only if part.

B.5.2 Proof of Lemma 4

Proof. The proof of Lemma 4 is similar to that of Lemma 3. We aim to show that the component
zizjzk is absent in logG

{i,j,k}
X (z) if and only if the vertices i, j, k form the structure i→ j ← k.

According to the definition of local PGF, we have

G
{i,j,k}
X (z) = lim

z\{i,j,k}→0
GX(z) = lim

z\{i,j,k}→0

∏
l∈[d]

G∗
ϵl
(z(l)) (B.37)

According to Lemma 6, we have limzl→0 G
∗
ϵl
(z(l)) = e−µl for l ̸= i, j, k, consequently, we have:

G
{i,j,k}
X (z) = lim

z\{i,j,k}→0
G∗

ϵi(z(i))G
∗
ϵj (z(j))G

∗
ϵk
(z(k))

∏
l∈[d]\{i,j,k}

G∗
ϵl
(z(l)) (B.38)

= lim
z\{i,j,k}→0

G∗
ϵi(z(i))G

∗
ϵj (z(j))G

∗
ϵk
(z(k))

∏
l∈[d]\{i,j,k}

e−µl (B.39)

Taking the logarithm of Eq. B.39 we have:

logG
{i,j,k}
X (z) = lim

z\{i,j,k}→0

(
logG∗

ϵi(z(i)) + logG∗
ϵj (z(j)) + logG∗

ϵk (z(k))
)
−

∑
l∈[d]\{i,j,k}

µl (B.40)

If part Suppose i, j, k form the structure i → j ← k. we aim to prove that ∂2 logG
{i,j,k}
X (z)

∂zi∂zk
= 0

by showing that none of the functions lim
z\{i,j,k}

G∗
ϵi(z(i)), lim

z\{i,j,k}
G∗

ϵj (z(j)), lim
z\{i,j,k}

G∗
ϵk
(z(k)) in Eq.

B.40 involve the component zizk, which implies that there is no a directed path between i and k.

Since the j is the child of i and k, and j has no child, similar to proof of Lemma 3, we have:

lim
z\{i,j,k}→0

G∗
ϵj (z(j)) = exp

{
µjzj ×

∏
k∈Ch(j)

(1− αj,k)− µj

}
, (B.41)

lim
z\{i,j,k}→0

G∗
ϵi(z(i)) = exp

 ∏
l1∈Ch(i)

(1− αi,l1)µizi +
∏

l1∈Ch(i)\j

(1− αi,l1)
∏

l1∈Ch(j)

(1− αj,l1)µiαi,jzizj − µi

 ,

(B.42)

lim
z\{i,j,k}→0

G∗
ϵk (z(k)) = exp

 ∏
l2∈Ch(k)

(1− αk,l2)µkzk +
∏

l2∈Ch(k)\j

(1− αk,l2)
∏

l2∈Ch(j)

(1− αj,l2)µkαk,jzkzj − µk

 .

(B.43)
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Since none of Eq. B.41, Eq. B.42, Eq. B.43 contain the term involving zizk, the partial derivatives
of the logarithms of these equations with respect to zi and zk are all zero. Therefore we have :

∂2 logG
{i,j,k}
X (z)

∂zi∂zk
= 0, (B.44)

which completes the proof of the if part.

Only if part We prove by contradiction. Suppose that i, j, k do not form the structure i→ j ← k.
This implies i, j, k form either (i) the chain structure i→ j → k or (ii) the fork structure i← j → k.

We aim to prove that ∂2 logG
{i,j,k}
X (z)

∂zi∂zk
̸= 0.

We first discuss the case (i). If i, j, k form the chain structure i → j → k, we prove that
∂2 logG

{i,j,k}
X (z)

∂zi∂zk
̸= 0 by showing that the lim

z\{i,j,k}→0
logG∗

ϵi(z(i)) in Eq. B.40 contains the com-

ponent zizjzk.

According the Theorem 1 and Lemma 7, we have:

lim
z\{i,j,k}→0

G∗
ϵi(z(i)) = lim

z\{i,j,k}→0
Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
= Gϵi

(
zi × lim

z\{i,j,k}→0
Gi,j(z(j))×

∏
l∈Ch(i)\{j}

lim
z\{i,j,k}→0

Gi,l(z(l))

)
= Gϵi

(
zi × lim

z\{i,j,k}→0
Gi,j(z(j))×

∏
l∈Ch(i)\{j}

(1− αi,l)

)
.

(B.45)

Consequently, we expand the Gi,j(zj) and apply the Lemma 7, we have

lim
z\{i,j,k}→0

Gi,j(z(j))

= GB(αi,j)

(
zj ×GB(αj,k)

(
zk ×

∏
n∈Ch(k)

lim
z\{i,j,k}→0

Gk,n(z(n))

)
×
∏

m∈Ch(j)\{k}
lim

z\{i,j,k}→0
Gj,m(z(m))

)

= GB(αi,j)

zj ×GB(αj,k)

zk ×
∏

n∈Ch(k)

(1− αk,n)

× ∏
m∈Ch(j)\{k}

(1− αj,m)



= GB(αi,j)


(1− αj,k)zj + αj,kzjzk

∏
n∈Ch(k)

(1− αk,n)︸ ︷︷ ︸
:=β1

 ∏
m∈Ch(j)\{k}

(1− αj,m)

︸ ︷︷ ︸
:=β2


= GB(αi,j)((1− αj,k)β2zj + αj,kβ1β2zjzk)

= 1− αi,j + (1− αj,k)αi,jβ2zj + αi,jαj,kβ1β2zjzk.
(B.46)

For simplicity, the constant coefficients in the equation are replaced with β1, β2. Substituting Eq.
B.46 into Eq. B.45, we have:

lim
z\{i,j,k}→0

G∗
ϵi(z(i)) = Gϵi

(
zi × [1− αi,j + (1− αj,k)αi,jβ2zj + αi,jαj,kβ1β2zjzk]×

∏
l∈Ch(i)\{j}

(1− αi,l)

)
= Gϵi

(
[(1− αi,j)zi + (1− αj,k)αi,jβ2zizj + αi,jαj,kβ1β2zizjzk]×

∏
l∈Ch(i)\{j}

(1− αi,l)

)
.

(B.47)
Clearly, the equation contains the term involving zizjzk. We have:

∂2 logG
{i,j,k}
X (z)

∂zi∂zk
= αi,jαj,kβ1β2

∏
l∈Ch(i)\{j}

(1− αi,l)× zj ̸= 0. (B.48)

Then we consider the case (ii). If i, j, k form the fork structure i ← j → k, , we prove that
∂2 logG

{i,j,k}
X (z)

∂zi∂zk
̸= 0 by showing that the lim

z\{i,j,k}→0
logG∗

ϵj (z(j)) contain the component zizjzk.
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According the Theorem 1 and Lemma 7, we have:

lim
z\{i,j,k}→0

G∗
ϵi(z(i)) = lim

z\{i,j,k}→0
Gϵi

(
zi ×

∏
j∈Ch(i)

Gi,j(z(j))

)
= Gϵi

(
zi × lim

z\{i,j,k}→0
Gi,j(z(j))× lim

z\{i,j,k}→0
Gi,k(z(k))×

∏
l∈Ch(i)\{i,j}

lim
z\{i,j,k}→0

Gi,l(z(l))

)
= Gϵi

(
zi × lim

z\{i,j,k}→0
Gi,j(z(j))× lim

z\{i,j,k}→0
Gi,k(z(k))×

∏
l∈Ch(i)\{i,j}

(1− αi,l)

)
.

(B.49)

Consequently, we expand the Gi,j(zj), Gi,k(zk) and apply the Lemma 7:

lim
z\{i,j,k}→0

Gi,j(z(j)) = GB(αi,j)

(
zj × lim

z\{i,j,k}→0

∏
m∈Ch(j)

Gj,m(z(m))

)
= GB(αi,j)

(
zj ×

∏
m∈Ch(j)

(1− αi,m)

)
= 1− αi,j + αi,j

∏
m∈Ch(j)

(1− αi,m)︸ ︷︷ ︸
:=β1

zj ,

(B.50)

and

lim
z\{i,j,k}→0

Gi,k(z(k)) = GB(αi,k)

(
zk × lim

z\{i,j,k}→0

∏
n∈Ch(k)

Gk,n(z(n))

)
= GB(αi,k)

(
zk ×

∏
n∈Ch(k)

(1− αk,n)

)
= 1− αi,k + αi,k

∏
n∈Ch(k)

(1− αk,n)︸ ︷︷ ︸
:=β2

zk.

(B.51)

For simplicity, the constant coefficients in the equation are replaced with β1, β2. Substituting Eq.
B.50 and Eq. B.51 into Eq. B.49, we have

lim
z\{i,j,k}→0

G∗
ϵi(z(i)) = Gϵi

(
zi × (1− αi,j + β1zj)× (1− αi,k + β2zk)×

∏
l∈Ch(i)\{i,j,k}

(1− αi,l)

)
.

(B.52)
Clearly, the equation contains the term zizjzk, Then we have

∂2 logG
{i,j,k}
X (z)

∂zi∂zk
= β1β2

∏
l∈Ch(i)\{i,j,k}

(1− αi,l)× zj ̸= 0, (B.53)

which completes the proof of the only if part.

B.5.3 Proof of Lemma 5

Proof. According to the Theorem 3, we have

logG
{i,j,k}
X (z) = log

∏
l∈{i,j,k}

exp
{
µl ×

(
T

{i,j,k}
Xl

(1)− 1
)} ∏

l∈[d]\{i,j,k}

exp{−µl}

= µi

(
T

{i,j,k}
Xi

(1)− 1
)
+ µj

(
T

{i,j,k}
Xj

(1)− 1
)
+ µk

(
T

{i,j,k}
Xk

(1)− 1
)
−

∑
l∈[d]\{i,j,k}

µl

= µiT
{i,j,k}
Xi

(1) + µjT
{i,j,k}
Xj

(1) + µkT
{i,j,k}
Xk

(1)−
∑
l∈[d]

µl.

(B.54)

If part Suppose that i, j, k form the structure i → k ← j and i → j , where vertex i has two
directed path lead to vertex j. We aim to demonstrate that T {i,j,k}

Xi
(1) contain the term involving

zizjz
2
k such that ∂2zizjz

2
k

∂z2
k

= 2zizj ̸= 0. Consequently, it follows that ∂2 logG
{i,j,k}
X (z)

∂z2
k

̸= 0.
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According to the Theorem 3, T {i,j,k}
Xi

(1) is expressed as follows:

T
{i,j,k}
Xi

(1) = zi
∑

s∈{0,1}|Ch{i,j,k}(i)|

∏
j∈Ch{i,j,k}(i)

α
sj
i,jT

{i,j,k}
Xj

(sj)
∏

j∈Ch(i)\Ch{i,j,k}(i)

(1− αi,j),

(B.55)

where Ch{i,j,k}(i) = {j, k} in this structure. For simplicity, let β1 =
∏

j∈Ch(i)\Ch{i,j,k}(i)

(1− αi,j),

we have:

T
{i,j,k}
Xi

(1) = β1zi
∑

s∈{0,1}2

α
sj
i,jT

{i,j,k}
Xj

(sj)α
sk
i,kT

{i,j,k}
Xk

(sk). (B.56)

We consider the term in B.56 where both sj = 1 and sk = 1, which is given by:

α
sj=1
i,j T

{i,j,k}
Xj

(1)αsk=1
i,k T

{i,j,k}
Xk

(1) = αi,jαi,kT
{i,j,k}
Xj

(1)T
{i,j,k}
Xk

(1) (B.57)

Consequently, since vertex j has child k and vertex k has no child in this sturcture, we have:

T
{i,j,k}
Xk

(1) = zk
∏

l∈Ch(k)

(1− αk,l)

T
{i,j,k}
Xj

(1) = zj
∑

s∈{0,1}

αsk
j,kT

{i,j,k}
Xk

(sk)
∏

l∈Ch(j)\ChL(j)

(1− αj,l)

=
(
zjαj,kT

{i,j,k}
Xk

(1) + (1− αj,k)T
{i,j,k}
Xk

(0)
) ∏

l∈Ch(j)\ChL(j)

(1− αj,l)

=

1− αj,k + αj,kzjzk
∏

l∈Ch(k)

(1− αk,l)

 ∏
l∈Ch(j)\ChL(j)

(1− αj,l).

(B.58)

By combining Eq. B.56, B.57, and B.58, we can observe that zizjz
2
k is present. Therefore

∂2 logG
{i,j,k}
X (z)

∂z2
k

̸= 0, this complete the if part.

Only if part We prove by contradiction. Suppose that vertices i, j, k do not form the triangular

structure that i→ k ← j and i is adjacent to j, we aim to prove that ∂2 logG
{i,j,k}
X (z)

∂z2
k

= 0. This setup
implies two cases: (i) i, j, k do not form a triangular structure, (ii) vertices i, j, k form the triangular
structure where the vertex has the indegree of 2 is not k.

We first consider the case (i). When i, j, k do not form a triangular structure, they could instead form
a collider, chain, or fork structure. According to Lemma 4 and the intermediate results derived in its
proof, in each of these structures, the local PGFs do not contain a term involving zizjz

2
k such that

∂2 logG
{i,j,k}
X (z)

∂z2
k

= 0, which creates a contradiction.

Then we consider the case (ii). Suppose that vertices i, j, k form the triangular k → i← j and j → k.
Recall the Eq. B.54, the logG

{i,j,k}
X (z) is given by:

logG
{i,j,k}
X (z) = µiT

{i,j,k}
Xi

(1) + µjT
{i,j,k}
Xj

(1) + µkT
{i,j,k}
Xk

(1)−
∑
l∈[d]

µl. (B.59)

Our goal is to show that none of the terms T {i,j,k}
Xi

(1), T {i,j,k}
Xj

(1) and T
{i,j,k}
Xk

(1) include a compo-
nent involving zizjz

2
k.

We first consider T {i,j,k}
Xi

(1). Since vertex i has no child in this structure, we have:

T
{i,j,k}
Xi

(1) = zi
∏

l∈Ch(i)

(1− αk,l), (B.60)

which only involves zi.
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Next, we consider the T
{i,j,k}
Xk

(1), since vertex k has only one child i in this structure, we have:

T
{i,j,k}
Xk

(1) = zk
∑

s∈{0,1}

αsi
k,iT

{i,j,k}
Xi

(si)
∏

l∈Ch(k)\{i}

(1− αk,l)

=
(
zkαk,iT

{i,j,k}
Xi

(1) + zk(1− αk,i)T
{i,j,k}
Xi

(0)
) ∏

l∈Ch(k)\{i}

(1− αk,l)

=

zk(1− αk,i) + αk,i

∏
l∈Ch(i)

(1− αk,l)zizk

 ∏
l∈Ch(k)\{i}

(1− αk,l),

(B.61)

which leads to terms involving zk and zizk.

Finally, we consider T {i,j,k}
Xj

(1). Since vertex j has two children i and k in this structure, similar to
the if part, we have:

T
{i,j,k}
Xj

(1) = zj
∑

s∈{0,1}2

α
sj
j,iT

{i,j,k}
Xi

(si)α
sk
j,kT

{i,j,k}
Xk

(sk)
∏

j∈Ch(i)\Ch{i,j,k}(i)

(1− αi,j) (B.62)

In analyzing the equation, we will focus on the terms zj
∑

s∈{0,1}2

T
{i,j,k}
Xi

(si)T
{i,j,k}
Xk

(sk), treating

the other components as constants for simplicity. We have:

zj
∑

s∈{0,1}2

T
{i,j,k}
Xi

(si)T
{i,j,k}
Xk

(sk) = zjT
{i,j,k}
Xi

(0)T
{i,j,k}
Xk

(0) + zjT
{i,j,k}
Xi

(1)T
{i,j,k}
Xk

(0)

+ zjT
{i,j,k}
Xi

(0)T
{i,j,k}
Xk

(1) + zjT
{i,j,k}
Xi

(1)T
{i,j,k}
Xk

(1)
(B.63)

Since T
{i,j,k}
Xi

(0) = T
{i,j,k}
Xk

(0) = 1, we have:

zj
∑

s∈{0,1}2

T
{i,j,k}
Xi

(si)T
{i,j,k}
Xk

(sk) = zj + zjT
{i,j,k}
Xi

(1) + zjT
{i,j,k}
Xk

(1) + zjT
{i,j,k}
Xi

(1)T
{i,j,k}
Xk

(1)

(B.64)
According to previous discussion, we have T

{i,j,k}
Xi

(1) involves zi, T
{i,j,k}
Xk

(1) involves zk and zizk.
Consequently, we derive the following result:

• zjT
{i,j,k}
Xi

(1) involves zizj ,

• zjT
{i,j,k}
Xk

(1) involves zjzk and zizjzk,

• zjT
{i,j,k}
Xi

(1)T
{i,j,k}
Xk

(1) involves zizjzk and z2i zjzk.
We can observe that zk appears only to the first power within Eq. B.61, and B.62. In other words,
logG

{i,j,k}
X (z) does not contain any term involving z2k. Therefore, the second partial derivative of

logG
{i,j,k}
X (z) with respect to zk equal to zero, which creates a contradiction. This completes the

only if part.
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C Additional Experiment Details

Each experiment reported in the main paper was conducted on a 12th Gen Intel(R) Core(TM) i3-12100
CPU with 16GB RAM, without the use of a GPU. The runtime for each experiment is provided to
facilitate reproduction under similar conditions. The significance level (alpha) for the rank hypothesis
test used in these experiments is set at 0.01.

Additional Metrics The main paper presents the F1 scores and Structural Hamming Distance
(SHD) from synthetic data experiments. This section extends these results by providing Precision,
Recall, and runtime metrics for each experiment, as detailed in the following Table.4, Table. 5 and
Table. 6.

Table 4: Sensitivity to Avg. Indegree Rate.

Recall↑ Precision↑
Avg. Indegree 2.0 2.5 3.0 3.5 2.0 2.5 3.0 3.5

Ours 0.88± 0.07 0.92± 0.08 0.91± 0.04 0.92± 0.05 0.63± 0.06 0.73± 0.06 0.81± 0.04 0.87± 0.04
Cumulant 0.96± 0.04 0.98± 0.02 0.96± 0.03 0.98± 0.01 0.58± 0.03 0.63± 0.03 0.69± 0.04 0.72± 0.04

PC 0.64± 0.20 0.66± 0.13 0.57± 0.13 0.63± 0.13 0.56± 0.16 0.58± 0.10 0.52± 0.12 0.58± 0.10
GES 0.55± 0.15 0.56± 0.11 0.47± 0.12 0.41± 0.11 0.43± 0.14 0.43± 0.11 0.37± 0.10 0.34± 0.09
OCD 0.24± 0.22 0.27± 0.23 0.28± 0.16 0.36± 0.14 0.23± 0.21 0.27± 0.23 0.27± 0.17 0.37± 0.14

Table 5: Sensitivity to Sample Size.

Recall↑ Precision↑
Sample Size 5000 15000 30000 50000 5000 15000 30000 50000

Ours 0.78± 0.11 0.87± 0.05 0.91± 0.04 0.92± 0.05 0.72± 0.08 0.77± 0.04 0.81± 0.04 0.82± 0.04
Cumulant 0.92± 0.07 0.96± 0.03 0.96± 0.03 0.97± 0.03 0.60± 0.05 0.65± 0.03 0.69± 0.04 0.68± 0.04

PC 0.43± 0.10 0.56± 0.11 0.57± 0.14 0.71± 0.11 0.46± 0.13 0.53± 0.11 0.52± 0.12 0.62± 0.08
GES 0.41± 0.11 0.48± 0.20 0.47± 0.13 0.48± 0.22 0.38± 0.10 0.41± 0.20 0.37± 0.10 0.39± 0.22
OCD 0.28± 0.10 0.35± 0.18 0.28± 0.16 0.39± 0.21 0.34± 0.14 0.35± 0.19 0.27± 0.17 0.36± 0.20

Table 6: Runtime of each method under the default setting.

Ours Cumulant PC GES OCD
Runtime (second) 7.94± 0.75 77.07± 4.94 5.00± 1.35 6.90± 1.86 9216± 1368

D Additional Discussion

D.1 Discussion on the Benefit of Local PGF

In this section, we illustrate the benefit of introducing local PGF through a toy example. First, it is
important to note that, based on the closed form of the PGF, it is theoretically possible to identify
causal structures using the original PGF, as the closed form encapsulates the entire graph structure.
This could be achieved by exhaustively analyzing all terms present in the PGF. However, such an
approach is intractable because the search space for these terms grows exponentially with the number
of vertices. Additionally, the method would involve high-order differentiations, which are difficult to
estimate accurately.

To illustrate this point, we provide a toy example with a causal structure of 5 vertices, as shown in
Fig. 6. In this example, we focus on identifying the edge X4 → X5. For the correct structure where
X4 → X5, the terms C1 × z1z2z3z

2
4z

2
5 and C2 × z1z2z3z

2
4z

4
5 exist in the PGF. Conversely, for the

reverse direction X4 ← X5, the terms C ′
1 × z1z2z3z

2
4z

2
5 and C ′

2 × z1z2z3z
4
4z

2
5 appear in the PGF.

Notably, as shown in Fig. 6 (c) and (f), the term z1z2z3z
2
4z

2
5 exists in the PGF for both structures.

This is because there are always at least two directed paths from X1 to each of X4 and X5, regardless
of the direction between X4 and X5. This implies that taking the second derivative with respect to z4
does not reveal any asymmetry between the structures. Therefore, if we want to identify the direction
using the global PGF, we have to apply a test involving the third derivative that distinguishes the
correct structure by showing the absence of terms with z34 in the PGF for the correct direction.

In conclusion, when the graph structure becomes more complex and the number of paths between
vertices increases, higher-order derivatives are required, making implementation challenging. Local
PGF offers an alternative approach, enabling us to avoid these difficulties.
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Causal graph Branching structure and its corresponding term in PGF

Figure 6: Illustration of causal graphs and their possible branching structures with the corresponding
terms in PGF. (a) Correct causal graph where X4 → X5. (b)-(c) Branching structures of (a) with
corresponding PGF terms: (b) includes all paths; (c) excludes path from X4 to X5. (d) Causal graph
with reversed direction X5 → X4. (e)-(f) Branching structures of (d) with corresponding PGF terms:
(e) includes all paths; (f) excludes path from X5 to X4.

D.2 Discussion on the connection with the cumulant-based method

In this section, we discuss the connection between the cumulant-based method and our method, as
well as the advantages of our method.

The cumulant-based method (Qiao et al. [2024b]) introduces the concept of k-path cumulants
summation, denoted as Λ̃k(Xi ⇝ Xj). Here, Λ̃k(Xi ⇝ Xj) ̸= 0 indicates the existence of a
common ancestor m for vertices i and j, with k directed paths leading from m to j. Such path
information, specifically the number of directed paths from one vertex to another, is encoded within
the PGF. If there are k directed paths from vertex m to j, then terms involving zmzkj will appear in
the PGF. Therefore, detecting the number of directed paths to vertex j is equivalent to identifying the
order of zj in the PGF.

However, only the highest non-zero order of Λ̃k(Xi ⇝ Xj) is useful for identifying the causal
direction, as it does not yield asymmetry at lower orders. For example, consider vertices Xi, Xj ,
and Xm, where Xi → Xj , and there are k directed paths from Xm to Xi, and k + p directed paths
from Xm to Xj where p ≥ 1. In this scenario, it has Λ̃k(Xi ⇝ Xj) ̸= 0 and Λ̃k(Xj ⇝ Xi) ̸= 0,
and Λ̃k+1(Xi ⇝ Xj) ̸= 0 while Λ̃k+1(Xj ⇝ Xi) = 0. The latter shows an asymmetry that the
former does not. This means that the cumulant-based method must detect the highest non-zero order
of Λ̃k(Xj ⇝ Xi), i.e., the highest order of zj in the corresponding terms in the PGF, to reveal the
asymmetry. Moreover, certain unshielded collider structures, such as X1 → X2 and X3 → X2 in
Fig. 1(a) of the paper, are non-identifiable using this method. This is because both the correct and
reverse directions result in Λ̃k=1 ̸= 0 and Λ̃k=2 = 0, which leads to non-identifiability.

In contrast, our method can fully leverage lower-order information to identify causal directions due
to the local property of the PGF. By removing redundant directed paths involving a vertex through
setting the corresponding z to approach zero in the PGF, we can focus on identifying within a small
local structure, thereby avoiding the need for high-order information.

E Broader Impacts

We identify several important societal impacts of our proposed method, including both positive and
potential negative impacts:
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1) This paper introduces advancements in the modeling and identification of causal relationships
from count data, thereby revealing the causal mechanism of Poisson count data.

2) Inadequate data and training can result in inaccurate causal graphs, potentially leading to
a misunderstanding of the underlying causal relationships. Such misunderstandings may
prompt inappropriate or risky decision-making by stakeholders relying on these insights.

To mitigate the potential negative societal impacts mentioned above, we encourage research and
practice to follow these instructions:

1) Integration of human oversight is recommended, where domain experts should verify and
complement model outputs with their expertise to guide decision-making effectively.

2) Continuous monitoring and updating of model parameters should be implemented to align
with real-world data and expert feedback, ensuring the accuracy and applicability of causal
predictions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We emphasize our contributions in the abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our works in the Section 6

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We have provided the full set of assumptions and a complete proof.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental parameters used in synthetic experiments
and the web address where the real-world data can be accessed.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be available as open access through a GitHub repository. We
will also provide detailed instructions for reproducing the experimental results, ensuring
that all materials necessary for replication are accessible.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the alpha value of the hypothesis test for learning the causal
structure in the Appendix C.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper appropriately reports the standard deviation (std) for each experi-
ment.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Yes, our paper provides comprehensive details on the computer resources
required to reproduce the experiments. All pertinent information is included in the Appendix
C.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The dataset used in the paper is properly cited.
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided the broader impacts in Appendix E.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not involve data or models that have a high risk for misuse,
such as pre-trained language models, image generators, or scraped datasets. Consequently,
the specific safeguards typically necessary for such contexts are not relevant to our research.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper correctly credits the creators or original owners of all assets used,
including code, data, and models.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The Python implementation of our proposed method is well documented, with
detailed documentation to be released alongside the code upon acceptance of the paper.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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