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ABSTRACT

Operations Research (OR) is vital for decision-making in many industries. While
recent OR methods have seen significant improvements in automation and effi-
ciency through integrating Large Language Models (LLMs), they still struggle to
produce meaningful explanations. This lack of clarity raises concerns about trans-
parency and trustworthiness in OR applications. To address these challenges, we
propose a comprehensive framework, Explainable Operations Research (EOR),
emphasizing actionable and understandable explanations accompanying optimiza-
tion. The core of EOR is the concept of Decision Information, which emerges
from what-if analysis and focuses on evaluating the impact of complex constraints
(or parameters) changes on decision-making. Specifically, we utilize bipartite
graphs to quantify the changes in the OR model and adopt LLMs to improve
the explanation capabilities. Additionally, we introduce the first industrial bench-
mark to rigorously evaluate the effectiveness of explanations and analyses in OR,
establishing a new standard for transparency and clarity in the field.

1 INTRODUCTION

Operations Research (OR) has a long history of optimizing complex decision-making processes,
such as in logistics, finance, investment, transportation, and healthcare, etc., where even small im-
provements can lead to significant operational profits. As these optimization algorithms increasingly
contribute to daily life, it is essential to ensure their trustworthiness and reliability through expla-
nations, which build user confidence (Faulhaber et al., 2021). Governments are also responding to
this need by enacting laws like the General Data Protection Regulation (GDPR) of the European
Union (Goodman & Flaxman, 2017), emphasize the “right to explanation” for algorithmic decisions
(Selbst & Powles, 2018) in automated systems.

In recent years, Large Language Models (LLMs) have emerged as powerful tools in the OR domain,
offering new opportunities to automate and enhance the modeling process. Current research of
LLMs in OR, such as works (Xiao et al., 2023; AhmadiTeshnizi et al., 2024; Tang et al., 2024;
Zhang et al., 2024), explore the potential to streamline the formulation and solutions of complex
OR problems. However, LLMs in OR have primarily focused on improving efficiency and accuracy
by generating codes for external solvers to obtain OR solutions, with less attention to enhancing
solution explainability, especially in real-time collaborative automated systems.

Meanwhile, several studies (Čyras et al., 2019; Li et al., 2023; Erwig & Kumar, 2024; De Bock
et al., 2024) have explored explainable optimization related to OR, but there are still limitations.
For example, (Erwig & Kumar, 2024) focuses specifically on combinatorial optimization problems,
which limits its applicability across the broader OR landscape and fails to leverage the advantages
of LLMs in real-time modeling and explanations. Another work, OptiGuide (Li et al., 2023), em-
phasizes what-if analysis, which, while useful for specific easy scenarios, lacks the robust modeling
capability to address more complex cases like deleting or combining constraints. For example, if a
warehouse closes, the OR model must remove the related storage capacity constraint and adjust the
distribution network. Current methods struggle to achieve this level of flexibility, yet such adapt-
ability is crucial for accurately reflecting real-world changes. Most critically, the explanations these
methods provide are often superficial, merely summarizing the outcomes without exploring the un-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

derlying reasons behind the results, thus lacking the quantitative analysis, depth, and clarity required
to fully understand and trust the decision-making process.

Given the limitations of existing approaches to explainable optimization, we are motivated to de-
velop a more comprehensive framework, EOR, for explaining OR models. As shown in Figure 1,
our framework addresses the critical need for transparency in OR by shifting from purely model-
ing a problem (a natural language description) to providing clear, actionable explanations for a user
query, such as “What if transportation costs increase by 15%?”. First, we formulate the problem
of explainable OR within the context of LLMs. This formulation is essential for laying a founda-
tion for future research in this emerging area. Second, our framework emphasizes two critical types
of explanations, 1) Explanation of correctness: the reasons for code updates during the modeling
process, and 2) Explanation of the Results: the rationale for generating specific solutions. Unlike
traditional methods that provide superficial explanations and analyses, our approach incorporates
more sophisticated what-if analysis, quantifying the effects of changes prompted by user queries
and providing deeper insights into the decision-making process. A significant component of our
contribution is the introduction of the concept of “Decision Information”. By leveraging bipartite
graphs, we measure the importance of different decision factors in response to user queries, par-
ticularly when complex changes in constraints arise. This approach enhances both the modeling
capabilities and the explanatory power of OR models within LLMs. Our dual focus ensures that
the framework not only yields accurate optimal solutions but also effectively communicates the un-
derlying rationale for these solutions. Finally, recognizing the need for standardized evaluation of
explainable OR methods, we design a new industrial benchmark specifically tailored to assess the
effectiveness of explanations in OR. This benchmark fills the gap of current approaches and sets a
new standard for evaluating the transparency and comprehensibility of OR models.
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Figure 1: The framework of EOR.

Contributions. 1) We formulate the problem of the explainable OR problem within the context of
LLMs, laying a foundation for future research in this area. 2) We introduce the concept of “Decision
Information” and utilize bipartite graphs in conjunction with LLMs to quantify its importance in
response to user queries, enhancing both the modeling capabilities and the explanation of complex
what-if analysis within OR. 3) We develop a new benchmark specifically designed to evaluate the
effectiveness of explanations in OR, setting a new standard for explainability in the field.

2 RELATED WORK

2.1 LLMS FOR OR

LLMs show great promise for OR, offering innovative approaches to optimize and automate model-
ing processes (Xiao et al., 2023; AhmadiTeshnizi et al., 2024; Tang et al., 2024; Zhang et al., 2024;
Huang et al., 2024; Mostajabdaveh et al., 2024). Although LLMs have shown potential in various
OR tasks, their application has primarily focused on automating modeling processes and enhancing
computational efficiency. In contrast, our approach distinguishes itself by using LLMs to provide
detailed, context-aware explanations of OR solutions, addressing the gap in explainability.
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2.2 EXPLANATIONS FOR OR

Explanation in OR is essential for clarity and transparency, helping various stakeholders understand
complex decision-making processes. Despite its significance, there is a notable lack of research,
with only a few related works, such as (Thuy & Benoit, 2024; Erwig & Kumar, 2024; De Bock
et al., 2024) and OptiGuide (Li et al., 2023), which only focus on the easy what-if analysis. Our
approach focuses on more complex what-if analysis, seeking a broad range of methods that can uni-
formly quantify constraint changes or parameter changes (sensitivity analysis). We leverage LLMs
to embed detailed, context-aware explanations directly within OR solutions, filling this gap. The
comparison between EOR and OptiGuide is shown in Table 1. More details about the differences
between the concepts are discussed in Appendix A.1.

Table 1: The comparison of OptiGuide and EOR.

What-if Analysis Decision Information Analysis Sensitivity Analysis
Easy Complex

OptiGuide ✓ ✗ ✗ ✗
EOR ✓ ✓ ✓ ✓

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Given an OR problem p̊, along with a user query q̊ related to the problem, our goal is to utilize an
LLM to generate comprehensive explanations of solutions for the queries in real time. The LLM will
provide two types of explanations: 1) Attribution Explanation, which outlines the general attributes
and structure of the problem, and 2) Justification Explanation, which elucidates the correctness and
derivation of the solutions. The mathematical formulation is as follows:

Input: The origin problem description p̊ = ⟨d̊, o̊, c̊⟩, and a user query q̊ = ⟨̊o′, c̊′⟩. The updated
problem description, incorporating the user query, is denoted as p̊′ = ⟨d̊, o̊′, c̊′⟩. Here, d̊ represents
the set of decision variables, o̊ and o̊′ are the objective functions to be maximized or minimized,
c̊ and c̊′ denote the original and modified constraints in p̊ and p̊′, respectively, that the decision
variables must satisfy. In our setting, we assume the decision variables remain unchanged.

Output: We denote the problem solutions for p̊ and p̊′ as s̊ and s̊′, respectively. The output com-
prises two types of explanations, 1) Attribution Explanation: A detailed description of the elements
d̊, o̊, o̊′, c̊, c̊′, s̊, and s̊′ within the context of the problem. 2) Justification Explanation: A rationale
for the correctness of s̊ and s̊′, and clarifies how s̊′ is derived from s̊.

3.2 THE EOR FRAMEWORK

Our proposed framework, EOR, is an end-to-end solution designed to enhance OR model trans-
parency using LLMs. Unlike current methods that provide limited and shallow explanations, pri-
marily the form of attribution explanations, our framework emphasizes delivering clear, actionable
insights for diverse stakeholders. As illustrated in Figure 1, we focus on the justification explana-
tions. We will offer two critical explanations: 1) justifications for code updates during the modeling
process, and 2) the rationale behind specific solutions. By doing so, we strive to make OR so-
lutions more accessible, understandable, and applicable to a broader audience, thereby improving
decision-making quality and fostering user trust.

3.2.1 THE WORKFLOW OF EOR

As shown in Figure 2, EOR framework comprises three key agents: Commander, Writer, and Safe-
guard, each serving a distinct role to ensure an efficient, accurate, and secure optimization process.
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Figure 2: The overall workflow of EOR.

Commander Agent: The Commander acts as the central hub or “data bus” in the system, respon-
sible for receiving user queries and managing data flow between the agents. When an end-user
submits a new user query, the Commander first interprets the query’s context, identifies the intent,
and then forwards the message to the appropriate agents.

Writer Agent: Upon receiving the processed query from the Commander, the Writer initially as-
sumes the role of analyzing and modifying the code. Based on the query’s requirements, the Writer
determines whether to add, delete, or update specific constraints and parameters. By leveraging
LLMs, the Writer guarantees that the generated code accurately reflects the intended changes. Sub-
sequently, the updated code is sent to the Safeguard for verification. Once the Safeguard provides a
SAFE confirmation, the Writer transitions into an interpreter role, generating detailed explanations
for the modifications and the rationale behind the decision-making process.

Safeguard Agent: The Safeguard is responsible for ensuring the safety and correctness of the gen-
erated code. It conducts thorough checks to verify whether the code adheres to predefined safety
standards and is free from logical or syntactical errors that could compromise the optimization pro-
cess. If the code passes these safety checks, the Safeguard approves it for execution; otherwise, it
triggers a debugging process where the Writer regenerates and corrects the code as necessary.

The overall workflow: The EOR workflow starts when a user submits a query to the Commander
(1), who relays it to the Writer with a code prompt (2). The Writer analyzes the query, determining
whether to add, delete, or update code, and returns the updated code to the Commander (3). This
step ensures that the generated code aligns with the updated problem requirements. The Commander
then sends the code to the Safeguard for verification (4). If the Safeguard determines the code is safe
(5), the process moves to (6), where the Commander sends an interpreter prompt to the Writer. If
the code is deemed dangerous, the process loops back to (2), with the Commander sending a debug
code prompt to the Writer. Once the code is safe, the Writer generates answers about explanations
for the modifications and results (7) and sends them to the Commander. Finally, the Commander
sends these explanations to the user (8). This iterative process, which repeats until a satisfactory
answer or timeout, ensures robust, explainable solutions tailored to the user’s query. The detailed
design of the prompt template is presented in Appendix A.2.

3.2.2 JUSTIFICATION EXPLANATION GENERATION

In our framework, explanations are generated to ensure transparency and trustworthiness in the
decision-making process. These explanations are divided into two main categories:

Explanation of Correctness: This type of explanation serves to validate the code modifications
introduced by the Writer, offering a detailed rationale for the changes made. It clarifies the necessity
of these modifications in addressing the problem’s requirements and ensures that they adhere to
safety standards and logical constraints. Through this process, the reliability of the generated code
is substantiated, thereby enhancing the accuracy of the model prior to execution.
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Explanation of the Results: Once the code is executed and the results are obtained, this type of
explanation focuses on interpreting the outcome. It breaks down the results into understandable
terms, illustrating the impact of the code changes on the final solution. This explanation connects
the modifications to their direct effects, providing users with a clear understanding of how the new
solution addresses their initial query and any resulting trade-offs or benefits.

Before formalizing the concept of “Decision Information”, consider the following user query from
an OR problem in flight operations: How should the aircraft configuration be adjusted if the com-
pany limits Type A aircraft to 15 and Type B aircraft to 30? In this context, “Decision Information”
refers to the new constraints, limiting the number of Type A and Type B aircraft to 15 and 30,
respectively, which directly modify the optimization model. These changes reshape the solution
space, requiring adjustments to meet demand within the newly imposed limits. Thus, “Decision
Information” captures the key query elements that drive changes in the problem.

Definition 1 Decision Information: Decision Information encompasses the parameters and con-
straints specified in a user’s query for an OR problem, capturing the essential details needed to
reconfigure the problem according to the user’s intent.

Following this definition, we turn to a quantitative evaluation of “Decision Information” to assess
its impact on decision-making processes. However, existing methods lack a measure for assessing
changes in decision information caused by constraint modifications, focusing only on sensitivity
analysis in parameter changes. Inspired by (Xing et al., 2024), we convert both the updated and
original programs into a standardized format and then calculate their differences to determine the
importance of information changes. This process can be outlined in three steps:

Conversion to Linear Programs (LPs) in General Form: Both the updated code (resulting from
user queries) and the original code are first parsed and translated into a standardized LP format,
that is widely adopted by various LP solvers, including CPLEX (Cplex, 2009), Gurobi (Bixby,
2007), COPT (Ge et al., 2023) an so on. This conversion includes expressing all decision variables,
objective functions, and constraints uniformly to allow a direct comparison. The general LP form
captures the essence of both the initial and modified decision scenarios, providing a clear basis for
analyzing how changes in input data or constraints affect the outcome.

Formally, an LP with n variables and m constraints can be represented as:

min
x∈Rn

c⊤x

s.t. ls ≤ Ax ≤ us

lx ≤ x ≤ ux,

where A ∈ Rm×n is the constraint matrix, c ∈ Rn is the cost vector, x ∈ Rn is the decision
variables, lx ∈ Rn and ux ∈ Rn are lower/upper bound of the decision variables x, and ls ∈ Rn

and us ∈ Rn are lower/upper bound of the constraint.

Graph Representation Conversion: The standardized LPs can be transformed into bipartite
graphs, which consist of two distinct sets of nodes: decision variables and constraints (Gasse et al.,
2019; Fan et al., 2023; Xing et al., 2024). In this representation, edges between nodes signify
dependencies or relationships, with edge weights indicating the strength or nature of these connec-
tions. We define the bipartite graph as G = (S ∪ X,E), where S = {si|i ∈ [m]} represents
the set of constraint nodes, X = {xj |j ∈ [n]} represents the set of decision variable nodes, and
E = {ei,j |i ∈ [m], j ∈ [n]} represents the edges between them. Here, [·] denotes a set of consecu-
tive numbers. The attribute of a constraint vertex si is expressed as attr(si) = [lsi , u

s
i ]⊤, indicating

its lower and upper bounds. Similarly, the attribute of a decision variable vertex xj is given by
attr(xj) = [lxj , u

x
j , cj ]⊤, which includes its lower bound lxj , upper bound ux

j , and objective coeffi-
cient cj . This graph-based approach facilitates a structural analysis of the decision-making frame-
work, allowing us to visualize the interactions among variables under different conditions and to
compare updated and original programs on a structural level.

Graph Edit Distance (GED) Calculation: To quantify the impact of changes in “Decision Informa-
tion”, we compute the GED between the two bipartite graphs derived from the updated and original
LPs. GED represents the minimum cost necessary to transform one graph into another through a
sequence of operations, such as inserting, deleting, or substituting vertices and edges. This metric
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effectively captures the types of modifications made to the code in response to a query. This met-
ric quantifies the minimal number of modifications (such as adding, deleting, or substituting nodes
or edges) required to transform one graph into the other. A smaller edit distance indicates fewer
changes, suggesting the updated program closely aligns with the original decision-making context.
Conversely, a larger edit distance highlights significant alterations, signaling a substantial impact of
the updated information on the decision-making process.

There are many well-established GED algorithms (Gao et al., 2010; Stauffer et al., 2017; Abu-
Aisheh et al., 2015; Xing et al., 2024), we follow a straightforward principle provided by (Xing
et al., 2024): each operation on an attribute in graph incurs a unit cost of 1. Formally, given the
graph of the original program Gp = (Sp ∪Xp, Ep) and updated program Gp′

= (Sp′ ∪Xp′
, Ep′

),
we define the vertex cost matrix as follows,

spi′ ∈ Sp xp
i′ ∈ Xp ϵ

sp
′

i ∈ Sp′
#msm(sp

′

i , spi′) ∞ #attr(sp
′

i )

xp′

i ∈ Xp′ ∞ #msm(xp′

i , xp
i′) #attr(sp

′

i )
ϵ #attr(spi′) #attr(spi′) ∞

In this context, all operations are treated as matching processes; for example, deleting a vertex is
conceptualized as matching the vertex to an empty vertex, denoted by ϵ. Here, #attr(·) denotes the
total number of vertex attributes, while #msm(·) represents the count of mismatched attributes be-
tween two vertices. Similarly, the edge cost matrix is defined as follows,

epi,j ∈ Ep ϵ

ep
′

i,j ∈ Ep′
#msm(ep

′

i,j , e
p
i,j) #attr(ep

′

i,j)
ϵ #attr(epi,j) ∞

Given the varying scales of changes in parameters and constraints, we further normalize
GED(Gp′

,Gp) by the graph size. The normalized GED (NGED) is calculated as: NGED(Gp′
,Gp) =

GED(Gp′ ,Gp)

max(|Gp′ |,|Gp|) , where |G| is defined as the sum of the number of attributes for all edges and vertices
in the graph, specifically: |G| =

∑
e∈E #attr(e) +

∑
v∈S∪X #attr(v). This normalization accounts

for graph size variations, allowing for a more consistent comparison of the impact of changes across
different scenarios. By quantifying discrepancies between the updated and original graphs through
an analysis of their attribute changes, our approach offers a more precise measurement of changes
in the decision-making framework.

By employing these three steps, LP conversion, graph representation, and graph edit distance calcu-
lation, we provide a rigorous and systematic approach to quantifying “Decision Information”. Since
LLMs cannot directly perform this quantification, we utilize them to sense these processes and gen-
erate explanatory insights. This approach fills the gap in previous methods that could not quantita-
tively analyze the impact of changes in constraints. By offering a unified methodology for measuring
changes in constraints and parameters, it enables a precise evaluation of information changes. This
framework provides a measurable and comparable basis for assessing the impact of these changes
on decision-making. It thus anchors the concept of “Decision Information” in both practical and
thEORetical contexts, offering more profound insight into how updates shape decisions.

4 EXPERIMENTS

4.1 EVALUATION BENCHMARK

Despite the availability of numerous open-source datasets in OR, such as NL4OPT (Ramamonjison
et al., 2023), ComplexOR (Xiao et al., 2023), NLP4LP (Holzer et al., 2024), and IndustryOR (Tang
et al., 2024), these datasets are limited to problem descriptions and are primarily suited for OR
modeling needs. There remains a significant gap in datasets specifically tailored for explainable OR,
which are crucial for advancing transparency and interpretability in decision-making processes.

To address this issue, we developed a novel benchmark dataset based on the open-source com-
mercial IndustryOR, specifically designed to evaluate explainability in OR tasks. The benchmark
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includes 30 categorized problems across various domains (e.g., supply chain management, financial
investment, logistics management, etc.). Each problem is paired with 10 unique queries that involve
diverse or combined modifications to parameters or constraints (e.g., deleting, adding, or updating
constraints and parameters). These queries were crafted by OR experts with significant industry
experience to ensure both diversity and practical relevance. The dataset’s quality and comprehen-
siveness are validated through iterative expert reviews and comparisons with real-world cases. For
every problem, we provide corresponding Python code and employ the Gurobi optimization solver
(Bixby, 2007) to determine optimal solutions. Additionally, we also include the ground truth labels
for each query for each problem to ensure accurate evaluation. Notably, the question sets and the
queries in this benchmark are developed from scratch and managed in-house, guaranteeing that they
have not been part of LLM training data, enhancing the robustness of the benchmark for assessing
model performance. We provide a complete example in Appendix A.3.

4.2 EVALUATION METHODOLOGY

Our evaluation focuses on two aspects: Modeling Accuracy and Explanation Quality. For the
modeling accuracy assessment, we recognize that different code implementations can produce the
same optimization results. For instance, two programs solving a linear programming problem may
employ different formulations or techniques (e.g., distinct constraint orderings or variable namings),
but both can still yield identical optimal solutions. Therefore, rather than directly comparing the
generated code to a reference, we evaluate accuracy by comparing the optimization outcomes to
ensure correctness and consistency across implementations.

Regarding the explanation quality, although our task is highly specialized and requires expert-level
interpretability in OR, we aim to develop an automated evaluation method. Drawing inspiration
from (Kondapaneni et al., 2024) and utilizing the capabilities of LLMs for text quality evaluation
(Chen et al., 2023; Chiang & Lee, 2023; Hu et al., 2024; Chu et al., 2024; Zytek et al., 2024),
we establish expert-crafted templates and use LLMs to assess explanation quality, aiming for a
human-level standard. However, this evaluation approach has certain limitations. To address this,
we propose two methods in this paper. First, we establish a structured template that specifies key
criteria for effective explanations, such as clarity, relevance, and logical coherence. For instance,
explanations should explicitly describe the rationale for modifying specific parameters or constraints
and explain how these changes affect the optimization results. Second, we conduct a blind review
process where OR experts anonymously score the explanations generated by different methods.
This approach helps minimize bias, providing a reliable measure of how effectively the explanations
convey meaningful insights to users. We will assess whether the proposed automated evaluation
method aligns with human evaluation. This dual approach enables us to assess the consistency
between the proposed automated method and human evaluation.

4.3 BASELINES

We employ two baselines to ensure a comprehensive evaluation: Standard and OptiGuide (Li et al.,
2023). The Standard involves a proprietary LLM (e.g., GPT-4, GPT-4-Turbo, etc.) that gener-
ates updated programs and explanations, serving as a basic comparison point for assessing overall
performance. The OptiGuide represents a specialized method used in supply chain optimization,
providing a domain-specific comparison that evaluates the adaptability and effectiveness of LLMs
in industry-relevant scenarios.

4.4 MODEL SETUP

For our experiments, we evaluate the performance of the proposed baselines using four LLMs, GPT-
4 (Achiam et al., 2023), GPT-4-1106-preview, GPT-4-0125-preview, and GPT-4-Turbo, under both
zero-shot and one-shot learning settings. The zero-shot setting requires the models to generate up-
dated programs and explanations without any prior examples, testing their inherent understanding
and generalization capabilities. The one-shot setting provides a single example to guide the models,
allowing us to assess the impact of minimal contextual information on their ability to perform the
tasks accurately and coherently. To ensure fairness and reproducibility, we fix the hyperparameter
temperature at 0 and apply the same examples for all models in the one-shot setting, and all models
are implemented under the framework AutoGen (Wu et al., 2024). This paper focuses on fully au-
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Table 2: Accuracy across different models under different LLMs with zero/one-shot setting. The
bold scores are the best in each row.

Setting Model Standard OptiGuide EOR

Zero-shot

GPT-4 18.67% 30.33% 75.67%
GPT-4-1106-preview 75.33% 36.00% 81.67%
GPT-4-0125-preview 68.33% 47.33% 87.33%
GPT-4-Turbo 63.00% 30.33% 88.33%

One-shot

GPT-4 71.67% 75.00% 90.33%
GPT-4-1106-preview 69.67% 55.33% 87.67%
GPT-4-0125-preview 76.00% 69.33% 92.00%
GPT-4-Turbo 88.00% 69.33% 95.33%

tomating all processes, excluding user involvement. However, as our implementation is built on the
AutoGen, it inherently supports seamless integration of user feedback. A detailed hyperparameter
sensitivity analysis is provided in the Appendix A.4.

4.5 QUANTITATIVE PERFORMANCE

4.5.1 COMPARISON OF MODELING ACCURACY

Table 2 shows the accuracy results across different models. We have the following observations. In
the zero-shot setting, EOR consistently outperforms both Standard and OptiGuide across all LLM
versions. These results emphasize the robustness of the EOR in zero-shot tasks, which substantially
improves performance compared to other methods. For instance, GPT-4-Turbo achieves 88.33%
accuracy with EOR, while Standard and OptiGuide methods yield only 63.00% and 30.33%, respec-
tively. Moreover, for all LLM models except GPT-4, Standard outperforms OptiGuide, indicating
that the LLM’s modeling capabilities are quite strong.

In the one-shot setting, EOR continues to outperform Standard and OptiGuide in all LLM versions,
achieving an average of 90.00% accuracy and even reaching 95.33% accuracy on the GPT-4-Turbo,
the highest among all results. Additionally, we find that providing an example can significantly
improve modeling accuracy, and nearly all methods perform better in the one-shot setting than in
the zero-shot setting. Specifically, the accuracy of OptiGuide on GPT-4 improves from 30.33% to
75.00%. However, OptiGuide still produces the worst result except on GPT-4.

Overall, EOR consistently outperforms other methods in both zero-shot and one-shot settings, partic-
ularly with models like GPT-4-Turbo and GPT-4-0125-preview. The accuracy gains observed when
transitioning from zero-shot to one-shot highlight the importance of using examples in improving
model performance. In terms of model comparisons, GPT-4-Turbo demonstrates the highest adapt-
ability across both settings, achieving the best overall accuracy. While OptiGuide provides modest
improvements, it does not match the performance of Standard and EOR. These results underscore
the value of carefully selecting both models and example strategies to maximize accuracy, with EOR
emerging as the most effective for high-accuracy tasks.

Table 3: Quality scores (0-10) across different models with zero/one-shot setting.

Method EC ↑ ER ↑ Overall ↑
Auto Expert Auto Expert Auto Expert

Zero-shot
Standard 0.12 - 6.98 6.98 5.36 5.63
OptiGuide 0.69 - 7.93 7.90 6.31 6.59
EOR 9.76 9.86 9.41 9.47 9.47 9.47

One-shot
Standard 0.34 - 7.10 6.90 5.54 5.37
OptiGuide 0.20 - 7.60 7.61 5.96 6.05
EOR 9.61 9.72 9.30 9.35 9.33 9.35
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A Case Study of EOR.

Query: How should the aircraft configuration be adjusted to meet demand if the company decides to
limit the number of Type A aircraft operated to no more than 15 and the number of Type B aircraft to
no more than 30?

The “code” generated by EOR:

1 {
2 "ADD CONSTRAINT": "# Constraint: Limit number of Type A and Type

↪→ B aircraft\nm.addConstr(aircraft_count[’A’] <= 15, name
↪→ =\"MaxTypeAConstraint\")\nm.addConstr(aircraft_count[’B’]
↪→ <= 30, name=\"MaxTypeBConstraint\")"

3 }

The explanations generated by EOR: **Explanation of Updated Code:**
The updated code includes new constraints that implement operational limits on the number of Type
A and Type B aircraft the airline can use. Specifically:

- A constraint has been added to limit the number of Type A aircraft to 15.
- A constraint has been added to limit the number of Type B aircraft to 30.

These additional constraints are motivated by possibly new operational limitations or strategic
decisions, such as maintenance availability or cost considerations. By imposing these restrictions, the
model must now find an optimal solution within a more constrained operational environment.

**Explanation of the Query on Results:**
The query specifically asked to adjust aircraft configurations within newly defined limits. The original
model found an optimal solution at a minimum cost of $200,000. However, with the added constraints,
the solution space is reduced - fewer configurations of aircraft are available to meet the passenger
demand.
As a result of these constraints: The new optimal cost calculated by the model rose to $215,000. This
increment indicates that the more stringent operational limits forced the use of a costlier configuration.
The query’s impact on the results is substantial, as illustrated by a $15,000 increase in operational
costs. If rated on a scale from 1 to 10, the impact could be quantified around an 8. This rating reflects
significant changes in operational costs and constraints.
The numerical changes in the model, calculated as 100, follows from a step-by-step process analyzing
the modifications in the linear programming representation and their effects on the resulting computa-
tional graph. This method, grounded in operations research analysis, validates the substantial impact
of the query-driven modifications.
In summary, the changes to the code (limiting aircraft types) constrained the model significantly, lead-
ing to a more expensive operational solution. The rationale behind integrating these specific constraints
could be associated with real-world operational limits, reflecting the complex decision-making pro-
cesses airlines undergo to balance cost, capacity, and operational feasibility.

Figure 3: An example illustrating the code and explanations generated by EOR.

4.5.2 COMPARISON OF THE QUALITY OF EXPLANATIONS

As discussed in Sec. 4.2, a critical part of our evaluation is assessing the quality of the explanations
generated by the models. It is important to note that explanations based on incorrect results are
irrelevant, as explaining failure cases offers no meaningful insights. Therefore, we first filter out all
incorrect modeling cases, ensuring that only correct outputs are evaluated. We adopt two evaluation
methods: an automated evaluation (Auto) and expert evaluation (Expert), both introduced in Sec.
4.2. These evaluations focus on two main aspects: Explanation of Correctness (EC) and Explanation
of Results (ER). EC assesses the clarity and correctness of the explanation regarding the model’s
output, while ER evaluates how well the explanation conveys the reasoning behind the optimization
results. Additionally, we also measure the overall explanation quality (Overall). The explanations
are scored on a 0-10 scale, with 0 indicating poor quality and 10 indicating excellent quality. The
prompt template for evaluating the explanation quality is provided in Appendix A.5. The results of
these evaluations using GPT-4o are summarized in Table 3.
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As shown in Table 3, we have the following observations. Firstly, Auto is nearly as effective as Ex-
pert, with minimal differences in scores across all metrics, indicating that Auto is a reliable and valid
approach. It is worth noting that Auto scores individual queries on EC, although it does not explic-
itly evaluate explanations. Secondly, EOR consistently outperforms both Standard and OptiGuide
in explanation quality, achieving the highest scores in both zero-shot and one-shot settings. This
demonstrates the superiority of our method in providing clearer and more accurate interpretations
compared to other models. Finally, we find that Auto scores slightly higher on Standard than Expert,
while for other models, the opposite is observed, with Auto scoring slightly lower than Expert. One
possible reason is that LLMs may be biased toward the results they generate.

4.6 CASE STUDY

In this section, we provide an example of the code and explanations generated by EOR, as illustrated
in Figure 3, where simple explanations are highlighted in green to represent attribute explanations,
while deeper ones in yellow indicate justification explanations with quantitative analysis. Results
from other models are provided in Appendix A.6. The EOR approach stands out by not only pro-
viding a clear explanation of the updated code but also offering detailed insights into how the query
affects the outcomes. It explicitly highlights the newly added constraints that limit the number of
Type A and Type B aircraft, demonstrating transparency in addressing the operational limits spec-
ified in the query. Unlike other methods that merely report result differences, EOR incorporates
a quantitative analysis, explaining the $15,000 increase in operational costs due to the restricted
solution space caused by the newly added constraints. This step-by-step explanation not only jus-
tifies the modifications but also clarifies the broader impact of the constraints, making EOR more
comprehensive and contextually aware than other models.

4.7 FAILURE CASES

To understand the strengths and weaknesses of EOR, we analyzed common failure cases, summa-
rized in Table 4. These failures can be grouped into three categories: JSON format errors, where
the LLMs fail to generate correct JSON outputs; correct execution, where code runs but produces
incorrect results due to modeling logic errors or incomplete modeling; and runtime errors, such as
variable name errors, syntax errors, or indentation errors. Table 4 shows a 60.00% reduction in
total errors from zero-shot to one-shot, demonstrating a substantial improvement in the model’s per-
formance. No syntax errors in the one-shot results highlights the effectiveness of EOR. However,
ongoing attention to modeling logic and runtime errors is still crucial for further improvement.

Table 4: Failure cases on GPT-4-Turbo with zero/one-shot setting.

Failure Types Zero-shot (Total 35) One-shot (Total 14)

#Number Percentage #Number Percentage

JSON Format Errors 8 22.86% 2 14.29%

Correct Execution Modeling Logic Errors 13 37.14% 4 28.57%
Incomplete Modeling 4 11.43% 2 14.29%

Runtime Errors
Variable Name Errors 2 5.71% 3 21.43%
Syntax Errors 6 17.14% 0 0.00%
Indent Errors 2 5.71% 3 21.43%

5 CONCLUSION AND FUTURE WORK

In this paper, we present EOR, a novel framework that addresses transparency and interpretability
challenges in OR. We introduce the concept of “Decision Information” through what-if analysis
and use bipartite graphs to quantify changes in OR models. By leveraging LLM capabilities, our
framework enhances the modeling process and generates actionable, comprehensible explanations.
Furthermore, we establish the first industrial benchmark for evaluating explanation quality in OR.
In the future, we aim to develop more accurate modeling methods to improve the accuracy while
exploring effective automated evaluation techniques for explanations.
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A APPENDIX

A.1 THE COMPARISON BETWEEN WHAT-IF ANALYSIS, SENSITIVITY ANALYSIS, AND
DECISION INFORMATION ANALYSIS

What-if Analysis: What-if analysis explores the impact of changing parameters or conditions on
overall outcomes, allowing users to adjust inputs to observe potential scenarios manually. This
approach emphasizes scenario exploration at a macro level, helping users understand how different
“what if” situations might influence results without delving into specific details.

Sensitivity Analysis: Sensitivity analysis measures how minor variations in input parameters affect
the model’s output, identifying which inputs have the most significant influence on results. This
method provides detailed quantitative insights into the effects of parameter changes, making it par-
ticularly effective in optimization contexts where analytical solutions can be derived.

Decision Information Analysis: Decision information analysis extends sensitivity analysis by fo-
cusing on how changes in constraints impact decision-making and outcomes. This approach exam-
ines the sensitivity of the model to variations in constraints, identifying key decision factors while
also capturing the broader implications of both constraint and parameter changes, particularly in
complex optimization problems without analytical solutions.

In summary, decision information and sensitivity analysis are more detailed, with the former center-
ing on decision-related changes (constraints or parameters) and the latter on parameter sensitivity,
while both can be part of a broader what-if analysis framework. Previous research has predominantly
focused on sensitivity analysis through the simplex method, which is recognized for its efficiency,
precision, and ability to provide analytical solutions. However, the simplex method has limitations
in evaluating the effects of changes to constraints. In contrast, our proposed approach leverages
bipartite graphs to assess the impact of constraint modifications, addressing this gap and providing
a more generalized solution.

A.2 PROMPT TEMPLATE DESIGN

A.2.1 PROMPT TEMPLATE FOR WRITER AGENT

The prompt template for Writer with system message for the ChatCompletion inference:

1 WRITER_SYSTEM_MSG = """
2

3 **Role:** You are a chatbot tasked with:
4 (1) Writing Python code for operations research-related projects.
5 (2) Explaining solutions using the Gurobi Python solver.
6

7 --- Problem Description: ---
8 {description}
9

10 --- Source Code: ---
11 {source_code}
12

13 --- Documentation: ---
14 {doc_str}
15

16 --- Example Q&A: ---
17 {example_qa}
18

19 --- Original Execution Result: ---
20 {execution_result}
21

22

23 **Task:**
24 You are provided with the original problem description and the correct

↪→ code for an operations research problem. Based on the user’s query,
↪→ update the code accordingly. Your task may involve either deleting
↪→ constraints or adding new data or constraints.

13
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25

26

27 **Steps:**
28

29 1. Determine the Required Operations:
30

31 - **Add Operation:** Generate new code for data or constraints to be
↪→ added.

32 - Insert the new data between the markers:
33 "# ORExplainer DATA CODE GOES HERE" and "# ORExplainer DATA CODE

↪→ ENDS HERE".
34 - Insert the new constraints between the markers:
35 "# ORExplainer CONSTRAINT CODE GOES HERE" and "# ORExplainer

↪→ CONSTRAINT CODE ENDS HERE".
36

37 - **Delete Operation:** Identify the relevant block within the
↪→ constraints section that needs to be deleted.

38 - The code to be deleted will be between the markers:
39 "# ORExplainer CONSTRAINT CODE GOES HERE" and "# ORExplainer

↪→ CONSTRAINT CODE ENDS HERE".
40

41 2. Return the Changes in JSON Format:
42

43 - Use the keys "DELETE CONSTRAINT", "ADD CONSTRAINT", or "ADD DATA".
↪→ Only these keys are allowed.

44 - The values should be the Python code snippet to be deleted (exactly
↪→ as it appears in the original code) or the new code to be added.

45 - Include comments within the code snippets using the prefix "#".
46 - Ensure the line breaks and indents of the code are correct.
47

48 3. Output Requirements:
49

50 - Return only the JSON object with the changes.
51 - Do not include any additional information in the response.
52 - Do not add new decision variables.
53 - Ensure the JSON is valid, properly formatted.
54

55

56 The above explained instructions are your guide to accomplish the task
↪→ effectively. Your user’s success heavily relies upon your ability
↪→ to provide the precise and accurate Python code changes within the
↪→ existing operations research problem. Good Luck!

57

58 """

The prompt template for Code (2):

1 CODE_PROMPT = """
2

3 **Role:** You are a professional software developer tasked with handling
↪→ code modification requests. Your role is to interpret these
↪→ requests which describe changes needed in a source code.

4

5

6 **Task:** Your task is to return the changes to be made to the source
↪→ code based on the user’s query. The modifications should be
↪→ returned in a JSON format containing only the necessary changes.

7

8

9 **JSON Format Requirements:**
10

11 - Use the keys "DELETE CONSTRAINT", "ADD CONSTRAINT", or "ADD DATA".
↪→ Only these keys are allowed.

12 - The values should be the Python code snippet to be deleted (exactly
↪→ as it appears in the original code) or the new code to be added.
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13 - Include comments within the code snippets using the prefix "#".
14 - Ensure the line breaks and indents of the code are correct.
15

16

17 **Output Requirements:**
18

19 - Return only the JSON object with the changes.
20 - Do not include any additional information in the response.
21 - Do not add new decision variables.
22 - Ensure the JSON is valid, properly formatted.
23

24

25 The above explained instructions are your guide to accomplish the task
↪→ effectively. Your user’s success heavily relies upon your ability
↪→ to provide the precise and accurate Python code changes within the
↪→ existing operations research problem. Good Luck!

26

27

28 --- Answer Code: ---
29

30 """

The prompt template for Debug (2):

1 DEBUG_PROMPT = """
2

3 **Role:** You are a professional code debugger.
4

5

6 **Task:** Identify and fix the error in the code, ensuring the corrected
↪→ version runs smoothly and error-free.

7

8

9 **Details:**
10 - Error Type: {error_type}
11 - Error Message: {error_message}
12

13

14 **Instructions:**
15 Please analyze the error details, resolve the bug based on the type and

↪→ message provided, and rewrite the corrected version of the code
↪→ snippet below.

16

17

18 **Corrected Code:**
19 --- NEW CODE ---
20

21 """

The prompt template for Interpreter (6):

1 INTERPRETER_PROMPT = """
2

3 **Role:** You are a skilled interpreter with expertise in analyzing and
↪→ explaining changes in computational model code and their effects on
↪→ results.

4

5

6 **Task:** Present a clear and thorough explanation of the code updates
↪→ and their effects on the results. Structure your explanation in two
↪→ key parts: Explanation of the updated code and Explanation of the
↪→ Query on Results.

7

8
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9 **Inputs:**
10 - Original code: {source_code}
11 - Updated code: {new_code}
12 - Code changes induced by the query: {json_data}
13 - Original execution results: {original_execution_result}
14 - New execution results: {execution_rst}
15 - Measure of numerical changes in the model induced by the query: {

↪→ different_model}
16

17

18 **Key Points to Understand:**
19

20 1. Explanation of Updated code:
21

22 - Explain the rationale behind each specific change to the code, such
↪→ as why certain constraints or data were added, deleted, or
↪→ modified.

23

24 2. Explanation of the Query on Results:
25

26 - Clarify why the specific results were produced in response to the
↪→ query.

27 - Assess the query’s impact on the results by comparing the new
↪→ execution results with the original ones and the corresponding
↪→ numerical changes in the model.

28 - Use a scale from 1 to 10 to quantify the query’s impact on the
↪→ results, with 1 indicating minimal impact and 10 indicating
↪→ significant impact.

29

30

31 **Background for Numerical Changes Calculation:**
32

33 The impact of the query is measured using a three-step process:
34 1. LP Conversion: The problem is converted into a linear programming (

↪→ LP) format to identify key components and constraints.
35 2. Graph Representation: The LP model is then represented as a

↪→ bipartite graph, where nodes and edges correspond to variables,
↪→ constraints, and relationships.

36 3. Graph Edit Distance Calculation: The difference between the
↪→ original and modified graphs is computed by measuring the graph
↪→ edit distance, which involves operations like insertion,
↪→ deletion, and substitution of nodes and edges, each with a unit
↪→ cost of 1.

37

38

39 **Output:**
40

41 Provide the explanations in two distinct parts:
42 (1) Explanation of the Updated code
43 (2) Explanation of the Query on Results
44

45

46 **Requirements:**
47

48 - Ensure the explanations are detailed and comprehensive, covering all
↪→ relevant aspects of the code updates and their impact on the
↪→ results.

49 - Ensure that explanations are delivered in a narrative style, suited
↪→ for a non-technical audience, avoiding jargon or direct
↪→ references to specific variable names.

50 - Offer clear, precise, easy-to-understand descriptions that
↪→ effectively bridge complex information with clarity and insight.

51

52

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

53 The above explained instructions are your guide to accomplish the task
↪→ effectively. Your user’s success heavily relies upon your ability
↪→ to provide the explanations within the existing operations research
↪→ problem. Good Luck!

54

55

56 --- HUMAN READABLE ANSWER ---
57

58 """

A.2.2 PROMPT TEMPLATE FOR SAFEGUARD AGENT

The prompt template for Safeguard with system message for the ChatCompletion inference:

1 SAFEGUARD_SYSTEM_MSG = """
2

3 **Role:** You are a code safety evaluator.
4

5

6 **Task:** Review the provided source code to determine if it is safe to
↪→ execute, ensuring it does not contain any malicious code that could
↪→ compromise security or privacy.

7

8

9 **Instructions:**
10

11 --- Source Code: ---
12 {source_code}
13

14 **Question:**
15 Is the code safe to run?
16

17 **Answer:**
18 Respond with one word:
19 ‘SAFE‘ if the code is secure.
20 ‘DANGER‘ if the code poses any risk.
21

22 """

The prompt template for Safe (4):

1 SAFEGUARD_PROMPT = """
2

3 **Role:** You are a professional code safety evaluator.
4

5

6 **Task:** Examine the safety of each code snippet contained within a
↪→ provided JSON file.

7

8

9 **Details:**
10

11 - **Code Structured as JSON:** Each value in the JSON represents a
↪→ code snippet intended for review. These snippets may be newly
↪→ generated or under consideration for deletion.

12

13

14 **Instructions:**
15

16 - Thoroughly analyze each code snippet found in the JSON.
17 - For each snippet, determine its safety for execution.
18 - Provide your assessment as a single word for each snippet: either "

↪→ SAFE" or "DANGER".
19

17
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20

21 **Example of Expected Response:** For snippet_1: SAFE, for snippet_2:
↪→ DANGER

22

23

24 --- Answer: ---
25

26 """

A.3 AN EXAMPLE OF THE BENCHMARK

The original problem description and the result of this problem:

1 Problem Description:
2 An airline operates two types of aircraft: large aircraft (Type A) and small aircraft (Type B). Each

↪→ type of aircraft has different operating costs and passenger capacities. The company needs
↪→ to determine the number of each type of aircraft to operate in order to meet the demand
↪→ of transporting at least 10,000 passengers. Specifically, one Type A aircraft can carry 500
↪→ passengers, and one Type B aircraft can carry 200 passengers. However, due to the use
↪→ and maintenance requirements of the aircraft, the total number of Type A and Type B
↪→ aircraft operated cannot exceed 50. The cost of operating one Type A aircraft is $10,000,
↪→ and the cost trgtgof operating one Type B aircraft is $5,000. Due to the indivisibility of
↪→ the aircraft, both types of aircraft must be operated in integer quantities. Under these
↪→ conditions, what is the minimum total cost that satisfies the passenger transportation
↪→ demand while adhering to the operational restrictions? Please round the answer to the
↪→ nearest integer.

3

4 Problem Result:
5 200000.0

The original Python code with Gurobi:

1 import gurobipy as gp
2 from gurobipy import GRB
3

4

5 # Parameters Section Begin
6 # Define model parameters
7 aircraft_types = [’A’, ’B’]
8

9 # Passenger capacity per aircraft type
10 passenger_capacity = {
11 ’A’: 500,
12 ’B’: 200
13 }
14

15 # Operating cost per aircraft type (dollars)
16 operating_cost_per_aircraft = {
17 ’A’: 10000,
18 ’B’: 5000
19 }
20

21 # Minimum passenger demand
22 min_passenger_demand = 10000
23

24 # Maximum number of aircraft
25 max_aircraft_count = 50
26 # Parameters Section End
27

28

29 # ORExplainer DATA CODE GOES HERE
30

18
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31

32 # ORExplainer DATA CODE ENDS HERE
33

34

35 # Create a Gurobi model
36 m = gp.Model("AirlineOptimization")
37

38 # Decision Variables Section Begin
39 # Create decision variables a and b for the number of large and small

↪→ aircraft respectively
40 aircraft_count = {
41 ’A’: m.addVar(vtype=GRB.INTEGER, name="aircraft_A"),
42 ’B’: m.addVar(vtype=GRB.INTEGER, name="aircraft_B")
43 }
44 # Decision Variables Section End
45

46

47 # Objective Function Section Begin
48 # Set the objective function to minimize total operating cost
49 m.setObjective(
50 gp.quicksum(
51 operating_cost_per_aircraft[t] * aircraft_count[t]
52 for t in aircraft_types
53 ),
54 sense=GRB.MINIMIZE
55 )
56 # Objective Function Section End
57

58

59 # ORExplainer CONSTRAINTS CODE GOES HERE
60

61

62 # Constraints Section Begin
63 # Constraint: Meet the passenger transportation demand
64 m.addConstr(
65 gp.quicksum(passenger_capacity[t] * aircraft_count[t]
66 for t in aircraft_types) >= min_passenger_demand,
67 name="PassengerDemandConstraint"
68 )
69

70 # Constraint: The total number of aircraft cannot exceed the maximum
↪→ allowed

71 m.addConstr(
72 gp.quicksum(aircraft_count[t]
73 for t in aircraft_types) <= max_aircraft_count,
74 name="OperationalConstraint"
75 )
76 # Constraints Section End
77

78

79 # ORExplainer CONSTRAINTS CODE MIDDLE HERE
80

81

82 # ORExplainer CONSTRAINTS CODE ENDS HERE
83

84

85 # Solving the Model Section Begin
86 # Solve the model
87 m.optimize()
88

89 # Output the results
90 if m.status == GRB.OPTIMAL:
91 print(f"Minimum total cost: {round(m.ObjVal)} dollars")
92 for t in aircraft_types:
93 print(f"Number of Type {t} aircraft: {aircraft_count[t].X}")

19
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94 else:
95 print("No optimal solution found.")
96 # Solving the Model Section End

The queries and truth labels of these updated problems with new queries:

1 Query 1: How should the number of aircraft be adjusted to maximize economic efficiency if the
↪→ operating cost of the large aircraft (Type A) is reduced to $8,000?

2 Truth Label 1: 160000.0
3

4 Query 2: How should the number of aircraft be reassessed to meet transportation demand if the
↪→ passenger capacity of the small aircraft (Type B) increases to 250 passengers?

5 Truth Label 2: 200000.0
6

7 Query 3: How should the aircraft configuration be adjusted to maximize profit if the operating cost
↪→ of the Type B aircraft decreases to $4,000 and the passenger capacity of the Type A
↪→ aircraft increases to 550 passengers?

8 Truth Label 3: 184000.0
9

10 Query 4: How should the number of aircraft be adjusted to maintain minimum total cost if the
↪→ operating costs of both Type A and Type B aircraft increase by 10%?

11 Truth Label 4: 220000.0
12

13 Query 5: How should the aircraft configuration be adjusted to meet demand if the company decides
↪→ to limit the number of Type A aircraft operated to no more than 15 and the number of
↪→ Type B aircraft to no more than 30?

14 Truth Label 5: 215000.0
15

16 Query 6: How should the number of aircraft be adjusted to maintain demand if the passenger
↪→ capacity of the Type A aircraft decreases to 450 passengers and the operating cost of the
↪→ Type B aircraft increases to $6,000?

17 Truth Label 6: 226000.0
18

19 Query 7: How should the number of aircraft be adjusted to maximize transportation efficiency if
↪→ the passenger capacity of the large aircraft increases to 600 passengers and the cost of the
↪→ small aircraft increases to $5,500?

20 Truth Label 7: 170000.0
21

22 Query 8: How should the number of aircraft be arranged to meet passenger demand and minimize
↪→ costs if the airline needs to operate at least 10 Type B aircraft?

23 Truth Label 8: 210000.0
24

25 Query 9: How should the number of aircraft be adjusted to maintain economic efficiency if the
↪→ passenger capacity of the small aircraft (Type B) decreases to 150 passengers and the cost
↪→ of the large aircraft (Type A) increases to $12,000?

26 Truth Label 9: 240000.0
27

28 Query 10: How will the optimal aircraft configuration change if the constraint that the total number
↪→ of Type A and Type B aircraft operated cannot exceed 50 is removed?

29 Truth Label 10: 200000.0

A.4 HYPERPARAMETER SENSITIVITY ANALYSIS

This section analyzes the sensitivity of two hyperparameters, temperature and debug times, to eval-
uate their impact on the model’s reliability and stability.The temperature reflects the reliability of
the model’s outputs, while debug times assess its performance stability. The experimental results are
summarized in Tables 5 and 6.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5 shows that our model maintains reliable outputs across temperature settings of 0, 0.5, and
1 in both zero-shot and one-shot scenarios. This demonstrates the model’s robustness in generat-
ing consistent and precise outputs under varying temperature configurations, which is particularly
important for tasks demanding factual accuracy, such as OR modeling.

Table 6 reveals that increasing the number of debug attempts from 3 to 10 does not significantly
improve performance. Additional iterations primarily consume resources without yielding better
results, reflecting the model’s limited self-correction capabilities. This suggests that external inter-
ventions, such as user feedback, may be necessary to enhance performance further.

In summary, the model exhibits strong reliability across different temperature settings and consistent
stability regardless of the number of debugging attempts. These findings underscore the robustness
of our approach in delivering reliable and stable performance.

Table 5: Accuracy under different methods in zero/one-shot setting with different temperature. The
bold scores are the best in each row.

Method Temperature

0 0.5 1

Zero-shot OptiGuide 30.33% 22.00% 26.33%
EOR 88.33% 89.67% 88.00%

One-shot OptiGuide 69.33% 70.00% 68.33%
EOR 95.33% 93.67% 93.33%

Table 6: Accuracy under different LLMs in zero/one-shot setting with different debug times. The
bold scores are the best in each row.

Method Debug times

3 10

Zero-shot GPT-4-1106-preview 81.67% 81.33%
GPT-4-Turbo 88.33% 89.00%

One-shot GPT-4-1106-preview 87.67% 87.67%
GPT-4-Turbo 95.33% 95.33%

A.5 PROMPT TEMPLATE FOR EVALUATING THE EXPLANATIONS

1 EXPLANATIONS_EVALUATION = """
2

3 **Role:** You are an expert in Operations Research evaluating
↪→ explanations provided by three different models: ‘EOR‘, ‘OptiGuide
↪→ ‘, and ‘Standard‘. Your role is to assess the quality of these
↪→ explanations based on a user query.

4

5

6 **Input:**
7 - User Query: {query}
8 - Explanations by EOR: {eor}
9 - Explanations by OptiGuide: {optiguide}

10 - Explanations by Standard: {standard}
11

12

13 **Task:** For each model, provide three scores:
14

15 1). Score 1 - Explanation of Updated Code:
16 How clearly does the explanation describe the code modifications made

↪→ in response to the query? If no explanation of code updates is
↪→ provided, score 0.

17
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18 2). Score 2 - Explanation of Query on Results:
19 How well does the explanation clarify why and how the results changed

↪→ due to the query? Focus on the depth of the explanation,
↪→ particularly the quantitative reasoning behind the changes, not
↪→ just a description of the result.

20

21 3). Score 3 - Overall Score:
22 Based on the previous scores, assign an overall score (0-10)

↪→ reflecting the combined quality and effectiveness of the
↪→ explanation.

23

24

25 **Scoring Criteria:**
26

27 - Scores should range from 0 (poor) to 10 (excellent) for each
↪→ category.

28 - Consider the overall clarity, conciseness, and structure. The
↪→ explanation should be easy to follow and understand.

29

30

31 **Output JSON Format:**
32

33 - Only return the results in the JSON format.
34 - The keys should be ‘EOR‘, ‘OptiGuide‘, and ‘Standard‘.
35 - Each key should have a list with the three scores (0-10).
36 - Do not include any additional information or comments in the

↪→ response.
37

38

39 Your evaluation will help determine which model provides the most
↪→ effective and clear explanations for the given query. Good Luck!

40

41

42 --- Answer: ---
43

44 """

A.6 CASE STUDY

The comparison of code and explanations generated by different models are shown in Figure 4 and
5, respectively.

As shown in Figure 4, EOR returns a code snippet in JSON format, OptiGuide provides a code
snippet, and Standard returns the complete code for the entire problem. Although Standard achieves
better experimental results than OptiGuide, its modification and return of the entire code signifi-
cantly increases maintenance costs, making it challenging to track changes. OptiGuide provides
markers to guide code modification in larger models, but experiments have shown that these mark-
ers are sometimes removed, complicating efforts to identify what and where changes were made. In
contrast, the code format proposed in our paper enables targeted updates at specific locations while
ensuring markers remain intact. This not only reduces maintenance costs but also, when paired with
clear explanations, simplifies the identification of both the location and nature of code updates.

As shown in Figure 5, both Standard and OptiGuide generate explanations that mainly describe
results and provide a brief analysis of changes in solution outcomes. Still, they lack quantitative
analysis, especially concerning the impact of implicit query changes on the model. These expla-
nations align more closely with the attribution explanation, as defined in our paper. In contrast,
our approach emphasizes the justification explanation, which not only explains and analyzes code
updates but also provides a quantitative analysis of the impact of constraint changes on the model.
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Comparison of Code Generated by Different Models.

Query: How should the aircraft configuration be adjusted to meet demand if the company decides to
limit the number of Type A aircraft operated to no more than 15 and the number of Type B aircraft to
no more than 30?

EOR:

1 {
2 "ADD CONSTRAINT": "# Constraint: Limit number of Type A and Type

↪→ B aircraft\nm.addConstr(aircraft_count[’A’] <= 15, name
↪→ =\"MaxTypeAConstraint\")\nm.addConstr(aircraft_count[’B’]
↪→ <= 30, name=\"MaxTypeBConstraint\")"

3 }

OptiGuide:

1 "# Additional constraints for the maximum number of Type A and Type
↪→ B aircraft\nm.addConstr(aircraft_count[’A’] <= 15, name=\"
↪→ MaxAircraft_A\")\nm.addConstr(aircraft_count[’B’] <= 30, name
↪→ =\"MaxAircraft_B\")"

Standard:

1 "import gurobipy as gp\nfrom gurobipy import GRB\n\n# Parameters
↪→ Section Begin\n# Define model parameters\naircraft_types = [’
↪→ A’, ’B’]\n\n# Passenger capacity per aircraft type\
↪→ npassenger_capacity = {\n ’A’: 500,\n ’B’: 200\n}\n\n#
↪→ Operating cost per aircraft type (dollars)\
↪→ noperating_cost_per_aircraft = {\n ’A’: 10000,\n ’B’: 5000\n
↪→ }\n\n# Minimum passenger demand\nmin_passenger_demand =
↪→ 10000\n\n# Maximum number of aircraft for Type A and Type B\
↪→ nmax_aircraft_count_A = 15\nmax_aircraft_count_B = 30\n#
↪→ Parameters Section End\n\n# Create a new Gurobi model\nm = gp
↪→ .Model(\"AirlineRevisedOptimization\")\n\n# Decision
↪→ Variables Section Begin\n# Create decision variables for the
↪→ number of large and small aircraft respectively\
↪→ naircraft_count = {\n ’A’: m.addVar(vtype=GRB.INTEGER, name
↪→ =\"aircraft_A\"),\n ’B’: m.addVar(vtype=GRB.INTEGER, name=\"
↪→ aircraft_B\")\n}\n# Decision Variables Section End\n\n#
↪→ Objective Function Section Begin\n# Set the objective
↪→ function to minimize total operating cost\nm.setObjective(\n
↪→ gp.quicksum(\n operating_cost_per_aircraft[t] *
↪→ aircraft_count[t]\n for t in aircraft_types\n ),\n sense=GRB.
↪→ MINIMIZE\n)\n# Objective Function Section End\n\n#
↪→ Constraints Section Begin\n# Constraint: Meet the passenger
↪→ transportation demand\nm.addConstr(\n gp.quicksum(
↪→ passenger_capacity[t] * aircraft_count[t]\n for t in
↪→ aircraft_types) >= min_passenger_demand,\n name=\"
↪→ PassengerDemandConstraint\"\n)\n\n# Constraint: The number of
↪→ Type A aircraft cannot exceed 15\nm.addConstr(\n
↪→ aircraft_count[’A’] <= max_aircraft_count_A,\n name=\"
↪→ TypeAConstraint\"\n)\n\n# Constraint: The number of Type B
↪→ aircraft cannot exceed 30\nm.addConstr(\n aircraft_count[’B’]
↪→ <= max_aircraft_count_B,\n name=\"TypeBConstraint\"\n)\n#
↪→ Constraints Section End\n\n# Solving the Model Section Begin\
↪→ n# Solve the model\nm.optimize()\n\n# Output the results\nif
↪→ m.status == GRB.OPTIMAL:\n print(f\"Optimized minimal total
↪→ cost with new configuration: {round(m.ObjVal)} dollars\")\n
↪→ for t in aircraft_types:\n print(f\"Number of Type {t}
↪→ aircraft: {aircraft_count[t].X}\")\nelse:\n print(\"No
↪→ optimal solution found.\")\n# Solving the Model Section End"

Figure 4: An example illustrating codes generated by different models.
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Comparison of Explanations by Different Models.

Query: How should the aircraft configuration be adjusted to meet demand if the company decides to
limit the number of Type A aircraft operated to no more than 15 and the number of Type B aircraft to
no more than 30?

EOR: **Explanation of Updated Code:**
The updated code includes new constraints that implement operational limits on the number of Type
A and Type B aircraft the airline can use. Specifically:

- A constraint has been added to limit the number of Type A aircraft to 15.
- A constraint has been added to limit the number of Type B aircraft to 30.

These additional constraints are motivated by possibly new operational limitations or strategic
decisions, such as maintenance availability or cost considerations. By imposing these restrictions, the
model must now find an optimal solution within a more constrained operational environment.

**Explanation of the Query on Results:**
The query specifically asked to adjust aircraft configurations within newly defined limits. The original
model found an optimal solution at a minimum cost of $200,000. However, with the added constraints,
the solution space is reduced - fewer configurations of aircraft are available to meet the passenger
demand.
As a result of these constraints: The new optimal cost calculated by the model rose to $215,000. This
increment indicates that the more stringent operational limits forced the use of a costlier configuration.
The query’s impact on the results is substantial, as illustrated by a $15,000 increase in operational
costs. If rated on a scale from 1 to 10, the impact could be quantified around an 8. This rating reflects
significant changes in operational costs and constraints.
The numerical changes in the model, calculated as 100, follows from a step-by-step process analyzing
the modifications in the linear programming representation and their effects on the resulting computa-
tional graph. This method, grounded in operations research analysis, validates the substantial impact
of the query-driven modifications.
In summary, the changes to the code (limiting aircraft types) constrained the model significantly, lead-
ing to a more expensive operational solution. The rationale behind integrating these specific con-
straints could be associated with real-world operational limits, reflecting the complex decision-making
processes airlines undergo to balance cost, capacity, and operational feasibility.

OptiGuide: The optimization problem was re-solved with additional constraints limiting the number
of Type A aircraft to no more than 15 and Type B aircraft to no more than 30. The new configuration
resulted in a total operating cost of $215,000. When compared to the original solution, where the total
operating cost was $200,000, this new configuration increased the operating costs by $15,000 due to
the more restrictive constraints on the number and types of aircraft deployed. This demonstrates the
trade-offs between operational flexibility and cost.

Standard: Based on the updated constraints where the maximum number of Type A aircraft is limited
to 15 and Type B aircraft to 30, the revised optimization solution results in a total operating cost
of $215,000. This is an increase from the original scenario, due to the restrictions on the number
of aircraft which limited the company’s ability to opt for the least expensive configuration to meet
passenger demand. In this setup, the solution ensures passenger requirements are met while respecting
the new operational limits placed on the aircraft types.

Figure 5: An example illustrating explanations generated by different models.
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