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ABSTRACT

Neural networks are universal function approximators which are known to general-
ize well despite being dramatically overparameterized. We study this phenomenon
from the point of view of the spectral bias of neural networks. Our contributions
are two-fold. First, we provide a theoretical explanation for the spectral bias of
ReLU neural networks by leveraging connections with the theory of finite element
methods, which is widely used to numerically solve PDEs. Second, based upon
this theory we predict that switching the activation function to a piecewise linear
B-spline, namely the Hat function, will remove this spectral bias, which we verify
empirically in a variety of settings. This is of particular significance for solving
PDEs using neural networks since for such problems it is important to capture all
frequencies in the solutions. Our empirical studies also show that neural networks
with the Hat activation function are trained significantly faster using stochastic
gradient descent and ADAM. Combined with previous work showing that the Hat
activation function also improves generalization accuracy on image classification
tasks, this indicates that using the Hat activation provides significant advantages
over the ReLU on a variety of problems.

1 INTRODUCTION

Despite being heavily overparameterized, deep neural networks have been shown to be remarkably
good at generalizing to natural data. This has raised the important problem of understanding
the implicit regularization effect of deep neural networks Poggio et al. (2018); Rahaman et al.
(2019); Soudry et al. (2018); Xu (2018). Recently, it has been proposed that the training of deep
neural networks exhibits a spectral bias Rahaman et al. (2019); Xu (2018), in other words that low
frequencies are learned faster via training by stochastic gradient descent. This is proposed as a
mechanism which biases networks toward low-complexity solutions Rahaman et al. (2019), and also
helps explain the recent apparent success in using neural networks to solve PDEs Han et al. (2018);
Raissi et al. (2019). This is because low frequencies are learned quickly, which produces solutions
that are qualitatively correct, but still have significant errors which would not be acceptable for most
engineering applications.

In this work, we study the dependence of the spectral bias phenomenon on the activation function of
the neural network. We begin by giving a theoretical derivation of the spectral bias phenomenon for
neural networks with ReLU activation function. This analysis is based on the connections between
ReLU networks and finite element methods He et al. (2020). Based upon this theory, we predict that
a simple modification of the ReLU activation function, called the Hat activation function Wang et al.
(2022); Nie et al. (2014), will remove the spectral bias of neural networks. We empirically verify
these predictions on a variety of problems, including both shallow and deep networks and real and
simulated data. Moreover, we demonstrate that removing the spectral bias has the effect that neural
networks with the Hat activation function are trained much faster than ReLU neural networks.

While the spectral bias has been proposed as a regularizing effect which improves generalization
error on computer vision tasks Rahaman et al. (2019), when solving PDEs using neural networks,
which has recently emerged as a very important application, it is important to learn all frequencies
which appear in the solution. Combined with recent results showing that the Hat activation can
improve performance on image classification tasks Wang et al. (2022), this demonstrates a significant
advantage to using the Hat activation function over the ReLU.
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Contributions

1. We provide a theoretical explanation for the spectral bias of ReLU neural networks by
drawing a comparison with the analysis of finite element methods. Our analysis applies to
networks of arbitrary width, i.e. not only in the infinite or large width limit, and also shows
how the spectral bias increases with increasing width.

2. Based upon this theory, we predict that neural networks with a simple modification of the
ReLU, called the Hat activation function, will not experience the spectral bias observed in
ReLU networks. We argue that this is especially important when solving PDEs using neural
networks since for such applications all frequency components of the solution need to be
learned.

3. We validate this prediction empirically. Specifically, we show that the spectral bias dis-
appears when the ReLU activation function is replaced by the Hat activation function or
scaled Hat activation function. This shows that the spectral bias of neural networks depends
critically upon the activation function used. Our empirical studies also show that the net-
works with Hat activation function are much easier to train by gradient descent type training
algorithm.

2 RELATED WORK

Deep neural networks have been shown to be able to fit random data with perfect accuracy Zhang
et al. (2021a); Arpit et al. (2017). This has motivated the study of the implicit regularization which
prevents overfitting for such networks Poggio et al. (2018); Rahaman et al. (2019); Cao et al. (2021).
The spectral bias as a mechanism for regularization has been proposed and studied in Rahaman
et al. (2019); Xu (2018); Cai & Xu (2019); Li et al. (2020); Xu et al. (2022); Fridovich-Keil et al.
(2021); Zhang et al. (2021b); Yang & Salman (2019). The convergence of neural networks on
pure frequencies, which supports the spectral bias phenomenon, has been studied in Basri et al.
(2020). For applications of neural networks to differential equations, it has been observed that
high-frequencies are often missing or appear late in training, and potential solutions, including novel
activation functions, have been proposed Sitzmann et al. (2020); Biland et al. (2020); Cai et al.
(2020). The eigenstructure of the Fisher information matrix of neural network models has been
studied in Karakida et al. (2019), where it has been shown that only a few eigenvalues are large for
overparameterized neural networks. The spectral bias has also been related to kernel methods and the
neural tangent kernel Jacot et al. (2018); Canatar et al. (2021); Hu et al. (2020); Kopitkov & Indelman
(2020); Luo et al. (2020), and has been observed for GANs Khayatkhoei & Elgammal (2020). In
addition, the spectral bias, or F-principle, has been observed to be robust to the specific optimization
methods used Ma et al. (2021).

Our work is primarily concerned with the theoretical underpinning of the spectral bias. This has
previously been studied in Xu (2018) for the sigmoidal activation function. We provide a theory
explaining the spectral bias for the ReLU activation function. However, our theory and empirical
work also show that the spectral bias is not universal. In particular, it depends significantly upon the
activation function used. A similar conclusion was reached by analyzing the spectrum of the neural
tangent kernel in Yang & Salman (2019), where it was shown that a sigmoidal network does not
exhibit a spectral bias with appropriate initialization.

In contrast, in our work we show that neural networks with a Hat activation function do not exhibit a
spectral bias. The Hat activation function has been empirically analyzed for computer vision problems
in Wang et al. (2022), where is it shown that it can improve the performance of the neural network.
The closely related Mexican Hat function has also been proposed as an activation function in Nie
et al. (2014). Instead of considering the decay of the eigenvalues of the neural tangent kernel, which
is adapted to the network architecture, we consider Fourier modes and eigenfunctions of kernels
which only depend upon the data, which relates the spectral bias to more natural notions of frequency.
The advantage of our approach is that our analysis holds for networks of arbitrary width and shows
how the spectral bias increases with increasing width. Further, our empirical work demonstrates
that neural networks with the Hat activation function train significantly more quickly than ReLU
networks, which motivates further study into the use of the Hat activation.
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3 SPECTRAL BIAS OF NEURAL NETWORKS

The spectral bias of neural networks has been well-established in prior works. This concept of the
spectral bias depends upon an appropriate notion of frequency combined with the observation that
certain frequencies converge faster during training Rahaman et al. (2019); Cao et al. (2021).

3.1 NOTION OF FREQUENCY

By frequency we mean the eigenfunctions of a self-adjoint compact operator T on L2(dµ) for an
appropriate measure dµ. This notion has been well-studied in the machine learning literature in the
context of kernels Fasshauer (2011); Hofmann et al. (2008). We begin with two important examples,
the first corresponding to a continuous measure dµ and the second to a discrete measure dµ on the
training data.

Continuous measure: Consider the torus Rd/Zd with the Lebesgue measure dµ. Let T be the
convolution operator Ts given by

Ts(f)(x) =
( s

2π

)d/2 ∫
Rd

e−
s
2 |x−y|

2

f(y)dy, (1)

where f(y) is viewed as a periodic function on the whole space. The eigenfunctions of this operator
are given by the Fourier modes e2πiω·x with ω ∈ Zd and the eigenvalues in this case are given by the
Fourier coefficients of the associated kernel ks : (Rd/Zd)× (Rd/Zd) given by

k(x, y) =
( s

4π

)d/2 ∑
k∈Zd

e−(s/2)|x−y−k|2 ,

which are (4πs)−d/2e−(2s)−1|ω|2 Berlinet & Thomas-Agnan (2011); Hofmann et al. (2008). High
frequencies correspond to small eigenvalues. This is due to the intuitive notion that high frequencies
decay rapidly under averaging.

Discrete measure: Consider a finite set of data D = {d1, ..., dN} in Rd. In high dimensions, the
number of data points N must scale exponentially with d in order for traditional Fourier modes to
be a useful notion of frequency. Instead of considering Fourier modes in this situation, we follow
the approach laid out in Rahaman et al. (2019) to define a useful notion of frequency on sparse
high-dimensional data. Specifically, our notion of frequency is given by the eigenfunctions of the
following kernel map. Let X = L2(D) be the space of functions defined on the dataset D. Define
the kernel map K : X → X by

K(f)(y) =
∑
z∈D

k(y, z)f(z) (2)

for a suitable positive definite kernel k : D×D → R. The Gaussian RBF kernel k(y, z) = e−s|y−z|
2

is a natural choice. The eigenfunctions φi of the kernel map K resemble sinusoids and can be
thought of as a proxy for frequency when the data is sparse in high dimensions Rahaman et al. (2019);
Fasshauer (2011). This is due to the fact that eigenfunctions corresponding to small eigenvalues decay
rapidly when averaging using the kernel, similar to the high frequency functions considering in the
previous two examples. Thus this notion gives a reasonable generalization of the notion of frequency
on an arbitrary set of datapoints, which is needed to formulate the spectral bias on high-dimensional
real data.

3.2 SPECTRAL BIAS

The spectral bias of neural networks refers to the observation Rahaman et al. (2019) that during
training a neural network fits the low frequency components of a target faster than the high-frequency
components. Specifically, consider a basis of eigenfunctions φ1, φ2, ... corresponding to the eigen-
values µ1 ≥ µ2 ≥ · · · of a suitable compact self-adjoint operator T on L2(dµ). Note that since
the operator T is self-adjoint the eigenfunctions φi can be taken to be orthonormal. If we let f `
denote the neural network function at training iteration ` and f∗ the true empirical minimizer, then
expanding the difference in terms of the eigenfunctions φi, we get

f ` − f∗ =
∑
i

α`iφi. (3)
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The spectral bias is the statement that α`i decays more rapidly in ` for smaller frequencies i. The
spectral bias phenomenon has been observed experimentally for deep ReLU networks when the φi
are Fourier modes Cao et al. (2021); Rahaman et al. (2019) and when the φi are the eigenfunctions
of a Gaussian RBF kernel Rahaman et al. (2019). This has been proposed as an explanation for the
implicit regularization of neural networks Rahaman et al. (2019), since it biases neural networks
toward smooth functions in a manner similar to using the T−1-norm as a regularizer.

We remark that here the larger eigenvalues µi correspond to lower frequencies, which is due to our
definition in terms of the compact operator T . In some cases, T will be (formally) given by T = e−S

for an operator S with eigenfunctions φi and eigenvalues λi = e−µi . In this case, smaller eigenvalues
λi correspond to lower frequencies. A typical example of this is to take T to be the heat kernel and
S to be the Laplacian. The advantage of using the operator T instead of S is that S is usually an
unbounded operator and thus requires additional technical machinery to interpret correctly.

4 SPECTRAL ANALYSIS OF SHALLOW NEURAL NETWORKS

4.1 PRELIMINARIES

Throughout this section we consider shallow neural network functions f : Rd → R defined by a
shallow neural network of the form

f(x) =

n∑
i=1

aiσ(ωi · x+ bi), (4)

where ωi ∈ Rd and bi ∈ R. The activation functions we will consider are the ReLU activation
function σ(x) := ReLU(x) = max(0, x) and the Hat activation defined by

σH(x) := Hat(x) =


0 x < 0 or x ≥ 2

x 0 ≤ x < 1

2− x 1 ≤ x < 2.

(5)

The Hat activation function is not scale invariant. As a result, we will also consider more generally a
scaled Hat function σH(α·) as an activation function. It is known that shallow neural networks with
either the ReLU or Hat activation function can approximate arbitrary continuous functions Hornik
et al. (1989). This universal approximation property partially explains the success of neural networks.
We analyze the spectral bias of shallow neural networks by leveraging its connections with finite
element methods.

4.2 SPECTRAL BIAS IN 1D FOR RELU AND HAT NETWORKS

We consider fitting a function u : [0, 1]→ R with a shallow ReLU neural network. For the theoretical
analysis, we consider the simplified situation where the inner weights are fixed and the network is
given by

fNN (x,~a) =

n∑
i=1

aiσ

(
x− i

n

)
. (6)

Here only the weights ai are learned and the bi = i/n are fixed. We consider minimizing the
following loss function using gradient descent

L(~a) =
1

2

∫
[0,1]

(u(x)− fNN (x,~a))2dx. (7)

The loss function L takes the form

L(~a) = ~aTMσ~a− bTu,σ~a

where the components of bu,σ are given by (bu,σ)i =
∫

[0,1]
u(x)σ

(
x− i

n

)
dx, and the mass matrix

Mσ is given by

(Mσ)ij =

∫
[0,1]

σ

(
x− i

n

)
σ

(
x− j

n

)
dx. (8)
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Further, the matrix Mσ is positive definite.

The eigenvalues of the mass matrix Mσ play a key role in explaining the spectral bias. Theorem 1
describes the eigenstructure of Mσ for the ReLU and Hat activation function. The detailed proof of
Theorem 1 can be found in Appendices A.4 and A.3.

Theorem 1. Let σ be the ReLU activation function and let λ1 ≤ · · · ≤ λn denote the eigenvalues of
Mσ . Then we have

λn
λj
∼ n4

j4
. (9)

In particular, the condition number of Mσ is Ω(n4). This means that we can expect gradient descent
to require Ω(n4) iterations to converge.

On the other hand, let σ(x) = σH(nx) be a Hat activation function scaled to match a finite element
discretization of [0, 1] and let λ1 ≤ · · · ≤ λn denote the eigenvalues of Mσ . Then we have

λn
λj

= O(1). (10)

In particular, the condition number if uniformly bounded, so we can expect gradient descent to
converge in a constant number of iterations.

Consider training the weights ~a using gradient descent for the objective L. To guarantee convergence
of gradient descent the learning rate η will be taken as η ≤ λ−1

n . Consider training the parameters
~a using gradient descent on the loss function L with step-size s = λ−1

n , where λ1 ≤ · · · ≤ λn are
the eigenvalues of the matrix Mσ. Let ~ψ1, ..., ~ψn denote the corresponding eigenvectors and define
functions φj by

φj(x) =

n∑
i=1

ψji σ

(
x− i

n

)
. (11)

Let ~a1, ...,~ak denote the iterates generated by gradient descent. Consider the expansion

u(x)− fNN (x,~a`) =

n∑
i=1

α`iφi(x). (12)

Then the coefficients α`i satisfy α`i = α`i

(
1− λi

λn

)`
.

We remark that the functions φj appearing in (11) are orthogonal. This follows since from the
definition of Mσ, we see that 〈φj , φk〉L2([0,1]) = (ψj)TMσ(ψk) = λk(ψj)T (ψk) = 0, where the
final equality follows since ψj and ψk are eigenfunctions of the symmetric matrix Mσ .

4.3 EIGENFUNCTION ANALYSIS FOR RELU NETWORKS

The dynamics of gradient decsent imply that the components of the error corresponding to the large
eigenfunction of Mσ decay fastest. The following Theorem 2, which can be obtained from Theorem
6 in Appendix A.5, gives the structure of these eigenfunction when σ is the ReLU activation function.

Theorem 2. Consider the matrix Mσ for σ to ReLU activation function and let φj(x) be as in (11).
Then we have ∫ 1

0
φ′j(x)2dx∫ 1

0
φj(x)2dx

∼ n4

j4
. (13)

This theorem shows that for the ReLU activation function the eigenfunctions of Mσ with large
eigenvalue consists of smooth functions, while the eigenfunctions corresponding to small eigenvalues
consist of highly oscillatory, high-frequency functions. This can be seen clearly in Figure 1, where
we plot both the large and small eigenfunctions φ corresponding to the ReLU activation function.
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Figure 1: Eigenfunction of Mσ when σ is a ReLU. Eigenfunctions with the two largest eigenvalues
on the left. Eigenfunction with the two smallest eigenvalues on the right.

4.4 EXTENSION TO HIGHER DIMENSIONAL INPUTS

Next, we consider an analog of Theorem 1 in the situation where the inner weights ωi are chosen at
random on the sphere, and the inputs xi are taken to be on the sphere in d-dimensions. In this case
we can use the concentration of measure phenomenon to prove the following result. The detailed
proof of Theorem 3 can be found in Appendix A.6.

Theorem 3. Suppose that d ≥ 2 and ωi ∈ Rd for i = 1, ..., n are chosen at random on the sphere.
Consider the shallow neural network

n∑
i=1

aiσ(ωi · x) (14)

for inputs x on the sphere. Suppose that n ≤ δ exp(κd) for an absolute constant κ. Letting
σ(x) = σH(cx) be an appropriately scaled Hat activation function with c ≥ Kn for a sufficiently
large absolute constant K. Then with probability at least 1− δ, Mσ satisfies

λn
λj

= O(1). (15)

This theorem implies that even for higher dimensional inputs the mass matrix corresponding to the
Hat activation function is well-conditioned. Thus, we do not expect a frequency principle even in this
more general case.

4.5 DISCUSSION

The eigencomponents of the error decay faster for φi corresponding to large i. Moreover, the
difference in the convergence rate of different eigencomponents depends upon the ratio λn

λ1
. Theorem

1 shows that if the activation function is taken to be the ReLU, then this ratio grows rapidly with the
width and the components of the error corresponding to large eigenfunctions decay much faster than
the components for small eigenfunction. Further, Theorem 2 shows that the large eigenfunction are
smooth functions, while the small eigenfunctions are highly oscillatory functions. This means that
the high frequency components of the solution are learned much more slowly than the low frequency
components. We argue that this is basis behind the spectral bias observed in Rahaman et al. (2019).

On the other hand, Theorem 1 also shows that when σ is a scaled Hat activation function, then the
ratio λn

λ1
remains bounded as the width n increases. In this case the different eigencomponents of

the error decay at roughly the same rate. Theorem 3 extends these results to higher dimensional
inputs. For this reason, we expect that neural networks with Hat activation function will not exhibit
the spectral bias observed in Rahaman et al. (2019).

Finally, we remark that other activation functions can be handled in a similar manner by analyzing
the mass matrix Mσ . For instance, a sinusoidal activation function results in a singular matrix (since
the set {sin(x+ t), t ∈ R} lies in a two-dimensional linear space) and we have also experimentally
observed that such networks also exhibit a spectral bias (see the appendix). Thus, new ideas are
required to explain the recent success of sinusoidal representation networks Sitzmann et al. (2020).
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5 EXPERIMENTS FOR SHALLOW NEURAL NETWORKS

Experiment 1. We use shallow neural networks with the ReLU, tanh, and Hat activation function to
fit the following target function u on [−π, π]:

u(x) = sin(x) + sin(3x) + sin(5x). (16)

For each activation function our network has one hidden layer with size 8000. The mean square error
(MSE) loss is given by

L(f, u) =
1

N

N∑
i=1

(f(xi)− u(xi))
2, (17)

where xi is a uniform grid of size N = 201 on [−π, π]. The three networks are trained using ADAM
with a learning rate of 0.0002. When using a tanh or ReLU activation function, all parameters
are initialized following a Gaussian distribution with mean 0 and standard deviation 0.1, while the
network with Hat activation function is initialized following a Gaussian distribution with mean 0 and
standard deviation 0.8.

Denote
∆f,u(k) =

∣∣∣f̂k − ûk∣∣∣ / |ûk| , (18)

where k represents the frequency, |·| represents the norm of a complex number and ·̂ represents
discrete Fourier transform. We plot ∆f,u(1), ∆f,u(3), and ∆f,u(5) in Figure 2 for each of the three
networks. From these results, we observe the spectral bias for tanh Xu et al. (2019) and ReLU neural
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Figure 2: σ(x) = tanh(x) (left), σ(x) = ReLU(x) (middle), σ(x) = Hat(x) (right)

networks (see left and middle of Figure 2), while there is no spectral bias for the Hat neural network
as shown in right of Figure 2.

Conclusion 1. The spectral bias holds for both tanh and ReLU shallow neural networks, but it does
not hold for Hat shallow neural networks.

6 EXPERIMENTS FOR DEEP NEURAL NETWORKS

6.1 EXPERIMENTS WITH SYNTHETIC DATA

Experiment 2. The experimental setup here is an extension of the experiment presented in Rahaman
et al. (2019). The target function is:

u(x) =

10∑
k=1

sin (10πkx+ ck), (19)

where ck, k = 1, 2, · · · , 10 are sampled from the uniform distribution U(0, 2π). We fit this target
function using a squared error loss sampled at 200 equally spaced points in [0, 1] using a neural
network with 6 layers. Three networks are trained, one with a ReLU activation function and two with
the Hat activation function. We train the models with Adam using the following hyperparameters:

• ReLU activation function with 256 units per layer: all parameters are initialized from a
Gaussian distribution N (0, 0.04). The learning rate is 0.001 and decreased by half every
10000 epochs. This corresponds to the experiment in Rahaman et al. (2019).
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• Hat activation function with 256 units per layer: all parameters are initialized from the
uniform distribution U(−1.0, 1.0). The learning rate is 0.00001 and is decreased by half
every 250 epochs.

• Hat activation function with 128 units per layer: all parameters are initialized from the
uniform distribution U(−2.0, 2.0). The learning rate is 0.0001 and decreased by half every
200 epochs.
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Figure 3: ReLU, width 256 Rahaman et al. (2019) (left), Hat activation, width 256 (middle), Hat
activation, width 128 (right).
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Figure 4: ReLU, width 256 Rahaman et al. (2019) (Top), Hat activation, width 256(Bottom).

From Figure 3, we see that the spectral bias is significant for ReLU deep neural networks (DNN).
Some frequencies, for example 50, will not even converge below an error of 10−2. Changing the
activation function to a linear Hat function removes the spectral bias and the loss decreases rapidly
for all frequencies. In fact, the training loss for ReLU-DNN is only about 10−3 after 80000 epochs,
while the training loss for Hat neural networks are are already 10−22 after only 800 epochs. As shown
in Figure 4, Hat neural networks fit the target function much better and faster than ReLU networks.

Experiment 3. In this experiment, we consider fitting a grayscale image using deep neural networks.
We view the grayscale image on the left of Figure 5 as two dimensional function and fit this function
using a deep neural network with hidden layers of size 2-4000-500-400-1. Our loss function is the
squared error loss. We consider using both the ReLU and Hat neural networks and compare their
performance. For both networks, we initialize all parameters from a normal distribution with standard
deviation 0.01. For the Hat network, the learning rate is 0.0005 and is reduced by half every 1000
epochs, while the learning rate for ReLU model is 0.0005 and reduced by half every 4000 epochs.
From Figure 5, we can see that the image is fit much better using the Hat network, which is able to
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capture the high frequencies in the image, while the ReLU network blurs the image due to its inability
to capture high frequencies.
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Figure 5: Left: Original Image, Middle: Image fit using deep ReLU network, Right: Image fit using
deep Hat network.

6.2 EXPERIMENTS WITH REAL DATA

Next, we test the spectral bias of neural networks on real data, specifically on the MNIST dataset.
Since the data lives in a very high dimension relative to the number of samples, we argue that Fourier
modes are not a suitable notion of frequency. To get around this issue, we consider the eigenfunctions
of a Gaussian RBF kernel Braun et al. (2006). We largely follow the experimental setup presented
in Rahaman et al. (2019), with the notable difference that we compare neural networks with both a
ReLU and Hat activation function (5).

Specifically, we choose two digits a and b and consider fitting the classification function

u(x) =

{
0 x is the digit a
1 x is the digit b

(20)

via least squares on 2000 training images from MNIST. Following Rahaman et al. (2019), we add a
moderate amount of high-frequency noise and plot the spectrum of the target function and the training
iterates in Figure 6. We see that even with this generalized notion of frequency, the network with a
Hat activation function is able to fit the higher frequencies much faster than a ReLU network.
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Figure 6: Real Data Experiments on MNIST using Gaussian RBF kernel eigenfunctions. We can
clearly see that the error components in each eigenfunction have all converged by iteration 200 when
using the Hat activation function (left), while the higher frequency components converge much more
slowly when using the ReLU activation function (right).

7 CONCLUSION

We have provided a theoretical explanation for the spectral bias of ReLU networks and shown that
using the Hat activation function will remove this spectral bias, which we also confirmed empirically.
Further research directions include studying the spectral bias for a wider variety of activation functions.
In addition, we view deepening the connections between finite element methods and neural networks
as a promising research focus.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS

In this subsection, we eport several additional numerical experiments using shallow neural networks
to fit target functions in Rd(d = 2, 3) showing that the spectral bias holds for ReLU shallow neural
networks, but it does not hold for Hat neural networks. In addition, we report a comparison numerical
experiment between the hat neural network and the neural network with sin activation function and
a comparison numerical experiment between hat neural network and ReLU neural network with
accurate approximation to the loss function. Also we add an experiment with fewer neurons by
rerunning the Experiments 1 and 2. Furthermore, we add an experiment using SGD method as
optimizer. Finally we add an experiment showing that when the shallow ReLU network gets wider,
the spectral bias gets stronger.
Experiment 4. Next, we fit the target function u on [0, 1]2 given by:

u(x) = sin(2πx1) sin(2πx2) + sin(10πx1) sin(10πx2).

Here x = (x1, x2) ∈ [0, 1]2. For this experiment, we use shallow neural networks with the ReLU
σ(x) = ReLU(x) and with a scaled Hat function σ(x) = Hat(100x) as activation function. Both
models have width 10000 and all parameters are initialized using the default initialization in Pytorch.
We use the ADAM optimizer for both experiments. The learning rate for the ReLU neural network is
initialized to 0.00005 and and the learning rate for the Hat neural network is initialized to 0.00075.
Both learning rates are decayed by half every 1000 epochs.
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Figure 7: σ(x) = ReLU(x) (left), σ(x) = Hat(100x) (right)

To observe the spectral bias, we look at a slice of the target and network functions, defined by setting
x2 = 31/128. For this one dimensional function, we plot ∆f,g(1) and ∆f,g(5) for both neural
network models with ReLU and Hat activation functions. Here ∆f,g is defined in the same way as in
equation (31).
Experiment 5. In this experiment, we investigate how the validation performance depends on the
frequency of noise added to the training target in two dimension case. We consider the ground target
function on [0, 1]2

u0(x) = sin(2πx1) sin(2πx2). (21)
Let ψk(x) be the noise function

ψk(x) = 0.2 sin(2kπx1) sin(2kπx2),
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where k is the frequency of the noise. The final target function u(x) is then given by u(x) =
u0(x) + ψk(x). We use two different shallow neural network models the same as the two used
in Experiment 4. The MSE loss function is computed by 4000 sampling points from the uniform
distribution U([0, 1]2).

The validation error is computed by

L2(f, u0) =
1

m

 m∑
i,j=1

(
f(x1,i, x2,j)− u0(x1,i, x2,j)

)2 1
2

,

on a uniform grid points of [0, 1]2 with m = 27. Both models are trained with a learning rate of
0.001 and decreasing to its 3

4 for each 250 epochs. All parameters are initialized following a uniform
distribution U(−0.3, 0.3).

0 2000 4000 6000 8000 10000
epoch

10 1

100

er
ro

r

ReLU Test error history with 4000, k=2 

0 2000 4000 6000 8000 10000
epoch

10 1

100

er
ro

r

ReLU Test error history with 4000, k=3

0 2000 4000 6000 8000 10000
epoch

10 1

100

er
ro

r

ReLU Test error history with 4000, k=4

0 2000 4000 6000 8000 10000
epoch

10 1

100

er
ro

r

ReLU Test error history with 4000, k=5

Figure 8: Validation error history for σ(x) = ReLU(x) with k = 2, 3, 4, 5.
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Figure 9: Validation error history for σ(x) = Hat(100x) with k = 2, 3, 4, 5.

From the Figure 8, we can see that the profile of the loss curves varies significantly with the frequency
of noise added to the target when ReLU neural network is used. This is explained by the fact that the
ReLU neural network readily fits the noise signal if it is low frequency, whereas the higher frequency
noise is only fit later in the training. In the latter case, the dip in validation score early in the training
is when the network has learned the low frequency true target function u0(x); the remainder of the
training is spent learning the higher-frequencies in the training target u(x). When the frequency is
higher, the ReLU neural network fits the target function slower indicated by the loss curves. From the
Figure 9, we can see that the profile of the loss curves are very much the same with respect to the
frequency of noise added to the target when Hat neural network is used. This is explained by the fact
that Hat neural network does not have frequency bias.
Experiment 6. In this experiment, we investigate how the validation performance depends on the
frequency of noise added to the training target in three dimension case. We consider the target
function

u0(x) = sin(2πx1) sin(2πx2) sin(2πx3), (22)
where x = (x1, x2, x3) ∈ [0, 1]3. Let ψk(x) be the noise function

ψk(x) = 0.5 sin(2kπx1) sin(2kπx2) sin(2kπx3),

where k is the frequency of the noise. The final target function u is then given by u(x) = u0(x) +
ψk(x).

We use shallow neural network models with two different activation functions to fit u(x). One is
σ(x) = ReLU(x), and the other one is the scaled Hat function σ(x) = Hat(100x). Both two models
have only one hidden layer with size 3-30000-1.

The training MSE loss function is computed by 100000 sampling points from the uniform distribution
U([0, 1]2).
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The validation error is computed by

L2(f, u) =

(
1

m

m∑
i=1

(f(xi)− u0(xi))
2

) 1
2

, (23)

where {xi}mi=1,m = 100000 are sampling points from the uniform distribution U([0, 1]3). The
ReLU neural network are trained by Adam optimizer with learning rate of 0.001 and decreasing
to its 0.85 for each 300 epochs. The Hat neural network are trained with learning rate of 0.001
and decreasing to its 0.75 for each 250 epochs. All parameters are initialized following a uniform
distribution U(−0.3, 0.3).
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Figure 10: Validation error history for σ(x) = ReLU(x) with k = 2, 3, 4, 5.
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Figure 11: Validation error history for σ(x) = Hat(100x) with k = 2, 3, 4, 5.

From the Figure 10 and Figure 11, we can see that the numerical results are similar to the two
dimension case as shown in Experiment 5.
Experiment 7. In this experiment, we investigate how the validation performance depends on the
frequency of noise added to the training target in three dimension case. We consider the ground target
function

u0(x) = sin(2πx1) sin(2πx2) sin(2πx3). (24)
Let ψ1,k(x) and ψ2,k(x) be the noise functions

ψ1,k(x) = 0.5 sin(2πk‖x‖), ψ2,k(x) =
0.5 sin(2πk‖x‖)

‖x‖
,

where k is the frequency of the noise. The final target function u(x) is then given by u(x) =
u0(x) + ψj,k(x), j = 1, 2.

We use models f(x) = W2σ (W1x + b1) with two different activation functions to fit u(x). One is
σ(x) = ReLU(x), and the other one is the scaled Hat function σ(x) = Hat(100x). Both two models
have only one hidden layer with size 3-30000-1. The training error is computed by

L1(f, u) =

(
1

N

N∑
i=1

(f(xi)− u(xi))
2

) 1
2

, (25)

where {xi}ni=1, N = 100000 are sampling points from the uniform distribution U([0, 1]3).

The validation error is computed by

L2(f, u) =

(
1

m

m∑
i=1

(f(xi)− u0(xi))
2

) 1
2

, (26)

where {xi}mi=1,m = 100000 are sampling points from the uniform distribution U([0, 1]3). Both
models are trained by Adam optimizer with a learning rate of 0.001 and decreasing to its 0.85 for
each 300 epochs. All parameters are initialized following a uniform distribution U(−0.3, 0.3).
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Figure 12: Validation error history for σ(x) = ReLU(x) with ψ1,k(x) and k = 2, 3, 4, 5.
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Figure 13: Validation error history for σ(x) = Hat(100x) with ψ1,k(x) and k = 2, 3, 4, 5.
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Figure 14: Validation error history for σ(x) = ReLU(x) with ψ2,k(x) and k = 2, 3, 4, 5.
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Figure 15: Validation error history for σ(x) = Hat(100x) with ψ2,k(x) and k = 2, 3, 4, 5.
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From the Figure 12, Figure 13, Figure 14 and Figure 15, we can see that the numerical results are
similar to the two dimension case and the three dimension case in Experiment 6.
Experiment 8. We consider to fit the target function Cai et al. (2020)

u(x) =

{
10(sin(x) + sin(3x)), x ∈ [−π, 0];

10(sin(23x) + sin(137x) + sin(203x)), x ∈ [0, π].

• ReLU-DNN with phase shift by Cai et al. in Cai et al. (2020): 16 models of ReLU-DNN
which have the size of 1-40-40-40-40-1 and Fourier transform are used to train different
frequency components of the target function. Training data are the evenly mesh with 1000
grids from −π to π. They train the mean square loss with Adam and the learning rate is
0.002.

• Our method: We use only one model with one hidden layer and width of 25000. In our
model, the activation function is σ(x) = hat(200x). Learning rate is 0.001 and decrease to
its half every 250 epochs. The weights of outer layers are sampled following the uniform
distribution U(−7, 7), and all the other parameters are sampled following the uniform
distribution U(−0.95, 0.95). Training data are the evenly mesh with 1000 grids from −π to
π. We train the mean square loss with Adam.
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Figure 16: ReLU-DNN with Phase Shift in Cai et al. (2020) (left two), Our method (right two).

The model of our method has almost the same amount of parameters in the method of the ReLU-DNN
with phase shift in Cai et al. (2020) which includes 16 models. From the Figure 16, after 1000
epochs for both methods, we can see that the difference between the output neural network function
obtained by method of the ReLU-DNN with phase shift in Cai et al. (2020) and the target function
u(x) is around 10−1, while the difference between the output neural network function obtained by
our method and the target function u(x) is around 10−13.
Experiment 9. We consider fitting the target function on [0, 1]:

u(x) = sin(2πx) + sin(6πx) + sin(10πx).

We define the loss L(f, u) =
∫ 1

0
|f(x)− u(x)|2 dx and evaluate this integral with accurate approx-

imation. We use one-hidden-layer network with width of 128. The activation functions are ReLU
and hat(10x). Both models are trained with a learning rate of 0.0005. For the ReLU network

f(x) =

n∑
i=1

aiσ(ωix+ bi) with σ(x) = ReLU(x), we initialize ωi’s as constant 1, and initialize ai’s

and bi’s following a uniform distribution on [−1, 1]. And all parameters are initialized following a

uniform distribution on [−1, 1] for hat neural network. Denote ∆f,u(k) =
∣∣∣f̂k − ûk∣∣∣ / |ûk|, where

k represents the frequency, |·| represents the norm of a complex number and ·̂ represents Fourier
transform. We also can evaluate the accurate Fourier transform for frequencies k = 1, 3, 5. From the
Fourier transform of u(x), we select ∆f,u(1), ∆f,u(3), and ∆f,u(5) to observe the convergent rate.
And we apply the same thing to f(x). Figure 17 shows the convergent process of each frequency
component of ReLU neural network and Hat neural network. Green line, yellow line, and blue
line denote the convergent process of ∆f,u(1), ∆f,u(3), and ∆f,u(5) respectively. Spectral bias is
obviously observed for ReLU neural network (see left of Figure 17), while the spectral bias does not
hold for Hat neural network as shown in right of Figure 17.
Experiment 10. We consider fitting the target function on [−π, π]:

u(x) = sin(x) + sin(3x) + sin(5x). (27)
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Figure 17: σ(x) = ReLU(x) (left), σ(x) = Hat(10x) (right)

We use shallow neural network models with activation function σ(x) = sin(x) and σ(x) = hat(x).
Both models have only one hidden layer with size 8000. The mean square error (MSE) function is
defined as

L(f, u) =
1

N

N∑
i=1

(f(xi)− u(xi))
2, (28)

where xi is the uniform grid of size N = 201 from [−π, π]. Both models are trained with a
learning rate of 0.0002. And all parameters are initialized following a Gaussian distribution with
mean 0 and standard deviation 0.8 for both sin neural network and hat neural network. Denote
∆f,u(k) =

∣∣∣f̂k − ûk∣∣∣ / |ûk|, where k represents the frequency, |·| represents the norm of a complex

number and ·̂ represents discrete Fourier transform. From the Fourier transform of u(x), we select
∆f,u(1), ∆f,u(3), and ∆f,u(5) to observe the convergent rate. And we apply the same thing to f(x).
Figure 19 shows the convergent process of each frequency component of sin neural network and Hat
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Figure 19: σ(x) = sin(x) (left), σ(x) = Hat(x) (right)

neural network. Green line, yellow line, and blue line denote the convergent process of ∆f,u(1),
∆f,u(3), and ∆f,u(5) respectively. Spectral bias is obviously observed for sin neural network (see
left of Figure 19), while the spectral bias does not hold for Hat neural network as shown in right of
Figure 19.
Experiment 11. We run the Experiment 1 with fewer neurons, namely size 3000 (all the other settings
are the same as Experiment 1), and obtained similar results as follows (See Figure 20):
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Figure 20: σ(x) = tanh(x) (left), σ(x) = ReLU(x) (middle), σ(x) = Hat(x) (right)

We also run the Experiment 4 with fewer neurons, namely size 2-5000-1 (all the other settings are the
same as Experiment 4), and obtained similar results as follows (See Figure 21):
Experiment 12. We use shallow neural networks with tanh activation function, ReLU activation
function and Hat activation function, respectively, to fit the following target function u on [−π, π]:

u(x) = sin(x) + sin(3x) + sin(5x). (29)
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Figure 21: σ(x) = relu(x) (left), σ(x) = Hat(100x) (right)

For each activation function our network has one hidden layer with size 8000. The mean square error
(MSE) loss is given by

L(f, u) =
1

N

N∑
i=1

(f(xi)− u(xi))
2, (30)

where xi is a uniform grid of size N = 201 on [−π, π]. The three networks are trained using
SDG with a learning rate of 0.001. When using a tanh or ReLU activation function, all parameters
are initialized following a Gaussian distribution with mean 0 and standard deviation 0.1, while the
network with Hat activation function is initialized following a Gaussian distribution with mean 0 and
standard deviation 0.8.

Denote
∆f,u(k) =

∣∣∣f̂k − ûk∣∣∣ / |ûk| , (31)

where k represents the frequency, |·| represents the norm of a complex number and ·̂ represents
discrete Fourier transform. We plot ∆f,u(1), ∆f,u(3), and ∆f,u(5) in Figure 22 for each of the three
networks. From these results, we observe the spectral bias for tanh and ReLU neural networks (see
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Figure 22: σ(x) = tanh(x) (left), σ(x) = ReLU(x) (middle), σ(x) = Hat(x) (right)

left and middle of Figure 22), while there is no spectral bias for the Hat neural network as shown in
right of Figure 22. These observations are similar to the results in Experiment 1 when ADAM is used
to training the network.

Experiment 13. We run the Experiment 1 using shallow ReLU neuron network with different sizes
n = 500, n = 2000 and n = 8000 (all the other settings are the same as Experiment 1), and obtained
results as follows (See Figure 23): From Figure 23, we can see that when the size of shallow ReLU
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Figure 23: n = 500 (left), n = 2000 (middle), n = 8000 (right)

neuron network increases, the spectral bias becomes stronger.
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Figure 24: ReLU basis function ψi(x) and Hat basis function ϕi(x)

A.2 FINITE ELEMENT BASES

Let Th be a uniform mesh on [0, 1] with n grid points and mesh size h = 1
n . Define

Vn = {vh : vh is continuous and piecewise linear w.r.t.Th, vh(0) = 0}.
The space Vn is a standard linear finite element space in one dimension and has been well-studied,
see Ciarlet (2002), for instance.

We denote two bases of Vn (see Figure 24), as follows:

• ReLU basis: ψi(x) = ReLU(x−xi−1

h )

ψi(x) =

{
x−xi−1

h , x > xi−1;
0, x ≤ xi−1.

(32)

where ReLU(x) = max{0, x}.
• Hat basis: ϕi(x) = Hat(nx− i+ 1)

ϕi(x) =


x−xi−1

h , x ∈ [xi−1, xi];
xi+1−x

h , x ∈ [xi, xi+1];
0, elsewhere.

(33)

where Hat(x) =

{
x, x ∈ [0, 1];

2− x, x ∈ [1, 2];
0, elsewhere.

Note that the Hat basis is the standard basis typically used in the theory of finite element
methods, while the ReLU basis is based upon the common rectified linear activation function
used in deep learning Nair & Hinton (2010). Let Ψ(x) = (ψ1(x), ψ2(x), · · · , ψn(x))

T and
Φ(x) = (ϕ1(x), ϕ2(x), · · · , ϕn(x))

T . It is easy to verify that
Φ = CΨ, (34)

and the change of basis matrix which converts between these bases is given by

C =



1 −2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2
1

 . (35)

and

C−1 =



1 2 3 4 · · · n
0 1 2 3 · · · n− 1
0 0 1 2 · · · n− 2
0 0 0 1 · · · n− 3
...

...
...

...
. . .

...
0 0 0 0 · · · 1

 . (36)
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• When the basis in linear finite element space is chosen as Hat basis, which motivates the
activation function is chosen as σ(x) = Hat(x), we denote the mass matrix Mσ = MΦ.
Then it is easy to see that

MΦ =
h

6
M, (37)

where

M =


4 1
1 4 1

. . . . . . . . .
1 4 1

1 2

 ∈ Rn×n. (38)

• When the basis in linear finite element space is chosen as ReLU basis, which corresponds to
the activation function is chosen as σ(x) = ReLU(x) = max{0, x}, we denote the mass
matrix Mσ = MΨ.
• Due to (34), the relationship between MΦ and MΨ is given by

MΨ = C−1MΦC
−T . (39)

A.3 SPECTRAL ANALYSIS OF THE MATRICES MΦ AND MΨ

First we have estimates of the eigenvalues of matrix M :
Theorem 4. All the eigenvalues of M are in [ 1

6 , 1].

Proof. Let λk,M be an eigenvalue of M , by the Gershgorin circle theorem, we know that

λk,M ∈ {|λ−
2

3
| ≤ 1

6
} ∪ {|λ− 2

3
| ≤ 1

3
} ∪ {|λ− 1

3
| ≤ 1

6
}

namely λk,M ∈ [ 1
6 , 1] for k = 1, 2, · · · , n.

From Theorem 4, the estimate of the eigenvalues of MΦ can be obtained immediately by (37).

Next, we estimate the eigenvalues of MΨ. We introduce the following matrix A which is related to
C.

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 1

 ∈ Rn×n. (40)

The eigenvalues and corresponding eigenvectors of the matrix A, using the result in Yueh (2005) can
be obtained:
Lemma 1. Yueh (2005) The eigenvalues λk,A, 1 ≤ k ≤ n and corresponding eigenvectors ξkA =
(ξkA,j)

n
j=1, 1 ≤ k ≤ n of A are

λk,A = 4 cos2 kπ

2n+ 1
, ξkA,j = − sin

(
(n+

1

2
− k)tjπ

)
(41)

with tj = 2j
2n+1 , 1 ≤ j ≤ n.

Lemma 2. Note that C is defined by (35) and A is defined by (40), we have
CCT = A2 +B, (42)

where

B =



1 0 · · · 0 0 0
0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0
0 0 · · · 0 −1 1
0 0 · · · 0 1 −1


= a0a

T
0 − a1a

T
1 ∈ Rn×n.

(43)

20



Under review as a conference paper at ICLR 2023

and a0 =



1
0
...
0
0
0

 ∈ Rn, a1 =



0
0
...
0
−1
1

 ∈ Rn.

Proof. By direct computation, we find that there is a relationship between A and C as follows

A = −C
(

0 1
In−1 0

)
+B1 (44)

where In−1 ∈ R(n−1)×(n−1) is the identity matrix and

B1 =



0 0 · · · 0 0 1
0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0
0 0 · · · 0 0 −1
0 0 · · · 0 0 1

 = a3a
T
4 ∈ Rn×n,

where a3 =



1
0
...
0
−1
1

 and a4 =



0
0
...
0
0
1

.

Then

C = (−A+B1)

(
0 1

In−1 0

)−1

and

CT =

(
0 1

In−1 0

)−T
(−A+BT1 ).

Noting that
(

0 1
In−1 0

)−1

=

(
0 1

In−1 0

)T
, by direct computation of CCT , (42) is desired.

Lemma 3. Fulton (2000) Let R ∈ Rn×n, N ∈ Rn×n and L ∈ Rn×n are symmetric matrices
satisfying

R = N + L (45)

and ν1 ≥ ν2 ≥ · · · ≥ νn are the eigenvalues of R, γ1 ≥ γ2 ≥ · · · ≥ γn are the eigenvalues of N
and β1 ≥ β2 · · · ≥ βn are the eigenvalues of L, then we have

γj + βk ≤ νi ≤ γp + βq (46)

where j + k − n ≥ i ≥ p+ q − 1.

In order to estimate the eigenvalues of MΨ, we need to estimate the eigenvalues of CCT :

Lemma 4. Let ν1 ≥ ν2 ≥ · · · ≥ νn be the eigenvalues of CCT and λ2
j,A, j = 1, · · · , n be the

eigenvalues of A2, then we have

λ2
2,A ≤ ν1 ≤ λ2

1,A + 1;

λ2
i+1,A ≤ νi ≤ λ2

i−1,A, 2 ≤ i ≤ n− 1;

0 < νn ≤ λ2
n−1,A.

(47)
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In addition, we have
ν1 ≤ 16, (48)

and
4

n2(n+ 1)2
≤ νn. (49)

Proof. By Weyl’s inequality for pertubation matrix, namely Lemma 3, we have

λ2
j,A + βk ≤ νi ≤ λ2

p,A + βq (50)

where j + k − n ≥ i ≥ p+ q − 1 and λ2
j,A, j = 1, · · · , n are the eigenvalues of A2. Further noting

that CCT is positive definite and by direct computing we can obtain β1 = 1, β2 = · · · = βn−1 =
0, βn = −2 and hence (47) is proved. Next we only need to prove (48) and (49). Since CCT is
symmetric positive definite, we have

ν1 = λmax(CCT ) = ρ(CCT ) ≤ ‖CCT ‖∞
≤ ‖C‖∞‖CT ‖∞ = 4× 4 = 16,

where ρ(CCT ) is the spectral radius of CCT .

Since

λmax(C−TC−1) = ρ(C−TC−1) ≤ ‖C−TC−1‖∞
≤ ‖C−T ‖∞‖C−1‖∞

=
n(n+ 1)

2

n(n+ 1)

2
=
n2(n+ 1)2

4
,

where ρ(C−TC−1) is the spectral radius of C−TC−1, then

νn = λmin(CCT ) =
1

λmax(C−TC−1)
≥ 4

n2(n+ 1)2
.

Lemma 5. (Courant-Fisher min-max theorem) For any given matrix E ∈ Rn×n, E = ET , suppose
λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of E, then

λn+1−k = min
{S|dimS=k}

max
x∈S

(Ex, x)

(x, x)
.

Now we give the eigenvalues of MΨ as follows:
Theorem 5. The eigenvalues of MΨ satisfy

λk,MΨ
= mkhν

−1
n+1−k, k = 1, 2, · · · , n (51)

where 1
6 ≤ mk ≤ 1 is a constant, νn+1−k, k = 1, 2, · · · , n are the eigenvalues of CCT .

Proof. Noting (39), namely
MΨ = C−1MΦC

−T . (52)

For any given S with dimS = k, we have

max
x∈S

(MΨx, x)

(x, x)
= max

x∈S

(C−1MΦC
−Tx, x)

(x, x)

= max
x∈S

(MΦC
−Tx,C−Tx)

(x, x)

For the above given S, let xs satisfy

max
x∈S

(MΦC
−Tx,C−Tx)

(x, x)
=

(MΦC
−Txs, C

−Txs)

(xs, xs)
,
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then we have

max
x∈S

(MΨx, x)

(x, x)
=

(MΦC
−Txs, C

−Txs)

(xs, xs)

≤ λmax(MΦ)
(C−Txs, C

−Txs)

(xs, xs)

≤ λmax(MΦ) max
x∈S

(C−Tx,C−Tx)

(x, x)

= λmax(MΦ) max
x∈S

(C−1C−Tx, x)

(x, x)
.

Now let Sk satisfy

min
{S|dimS=k}

max
x∈S

(C−1C−Tx, x)

(x, x)
= max
x∈Sk

(C−1C−Tx, x)

(x, x)
,

then we have

min
{S|dimS=k}

max
x∈S

(MΨx, x)

(x, x)

≤ max
x∈Sk

(MΨx, x)

(x, x)

≤ λmax(MΦ) max
x∈Sk

(C−1C−Tx, x)

(x, x)

= λmax(MΦ) min
{S|dimS=k}

max
x∈S

(C−1C−Tx, x)

(x, x)
.

By Lemma 5 and noting that CCT = C(CTC)C−1, we have

λn+1−k,r ≤λmax(MΦ)λn+1−k(C−1C−T )

=λmax(MΦ)
1

λk(CTC)

=λmax(MΦ)
1

λk(CCT )

(53)

Similarly, we have

λmin(MΦ)
1

λk(CCT )
≤ λn+1−k,r (54)

Combining (53) and (54), we have

λmin(MΦ)
1

λk(CCT )
≤ λn+1−k,r ≤ λmax(MΦ)

1

λk(CCT )
.

Noting that the eigenvalues of MΦ is in [h6 , h], then there exists a constant mn+1−k ∈ [ 1
6 , 1] such

that

λn+1−k,r = mn+1−kh
1

λk(CCT )
. (55)

Finally, by Lemma 3, we have

λk,MΨ
= mkh

1

λn+1−k(CCT )
= mkhν

−1
n+1−k. (56)

A.4 PROOF OF THEOREM 1

Proof. From the equation (51) shown in Theorem 5 and Theorem 4, Theorem 1 can be obtained
easily.
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A.5 EIGENVECTORS OF MΨ

Theorem 6. Let λ1,Ψ > λ2,Ψ > · · · > λn,Ψ and ξ1
Ψ, ξ

2
Ψ, · · · , ξnΨ be the eigenvalues and correspond-

ing eigenvectors of MΨ. Extend vkh(x) = ξkΨ · Ψ(x) = C−T ξkΨ · Φ(x) ∈ Vn by zero to [x−1, xn],
then vkh(x) satisfies ∫ 1

0
|Dhvkh(x)|2dx∫ 1

0
|vkh(x)|2dx

= m−1
k n4νn+1−k, (57)

where mk ∈ [1/6, 1] is a constant independent of h and Dh is the second order finite difference
operator. In particular,

1. for k = 1, we have

c′0 ≥
∫ 1

0
|Dhv1

h(x)|2dx∫ 1

0
|v1
h(x)|2dx

≥ c0, (58)

where c0 and c′0 are constants independent of h.

2. for k = n, we have

c′1n
4 ≥

∫ 1

0
|Dhvnh(x)|2dx∫ 1

0
|vnh(x)|2dx

≥ c1n4, (59)

where c1 and c′1 are constants independent of h.

Proof. Noting that ξkΨ and λk,MΨ
satisfy

MΨξ
k
Ψ = λk,MΨ

ξkΨ,

and
MΨ = C−1MΦC

−T ,

we have
C−1MΦC

−T ξkΨ = λk,MΨξ
k
Ψ,

C−TC−1MΦC
−T ξkΨ = λk,MΨ

C−T ξkΨ.
(60)

Define v = C−T ξkΨ, then we have

(CCT )−1MΦv = λk,MΨ
v, (61)

CCT v = λ−1
k,MΨ

MΦv. (62)

Denoting v = (v1, v2, · · · , vn)T , we have

CT v =


v1

−2v1 + v2

v1 − 2v2 + v3

...
vn−2 − 2vn−1 + vn

 (63)

and

(CCT v, v) = (CT v, CT v)

=v2
1 + (−2v1 + v2)2 + (v1 − 2v2 + v3)2

+ · · ·+ (vn−2 − 2vn−1 + vn)2

=λ−1
k,MΨ

(MΦv, v) = λ−1
k,MΨ

(vkh(x), vkh(x)).

Noting that vkh(x0) = 0 and the zero extension of vkh(x), we have the corresponding extension for the
vector v by v0 = 0 and v−1 = 0.
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Therefore, noting that Dh is the second order finite difference operator, we have

(CCT v, v)

=(v−1 − 2v0 + v1)2 + (v0 − 2v1 + v2)2

+ (v1 − 2v2 + v3)2 + · · ·+ (vn−2 − 2vn−1 + vn)2

=h4
n−1∑
i=1

|Dhvkh(xi)|2 = h3

∫ 1

0

|Dhvkh(x)|2dx.

Hence, by (51), we have

h3

∫ 1

0

|Dhvh(x)|2dx = (CCT v, v) = λ−1
k,MΨ

(vkh(x), vkh(x))

= m−1
k h−1νn+1−k

∫ 1

0

|vkh(x)|2dx

namely ∫ 1

0
|Dhvkh(x)|2dx∫ 1

0
|vkh(x)|2dx

= m−1
k n4νn+1−k, (64)

where we used h = 1
n .

From Theorem 6, Theorem 2 can be obtained.

For example, when n = 128, we can see that v1
h(x) = ξ1

Ψ · Ψ(x) and v2
h(x) = ξ2

Ψ · Ψ(x) are very
smooth functions. And v127

h (x) = ξ127
r · Ψ(x) and v128

h (x) = ξ128
r · Ψ(x) are highly oscillatory

functions, see Figure 1.

A.6 PROOF OF THEOREM 3

Proof. The key calculation is the estimation of the inner product

〈σH(cω1 · x), σH(cω2 · x)〉L2(Sd−1) (65)

for different direction vectors ω1 and ω2. We note that for a fixed |ω| = 1 and c > 2, we have

‖σH(cω · x)‖2L2(Sd−1) ≥ Kc
−1, (66)

for an appropriate absolute constant K. Note that in this calculating we consider the normalized
probability measure on the sphere Sd−1. This holds since the function σH(cω · x) is supported on a
strip of width c−1.

Further, if ω1 · ω2 ≤ 1/2 and c > 2, then the product σH(cω1 · x)σH(cω2 · x) is supported on two
parallelopipeds on opposite sides of the sphere with volume bounded by Kc−2 for an appropriate
constant K. This means that

〈σH(cω1 · x), σH(cω2 · x)〉L2(Sd−1) ≤ Kc−2. (67)

Now, the concentration of measure phenomenon implies that two randomly chosen vectors ω1 and ω2

satisfy
P(ω1 · ω2 ≥ 1/2) ≤ Ce−cd (68)

for suitable absolute constants C and c (see for instance Matousek (2013), Chapter 14). By the union
bound, we get that if log(n/δ) ≤ κd for an appropriate κ, then all pairs of ωi and ωj will satisfy
ωi · ωj ≤ 1/2 with probability at least 1− δ.

Then the off-diagonal entries of Mσ will have magnitude O(c2) while the diagonal entries have
magnitude Ω(c). By choosing c > Kn for a suitable constant K, we can guarantee that the sum
of the off diagonal entries in each row is at most 1/2 times the magnitude of the diagonal entries.
Finally, we apply Gerschgorin’s theorem to get the desired result.
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