Under review as a conference paper at ICLR 2025

MOCKINGBIRD: PLATFORM FOR ADAPTING LLMS TO
GENERAL MACHINE LEARNING TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are now being used with increasing frequency as
chat bots, tasked with the summarizing information or generating text and code
in accordance with user instructions. The rapid increase in reasoning capabilities
and inference speed of LLMs has revealed their remarkable potential for appli-
cations extending beyond the domain of chat bots. However, there is a paucity
of research exploring the integration of LLMs into a broader range of intelligent
software systems. In this research, we propose a paradigm for leveraging LLMs
as mock functions to adapt LLMs to general machine learning tasks. Furthermore,
we present an implementation of this paradigm, entitled the Mockingbird plat-
form. In this paradigm, users define mock functions which are defined solely by
method signature and documentation. Unlike LLM-based code completion tools,
this platform does not generate code at compile time; instead, it instructs the LLM
to role-play these mock functions at runtime. Based on the feedback from users or
error from software systems, this platform will instruct the LLM to conduct chains
of thoughts to reflect on its previous output, thereby enabling it to perform rein-
forcement learning. This paradigm fully exploits the intrinsic knowledge and in-
context learning ability of LLMs. In comparison to conventional machine learning
methods, following distinctive advantages are offered: (a) Its intrinsic knowledge
enables it to perform well in a wide range of zero-shot scenarios. (b) Its flexibility
allows it to adapt to random increases or decreases of data fields. (c) It can utilize
tools and extract information from sources that are inaccessible to conventional
machine learning methods, such as the Internet. Finally, we evaluated its perfor-
mance and demonstrated the previously mentioned benefits using several datasets
from Kaggle. Our results indicate that this paradigm is highly competitive.

1 INTRODUCTION

Currently, large language models (LLM) are widely used in intelligent systems as a chat bot to
assist users in summarizing, processing, and generating text. However, this only exploits the natural
language processing capabilities of LLMs; there are many other capabilities are not fully utilized,
such as the significantly improved reasoning capabilities of recent LLMs (Valmeekam et al.| [2024).

A natural idea is to extend LLMs to non-linguistic tasks. In 2020, Brown et al.| (2020) has found
that language models are able to learn from their context, proving the basic feasibility of this idea;
since then, many researchers have studied the properties of this ability in specific domains: (Kirsch
et al.|(2022); |Chan et al.| (2022)); Jin et al.| (2023)); Bigelow et al.|(2024)) [Kossen et al.|(2024))). These
work have well explained the nature of in-context learning ability, but provide little overall insight
into the integration of LLMs into automatic intelligent systems with a wider range of tasks. In order
to fill this paucity and to encourage more domains to benefit from the progress of LLM, we propose
Mockingbird, a versatile and controllable paradigm for adapting LLMs to general machine tasks,
and a corresponding open-source platform implementing this paradigm.

Inspired by the finding that the intelligence of LLMs is merely role-playing (Shanahan et al.||2023),
we assume that LLMs can also acquire good performance in role-playing functions, and design our
paradigm upon this assumption. The fundamental component of Mockingbird is mock function,
a specific type of functions that do not have method bodies, but only have function declaration
including documentation and method signatures (contracts on the function parameters and return

Under review as a conference paper at ICLR 2025

values). In this paradigm, users are able to use mock functions as if they were ordinary functions with
function bodies. In contrast to other LLM-drive code generators, Mockingbird does not implement
these mock functions with code generated by LLMs at compile time; instead, it instructs LLMs to
’role-play’ them at runtime.

To elaborate further, the platform furnishes LLMs with program metadata including the method sig-
nature and accompanying documentation, retrieved from the program; then, function calls on mock
functions are redirected to LLMs; parameters are packed into user messages, and return values are
unpacked from assistant messages. In this manner, LLMs are employed as general-purpose func-
tions. By leveraging the in-context learning capability of LLMs, users can influence the behavior
of these mock functions with minimal effort by modifying the input-output message pairs presented
within the chat histories of LLMs. Furthermore, we present several optional techniques that enhance
practicality of this paradigm. For instance, we introduce the substitution-script acceleration, which
replaces LLM-driven executors with substitution-scripts generated by LLMs, thereby reducing the
time consumption significantly. Figure|l|shows a high-level overview of this paradigm.

rc#
’ - Accelerate 4 G;;e:a{ei(apitlgn;h N
/T T T T T T T el NfCTT T T T T N (]
o/ Substituion v
b Script ["Common Sense"
1 ‘ } } Intrinsic Knowledge
N, . S, L_l
Parameters
(£ > s
Heell f(X) SRS Generate Al Input @
Automatic <Return Value ‘ Mock Function Reasoning LLM - Real;tim:
Systems - nformation from
\L|_External Sources
Conduct -
Reflection
E G m | Arguments &
Memory Memory Return Value
Feedback Compression Replacing History Invocations
Trainer Memory Refinement

Figure 1: High-level overview of Mockingbird. Mock functions redirect ordinary function calls to
the LLM, instructing the LLM to initiate reasoning and then generate the return value. Mock trainers
use feedback to instruct the LLM to conduct reflection process on its previous errors. Optional
modules such as substitution script, memory compression and memory replacing are introduced to
further improve the practicality of this paradigm.

This paradigm offers an intuitive interface for systems that have difficulty adapting to chat-driven
execution mode, thereby enabling them to leverage the capabilities of LLMs.

This work investigates the potential of applying this paradigm to general machine learning tasks.
Furthermore, we implement an extensible machine learning framework for mock functions, which is
capable of automatically conducting reflection on the incorrect output during the training process. In
comparison to conventional machine learning methods, such as those based on statistics or artificial
neural networks, Mockingbird has the following distinctive advantages (a) the intrinsic knowledge
of LLMs acquired from the pre-training data enables this paradigm to perform well on few-shot and
zero-shot tasks; (b) this paradigm is not constrained by a strict input data schema, allowing it to
process incomplete data entries with missing fields. (c) this paradigm is readily capable of utilising
tools and extracting information from non-structural sources, which are typically inaccessible to
conventional machine learning techniques. The aforementioned advantages can serve to enhance
the robustness and flexibility of automatic intelligent systems.

We evaluate the general applicability of this paradigm across a range of machine learning tasks from
Kaggle. Overall, it achieves very competitive scores compared to conventional machine learning
methods, and even outperforms many human competitors on several datasets.

Under review as a conference paper at ICLR 2025

2 MOCKINGBIRD

This paradigm is composed of following components:

Mock Function A mock function is a function that is defined solely in terms of its method sig-
nature (types and other restrictions on parameters and return value), with optional documentation
provided to describe its purpose and any remarks pertinent to its use. In contrast to conventional
functions, mock functions are not implemented by users or code generators at the compilation stage.
Instead, they are role-played by LLMs at run-time. Except for this different behind the scene, the
manner in which users interact with the system is identical to that of conventional functions. As
for other necessary procedures, such as the JSON serialization, are automatically handled by mock
functions. The fundamental responsibilities of mock functions can be summarized as follows: (a)
providing LLMs with metadata to role-play the function; (b) handling conversions between program
objects and chat messages in JSON format; (c) guaranteeing the formal correctness of responses
generated by LLMs through the validation of JSON schema. Figure [2]illustrates the fundamental
workflow of a mock function. Mock functions can be employed directly without training process;
however, in such instances, it is advisable to provide comprehensive annotation regarding the antic-
ipated behaviour of these functions as documentation comments within the code itself.

Mock Memory (Chat History)

Arguments
(User Messages)
IrisSpecies Species; = mock.Invoke(Al

: 1.2 S Ll Functi Return Value
. -6);1 cnetion (Assistant Messages)

LLM

Function Calls in Program

Figure 2: Basic workflow of a mock function. Mock functions automatically handle the conversion
between program objects and chat messages, thus communicating between the program and LLMs.

Mock Invocation Mock invocations are designed to conveniently update history invocations in the
context. They represent a mapping from invocations in program space to request-response message
pairs in chat history. Mock invocations automatically update the content of request and response
messages in the chat history when the their parameters or return values are changed. They serves as
a simple interface to edit the context.

Mock Memory Mock memories are enhanced chat histories for this paradigm, whose elements
are mock invocations instead of chat messages. Additionally, a branch control feature has been
implemented for mock memories. This feature allows users to create sub-branches from a main
branch, which will “inherit” the current invocation history of the main branch. Sub-branches can
be dropped or committed back to the creation time-point in the main branch. Figure [3| depicts
the process of creating sub-branches and committing them back to the main branch. This feature
provides isolation among different branches, thereby enabling the execution of multiple LLM tasks
in parallel; otherwise, no further requests can be added to the memory until the response is received,
as LLMs may respond to requests from other tasks.

Mock Trainer The introduction of mock trainers serves to streamline the process of training and
evaluating mock functions, while also assisting users of conventional machine learning frameworks
in swiftly adapting to our paradigm. Once the data source, training policy, evaluation metrics and
dataset separation ratio for training and evaluation have been set, the system will automatically
handle the training and evaluation process. In the training stage, if LLMs output incorrect answers
in a mock invocation, a reflection procedure will be conducted by the mock trainer to avoid making
similar mistakes in future. The reflection procedure will be covered in detail in section

Substitution script. A substitution script is a script generated by LLM to represent the behavior
learned from the invocation history. This technique is introduced as an optional feature to reduce
the time consumption, though this may result in a compromise of accuracy.

Under review as a conference paper at ICLR 2025

L

-

[

[J
Invocation M5
Invocation M4

Invocation M3 } Create

Invocation M5 | |
|

Invocation M4 :

((([~ : N
g ‘u | |(Invocation S5 J“ I (Invocation S5) | : | :
I - I I I ! - I I
| | }> |[Invocation S4J\ I [Invocatlon S4J | L | :
I I
L
\

| |
Sub-branch | {(Invocation M3, (_Sub-branch
N — | | _— —_——
: Invocation M2 ||
I ; :>
Invocation M1 ||

: Invocation S5 :
Invocation M2l Branch : Sub-branch

I

I

(

|
Invocation S4 | |

Commit

I
I
I
Invocation |
History)

Inv ion M1 JI R
ocatio Invocation M3 :

. |
Invocation M2 | |
|
Invocation M1 | |

———

AR -

. MainBranch |

—_——

Figure 3: Branch control feature of mock memories. Left: when a branch is created, subsequent
invocations added to the main branch will not affect the sub-branch. Right: when a sub-branch is
committed, its invocations are merged into the main branch at the location where the sub-branch
was created.

2.

1

WORKFLOW

The following list delineates the machine learning workflow with Mockingbird:

1) Setup mock function. According to the metadata including method signature, documentation,

2)

3)

4)

5)

6)

7

and type information of parameters and return value, the mock function generate the system
prompt consisting of directives and JSON schemas separately for parameters and return value.
This prompt not only instructs the LLM to give a return value that matches the JSON schema, but
also commands it to output the reasoning in the “remarks” field before outputting the return value
in the “results” field. Mock functions add this system prompt into the message history during the
setup phase. Details are discussed in section[2.2]

Prepare serializers. According to the type information collected in step 1, the platform generates
and code of JSON serializers for parameters and return value, which are then loaded subsequent
to their compilation.

Perform an invocation with a LLM. Once the parameters have been serialized into JSON data
that adheres to the schema built in step 1, the JSON data should be appended to the message
history as a user message. The message history should then be submitted to the LLM for a
response. Upon receipt of the assistant message, mock functions decode return value from the
JSON data contained within the response. Then a mock invocation is constructed and registered
with the user message and the corresponding assistant message.

Conduct reflection procedure. In the training phase, the mock trainer compares the return value
yielded by the assistant with the ground truth in the training data. If the difference exceeds the
threshold preset by users, a reflection procedure will be initiated by the mock trainer. Parameters,
return value, and the ground truth will be appended to a sub-branch of the main memory branch.
Then the LLM will be instructed to reason why such mistakes are made and summarize notes
to avoid making similar mistakes in the future. These notes are called “reflection notes” in this
paradigm.

Update invocations in the mock memory. Once the reflection notes have been obtained,
mock invocations which contain the wrong return values are updated. Their “results” fields are
amended to the ground truth, while their “remarks” fields are replaced with reflection notes.
Refine the mock memory. The context length is typically smaller than the size of the training
dataset, which means that not all data entries of the training dataset can be directly stored in
the context. When the context of a mock function reaches the limitation of length, a memory
refinement procedure will be initiated by the mock trainer. We provide a memory replacing policy
and a memory compression policy (see section [2.4] for details) along with our implementation of
this paradigm. Mock trainers are designed to be highly customizable, allowing users to configure
them with their own memory refinement policies.

Generate substitution script. In contrast to other LLM-drive code generators which generate
code at the outset, the substitution script is generated only after the LLM has acquired sufficient
information about the “correct” behavior of the mock function. This distinguishes it from other

Under review as a conference paper at ICLR 2025

compile-time code generators. Once the substitution script has been generated and compiled,
subsequent invocations will be redirected to the substitution script instead of the LLM. It should
be noted that the content of the substitution script is not definitive, as the reflection process will
invalidate the script, which always assuming the behavior of the mock function has been changed
by the reflection process. This technique can reduce the time consumption to the level of native
ordinary functions. However, it may result in a degree of compromise in terms of accuracy, and
therefore we have made it an optional feature.

2.2 GUARANTEE OF FORMAL CORRECTNESS

Figure [4] shows the process of building system prompt for mock functions. The platform retrieves
the documentation for the delegate (function declaration) from the program documentation file gen-
erated by the compiler, and extracts the semantic meanings for this delegate, parameters and return
value. After that, JSON schemas for parameters and return values are generated separately with the
type information acquired from the runtime. Semantic meanings are added into “description” fields
of the corresponding elements in schemas. All these schemas are defined in the standard format of
JSON schema, rather than expressed in natural languages.

User Defined Function Declaration

/// <summary>
/// Get the species of the iris, according to the sepal and petal sizes.
/// </summary>
/// <param name="sepallLength">Length of sepal. Can be null.</param>
/// <param name="sepalWidth">Width of sepal. Can be null.</param>
/// <param name="petalLength">Length of petal. Can be null.</param>
/// <param name="petalWidth">Width of petal. Can be null.</param>
/// <returns>
/// Species of the flower.
/11 </returns>
public delegate IrisSpecies GetlrisSpecies(

double? sepalLength, double? sepalWidth,

double? petalLength, double? petalWidth);

Method Signature & Documentation

4

Mockingbird

Analyze, Extract & Generate

Semantic Information JSON Schema for Parameters) (JSON Schema for Return Value
Element Documentation {) (
. — "type":"object”, “ype**string"
<Command> Get the species of the iris, ... "properties":{ (2 .

"enum":["setosa","versicolor","virginica"
"sepalLength"{ } [9 !

sepallLength” Length of sepal. Can be null. "type:tinteger’,

"sepalWidth" Width of sepal. Can be null. "description”:"Length of sepal. Can be null."
"petalLength” Length of petal. Can be null. ?"sepaIW\dth":(
"petalWidth” Width of petal. Can be null. "type"'integer”,

“"description”:"Width of sepal. Can be null."

b
"petalLength™:{
"type":"integer”,

System Prompt description":"Length of petal. Can be null.

b

You are a mock function. You can "petalWidth":{
output the return value based on the "type":"integer”,
arguments according to the user “description":"Width of petal. Can be null."

designated function. }

h

The function you are mocking is: “required”:["sepalLength”,"sepalWidth","petalLength","petalWidth"]
{Command} [}

The JSON schema of the input is:
{ArgumentSchema}

The JSON Schema of the output is:
{ReturnValueSchema}

Figure 4: The system prompt for mock functions are built according to the semantic information
and JSON schema for parameters and return value. Semantic information explains the semantic
meanings of parameters, which is crucial for LLMs to understand the task and parameters. JSON
schemas for parameters and return values are used to constrain the layout and semantic meanings of
data fields, ensuring the correct mutual understanding of data fields between program and LLMs.

Under review as a conference paper at ICLR 2025

When instructions on the format of responses are described in natural languages, there is a possibility
of a mismatch between the format of the responses and the expected format due to the ambiguity
in the instructions. Even if instructions are clear without ambiguity, LLMs may still fail to obey
these instructions due to the overlay of reasoning patterns (Jiang et al.l [2024a)). Solving this formal
randomness is at vital importance: in contrast to user-oriented applications, formal correctness of
responses are crucial for automatic systems. The return value cannot be correctly found and parsed
in one request-response round if it is stored in field with random names. Furthermore, even if
automatic systems discover an error with the schema, re-generation of responses will significantly
increase the time consumption.

A number of studies have put forward the idea of fine-tuning-based solutions as a means of improv-
ing the ability of LLMs to follow instructions (Wallace et al.| (2024)iJiang et al.|(2024a))). But with
an extra emphasis on general availability, we prefer to rely on non-fine-tuning solutions. Recent
LLMs, such as GPT-4o has provided structural output feature that strictly limits the schema of the
output. Mockingbird fully exploit this feature to guarantee the formal correctness of responses. For
LLMs which currently do not support this feature, Mockingbird uses a JSON schema validator to
verify the formal correctness of responses, and reject illegal responses with detailed error report
to initiate another request-response round. For users using this paradigm with self-host LLMs, we
highly recommend them to fine-tune their models to schema control instructions.

2.3 LEARNING THROUGH REFLECTIONS

Even though our experiments show that the intrinsic knowledge LLMs acquired from pre-training
enables them to reach competitive scores on multiple tasks with zero-shot, the capacity for continu-
ous improvement still remains a crucial consideration in practical applications.

Inspired by the workflow of neural network based machine learning frameworks, we introduce a
reflection mechanism into Mockingbird. Figure [5]shows the workflow of reflection and the prompt
used by mock trainers to instruct the LLM for reflection to perform reflections.

Prompt for Reflection

at Parameters f(X) In previous invocation when the
Training Dataset arguments are:

Mock Function {Parameters}

Wrong Arguments You gave the wrong results:
Results & Wrong Results, lEmgResE]
Reasoning Wrong Reasoning At that time, the reasoning you
& Ground Truth . L
wrote for this wrong results is:
@ {WrongReasoning}
>

{GroundTruth}

Reflection

| Arguments &
Return Value

History Invocations

But the correct results should be:
Invocation &
Reflection Notes

Trainer @

Possible Reasons
& Notes

What do you think led you to make
these mistakes?

What notes can you write down to
help your future self avoid making
these mistakes?

Figure 5: Left: Workflow for reflection procedure. After acquiring the wrong results from the mock
function, the mock trainer will instruct the LLM to reflect on the possible reasons for making such
mistakes and summarize notes for not making similar mistakes in future invocations. Right: Prompt
used by mock trainers to conduct reflections.

We implement mock trainers to automatically host and manage the learning procedure. In a training
session, the mock trainer will iterate every data entry in the dataset, feeding parameters into the
mock function, comparing the results obtained from the mock function with the ground truth. If
the difference between the output results and ground truth exceeds the threshold preset by users,
then a reflection procedure will be conducted: the mock trainer will generate a reflection instruction
including the wrong results, wrong reasoning and the ground truth; thereafter, the LLM will be
instructed to analyze the possible reasons for making these mistakes, and summarize notes to avoid
making similar mistakes. The response from the LLM, consisting of possible reasons and notes for

Under review as a conference paper at ICLR 2025

avoiding similar mistakes, is called “reflection notes” in this paradigm. Then, results field of the
invocation to reflect will be corrected to the ground truth, and the reasoning field will be replaced
with reflection notes.

In contrast to previous methods of in-context learning which focus more on the patterns of examples
in the context (Liu et al.| (2022)JBhattamishra et al.| (2024)), we expect LLMs to reflect on their
previous reasoning flows and learn by adapting to reasoning flows which are more likely to be
correct, rather than relying solely on the in-context learning ability of LLMs.

2.4 MEMORY REPLACING AND COMPRESSION

Under a simplified assumption that all examples take equal tokens, denoted as m, and adding
n examples into the context during the training procedure, then the total token consumption is
mn? + 0.5mn, which shows it is economically impractical to have context of examples as long
as sufficient. This leads to the urgent need for strategies to dynamically replace previous examples
with examples that are more worth learning and remembering, or to compress the context as little
loss of information as possible.

Many researches have proposed strategies for selecting examples (Zhang et al.| (2022); Zhang et al.
(2023); |Lee et al.| (2023); Qin et al|(2024); Nguyen & Wong| (2023)); [Peng et al| (2024); |S. et al.
(2024)). These studies all show competitive improvement on specific domains, so from the perspec-
tive of paradigm design, instead of select one or more selection strategy, we implement the mock
trainer in a highly customizable design. We provide a default implementation of the replacing policy
by replacing correct invocations (without reflection notes) with the latest reflected invocations.

As for the context compression, current methods focus more on token level (Liskavets et al.
(2024);Ge et al.|(2024)) and even on the level of modifying the underlying implementation of trans-
formers (Yu et al.|(2024)). According to their evaluation results, these methods are effective enough,
but they are too heavy for Mockingbird, since this paradigm is designed to work simultaneously with
different LLMs at various price tiers. In addition, there is an undeniable difficulty in using these so-
lutions with commercial close-source LLMs for the time being. Similar to methods proposed by
Wang et al.|(2024) and Jiang et al.|(2024b)), we provide a default implementation of semantic com-
pression (“soft compression”), by instructing LLMs to summarize the reflection notes to compress
previous invocations.

3 EVALUATION

We evaluate the performance of Mockingbird on several general machine learning tasks, covering
the most common categories of classification and regression. It must be emphasised that our aim
is to provide a more suitable paradigm for exploiting the capabilities of LLMs in automatic intel-
ligent systems, rather than provide a state-of-the-art method that is comprehensively superior to
conventional machine learning methods.

3.1 PERFORMANCE EVALUATION

In this section, we evaluate its performance separately on classification and regression datasets ac-
quired from Kaggle; its performance is assessed by comparing with scores of human competitors in
corresponding Kaggle leaderboar(ﬂ whose scores can be considered as an estimated upper bound
of the scores that non-professional users can achieve using conventional machine learning methods.

Table [T] shows its performance on classification tasks, and table 2]is for performance on regression
tasks. Context length is the maximum number of invocations that the mock function can memorize
through the training process; a context length of 0 means that the training process is skipped, which
could represent the extent to which users can treat this paradigm as an “out-of-the-box” solution.
Both evaluations are performed with GPT-4o as the underlying LLM.

'Raw leaderboard data can be found in supplementary materials. Data of leaderboard is updated to Oct 1st,
2024.

Under review as a conference paper at ICLR 2025

Table 1: Accuracy evaluation on classification tasks, compared with scores of human competitors
from Kaggle leaderboard. Datasets are: Titanic Survival Prediction (Cukierskil [2012), Poisonous
Mushrooms Classification (UCL, [1981), Horse Colic (McLeish & Cecile, [1989), Obesity Risk Pre-
diction (Fabio Mendoza Palechor and, [2023)) and Insurance Cross-Selling. Humans’ Best is the
best scores achieved by human competitors in the leaderboard; and Outperformed is the proportion
of human competitors whose scores are outperformed by the best scores using this paradigm. The
best accuracy is underlined.

Accuracy? with Context Length

Dataset Humans’ Best Outperformed
0 20 40 60 80
Titanic 0.7879 0.7887 0.7743 0.7918 0.7866 1.0000 92.29%
Mushrooms 0.3720 0.5693 0.7302 0.9968 0.8359 0.9851 100%
Horses 0.5450 0.5531 0.5836 0.5532 0.5087 0.7818 6.42%
Insurances 0.5880 0.6730 0.7260 0.6989 0.6793 0.8975 18.35%

Table 2: Root mean square error (RMSE) and median absolute error (MedAE) evaluation on re-
gression tasks, compared with scores of human competitors from Kaggle leaderboard. Datasets are:
Used Car Price Prediction, Abalone Dataset (Nash et al.l [1994), Wild Blueberry Yield Prediction
and Prediction of Mohs Hardness. Humans’ Best is the best scores achieved by human competitors
in the leaderboard; and Outperformed is the proportion of human competitors whose scores are
outperformed by the best scores using this paradigm. The best scores are underlined.

Error| with Context Length

Dataset Humans’ Best Outperformed
0 20 40 60 80
Car Prices 22225 22523 28915 24534 22794 62917 100%
Mohs Hardness
. i ¥
(MedAE)! 0.6000 0.5800 0.6000 0.2500 60.86%
Mohs Hardness p p ¥ +
(RMSE) 1.2803 1.1596 1.1314 - - - -

T The leaderboard on Kaggle uses median absolute error to rank human competitors.
¥ This dataset only contains 57 data entries.

3.2 DISCUSSION

Longer context is not all you need. Among these evaluations, we find that best performances
are not guaranteed to be accompanied with the biggest context length. For instance, on Poisonous
Mushroom Classification task, the performance peak appears around a context length of 40, and the
performance decreases by 16.14% when the context length grows to 80. There is an extreme example
on Mohs Hardness Prediction task. When the context length is 40, while 70.18% of the data entries
are reflected and then stored in the context, the RMSE only reduces by 2.43%. This phenomenon
is not as incomprehensible as it seems to be. [Kossen et al.| (2024) has pointed out that LLMs do
not treat all data within the context equally, but tends to rely on examples semantically closer to the
queries; also, they cannot fully resist their preference acquired through the pre-training, which is also
shown in the performance plateau on Titanic Survival Prediction Dataset. In other words, intrinsic
knowledge and the reasoning ability have made LLMs more than in-context learning machines; this
leads us to reconsider the characteristics of LLMs machine learning, rather than continuing to view
it simply as combining in-context learning of transformers with intrinsic knowledge.

Intrinsic knowledge does not always help. On Poisonous Mushroom Classification task, we ob-
served a strange initial accuracy bellowing random guessing: 0.3720, which is 25.6% worse than
random guessing. In this configuration, the context length is zero, which means there is no history
invocations or reflection notes stored in the context which could influence its behavior, therefore its

Under review as a conference paper at ICLR 2025

judgment is solely relying on its intrinsic knowledge. If we humans know the fact that our accuracy
is significantly bellowing 0.5, then by simply reversing our final answers, we can reach a relatively
high accuracy on such binary classification tasks. However, even when LLMs know they are out-
putting the wrong answer, they still need a sufficient examples and reflections in learning process
to reduce the influence of their “harmful” intrinsic knowledge; in this task, that is the process of
accuracy increasing from 0.3720, going through 0.5693, 0.7302, and finally reaches a high score
outperforming the best score of human competitors.

Why cannot LLMs be “a good veterinarian”? In some cases LLMs struggle to learn. The
performance of LLMs on Horses Health Outcome Prediction is especially bad. Similar to their
performances on Insurance Cross-selling Prediction, they starts with an accuracy of nearly random
guessing. Their accuracy improves as the size of training dataset grows on Insurance Prediction task
until reaches the context length of 40, however, on Horses Health Prediction task, such improvement
is not observed. An obvious difference between these tasks is the huge gap in the number of their
data fields. There are 29 data fields in Horses Health Prediction task but only 12 data fields in
Insurance Prediction task, in other words, the former task is inherently more complicated than
the latter one. Despite this natural inference, by studying the operational log, we spotted that at
the end of the training phase, 75.0% of invocations within the context on Insurance Prediction
are initially correct invocations (LLMs gave the right answers for parameters contained in these
invocations), while on Insurance Prediction task only 47.5% of the invocations are correct. This
does not have to mean that have a context with a higher proportion of correct invocations can improve
the performance. Based on the findings that current LLMs cannot discover the errors within their
reasoning process in the absence of external feedback (Huang et al.l 2024), we speculate that the
reason it cannot learn on that task is that it is not really “learning” on that task. Being much more
complicated is not the core problem behind that phenomenon. Its context length is equal to the size
of training dataset, which means no invocations are replaced or dropped; then have a correct ratio of
47.5% means it outputs more wrong answers than the correct answers in the training stage. Ground
truth from the training dataset can only indicates the existence of errors within the reasoning flows;
what exactly these errors are requires LLMs to figure out through reasoning. However, there is no
feedback for the reasoning process of looking for errors within their previous reasoning process. If
they are initially bad at this kind of tasks, then chances are that they cannot reason out the errors
within their previous reasoning process and consequently have no improvement through the whole
training stage. During the training stage, they are guessing what their errors could be or what is
the correct reasoning flow. The random guess within the previous reflection notes may also hinder
their following reasoning and reflection. This finding and speculation warns us that we should not
rely solely on the in-context learning ability of LLMs; also, having a wider intrinsic knowledge is
beneficial because that may help LLMs avoiding these “guessing traps”.

4 RELATED WORK

Adapting LLMs to Machine Learning Tasks Recently, Kashyap & Sinha|(2024) also examined
the feasibility of integrating LLMs into statistical learning workflows on “Titanic Survival Predic-
tion” dataset; they claimed to reach a “significant improvement” with data preprocessing and thought
refinement (chain of thought). However, our experiments show that the scores are relatively higher
without data pre-processing and other additional steps introduced in their work, which means that
their method is less effective than they claimed to be. Moreover, their method relies heavily on the
user’s knowledge of statistical learning, which is not friendly to the automatic intelligent systems.

In-Context Learning [Brown et al.| (2020) have discovered that LLMs are able to learn from
analogies based on the context, and summarize this ability as “in-context learning”. Based on solid
experimental evidence, Kossen et al.| (2024) draws the following important conclusions about in-
context learning: (a) content in context can influence the behavior of LLMs, which means that in-
context learning is indeed effective to some extent; (b) examples in the context that are semantically
closer to the queries have more effect, and vice versa; this makes in-context learning different from
conventional machine learning methods that treat all training data equally; (c) it is impossible to
eliminate the preference that LLMs acquired through pre-training by in-context learning, but this
preference can be reduced to some extent by prompting. These conclusions are consistent with our
findings in experiments.

Under review as a conference paper at ICLR 2025

Code Generation and Self-Repair The delayed progressive generation of substitution scripts
distinguished it from other code generation solutions, for it does not rely on self-repair, but incorpo-
rates information from the parameter-result pairs and corrects its behavior through reflections with
external feedback. [Olausson et al.[(2023) have shown that LLMs struggle to repair the errors on their
own, but that the effectiveness of repairs improves significantly when human feedback is provided.
Also, Huang et al.|(2024) have demonstrated that the reasoning performance cannot be improved
without external feedback. Our design of deferring the substitution script generation is consistent
with these findings. Meanwhile, compared to user assisted code generation solutions (Zhu-Tian
et al.| (2024); Fakhoury et al.| (2024))), the feedback of substitution scripts can be provided by soft-
ware systems rather than solely from humans users, which is more suitable to automatic intelligent
systems.

5 CONCLUSION

In this work, we present the paradigm for adapting LLMs to general machine learning tasks based
on mock functions, which instruct LLMs to role-play the function defined by users. We also propose
a machine learning framework for mock functions, whose usage is similar to that of conventional
neural network based machine learning frameworks. Optional techniques, including substitution
script generation, memory refinement policies for replacing and compression are also introduced to
address its shortcomings in inference cost and time consumption. This paradigm can fully exploit
the reasoning ability, in-context learning feature, and intrinsic knowledge of LLMs, together with
its dynamic nature, making it an out-of-the-box solution for automatic intelligent systems.

Finally, we evaluate its performance and scalability on several machine learning tasks from Kaggle,
and it shows competitive results, even outperforming most the human competitors in some tasks.
Meanwhile, we discuss several findings about LLM machine learning based on the analysis of the
evaluation results and platform operational logs, we emphasis these findings: (a) longer context does
not guarantee to yield better results, which indicates that characteristics of LLM machine learning
is essentially different from Transformers in-context learning; (b) intrinsic knowledge is not always
helpful, in some case they are harmful to the performance and LLMs need overcome them through
learning and reflection; (c) chances are that LLM machine learning may encounters a “guessing
trap”, where they struggle to learn through reflection due to failed to discover what their mistakes
exactly are.

Limitation and Future Work Currently, it is not financially feasible to evaluate our paradigm
with all possible types of datasets on all possible machine learning tasks to fully and specifically
identify its suitable and unsuitable domains; therefore, we believe that validating this paradigm
in many specific domains could still provide useful insights on characteristics of LLM machine
learning. Moreover, the application potential of Mockingbird is limited by the current money cost
and time consumption of LLM inference. However, there is a trend towards real-time LL.M inference
such as Cerebras Inference Engine (Zhang et al.| 2024), we would like to explore the possibility of
applying this paradigm to low-latency systems with real-time LLM inference. Also, the performance
of this paradigm is currently only close to best scores of human competitors with conventional
machine learning methods, but by adapting current automatic machine learning methods such as
AutoGluon (Erickson et al. 2020), there could be a possibility for Mockingbird to reach the same or
even higher scores than the top scores of human competitors.

REFERENCES

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and LLMs by learning to learn discrete functions. In The Twelfth In-
ternational Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=ekeyCgeRfCl

Eric J Bigelow, Ekdeep Singh Lubana, Robert P. Dick, Hidenori Tanaka, and Tomer Ullman. In-
context learning dynamics with random binary sequences. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
62K7mALOZd.

10

https://openreview.net/forum?id=ekeyCgeRfC
https://openreview.net/forum?id=ekeyCgeRfC
https://openreview.net/forum?id=62K7mALO2q
https://openreview.net/forum?id=62K7mALO2q

Under review as a conference paper at ICLR 2025

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Stephanie Chan, Adam Santoro, Andrew K. Lampinen, Jane Wang, Aaditya Singh,

Pierre H. Richemond, James L. McClelland, and Felix Hill. Data distribu-
tional properties drive emergent in-context learning in transformers. In NeurlIPS,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/

77coccacfd9962e2307fc64680fcSace-Abstract-Conference.html.

Will Cukierski. Titanic - machine learning from disaster, 2012. URL https://kaggle.com/
competitions/titanicl

Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexander
Smola. Autogluon-tabular: Robust and accurate automl for structured data, 2020. URL https:
//arxiv.orqg/abs/2003.06505.

Alexis de la Hoz Manotas Fabio Mendoza Palechor and. Obesity or cvd risk (clas-
sify/regressor/cluster), 2023. URL https://www.kaggle.com/dsv/7009925,

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and Shuvendu K. Lahiri. LIm-
based test-driven interactive code generation: User study and empirical evaluation, 2024. URL
https://arxiv.org/abs/2404.10100.

Tao Ge, Jing Hu, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder for
context compression in a large language model, 2024. URL https://arxiv.org/abs/
2307.06945

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024. URL https:
//arxiv.org/abs/2310.01798.

Gangwei Jiang, Caigao Jiang, Zhaoyi Li, Sigiao Xue, Jun Zhou, Lingi Song, Defu Lian, and Ying
Wei. Interpretable catastrophic forgetting of large language model fine-tuning via instruction
vector, 2024a. URL https://arxiv.org/abs/2406.12227.

Huiqgiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. Longllmlingua: Accelerating and enhancing llms in long context scenarios via prompt com-
pression, 2024b. URL https://arxiv.org/abs/2310.06839,

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y. Zhang, Xiaoming Shi, Pin-Yu Chen,
Yuxuan Liang, Yuan-Fang Li, Shirui Pan, and Qingsong Wen. Time-llm: Time series forecasting
by reprogramming large language models. CoRR, abs/2310.01728,2023. URL https://doi.
org/10.48550/arXiv.2310.01728.

Yuktesh Kashyap and Amrit Sinha. Llm is all you need : How do llms perform on prediction and
classification using historical data. International Journal For Multidisciplinary Research, 2024.
URL https://doi.org/10.36948/1ijfmr.2024.v06103.23438|

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, and Luke Metz. General-purpose in-context
learning by meta-learning transformers. CoRR, abs/2212.04458, 2022. URL https://do1i.
org/10.48550/arXiv.2212.04458.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
not conventional learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=YPIA7bgd5y.

Yoonsang Lee, Pranav Atreya, Xi Ye, and Eunsol Choi. Crafting in-context examples according
to Ims’ parametric knowledge. CoRR, abs/2311.09579, 2023. URL https://doi.org/10.
48550/arXiv.2311.095709.

11

https://arxiv.org/abs/2005.14165
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/77c6ccacfd9962e2307fc64680fc5ace-Abstract-Conference.html
https://kaggle.com/competitions/titanic
https://kaggle.com/competitions/titanic
https://arxiv.org/abs/2003.06505
https://arxiv.org/abs/2003.06505
https://www.kaggle.com/dsv/7009925
https://arxiv.org/abs/2404.10100
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2307.06945
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2406.12227
https://arxiv.org/abs/2310.06839
https://doi.org/10.48550/arXiv.2310.01728
https://doi.org/10.48550/arXiv.2310.01728
https://doi.org/10.36948/ijfmr.2024.v06i03.23438
https://doi.org/10.48550/arXiv.2212.04458
https://doi.org/10.48550/arXiv.2212.04458
https://openreview.net/forum?id=YPIA7bgd5y
https://doi.org/10.48550/arXiv.2311.09579
https://doi.org/10.48550/arXiv.2311.09579

Under review as a conference paper at ICLR 2025

Barys Liskavets, Maxim Ushakov, Shuvendu Roy, Mark Klibanov, Ali Etemad, and Shane Luke.
Prompt compression with context-aware sentence encoding for fast and improved 1lm inference,
2024. URL https://arxiv.org/abs/2409.01227.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan
Vuli¢ (eds.), Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, pp. 100-114, Dublin,
Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.deelio-1.10. URL https://aclanthology.org/2022.deelio—-1.10.

Mary McLeish and Matt Cecile. Horse Colic. UCI Machine Learning Repository, 1989. DOI:
https://doi.org/10.24432/C58W23.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
Machine Learning Repository, 1994. DOLI: https://doi.org/10.24432/C55CTW.

Tai Nguyen and Eric Wong. In-context example selection with influences, 2023. URL https:
//arxiv.org/abs/2302.11042.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando
Solar-Lezama. Is self-repair a silver bullet for code generation? In ICLR 2024,
June 2023. URL https://www.microsoft.com/en-us/research/publication/
is—-self-repair—-a—-silver—-bullet-for—-code—generation/.

Keqin Peng, Liang Ding, Yancheng Yuan, Xuebo Liu, Min Zhang, Yuanxin Ouyang, and Dacheng
Tao. Revisiting demonstration selection strategies in in-context learning, 2024. URL https:
//arxiv.org/abs/2401.12087.

Chengwei Qin, Aston Zhang, Chen Chen, Anirudh Dagar, and Wenming Ye. In-context learn-
ing with iterative demonstration selection, 2024. URL https://arxiv.org/abs/2310.
09881.

Vinay M. S., Minh-Hao Van, and Xintao Wu. In-context learning demonstration selection via influ-
ence analysis, 2024. URL https://arxiv.org/abs/2402.11750.

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
Nature, 623(7987):493-498, 2023.

UCI. Mushroom. UCI Machine Learning Repository, 1981. https://doi.org/10.24432/C5959T.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench, 2024. URL https://arxiv.org/abs/
2409.13373.

Eric Wallace, Kai Xiao, Reimar Leike, Lilian Weng, Johannes Heidecke, and Alex Beutel. The
instruction hierarchy: Training llms to prioritize privileged instructions, 2024. URL https:
//arxiv.org/abs/2404.13208.

Cangqing Wang, Yutian Yang, Ruisi Li, Dan Sun, Ruicong Cai, Yuzhu Zhang, and Chenggian
Fu. Adapting llms for efficient context processing through soft prompt compression. In Pro-
ceedings of the International Conference on Modeling, Natural Language Processing and Ma-
chine Learning, CMNM 24, pp. 91-97, New York, NY, USA, 2024. Association for Com-
puting Machinery. ISBN 9798400709760. doi: 10.1145/3677779.3677794. URL https:
//doi.org/10.1145/3677779.3677794.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for 1lm,
2024. URL https://arxiv.org/abs/2406.07056.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning, 2022.
URL https://arxiv.org/abs/2211.04486.

12

https://arxiv.org/abs/2409.01227
https://aclanthology.org/2022.deelio-1.10
https://arxiv.org/abs/2302.11042
https://arxiv.org/abs/2302.11042
https://www.microsoft.com/en-us/research/publication/is-self-repair-a-silver-bullet-for-code-generation/
https://www.microsoft.com/en-us/research/publication/is-self-repair-a-silver-bullet-for-code-generation/
https://arxiv.org/abs/2401.12087
https://arxiv.org/abs/2401.12087
https://arxiv.org/abs/2310.09881
https://arxiv.org/abs/2310.09881
https://arxiv.org/abs/2402.11750
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2409.13373
https://arxiv.org/abs/2404.13208
https://arxiv.org/abs/2404.13208
https://doi.org/10.1145/3677779.3677794
https://doi.org/10.1145/3677779.3677794
https://arxiv.org/abs/2406.07056
https://arxiv.org/abs/2211.04486

Under review as a conference paper at ICLR 2025

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. = What makes good examples for vi-

sual in-context learning? In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 17773-17794. Curran Associates, Inc., 2023. URL

https://proceedings.neurips.cc/paper_files/paper/2023/file/
398aeb57ed4fda79d0781c65c926do6b67/b-Paper—-Conference.pdfl

Zuoning Zhang, Dhruv Parikh, Youning Zhang, and Viktor Prasanna. Benchmarking the per-
formance of large language models on the cerebras wafer scale engine, 2024. URL https:
//arxiv.org/abs/2409.00287.

Chen Zhu-Tian, Zeyu Xiong, Xiaoshuo Yao, and Elena Glassman. Sketch then generate: Provid-
ing incremental user feedback and guiding 1lm code generation through language-oriented code
sketches, 2024. URL https://arxiv.org/abs/2405.03998.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/398ae57ed4fda79d0781c65c926d667b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/398ae57ed4fda79d0781c65c926d667b-Paper-Conference.pdf
https://arxiv.org/abs/2409.00287
https://arxiv.org/abs/2409.00287
https://arxiv.org/abs/2405.03998

	Introduction
	Mockingbird
	Workflow
	Guarantee of Formal Correctness
	Learning Through Reflections
	Memory Replacing and Compression

	Evaluation
	Performance Evaluation
	Discussion

	Related Work
	Conclusion

