
Bounce: Reliable High-Dimensional Bayesian
Optimization for Combinatorial and Mixed Spaces

Leonard Papenmeier
Lund University

leonard.papenmeier@cs.lth.se

Luigi Nardi
Lund University, Stanford University, DBtune

luigi.nardi@cs.lth.se

Matthias Poloczek
Amazon

San Francisco, CA 94105, USA
matpol@amazon.com

Abstract
Impactful applications such as materials discovery, hardware design, neural ar-
chitecture search, or portfolio optimization require optimizing high-dimensional
black-box functions with mixed and combinatorial input spaces. While Bayesian
optimization has recently made significant progress in solving such problems, an
in-depth analysis reveals that the current state-of-the-art methods are not reliable.
Their performances degrade substantially when the unknown optima of the func-
tion do not have a certain structure. To fill the need for a reliable algorithm for
combinatorial and mixed spaces, this paper proposes Bounce that relies on a novel
map of various variable types into nested embeddings of increasing dimensional-
ity. Comprehensive experiments show that Bounce reliably achieves and often
even improves upon state-of-the-art performance on a variety of high-dimensional
problems.

1 Introduction
Bayesian optimization (BO) has become a ‘go-to’ method for optimizing expensive-to-evaluate
black-box functions [27, 83] that have numerous important applications, including hyperparame-
ter optimization for machine learning models [9, 27], portfolio optimization in finance [7], chem-
ical engineering and materials discovery [13, 15, 26, 33, 37, 38, 40, 57, 68, 71, 81], hardware de-
sign [22, 36, 51], or scheduling problems [42]. These problems are challenging for a variety of
reasons. Most importantly, they may expose hundreds of tunable parameters that allow for granular
optimization of the underlying design but also lead to high-dimensional optimization tasks and the
‘curses of dimensionality’ [10, 63]. Typical examples are drug design [53, 76] and combinatorial
testing [55]. Moreover, real-world applications often have categorical or ordinal tunable parameters,
in addition to the real-valued parameters that BO has traditionally focused on [10, 27, 70]. Recent
efforts have thus extended BO to combinatorial and mixed spaces. Casmopolitan of Wan et al. [79]
uses trust regions (TRs) to accommodate high dimensionality, building upon prior work of Eriksson
et al. [25] for continuous spaces. COMBO of Oh et al. [56] constructs a surrogate model based on a
combinatorial graph representation of the function. Recently, Deshwal et al. [21] presented BODi
that employs a novel type of dictionary-based embedding and showed that it outperforms the prior
work. However, the causes for BODi’s excellent performance are not yet well-understood and require
a closer examination. Moreover, the ability of methods for mixed spaces to scale to higher dimen-
sionalities trails behind BO for continuous domains. In particular, Papenmeier et al. [60] showed
that nested embeddings allow BO to handle a thousand input dimensions, thus outperforming vanilla
TR-based approaches and raising the question of whether similar performance gains are feasible for
combinatorial domains.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

In this work, we assess and improve upon the state-of-the-art in combinatorial BO. In particular, we
make the following contributions:

1. We conduct an in-depth analysis of two state-of-the-art algorithms for combinatorial BO,
COMBO [56] and BODi [21]. The analysis reveals that their performances often degrade consid-
erably when the optimum of the optimization problem does not exhibit a particular structure
common for synthetic test problems.

2. We propose Bounce (Bayesian optimization using increasingly high-dimensional combinatorial
and continuous embeddings), a novel high-dimensional Bayesian optimization (HDBO) method
that effectively optimizes over combinatorial, continuous, and mixed spaces. Bounce leverages
parallel function evaluations efficiently and uses nested random embeddings to scale to high-
dimensional problems.

3. We provide a comprehensive evaluation on a representative collection of combinatorial, contin-
uous, and mixed-space benchmarks, demonstrating that Bounce is on par with or outperforms
state-of-the-art methods.

2 Background and related work
Bayesian optimization. Bayesian optimization aims to find the global optimum x∗ ∈ X of a
black-box function f : X → R, where X is the D-dimensional search space or input space.
Throughout this paper, we consider minimization problems, i.e., we aim to find x∗ ∈ X such
that f(x∗) ≤ f(x) for all x ∈ X . The search space X may contain variables of different types:
continuous, categorical, and ordinal. We denote the number of continuous variables in X by ncont
and the number of combinatorial variables by ncomb = ncat + nord = D − ncont, where we denote
the number of categorical variables by ncat and the number of ordinal variables by nord.

Combinatorial domains. Extending BO to combinatorial spaces is challenging, for example, be-
cause the acquisition function is only defined at discrete locations or the dimensionality of the space
grows drastically when using one-hot encoding for categorical variables. Due to its numerous ap-
plications, combinatorial BO has received increased attention in recent years. BOCS [6] handles the
exponential explosion of combinations by only modeling lower-order interactions of combinatorial
variables and imposing a sparse prior on the interaction terms. COMBO [56] models each variable
as a graph and uses the graph-Cartesian product to represent the search space. We revisit COMBO’s
performance on categorical problems in Appendix H.1. CoCaBo [67] combines multi-armed bandits
and BO to allow for optimization in mixed spaces. It uses two separate kernels for continuous and
combinatorial variables and proposes a weighted average of a product and a sum kernel to model
mixed spaces. Liu and Wang [47] show that certain, possibly combinatorial functions can be mod-
eled by parametric function approximators such as neural networks or random forests. As a general
method to optimize the acquisition function with gradient-based methods, Daulton et al. [19] pro-
pose probabilistic reparametrization.

High-dimensional continuous spaces. Subspace-based methods are primarily used for continu-
ous spaces. Wang et al. [84] propose REMBO for HDBO in continuous spaces using Gaussian random
projection matrices. REMBO suffers from distortions and projections outside the search domains that
the corrections of Binois et al. [11, 12] address. The HeSBO algorithm of Nayebi et al. [52] avoids the
need for corrections by using the CountSketch embedding [87]. Alebo of Letham et al. [46] builds
upon REMBO, learning suitable corrections of distortions. TuRBO [25] is a method that operates in the
full-dimensional input spaceX , relying on trust region (TR) to focus the search on promising regions
of the search space. BAxUS of Papenmeier et al. [60] combines the trust region approach of TuRBO
with the random subspace idea of HeSBO. BAxUS uses a novel family of nested random subspaces
that exhibit better theoretical guarantees than the CountSketch embedding. While BAxUS handled
a 1000D problem, it only considers continuous problems and cannot leverage parallel function eval-
uations. GTBO [35] assumes the existence of an axis-aligned active subspace. The algorithm first
identifies “active” variables and optimizes in the full-dimensional space by placing separate strong
length scale priors onto active and inactive variables. Another line of recent approaches employs
Monte-Carlo tree search (MCTS) to reduce the complexity of the problem. Wang et al. [82] use
MCTS to learn a partitioning of the continuous search space to focus the search on promising re-
gions in the search space. Song et al. [74] use a similar approach, but instead of learning promising
regions in the search space, they assume an axis-aligned active subspace and use MCTS to select
important variables. Linear embeddings and random linear embeddings [14, 46, 52, 60, 84] require
little or no training data to construct the embedding but assume a linear subspace.

2

Algorithm 1 The Bounce algorithm
Input: initial target dimensionality dinit, evaluation budget m, batch size B, evaluation budget to

input dimensionality mD, # new bins added per dimension b, number design of experiment
(DOE) points ninit

Output: optimizer x∗ ∈ argminx∈D f(x).
1: i← 0, d← dinit
2: b← ADJUSTBINS(b, dinit, mD) ▷ Section 3
3: mi ←

⌊
b·mD·dinit

dinit·(1−(b+1)k+1)

⌉
4: S ← INITIALEMBEDDING(d0, ncont, ncat, ncomb, nbin) ▷ Section 3.1
5: D ← {(zk, f(S−1(zk)))}k∈ninit ▷ Sample and evaluate initial points.
6: for j = 1, . . . ,m do
7: Lcont ← 0.8, Lcomb ← min(40, ncomb)
8: while Lcont > Lcont

min ∧ Lcomb > Lcomb
min do

9: Find B candidates according to Sec. 3.2
10: Evaluate f at B and update D: D ← D ∪ {(zk, f(S−1(zk)))}k∈B

11: Update Lcont and Lcomb ▷ Section 3
12: if d < D then
13: i← i+ 1 ▷ Increase index for target dimensionality.
14: S ← INCREASEEMBEDDING(S, b) ▷ Section 3.1
15: d← # target variables in S

16: mi ←
⌊

b·mD·d
dinit·(1−(b+1)k+1)

⌉
17: else
18: Reset D by resampling and evaluating new initial points
19: Resample S, reset Lcont and Lcomb, j ← j + ninit

Combinatorial high-dimensional domains. These works optimize black-box functions defined
over a combinatorial or mixed space with dozens of input variables. Thebelt et al. [77] use a tree-
ensemble kernel to model the Gaussian process (GP) prior and derive a formulation of the upper-
confidence bound (UCB) that allows it to be optimized globally and to incorporate constraints.
RDUCB [88] relies on random additive decompositions of the GP kernel to model the correlation
between variables. Casmopolitan [79] follows TuRBO in using TRs to focus the search on promis-
ing regions of the search space and uses the Hamming distance to model TRs for combinatorial
variables. For mixed spaces, Casmopolitan uses interleaved search and models continuous and
categorical variables with two separate TRs. Kim et al. [44] use a random projection matrix to ap-
proach combinatorial problems in a continuous embedded subspace. When evaluating a point, their
approach projects the continuous candidate point to the high-dimensional search space and then
rounds to the next feasible combinatorial solution. Deshwal et al. [20] propose two algorithms for
permutation spaces, which occur in problems such as compiler optimization [36] and pose special
challenges due to the superexponential explosion of solutions. BODi [21] proposes an embedding
type based on a dictionary of anchor points in the search space. The pairwise Hamming distances
between the point and each anchor point ai in the dictionary represent a point in the search space.
The anchor points in the dictionary change at each iteration of the algorithm. They are sampled
from the search space to cover a wide range of ‘sequencies’, i.e., the number of changes from 0 to
1 (and vice versa) in the binary vector. The authors hypothesize that the diverse sampling procedure
leads to BODi’s remarkable performance in combinatorial spaces with up to 60 dimensions. To our
knowledge, BODi is the only other method combining embeddings and combinatorial spaces. We
show in Section 4.6 that BODi’s reported good performance relies on an artificial structure of the
optimizer x∗ and that its performance degrades considerably when this structure is violated.

3 The Bounce algorithm

To overcome the aforementioned challenges in HDBO for real-world applications, we propose
Bounce, a new algorithm for continuous, combinatorial, and mixed spaces. Bounce uses a GP [85]
surrogate in a lower-dimensional subspace, the target space, that is realized by partitioning input
variables into ‘bins’, the so-called target dimensions. Bounce only bins variables of the same type
(categorical, binary, ordinal, and continuous). When selecting new points to evaluate, Bounce sets

3

all input variables within the same bin to a single value. It thus operates in a subspace of lower
dimensionality than the input space and, in particular, maximizes the acquisition function in a sub-
space of lower dimensionality. Bounce iteratively refines its subspace embedding by splitting bins
into smaller bins, allowing for a more granular optimization at the expense of higher dimensional-
ity. Note that by splitting up bins, Bounce asserts that observations taken in earlier subspaces are
contained in the current subspace; see Papenmeier et al. [60] for details. Thus, Bounce operates in a
series of nested subspaces. It uses a novel TR management to leverage batch parallelism efficiently,
improving over the single point acquisition of BAxUS [60].

The nested subspaces. To model the GP in low-dimensional subspaces, Bounce leverages BAxUS’
family of nested random embeddings [60]. In particular, Bounce employs the sparse count-sketch
embedding [87] in which each input dimension is assigned to exactly one target dimension. When
increasing the target dimensionality, Bounce creates b new bins for every existing bin and re-
distributes the input dimensions that had previously been assigned to that bin across the now b + 1
bins. Bounce allocates an individual evaluation budget mi to the current target space Xi that is pro-
portional to the dimensionality of Xi. When the budget for the current target space is depleted, and
Bounce has not found a better solution, Bounce will increase the dimension of the target space until
it reaches the input space of dimensionality D. Let dinit denote the dimensionality of the first target
space, i.e., the random embedding that Bounce starts with. Then Bounce has to increase the target
dimension

⌈
logb+1 D/dinit

⌉
=: k-times to reach the input dimensionality D. After calculating k,

Bounce re-sets the split factor b such that the distance between the predicted final target dimension-
ality dk = dinit · (b + 1)k and the input dimensionality D is minimized: b = ⌊logk(D/dinit) − 1⌉,
where ⌊x⌉ denotes the integer closest to x. This ensures that the predetermined evaluation budget for
each subspace will be approximately proportional to its dimensionality. This contrasts to BAxUS [60]
that uses a constant split factor b and adjusts the initial target dimensionality dinit. The evaluation
budget mi for the i-th subspace Xi is mi :=

⌊
b·mD·di

dinit·(1−(b+1)k+1)

⌉
, where mD is the budget until D

is reached and b is the maximum number of bins added per split.

Trust region management. Bounce follows TuRBO [25] and Casmopolitan [79] in using trust
regions (TRs) to efficiently optimize over target spaces of high dimensionality. TRs allow focus-
ing on promising regions of the search space by restricting the next points to evaluate to a region
centered at the current best function value [25]. TR-based methods usually expand their TR if they
find better points and conversely shrink it if they fail to make progress. If the TR falls below the
threshold given by the base length, TuRBO and Casmopolitan restart with a fresh TR elsewhere.
Casmopolitan [79] uses different base lengths for combinatorial and continuous variables. For
combinatorial variables, the distance to the currently best function value is defined in terms of the
Hamming distance, and the base length is an integer. For continuous variables, Casmopolitan de-
fines the base length in terms of the Euclidean distance, i.e., a real number. Similarly, Bounce has
separate base lengths Lcont

min and Lcomb
min for continuous and combinatorial variables but does not fix

the factor by which the TR volume is increased or decreased upon successes or failures. Instead,
the factor is adjusted dynamically so that the evaluation budget mi for the current target space Xi is
adhered to. This design is crucial to enable batch parallelism, as we describe next.

Batch parallelism. We allow Bounce to efficiently evaluate batches of points in parallel by using
a scalable TR management strategy and q-expected improvement (qEI) [5, 80, 86] as the acquisition
function for batches of size B > 1. When Bounce starts with a fresh TR, we sample ninit initial
points to initialize the GP, using a Sobol sequence for continuous variables and uniformly random
values for combinatorial variables.

The TR management strategy of Bounce differs from previous strategies [25, 60, 65, 79] in that it
uses a dynamic factor to determine the TR base length. Recall that Bounce shrinks the TR if it fails
to make progress and starts a fresh TR if the TR falls below the threshold given by the base length.
Bounce’s rule is based on the idea that the minimum admissible TR base length should be reached
when the current evaluation budget is exhausted. If one employed the strategies of TuRBO [25],
Casmopolitan [79], or BAxUS [60] for larger batch sizes B and Bounce’s nested subspaces, then
one would spend a large part of the evaluation budget in early target spaces. For example, suppose
a continuous problem, the common values for the initial, minimum, and maximum TR base length,
and the constant shrinkage factor of [65]. Then, such a method has to shrink the TR base length at
least seven times (i.e., evaluate f 7B-times) before it would increase the dimensionality of the target
space. Thus, the method would risk depleting its budget before reaching a target space suitable

4

for the problem. On the other hand, we will see that Bounce chooses an evaluation budget that is
smaller in low-dimensional target spaces and higher for later target spaces of higher dimensionality.
Considering a 1000-dimensional problem with an evaluation budget of 1000, it uses only 3, 12, and
47 samples for the first three target spaces of dimensionalities 2, 8, and 32.

Bounce’s strategy permits flexible TR shrinkage factors and base lengths, i.e., TR base lengths to
vary within the range [Lmin, Lmax]. This allows Bounce to comply with the evaluation budget mi

for the current target space Xi. Suppose that Bounce has evaluated j batches of B points each since
it last increased the dimensionality of the target space, and let Lj denote the current TR base length.
Observe that hence mi − jB evaluations remain for Xi. Then Bounce sets the TR base length
to Lj+1 := λ−B

j Lj with λj < 1, if it found a new best point whose objective value improves upon
the incumbent by at least ε. We call this a ‘success’. Otherwise, Bounce observes a ‘failure’ and
sets Lj+1 := λ+B

j Lj . The rationale of this rule is that if the algorithm is in iteration j and only
observes failures subsequently, then we apply this factor (mi − jB)-times, which is the remaining
number of function evaluations in the current subspace Xi. Hence, the last batch of the i-th target
space Xi will have the minimum TR base length, and Bounce will increase the target dimensionality
afterward. If the TR is expanded upon a ‘success’, we need to adjust λj not to use more than
the allocated number of function evaluations in a target space. At each iteration, we therefore set
adjustment factor λj = (Lmin/Lj)

1/(mi−jB). Note that λj remains unchanged under this rule
unless the TR expanded in the previous iteration.

The kernel choice. To harvest the sample efficiency of a low-dimensional target space, we would
like to combine categorical variables into a single bin, even if they vary in the number of categories.
This is not straightforward. For example, note that the popular one-hot encoding of categorical
variables would give rise to multiple binary input dimensions, which would not be compatible with
the above strategy of binning variables to form nested subspaces. Bounce overcomes these obstacles
and allows variables of the same type to share a representation in the target space. We provide the
details in Sect. 3.1.

For the GP model, we use the CoCaBo kernel [67]. In particular, we model the continuous and
combinatorial variables with two separate 5/2−Matérn kernels where we use automatic relevance
determination (ARD) for the continuous variables and share one length scale for all combinatorial
variables. Following Ru et al. [67], we use a mixture of the sum and the product kernel:

k(x,x′) = σ2
f (ρkcmb(xcmb,x

′
cmb)kcnt(xcnt,x

′
cnt) + (1− ρ)(kcmb(xcmb,x

′
cmb) + kcnt(xcnt,x

′
cnt))),

where xcnt and xcmb are the continuous and combinatorial variables in x, respectively, and σ2
f is the

signal variance. The trade-off parameter ρ ∈ [0, 1] is learned jointly with the other hyperparameters
via likelihood maximization. See Appendix G.2 for additional details.

Algorithm 1 gives a high-level overview of Bounce. In Appendix A, we prove that Bounce con-
verges to the global optimum under mild assumptions. We now explain the different components of
Bounce in detail.

3.1 The subspace embedding of mixed spaces
Bounce supports mixed spaces of four types of input variables: categorical, ordinal, binary, and
continuous variables. We discuss binary and categorical variables separately because we model
them differently. The proposed embedding maps only variables of a single type to each ‘bin’, i.e.,
no target dimension of the embedding has variables of different types. Thus, target dimensions are
homogeneous in this regard. Note that the number of target dimensions of each type is implied by
the current bin size of the embedding that may grow during the execution. The proposed embedding
can handle categorical or ordinal input variables that differ in the number of discrete values they can
take.

Continuous variables. As common in BO, we suppose that each continuous variable takes values
in a bounded interval. Thus, we may normalize each interval to [−1, 1]. The embedding of contin-
uous variables, i.e., input dimensions, follows BAxUS [60]: each input dimension Di is associated
with a random sign si ∈ {−1,+1} and one or multiple input dimensions can be mapped to the
same target dimension of the low-dimensional embedded subspace. Recall that Bounce works on
the low-dimensional subspace and thus decides an assignment vj for every target dimension dj of
the embedding. Then, all input variables mapped to this particular target dimension are set to this
value vj .

5

Figure 1: The mapping (or binning) of categorical and ordinal variables. Suppose that variable vk
has two categories and that vℓ has three categories. Both are mapped to the target dimension di that
has cardinality 3 = max{2, 3}. While the mapping of vℓ to di is a straightforward bijection, vk
has fewer categories than di. Thus, the mapping of vk to di repeats label 1. Ordinal variables are
mapped similarly.

Binary variables. Binary dimensions are represented by the values−1 and +1. Each input dimen-
sion Di is associated with a random sign si ∈ {−1,+1}, and the subspace embedding may map
one or more binary input dimensions to the same binary target dimension. While the embedding for
binary and continuous dimensions is similar, Bounce handles binary dimensions differently when
optimizing the acquisition function.

Categorical and ordinal variables. Categorical variables that differ in the number of categories
may be mapped to the same target dimension (bin). Suppose that the categorical variables v1, . . . , vℓ
with cardinalities c1, . . . , cℓ are mapped to a single bin that is associated with the target dimension dj
of the subspace embedding. Then dj is of categorical type and has max{ci | 1 ≤ i ≤ ℓ} =:
cmax distinct categories, that is, its cardinality is given by the maximum cardinality of any variable
mapped to it. Thus, the bin dj can represent every category of these input variables.

Suppose that Bounce assigns the category k ∈ {1, . . . , cmax} to the categorical bin (target dimen-
sion) dj . We transform this label to a categorical assignment to each input variable v1, . . . , vℓ, setting
vi = ⌈k · (ci/cmax)⌉. Recall that Bounce may split up bins, i.e., target dimensions, to increase the
dimensionality of its subspace embedding. In such an event, every derived bin inherits the cardi-
nality of the parent bin. This allows us to retain any observations the algorithm has taken up to
this point. Analogously to the random sign for binary variables, we randomly shuffle the categories
before the embedding. This reduces the risk of Bounce being biased towards a specific structure of
the optimizer (see Appendix E).

We treat ordinal variables as categorical variables whose categories correspond to the discrete values
the ordinal variable can take. For the sake of simplicity, we suppose here that an ordinal variable vi
has range {1, 2, . . . , ci} and ci ≥ 2 for all i ∈ {1, . . . , ℓ}. Figure 1 shows examples of the binning
of categorical and ordinal variables.

3.2 Maximization of the acquisition function
We use expected improvement (EI) [43] for batches of size B = 1 and qEI [5, 80, 86] for larger
batches. We optimize the EI using gradient-based methods for continuous problems and local search
for combinatorial problems. We interleave gradient-based optimization and local search for func-
tions defined over a mixed space; see Appendix G.1 for details.

4 Experimental evaluation
We evaluate Bounce empirically on various benchmarks whose inputs are combinatorial, con-
tinuous, or mixed spaces. The evaluation comprises the state-of-the-art algorithms BODi [21],
Casmopolitan [79], COMBO [56], SMAC [41], and RDUCB [88], using code provided by the authors.
We also report Random Search [8] as a baseline. For categorical problems, COMBO’s implementa-
tion suffers from a bug explained in Appendix H.2. We report the results for COMBO with the correct
benchmark implementation as “COMBO (fixed)”.

The experimental setup. We initialize every algorithm with five initial points. The plots show the
performances of all algorithms averaged over 50 repetitions except BODi, which has 20 repetitions
due to resource constraints caused by its high memory demand. The shaded regions give the stan-
dard error of the mean. We use common random seeds for all algorithms and for randomizing the

6

0 200 400
Iteration

4

3

2

1

Ob
je

ct
iv

e
va

lu
e

50D-LABS

0 200 400
Iteration

50D-LABS (publ.)
Bounce
Casmopolitan
BODi
Random Search
COMBO
RDUCB
SMAC

Figure 2: The 50D low-autocorrelation binary sequence problem. Bounce finds the best solutions,
followed by COMBO.

0 200 400
Iteration

2.78

2.77

2.76

2.75

2.74

Ob
je

ct
iv

e
va

lu
e

1e14
125D-ClusterExpansion

0 200 400
Iteration

125D-ClusterExpansion (publ.)
Bounce
Casmopolitan
BODi
Random Search
COMBO
RDUCB
SMAC

Figure 3: The 125D weighted ClusterExpansion maximum satisfiability problem. We plot the
total negative weight of clauses. Bounce produces the best assignments.

benchmark functions. We run all methods for 200 function evaluations unless stated otherwise. The
Labs (Section 4.1) and MaxSat125 (Section 4.2) benchmarks are run for 500 evaluations.

The benchmarks. The evaluation uses seven established benchmarks [21]: 53D SVM, 50D LABS,
125D ClusterExpansion [3, 4], 60D MaxSAT60 [21, 56], 25D PestControl, 53D Ackley53, and
25D Contamination [6, 39, 56]. Due to space constraints, we moved the results for the MaxSAT60,
Contamination, and Ackley53 benchmarks to Appendix B.1. For each benchmark, we report
results for the originally published formulation and for a modification where we move the opti-
mal point to a random location. The randomization procedure is fixed for each benchmark for all
algorithms and repetitions. For binary problems, we flip each input variable independently with
probability 0.5. For categorical problems, we randomly permute the order of the categories. We
motivate this randomization in Section 4.6.

4.1 50D Low-Autocorrelation Binary Sequences (LABS)
LABS has n = 50 binary dimensions. It has important applications in communications engineering
and mathematics; see [58] for details. LABS is a hard combinatorial problem and currently solved
via exhaustive search. The goal is to find a sequence x ∈ {−1,+1}n with a maximum merit factor
F (x) = n2

2E(x) , where E(x) =
∑n−1

k=1 C
2
k(x) and Ck(x) =

∑n−k
i=1 xixi+k for k = 0, . . . , n − 1

are the autocorrelations of x [58]. Figure 2 summarizes the performances. We observe that Bounce
outperforms all other algorithms on the benchmark’s original and randomized versions.

4.2 Industrial Maximum Satisfiability: 125D ClusterExpansion benchmark
MaxSat is a notoriously hard problem for which various approximations and exact (exponential
time) algorithms have been developed; see [32, 61] for an overview. We evaluate Bounce and the
other algorithms on the 125-dimensional ClusterExpansion benchmark, a real-world MaxSAT
instance with many applications in materials science [2]. Unlike the MaxSAT60 benchmark (see
Appendix B.1.3), ClusterExpansion is not a crafted benchmark, and its optimum has no synthetic
structure [1, 3]. We treat the MaxSat problems as black-box problems; hence, algorithms do not
have access to the clauses, and we cannot use the usual algorithms.

Figure 3 shows the total negative weight of the satisfied clauses as a function of evaluations. We
cannot plot regret curves since the optimum is unknown [4]. We observe that Bounce finds better
solutions than all other algorithms. BODi is the only algorithm for which we observe sensitivity to

7

0 100 200
Iteration

12

14

16

18

Ob
je

ct
iv

e
va

lu
e

25D-PestControl

0 100 200
Iteration

25D-PestControl (publ.)
Bounce
BODi
Random Search
Casmopolitan
COMBO
COMBO (fixed)
RDUCB
SMAC

Figure 4: The 25D categorical pest control problem. Bounce obtains the best solutions, followed by
Casmopolitan. BODi’s performance degrades significantly when shuffling the order of categories.

0 100 200
Iteration

2 × 10 1

3 × 10 1

4 × 10 1

Ob
je

ct
iv

e
va

lu
e

53D-SVM

0 100 200
Iteration

53D-SVM (publ.)

Bounce
BODi
Random Search
Casmopolitan
RDUCB
SMAC

Figure 5: The 53-dimensional SVM benchmark. Bounce, BODi, and Casmopolitan achieve compa-
rable solutions.

the location of the optimal assignment: for the published version of the benchmark, BODi quickly
jumps to a moderately good solution but fails to make further progress.

4.3 25D Categorical Pest Control
PestControl is a more complex version of the Contamination benchmark and has 25 categorical
variables with five categories each [56]. The task is to select one out of five actions {1, 2, . . . , 5} at
each of 25 stations to minimize the objective function that combines total cost and a measure of the
spread of the pest. We note the setting x = (5, 5, . . . , 5) achieves a good value of 12.57, while the
best value found in our evaluation is 12.07 is x = (5, 5, . . . , 5, 1) and thus has a Hamming distance
of one. The random seed used in our experiments is zero. Figure 4 summarizes the performances of
the algorithms. Bounce is robust to the location of the global optimum and consistently obtains the
best solutions. In particular, the performances of COMBO and BODi depend on whether the optimum
has a certain structure. We discuss this issue in detail in Appendix H.1.

4.4 SVM – a 53D AutoML task
In the SVM benchmark, we optimize over a mixed space with 50 binary and 3 continuous parame-
ters to tune an ε-support vector regression (SVR) model [72]. The 50 binary parameters determine
whether to include or exclude an input feature from the dataset. The 3 continuous parameters cor-
respond to the regularization parameter C, the kernel width γ, and the ε parameter of the ε-SVR
model [72]. Its root mean squared error on a held-out dataset gives the function value. Figure 5 sum-
marizes the performances of the algorithms. We observe that Bounce, BODi, and Casmopolitan
achieve comparable solutions. BODi performs slightly worse if the ordering of the categories is
shuffled and slightly better if the optimal assignment to all binary variables is one. COMBO does not
support continuous variables and thus was omitted.

4.5 Bounce’s efficacy for batch acquisition
We study the sample efficiency of Bounce when it selects a batch of B points in each iteration
to evaluate in parallel. Figure 6 shows the results for B = 1, 3, 5, 10, and 20, where Bounce
was run for min(2000, 200 · B) function evaluations. We configure Bounce to reach the input
dimensionality after 100 evaluations for B = 1, 3, 5 and after 25B for B = 10, 20. We observe that
Bounce leverages parallel function evaluations effectively: it obtains a comparable function value
at a considerably smaller number of iterations, thus saving wall-clock time for applications with
time-consuming function evaluations. We also studied batch acquisition for continuous problems

8

0 100 200
12

14

16

18

Ob
je

ct
iv

e
va

lu
e

25D-PestControl

0 100 200
200

150

100

50

60D-MaxSAT60

0 100 200
21.5

22.0

22.5

23.0

25D-Contamination

0 100 200
batch evaluations

0.2

0.3

0.4

0.5

Ob
je

ct
iv

e
va

lu
e

53D-SVM

0 100 200
batch evaluations

0

1

2

53D-Ackley53

0 100 200
batch evaluations

4

3

2

1
50D-LABS

Bounce, b=1
Bounce, b=3
Bounce, b=5
Bounce, b=10
Bounce, b=20

Figure 6: Bounce benefits from the batch acquisition that allows parallelizing function evaluations.
We show the best function values obtained after each batch for batch sizes 1, 3, 5, 10, and 20.

and found that Bounce also provides significant speed-up. Due to space constraints, we deferred the
discussion to Appendix C.

4.6 The sensitivity of BODi and COMBO to the location of the optima
The empirical evaluation reveals that the performances of BODi [21] and COMBO [56] are sensitive to
the location of the optima. Both methods degrade on at least one benchmark when the optimum is
moved to a randomly chosen point. This is particularly unexpected for categorical variables where
moving the optimum to a random location is equivalent to shuffling the labels of the categories of
each variable. Such a change of representation should not affect the performance of an algorithm.

BODi is more susceptible to the location of the optimizer than COMBO. The performance of COMBO
degrades only on the categorical PestControl benchmark, whereas BODi degrades on five out of
seven benchmarks. Looking closer, we observe that BODi’s performance degradation is particularly
large for synthetic benchmarks like Ackley53 and MaxSAT60, where setting all variables to the
same value is optimal. Figure 7 summarizes the effects of moving the optimum on BODi. Due to
space constraints, we moved the details and a discussion of categorical variables to the appendix.
Similarly, setting all binary variables of the SVM benchmark to one produces a good objective value.
It is not surprising, given that the all-one assignment corresponds to including all features previously
selected for the benchmark because of their high importance.

We show in Appendix H.1 that BODi adds a point to its dictionary with zero Hamming distance to
an all-zero or all-one solution, with a probability that increases with the dictionary size. Deshwal
et al. [21, p. 7] reported that BODi’s performance ‘tends to improve’ with the size of the dictionary.
Moreover, BODi samples a new dictionary in each iteration, eventually increasing the chance of
having such a point in its dictionary. Thus, we hypothesize that BODi benefits from having a near-
optimal solution in its dictionary, likely for all-zero or all-one solutions. For COMBO, Figure 4 shows
that the performance on PestControl degrades substantially if the labels of the categories are
shuffled. Then COMBO’s sample-efficiency becomes comparable to Random Search.

5 Discussion
BO in combinatorial spaces has many exciting and impactful applications. Its applicability to real-
world problems, such as LABS that defy a closed-form solution, makes it a valuable tool for practi-
tioners. Our empirical evaluation reveals that state-of-the-art methods fail to provide good solutions
reliably. In particular, it finds that BODi and COMBO, which performed best in recent publications, are
sensitive to the location of the optimizer. We identified design flaws in BODi and an implementation
bug in COMBO as the root causes of the performance degradations.

The proposed Bounce algorithm is reliable for high-dimensional black-box optimization in combi-
natorial, continuous, and mixed spaces. The empirical evaluation demonstrates that Bounce reliably
outperforms the state-of-the-art on a diverse set of problems. Using a novel TR management strat-
egy, Bounce leverages parallel evaluations of the objective function to improve its performance. We

9

0 100 200

14

16

18

Ob
je

ct
iv

e
va

lu
e

25D-PestControl

0 100 200

3

2

1

50D-LABS

0 100 200

0.2

0.3

0.4

0.5

53D-SVM

0 100 200

1

2

3
53D-Ackley53

0 100 200
Iteration

200

100

0

Ob
je

ct
iv

e
va

lu
e

60D-MaxSAT60

0 100 200
Iteration

21.5

22.0

22.5

23.0

25D-Contamination

0 100 200
Iteration

2.78

2.76

2.74

2.72

2.70 1e14
125D-ClusterExpansion

BODi (rand.)
BODi

Figure 7: BODi’s performance degrades on five out of seven benchmarks when randomizing the
location of the optimal solution: BODi on the default version (orange) of the benchmark and on the
modified version (green, dashed) where the optimum was moved.

anticipate headroom by tailoring the modeling of combinatorial objects, e.g., arising in the search
for peptides or materials discovery [28, 34, 37, 59, 75, 78]. Here it seems particularly interesting to
incorporate prior belief on the importance of decision variables while maintaining the overall scala-
bility. Moreover, extending the present work to black-box constraints [24, 30], multiple objectives,
and multiple information sources [18, 31, 62] will considerably expand the applicable use cases.

Limitations. Bounce is not designed to handle noisy evaluations of the objective function. While
it seems straightforward to extend Bounce to handle noisy evaluations, e.g., by using a Gaussian
process with a noise term and acquisition functions that account for noise [70], we leave this for
future work. Moreover, in applications where the categorical or ordinal variables vary substantially
in the number of values they can take, there may be better ways to ’bin’ them.

Societal impact. Bayesian optimization has recently gained wide-spread popularity for tasks in
drug discovery [53], chemical engineering [15, 33, 38, 68, 71], materials discovery [28, 34, 37, 59,
75, 78], aerospace engineering [6, 45, 49], robotics [16, 17, 48, 50, 64], and many more. This
highlights the Bayesian optimization community’s progress toward providing a reliable ‘off-the-
shelf optimizer.’ However, this promise is not yet fulfilled for the newer domain of mixed-variable
Bayesian optimization that allows optimization over hundreds of ‘tunable levers’, some of which
are discrete, while others are continuous. This domain is of particular relevance for the tasks above.
Bounce’s ability to incorporate more such levers in the optimization significantly impacts the above
practical applications, allowing for more granular control of a chemical reaction or a processing
path, to give some examples. The empirical evaluation shows that the performance of state-of-the-
art methods is highly sensitive to the location of the unknown global optima and often degenerates
drastically, thus putting practitioners at risk. The proposed algorithm Bounce, however, achieves
robust performance over a broad collection of tasks and thus will become a ‘goto’ optimizer for
practitioners in other fields. Therefore, we open-source the Bounce code.1

Acknowledgments and Disclosure of Funding
Leonard Papenmeier and Luigi Nardi were partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Luigi Nardi was partially supported by the Wallenberg Launch Pad (WALP) grant Dnr 2021.0348
and by affiliate members and other supporters of the Stanford DAWN project Ant Financial, Face-
book, Google, Intel, Microsoft, NEC, SAP, Teradata, and VMware. The computations were en-
abled by resources provided by the National Academic Infrastructure for Supercomputing in Swe-
den (NAISS) at the Chalmers Centre for Computational Science and Engineering (C3SE) and the
National Supercomputer Centre at Linköping University, partially funded by the Swedish Research
Council through grant agreement no. 2022-06725.

1https://github.com/LeoIV/bounce

10

https://github.com/LeoIV/bounce

References
[1] Webpage of the Fourth Max-SAT Evaluation. http://www.maxsat.udl.cat/09/index.

php?disp=submitted-benchmarks. Last access: 2023-05-02.

[2] MaxSAT Evaluation 2018 : Solver and Benchmark Descriptions. 2018. URL http://hdl.
handle.net/10138/237139. Publisher: Department of Computer Science, University of
Helsinki.

[3] André Abramé and Djamal Habet. AHMAXSAT: Description and evaluation of a branch and
bound Max-SAT solver. Journal on Satisfiability, Boolean Modeling and Computation, 9(1):
89–128, 2014.

[4] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation 2018: New devel-
opments and detailed results. Journal on Satisfiability, Boolean Modeling and Computation,
11(1):99–131, 2019.

[5] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems (NeurIPS),
volume 33, 2020.

[6] Ricardo Baptista and Matthias Poloczek. Bayesian optimization of combinatorial structures.
In International Conference on Machine Learning, pages 462–471. PMLR, 2018.

[7] Petr Baudiš and Petr Pošík. Online Black-Box Algorithm Portfolios for Continuous Opti-
mization. In Parallel Problem Solving from Nature – PPSN XIII, pages 40–49, Cham, 2014.
Springer International Publishing.

[8] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter Optimization. Jour-
nal of Machine Learning Research, 13(2), 2012.

[9] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-
Parameter Optimization. In Advances in Neural Information Processing Systems (NeurIPS),
volume 24, 2011.

[10] Mickael Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling
with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and
Optimization, 2(2):1–26, 2022.

[11] Mickaël Binois, David Ginsbourger, and Olivier Roustant. A warped kernel improving ro-
bustness in Bayesian optimization via random embeddings. In International Conference on
Learning and Intelligent Optimization (LION), pages 281–286. Springer, 2015.

[12] Mickaël Binois, David Ginsbourger, and Olivier Roustant. On the choice of the low-
dimensional domain for global optimization via random embeddings. Journal of global op-
timization, 76(1):69–90, 2020.

[13] Jim Boelrijk, Bernd Ensing, Patrick Forré, and Bob WJ Pirok. Closed-loop automatic gradient
design for liquid chromatography using Bayesian optimization. Analytica Chimica Acta, 1242,
2023.

[14] Mohamed Amine Bouhlel, Nathalie Bartoli, Rommel G. Regis, Abdelkader Otsmane, and
Joseph Morlier. Efficient global optimization for high-dimensional constrained problems by
using the Kriging models combined with the partial least squares method. Engineering Opti-
mization, 50(12):2038–2053, 2018.

[15] Benjamin Burger, Phillip M Maffettone, Vladimir V Gusev, Catherine M Aitchison, Yang Bai,
Xiaoyan Wang, Xiaobo Li, Ben M Alston, Buyi Li, Rob Clowes, et al. A mobile robotic
chemist. Nature, 583(7815):237–241, 2020.

[16] Roberto Calandra, Nakul Gopalan, André Seyfarth, Jan Peters, and Marc Peter Deisenroth.
Bayesian Gait Optimization for Bipedal Locomotion. In Learning and Intelligent Optimization,
pages 274–290. Springer International Publishing, 2014.

11

http://www.maxsat.udl.cat/09/index.php?disp=submitted-benchmarks
http://www.maxsat.udl.cat/09/index.php?disp=submitted-benchmarks
http://hdl.handle.net/10138/237139
http://hdl.handle.net/10138/237139

[17] Roberto Calandra, André Seyfarth, Jan Peters, and Marc Peter Deisenroth. Bayesian optimiza-
tion for learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence, 76
(1):5–23, 2016.

[18] Zachary Cosenza, Raul Astudillo, Peter Frazier, Keith Baar, and David E Block. Multi-
Information Source Bayesian Optimization of Culture Media for Cellular Agriculture. Biotech-
nology and Bioengineering, 2022.

[19] Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A. Osborne,
and Eytan Bakshy. Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic
Reparameterization. In Advances in Neural Information Processing Systems (NeurIPS), vol-
ume 35, 2022.

[20] Aryan Deshwal, Syrine Belakaria, Janardhan Rao Doppa, and Dae Hyun Kim. Bayesian opti-
mization over permutation spaces. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 6515–6523, 2022.

[21] Aryan Deshwal, Sebastian Ament, Maximilian Balandat, Eytan Bakshy, Janardhan Rao Doppa,
and David Eriksson. Bayesian Optimization over High-Dimensional Combinatorial Spaces
via Dictionary-based Embeddings. In International Conference on Artificial Intelligence and
Statistics, pages 7021–7039. PMLR, 2023.

[22] Adel Ejjeh, Leon Medvinsky, Aaron Councilman, Hemang Nehra, Suraj Sharma, Vikram
Adve, Luigi Nardi, Eriko Nurvitadhi, and Rob A. Rutenbar. HPVM2FPGA: Enabling True
Hardware-Agnostic FPGA Programming. In Proceedings of the 33rd IEEE International Con-
ference on Application-specific Systems, Architectures, and Processors, 2022.

[23] David Eriksson and Martin Jankowiak. High-dimensional Bayesian optimization with sparse
axis-aligned subspaces. In Cassio de Campos and Marloes H. Maathuis, editors, Proceedings
of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161 of Pro-
ceedings of Machine Learning Research, pages 493–503. PMLR, 27–30 Jul 2021.

[24] David Eriksson and Matthias Poloczek. Scalable Constrained Bayesian Optimization. In Pro-
ceedings of The 24th International Conference on Artificial Intelligence and Statistics, volume
130 of Proceedings of Machine Learning Research, pages 730–738. PMLR, 13–15 Apr 2021.

[25] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scal-
able Global Optimization via Local Bayesian Optimization. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, pages 5496–5507, 2019.

[26] CA Floudas, HK Fung, SR McAllister, M Mönnigmann, and R Rajgaria. Advances in protein
structure prediction and de novo protein design: A review. Chemical Engineering Science, 61
(3):966–988, 2006.

[27] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[28] Peter I. Frazier and Jialei Wang. Bayesian Optimization for Materials Design, pages 45–75.
Springer International Publishing, Cham, 2016. ISBN 978-3-319-23871-5.

[29] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wil-
son. GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration.
In Advances in Neural Information Processing Systems (NeurIPS), volume 31, 2018.

[30] Seyede Fatemeh Ghoreishi and Douglas Allaire. Multi-information source constrained
Bayesian optimization. Structural and Multidisciplinary Optimization, 59:977–991, 2019.

[31] Seyede Fatemeh Ghoreishi and Douglas L Allaire. A fusion-based multi-information source op-
timization approach using knowledge gradient policies. In 2018 AIAA/ASCE/AHS/ASC Struc-
tures, Structural Dynamics, and Materials Conference, page 1159, 2018.

[32] Pierre Hansen and Brigitte Jaumard. Algorithms for the maximum satisfiability problem. Com-
puting, 44(4):279–303, 1990.

12

[33] Florian Hase, Loïc M Roch, Christoph Kreisbeck, and Alán Aspuru-Guzik. Phoenics: a
Bayesian optimizer for chemistry. ACS central science, 4(9):1134–1145, 2018.

[34] Florian Häse, Matteo Aldeghi, Riley J Hickman, Loïc M Roch, and Alán Aspuru-Guzik. Gryf-
fin: An algorithm for Bayesian optimization of categorical variables informed by expert knowl-
edge. Applied Physics Reviews, 8(3):031406, 2021.

[35] Erik Hellsten, Carl Hvarfner, Leonard Papenmeier, and Luigi Nardi. High-dimensional
Bayesian Optimization with Group Testing. arXiv preprint arXiv:2310.03515, 2023.

[36] Erik Hellsten, Artur Souza, Johannes Lenfers, Rubens Lacouture, Olivia Hsu, Adel Ejjeh,
Fredrik Kjolstad, Michel Steuwer, Kunle Olukotun, and Luigi Nardi. BaCO: A Fast and
Portable Bayesian Compiler Optimization Framework. In ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, 2023.

[37] Henry C Herbol, Weici Hu, Peter Frazier, Paulette Clancy, and Matthias Poloczek. Efficient
search of compositional space for hybrid organic–inorganic perovskites via Bayesian optimiza-
tion. npj Computational Materials, 4(1):1–7, 2018.

[38] José Miguel Hernández-Lobato, James Requeima, Edward O. Pyzer-Knapp, and Alán Aspuru-
Guzik. Parallel and Distributed Thompson Sampling for Large-scale Accelerated Exploration
of Chemical Space. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 1470–1479. PMLR, 06–11 Aug 2017.

[39] Yingjie Hu, Jian-Qiang Hu, Yifan Xu, Fengchun Wang, and Rong Zeng Cao. Contamination
control in food supply chain. In Proceedings of the 2010 Winter Simulation Conference, pages
2678–2681. IEEE, 2010.

[40] Zak E Hughes, Michelle A Nguyen, Jialei Wang, Yang Liu, Mark T Swihart, Matthias
Poloczek, Peter I Frazier, Marc R Knecht, and Tiffany R Walsh. Tuning Materials-Binding
Peptide Sequences toward Gold-and Silver-Binding Selectivity with Bayesian Optimization.
ACS nano, 15(11):18260–18269, 2021.

[41] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential Model-Based Optimiza-
tion for General Algorithm Configuration. In Carlos A. Coello Coello, editor, Learning and
Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-25566-3.

[42] Anant Singh Jain and Sheik Meeran. Deterministic job-shop scheduling: Past, present and
future. European journal of operational research, 113(2):390–434, 1999.

[43] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455, 1998.

[44] Jungtaek Kim, Seungjin Choi, and Minsu Cho. Combinatorial Bayesian optimization with
random mapping functions to convex polytopes. In Uncertainty in Artificial Intelligence, pages
1001–1011. PMLR, 2022.

[45] Rémi Lam, Matthias Poloczek, Peter Frazier, and Karen E Willcox. Advances in Bayesian
optimization with applications in aerospace engineering. In 2018 AIAA Non-Deterministic
Approaches Conference, page 1656, 2018.

[46] Ben Letham, Roberto Calandra, Akshara Rai, and Eytan Bakshy. Re-Examining Linear Em-
beddings for High-Dimensional Bayesian Optimization. In Advances in Neural Information
Processing Systems (NeurIPS), volume 33, pages 1546–1558, 2020.

[47] Chong Liu and Yu-Xiang Wang. Global optimization with parametric function approximation.
In Proceedings of the 40th International Conference on Machine Learning, volume 202, pages
22113–22136, 2023.

[48] Daniel J Lizotte, Tao Wang, Michael H Bowling, Dale Schuurmans, et al. Automatic Gait
Optimization With Gaussian Process Regression. In IJCAI, volume 7, pages 944–949, 2007.

13

[49] Trent W Lukaczyk, Paul Constantine, Francisco Palacios, and Juan J Alonso. Active subspaces
for shape optimization. In 10th AIAA multidisciplinary design optimization conference, page
1171, 2014.

[50] Matthias Mayr, Faseeh Ahmad, Konstantinos I. Chatzilygeroudis, Luigi Nardi, and Volker
Krüger. Skill-based Multi-objective Reinforcement Learning of Industrial Robot Tasks with
Planning and Knowledge Integration. CoRR, abs/2203.10033, 2022.

[51] Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration. In
2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 347–358, 2019.

[52] Amin Nayebi, Alexander Munteanu, and Matthias Poloczek. A framework for Bayesian Op-
timization in Embedded Subspaces. In Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research (PMLR), pages
4752–4761, 09–15 Jun 2019.

[53] Diana M. Negoescu, Peter I. Frazier, and Warren B. Powell. The Knowledge-Gradient Algo-
rithm for Sequencing Experiments in Drug Discovery. INFORMS Journal on Computing, 23
(3):346–363, 2011.

[54] Kai Wang Ng, Guo-Liang Tian, and Man-Lai Tang. Dirichlet and related distributions: Theory,
methods and applications. 2011.

[55] Changhai Nie and Hareton Leung. A survey of combinatorial testing. ACM Computing Surveys
(CSUR), 43(2):1–29, 2011.

[56] Changyong Oh, Jakub Tomczak, Efstratios Gavves, and Max Welling. Combinatorial Bayesian
Optimization using the Graph Cartesian Product. Advances in Neural Information Processing
Systems (NeurIPS), 32, 2019.

[57] Steve O’Hagan, Warwick B Dunn, Marie Brown, Joshua D Knowles, and Douglas B
Kell. Closed-loop, multiobjective optimization of analytical instrumentation: gas
chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and
of yeast fermentations. Analytical Chemistry, 77(1):290–303, 2005.

[58] Tom Packebusch and Stephan Mertens. Low autocorrelation binary sequences. Journal of
Physics A: Mathematical and Theoretical, 49(16):165001, 2016.

[59] Daniel Packwood. Bayesian Optimization for Materials Science. Springer, 2017.

[60] Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the Scope as You Learn:
Adaptive Bayesian Optimization in Nested Subspaces. In Advances in Neural Information
Processing Systems (NeurIPS), volume 35, 2022.

[61] Matthias Poloczek and David P Williamson. An experimental evaluation of fast approximation
algorithms for the maximum satisfiability problem. Journal of Experimental Algorithmics
(JEA), 22:1–18, 2017.

[62] Matthias Poloczek, Jialei Wang, and Peter Frazier. Multi-information source optimization.
Advances in neural information processing systems, 30, 2017.

[63] Warren B Powell. A unified framework for stochastic optimization. European Journal of
Operational Research, 275(3):795–821, 2019.

[64] Akshara Rai, Rika Antonova, Seungmoon Song, William Martin, Hartmut Geyer, and Christo-
pher Atkeson. Bayesian optimization using domain knowledge on the ATRIAS biped. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 1771–1778, 2018.

[65] Rommel G Regis and Christine A Shoemaker. Combining radial basis function surrogates and
dynamic coordinate search in high-dimensional expensive black-box optimization. Engineer-
ing Optimization, 45(5):529–555, 2013.

14

[66] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

[67] Binxin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, and Stephen Roberts. Bayesian
optimisation over multiple continuous and categorical inputs. In International Conference on
Machine Learning, pages 8276–8285. PMLR, 2020.

[68] Artur M Schweidtmann, Adam D Clayton, Nicholas Holmes, Eric Bradford, Richard A Bourne,
and Alexei A Lapkin. Machine learning meets continuous flow chemistry: Automated opti-
mization towards the Pareto front of multiple objectives. Chemical Engineering Journal, 352:
277–282, 2018.

[69] Kenan Šehić, Alexandre Gramfort, Joseph Salmon, and Luigi Nardi. LassoBench: A High-
Dimensional Hyperparameter Optimization Benchmark Suite for Lasso. In First Conference
on Automated Machine Learning (Main Track), 2022.

[70] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104
(1):148–175, 2015.

[71] Benjamin J Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I Martinez
Alvarado, Jacob M Janey, Ryan P Adams, and Abigail G Doyle. Bayesian reaction optimiza-
tion as a tool for chemical synthesis. Nature, 590(7844):89–96, 2021.

[72] Alex J Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and
computing, 14:199–222, 2004.

[73] Francisco J. Solis and Roger J-B. Wets. Minimization by Random Search Techniques. Mathe-
matics of Operations Research, 6(1):19–30, 1981.

[74] Lei Song, Ke Xue, Xiaobin Huang, and Chao Qian. Monte Carlo Tree Search based Vari-
able Selection for High Dimensional Bayesian Optimization. Advances in Neural Information
Processing Systems (NeurIPS), 35, 2022.

[75] Artur Souza, Leonardo B Oliveira, Sabine Hollatz, Matt Feldman, Kunle Olukotun, James M
Holton, Aina E Cohen, and Luigi Nardi. DeepFreak: Learning crystallography diffraction
patterns with automated machine learning. arXiv preprint arXiv:1904.11834, 2019.

[76] Hampus Gummesson Svensson, Esben Jannik Bjerrum, Christian Tyrchan, Ola Engkvist, and
Morteza Haghir Chehreghani. Autonomous drug design with multi-armed bandits. In 2022
IEEE International Conference on Big Data (Big Data), pages 5584–5592. IEEE, 2022.

[77] Alexander Thebelt, Calvin Tsay, Robert Lee, Nathan Sudermann-Merx, David Walz, Behrang
Shafei, and Ruth Misener. Tree ensemble kernels for Bayesian optimization with known con-
straints over mixed-feature spaces. Advances in Neural Information Processing Systems, 35:
37401–37415, 2022.

[78] Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and Koji Tsuda.
COMBO: An efficient Bayesian optimization library for materials science. Materials Discov-
ery, 4:18–21, 2016.

[79] Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and Michael A. Osborne. Think
Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed
Search Spaces. In Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 10663–10674. PMLR, 18–
24 Jul 2021.

[80] Jialei Wang, Scott C Clark, Eric Liu, and Peter I Frazier. Parallel Bayesian global optimization
of expensive functions. Operations Research, 68(6):1850–1865, 2020.

[81] Ke Wang and Alexander W Dowling. Bayesian optimization for chemical products and func-
tional materials. Current Opinion in Chemical Engineering, 36:100728, 2022.

15

[82] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning Search Space Partition for
Black-box Optimization using Monte Carlo Tree Search. Advances in Neural Information
Processing Systems (NeurIPS), 33:19511–19522, 2020.

[83] Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent Advances in Bayesian
Optimization. ACM Comput. Surv., 2023.

[84] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando de Feitas. Bayesian
Optimization in a Billion Dimensions via Random Embeddings. Journal of Artificial Intelli-
gence Research (JAIR), 55:361–387, 2016.

[85] Christopher K Williams and Carl Edward Rasmussen. Gaussian processes for machine learn-
ing, volume 2. MIT press Cambridge, MA, 2006.

[86] James T Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The reparame-
terization trick for acquisition functions. NeurIPS Workshop on Bayesian Optimization, 2017.

[87] David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

[88] Juliusz Krzysztof Ziomek and Haitham Bou Ammar. Are Random Decompositions all we
need in High Dimensional Bayesian Optimisation? In International Conference on Machine
Learning, pages 43347–43368. PMLR, 2023.

16

A Consistency of Bounce

In this section, we prove the consistency of the Bounce algorithm. The proof is based on Papenmeier
et al. [60] and Eriksson and Poloczek [24].

Theorem 1 (Bounce consistency). With the following definitions

Def. 1. (xk)
∞
k=1 is a sequence of points of decreasing function values;

Def. 2. x∗ ∈ argminx∈X is a minimizer of f in X ;

and under the following assumptions:

Ass. 1. D is finite;
Ass. 2. f is observed without noise;
Ass. 3. The range of f is bounded in X , i.e., ∃C ∈ R++ s.t. |f(x)| < C ∀x ∈ X ;
Ass. 4. For at least one of the minimizers x∗

i the (partial) assignment corresponding to the continu-
ous variables lies in a (continuous) region with positive measure;

Ass. 5. One Bounce reached the input dimensionality D, the continuous elements of the initial
points {xconti}

ninit
n=1 after each TR restart are chosen

(a) uniformly at random for continuous variables; and
(b) such that every realization of the combinatorial variables has positive probability;

then the Bounce algorithm finds a global optimum with probability 1, as the number of samples N
goes to∞.

Proof. The range of f is bounded per Assumption 3, and Bounce only considers a function evalua-
tion a ‘success’ if the improvement over the current best solution exceeds a certain constant thresh-
old. Bounce can only have a finite number of ‘successful’ evaluations because the range of f is
bounded per Assumption 3. For the sake of a contradiction, we suppose that Bounce does not obtain
an optimal solution as its number of function evaluations N →∞. Thus, there must be a sequence
of failures, such that the TRs in the current target space, i.e., the current subspace, will eventually
reach its minimum base length. Recall that in such an event, Bounce increases the target dimension
by splitting up the ‘bins’, thus creating a subspace of (b + 1)-times higher dimensionality. Then
Bounce creates a new TR that again experiences a sequence of failures that lead to another split, and
so on. This series of events repeats until the embedded subspace eventually equals the input space
and thus has dimensionality D. See lines 12− 16 in Algorithm 1 in Sect. 3.

Still supposing that Bounce does not find an optimum in the input space, there must be a sequence
of failures such that the side length of the TR again falls below the set minimum base length, now
forcing a restart of Bounce. Recall that at every restart, Bounce samples a fresh set of initial points
uniformly at random from the input space; see line 18 in Algorithm 1. Therefore, with probability 1,
a random sample will eventually be drawn from any subset Y ⊆ X with positive Lebesgue measure
(ν(Y) > 0):

1− lim
k→∞

(1− µ(Y))k = 1, (1)

where µ is the uniform probability measure of the sampling distribution that Bounce employs for
initial data points upon restart [73].

Let
α = inf {t : ν [x ∈ X | f(x) < t] > 0}

denote the essential infimum of f on X with ν being the Lebesgue measure [73].

Following Solis and Wets [73], we define the optimality region, i.e., the set of points whose function
value is larger by at most ε than the essential infimum:

Rε,M = {x ∈ X | f(x) < α+ ε}

with ε > 0 and M < 0. Because of Ass. 4, at least one optimal point lies in a region of positive
measure that is continuous for the continuous variables. Therefore, we have that α = f(x∗). Note
that this is also the case if the domain of f only consists of combinatorial variables (Ass. 5). Then,
Rε,M = {x ∈ X | f(x) < f(x∗) + ε}.

17

0 100 200
Iteration

10 1

100

Ob
je

ct
iv

e
va

lu
e

53D-Ackley53

0 100 200
Iteration

53D-Ackley53 (publ.)

Bounce
BODi
Random Search
Casmopolitan
RDUCB
SMAC

Figure 8: Bounce the other algorithms on the synthetic Ackley53 benchmark function. Bounce
outperforms all other algorithms and quickly finds excellent solutions. BODi’s performance degrades
upon randomization.

Let (x⋆
k)

∞
k=1 denote the sequence of best points that Bounce discovers with x⋆

k being the best point
up to iteration k. This sequence satisfies Def. 1 by construction. Note that x⋆

k ∈ Rε,M implies that
x⋆
k′ ∈ Rε,M for all k′ ≥ k + 1 [73] because observations are noise-free. Then,

P [x⋆
k ∈ Rε,M] = 1− P [x⋆

k ∈ X \Rε,M]

≥ 1− (1− µ(Rε,M))
k
,

and,

1 ≥ lim
k→∞

P [x⋆
k ∈ Rε,M] ≥ 1− lim

k→∞
(1− µ(Rε,M))

k︸ ︷︷ ︸
=1, Eq. (1)

= 1,

i.e., x⋆
k eventually falls into the optimality region [73]. By letting ε→ 0, x⋆

k converges to the global
optimum with probability 1 as k →∞.

B Additional experiments
We compare Bounce to the other algorithms on three additional benchmark problems: Ackley53
and MaxSAT60 [21]. Moreover, we run two additional studies to investigate the performance of
Bounce further. First, we run Bounce on a set of continuous problems from Papenmeier et al. [60]
to showcase the performance and scalability of Bounce on purely continuous problems. We then
present a “low-sequency” version of Bounce to showcase how such a version can outperform its
competitors on the original benchmarks by introducing a bias towards low-sequency solutions.

B.1 Bounce and other algorithms on additional benchmarks
B.1.1 The synthetic Ackley53 benchmark function
Ackley53 is a 53-dimensional function with 50 binary and three continuous variables. Wan et al.
[79] discretized 50 continuous variables of the original Ackley function, requiring these variables to
be either zero or one. This benchmark was designed such that the optimal value of 0.0 is at the ori-
gin x = (0, . . . , 0). Here, we perturb the optimal assignment of combinatorial variables by flipping
each binary variable with probability 1/2. Figure 8 summarizes the performances of the algorithms.
Bounce outperforms all other algorithms and proves to be robust to the location of the optimum
point. Casmopolitan is a distanced runner-up. BODi initially outperforms Casmopolitan on the
published benchmark version but falls behind later.

B.1.2 Contamination control
The Contamination benchmark models a supply chain with 25 stages [39]. At each stage, a binary
decision is made whether to quarantine food that has not yet been contaminated. Each such inter-
vention is costly, and the goal is to minimize the number of contaminated products and prevention
cost [6, 56]. Figure 9 shows the performances of the algorithms.

Bounce, Casmopolitan, and BODi all produce solutions of comparable objective value. Bounce
and Casmopolitan find better solutions than BODi initially, but after about 100 function evaluations,
the solutions obtained by the three algorithms are typically on par.

18

0 100 200
Iteration

21.50

21.75

22.00

22.25

22.50

Ob
je

ct
iv

e
va

lu
e

25D-Contamination

0 100 200
Iteration

25D-Contamination (publ.)

Bounce
BODi
Random Search
Casmopolitan
RDUCB
SMAC

Figure 9: Bounce and the other algorithms on the 25-dimensional contamination problem. Bounce
performs on par with Casmopolitan and BODi on both versions of the benchmark.

0 100 200
Iteration

200

150

100

50

Ob
je

ct
iv

e
va

lu
e

60D-MaxSAT60

0 100 200
Iteration

60D-MaxSAT60 (publ.)
Bounce
BODi
Random Search
Casmopolitan
COMBO
RDUCB
SMAC

Figure 10: Bounce and other algorithms on the 60-dimensional weighted maximum satisfiability
problem. Bounce is the first to find an optimal solution (left). On the published version (right),
Bounce comes in second after BODi.

B.1.3 The MaxSAT60 benchmark

MaxSAT60 is a 60-dimensional, weighted instance of the Maximum Satisfiability (MaxSAT) prob-
lem. MaxSAT is a notoriously hard combinatorial problem that cannot be solved in polynomial time
(unless P = NP). The goal is to find a binary assignment to the variables that satisfies clauses of max-
imum total weight. For every i in {1, 2, . . . , d}, this benchmark has one clause of the form xi with a
weight of 1 and 638 clauses of the form ¬xi ∨ ¬xj with a weight of 61. Following [21, 56, 79], we
normalize these weights to have zero mean and unit standard deviation. This normalization causes
the one-variable clauses to have a negative weight, i.e., the function value improves if such a clause is
not satisfied, which is atypical behavior for a MaxSAT problem. Since the clauses with two variables
are satisfied for xi = xj = 0 and the clauses with one variable of negative weights are never satis-
fied for xi = 0, the normalized benchmark version has a global optimum at x∗ = (0, . . . , 0) by con-
struction. The problem’s difficulty is finding an assignment for variables such that all two-variable
clauses are satisfied and as many one-variable clauses as possible are not captured by normalized
weights.

Figure 10 summarizes the performances of the algorithms. The general version that attains the global
optimum for a randomly selected binary assignment is shown on the left. The special case where
the global optimum is set to the all-zero assignment is shown on the right.

We observe that Bounce requires the smallest number of samples to find an optimal assignment in
general, followed by BODi and Casmopolitan. Only in the special case where the optimum is the
all-zero assignment, BODi ranks first, confirming the corresponding result in Deshwal et al. [21].

19

C An evaluation of Bounce on continuous problems

0

100

101

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t

500D-Branin2

220

240

260

280

300
124D-Mopta08

0

100

500D-Hartmann6

0 200 400
batch evaluations

0.05

0.10

0.15

0.20

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t

388D-SVM

0 200 400
batch evaluations

0.285

0.290

0.295

0.300

0.305

0.310
180D-LassoDNA

0 200 400
batch evaluations

2

4

6

8

10
1000D-LassoHard

BAxUS, b=1
Bounce, b=1
Bounce, b=3
Bounce, b=10
Bounce, b=20

Figure 11: Bounce on continuous problems with different batch sizes (plotted in terms of batch
evaluations).

0 1000 2000
0

100

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t 500D-Branin2

0 1000 2000
220

240

260

280

300
124D-Mopta08

0 1000 2000
0

100 500D-Hartmann6

0 1000 2000
function evaluations

0.05

0.10

0.15

0.20

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t 388D-SVM

0 1000 2000
function evaluations

0.29

0.30

0.31
180D-LassoDNA

0 1000 2000
function evaluations

2

4

6

8

10
1000D-LassoHard

Bounce, b=1
Bounce, b=3
Bounce, b=10
Bounce, b=20

Figure 12: Bounce on continuous problems with different batch sizes (plotted in terms of function
evaluations).

To showcase the performance and scalability of Bounce, we run it on a set of continuous problems
from Papenmeier et al. [60]. The 124-dimensional Mopta08 benchmark is a constrained vehicle
optimization problem. We adopt the soft-constrained version from Eriksson and Jankowiak [23].
The 388-dimensional SVM problem [23] concerns the classification performance with an SVR on the
slice localization dataset. The 180-dimensional LassoDNA benchmark [69] is a sparse regression
problem on a real-world dataset, and the 1000-dimensional LassoHard benchmark optimizes over
a synthetic dataset. The 500-dimensional Branin2 and Hartmann6 problems are versions of the 2-
and 6-dimensional benchmark problems where additional dimensions with no effect on the function
value were added.

We set the number of function evaluations to max(2000, 500B) for a batch size of B and configure
Bounce such that it reaches the input dimensionality after 500 function evaluations. Figures 11
and 12 show the simple regret for the synthetic Branin2 and Hartmann6 problems, and the best
function value obtained after a given number of batch (Figure 11) or function (Figure 12) evaluations
for the remaining problems: Mopta08, SVM, LassoDNA, and LassoHard.

We observe that Bounce always benefits from more parallel function evaluations. The difference
between smaller batch sizes, such as B = 1 and B = 3 or B = 3 and B = 10, is more remarkable
than between larger batch sizes, like B = 10 and B = 20. Parallel function evaluations prove

20

especially effective on SVM and LassoDNA. Here, the optimization performance improves drastically.
We conclude that a small number of parallel function evaluations already helps to considerably
increase the optimization performance.

On the synthetic Branin2 and Hartmann6 problems, Bounce quickly converges to the global opti-
mum. Here, we see that a larger number of parallel function evaluations also helps in converging to
a better solution.

In Figure 11, we also compare to BAxUS by Papenmeier et al. [60], which does not support parallel
function evaluations and is therefore run with a batch size of 1. We observe that Bounce with a
batch size of 1 outperforms BAxUS on all benchmarks except for Hartmann6, showcasing Bounce’s
overall performance improvements even for continuous problems and single-element batches.

D Batched evaluations on mixed and combinatorial problems
In addition to Figure 6, which shows the best objective value in relation to the number of batches,
Figure 13 shows the objective value in terms of function evaluations.

0 1000 2000
12

14

16

18

Ob
je

ct
iv

e
va

lu
e

25D-PestControl

0 1000 2000
200

150

100

50

60D-MaxSAT60

0 1000 2000
21.5

22.0

22.5

23.0

25D-Contamination

0 1000 2000
function evaluations

2 × 10 1

3 × 10 1

4 × 10 1

Ob
je

ct
iv

e
va

lu
e

53D-SVM

0 1000 2000
function evaluations

0

1

2

53D-Ackley53

0 1000 2000
function evaluations

4

3

2

1
50D-LABS

Bounce, b=1
Bounce, b=3
Bounce, b=5
Bounce, b=10
Bounce, b=20

Figure 13: Bounce on mixed and combinatorial problems with different batch sizes (plotted in terms
of function evaluations).

The figure confirms that Bounce leverages parallel function values efficiently.

E Low-sequency version of Bounce
We show how we can bias Bounce towards low-sequency solutions. A binary vector has low se-
quency if there are few changes from 0 to 1 or vice versa. Similarly, a solution to a categorical
or ordinal problem has low sequency if there are few changes from one category or level to an-
other. We remove the random signs (for binary and continuous variables) and the random offsets
(for categorical and ordinal variables) from the Bounce embedding. We conduct this study to show
a) that Bounce can outperform BODi on the unmodified versions of the benchmark problems if we
introduce a similar bias towards low-sequency solutions and b) that the random signs empirically
show to remove biases towards low-sequency solutions. However, we want to emphasize that the
results of this section are not representative of the performance of Bounce on arbitrary real-world
problems. Nevertheless, if one knows that the problem has a low-sequency structure, then Bounce
can be configured to exploit this structure and outperform BODi.

Figure 14 shows the results of the low-sequency version of Bounce on the original benchmarks from
Section 4. We observe that Bounce outperforms BODi and the other algorithms on the unmodified
versions of the benchmark problems. This shows that Bounce can outperform BODi on the unmodi-
fied version of the benchmarks if we introduce a similar bias towards low-sequency solutions.

Figure 15 shows the results of the low-sequency version of Bounce on the flipped benchmarks from
Section 4. The low-sequency version of Bounce is robust towards the randomization of the optimal
point.

21

0 100 200

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Ob
je

ct
iv

e
va

lu
e

53D-SVM

0 100 200
10 1

100

53D-Ackley53

0 100 200
200

100

0

60D-MaxSAT60

0 100 200
Iteration

12

14

16

18
Ob

je
ct

iv
e

va
lu

e
25D-PestControl

0 100 200
Iteration

21.5

22.0

22.5

23.0

23.5
25D-Contamination

0 100 200
Iteration

4

3

2

1

50D-LABS

Bounce
BODi
Casmopolitan
COMBO

Figure 14: ‘Low-sequency’ version of Bounce on the original benchmarks from Section 4: with
a bias towards low-sequency solutions, Bounce outperforms BODi on the original versions of the
benchmark problems.

0 100 200

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Ob
je

ct
iv

e
va

lu
e

53D-SVM

0 100 200

10 1

100

53D-Ackley53

0 100 200
200

150

100

50
60D-MaxSAT60

0 100 200
Iteration

12

14

16

18

Ob
je

ct
iv

e
va

lu
e

25D-PestControl

0 100 200
Iteration

21.5

22.0

22.5

23.0

23.5
25D-Contamination

0 100 200
Iteration

4

3

2

1
50D-LABS

Bounce
BODi
Casmopolitan
COMBO

Figure 15: “Low-sequency” version of Bounce on the modified benchmarks from Section 4.

F Effect of trust-region management
Bounce uses a novel trust-region management that differs from previous approaches in that it al-
lows arbitrary trust region base lengths in [Lmin, Lmax]. This strategy allows Bounce to efficiently
leverage parallel function evaluations, which we refer to as batch acquisition.

We compare Bounce’s trust-region management strategy with the strategy employed by BAxUS [60]
for purely continuous benchmarks and an adapted version of Casmopolitan’s [79] strategy for
mixed or discrete-space benchmarks. For the latter, the difference is that in Bounce we reduce the
failure tolerance as described by Papenmeier et al. [60]: We first calculate the number of times the
TR base length needs to be reduced to reach the minimum TR base length as k =

⌊
log1.5−1

Lmin
Linit

⌋
,

and then find the failure tolerance for the i-th target space by τ ifail = max
(
1,min

(⌊
ms

i

k

⌋))
, where

ms
i is the budget for the i-th target space [60]. This change in regard to Casmopolitan is necessary

because Casmopolitan’s failure tolerance of 40 [79] would cause the algorithm to spend a large
part of the evaluation budget in initial target spaces of low dimensionality.

We show the effect of this strategy on discrete and mixed-space benchmarks in Figure 16. Figure 17
shows the effect on continuous benchmarks. All experiments are replicated 50 times. We observe
that the proposed trust-region management method not only enables efficient batch parallelism but
also improves the performance for single-function evaluations when compared to the respective
baseline for the TR management that we stated above. The TR management proposed here usually

22

12

14

16

18

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t

25D-PestControl

200

150

100

50

60D-MaxSAT60

21.5

22.0

22.5

23.0

25D-Contamination

0 100 200
batch evaluations

1.6 × 10 1

1.8 × 10 1

2 × 10 1
2.2 × 10 1
2.4 × 10 1
2.6 × 10 1
2.8 × 10 1

3 × 10 1
Ob

je
ct

iv
e

va
lu

e
/ R

eg
re

t
53D-SVM

0 100 200
batch evaluations

0

1

2

53D-Ackley53

0 100 200
batch evaluations

4

3

2

1
50D-LABS

Bounce, b=1
Bounce, b=3
Bounce, b=5
Bounce, b=10
Bounce, b=20

prev. TR method

Figure 16: Effect of the proposed trust region management on the discrete and mixed benchmarks.
Here, the baseline is the TR management of Casmopolitan. We see that often, even large batch
sizes for the old TR management strategy do not outperform the proposed new strategy with a batch
size of 1.

0

100

101

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t

500D-Branin2

225

250

275

300

325

124D-Mopta08

0

100

500D-Hartmann6

0 200 400
batch evaluations

0.05

0.10

0.15

0.20

0.25

Ob
je

ct
iv

e
va

lu
e

/ R
eg

re
t

388D-SVM

0 200 400
batch evaluations

0.29

0.30

0.31

0.32
180D-LassoDNA

0 200 400
batch evaluations

0.0
2.5
5.0
7.5

10.0
12.5
15.0

1000D-LassoHard

Bounce, b=1
Bounce, b=3
Bounce, b=10
Bounce, b=20

prev. TR method

Figure 17: Effect of the proposed trust-region management on the continuous benchmarks. Here,
the baseline is the TR management of BAxUS. We observe that larger batches help to improve per-
formance for both methods. The new strategy, however, outperforms the baseline in almost all cases
with the exception of LassoDNA with a batch size of 3.

provides better solutions at the same number of batches than the respective baseline TR management.
There are a few exceptions. On Labs, the previous TR management strategy outperforms Bounce’s
strategy by a small margin for batch sizes 5, 10, and 20, and on Ackley53, the previous strategy
converges to a better solution for a batch size of three, five, and ten.

On the continuous benchmarks (Figure 17), we observe that the new TR management strategy also
improves the performance for single function evaluations with the exception of Branin2. Similar to
the mixed and combinatorial-space benchmarks, large batch sizes (10 and 20) bring little advantage
compared to a batch size of 5. For Hartmann6, the previous strategy with a batch size of 20 performs
worse than 3.

G Implementation details

We implement Bounce in Python using the BoTorch [5] and GPyTorch [29] libraries.

We employ a Γ(1.5, 0.1) prior on the lengthscales of both kernels and a Γ(1.5, 0.5) prior on the
signal variance. We further use a Γ(1.1, 0.1) prior on the noise variance.

23

Motivated by Wan et al. [79] and Eriksson et al. [25], we use an initial trust region baselength of 40
for the combinatorial variables, and 0.8 for the continuous variables. We maintain two separate TR
shrinkage and expansion parameters (γcmb and γcnt) for the combinatorial and continuous variables,
respectively such that each TR base length reaches its respective minimum of 1 and 2−7 after a
given number of function evaluations. When Bounce finds a better or worse solution, we increase
or decrease both TR base lengths.

We use the author’s implementations for COMBO2, BODi3, RDUCB4, SMAC5, and Casmopolitan6. We
use the same settings as the authors for COMBO, RDUCB, SMAC, and BODi. For Casmopolitan, we use
the same settings as the authors for benchmarks reported in Wan et al. [79] and set the initial trust
region base length to 40 otherwise.

Due to its high-memory footprint, we ran BODi on NVidia A100 80GB GPUs for 300 GPU/h. We
ran Bounce on NVidia A40 GPUs for 2,000 GPU/h. We ran the remaining methods for 20,000
GPU/h on one core of Intel Xeon Gold 6130 CPUs with 60GB of memory.

G.1 Optimization of the acquisition function
We use different strategies to optimize the acquisition function depending on the type of variables
present in a problem.

Continuous problems. For purely continuous problems, we follow a similar approach as
TuRBO [25]. In particular, we use the lengthscales of the GP posterior to shape the TR. We use
gradient descent to optimize the acquisition function within the TR bounds with 10 random restarts
and 512 raw samples. For a batch size of 1, we use analytical EI. For larger batch sizes, we use the
BoTorch implementation of qEI [5, 66, 86].

Binary problems. Similar to Wan et al. [79], we use discrete TRs centered on the current best
solution. A discrete TR describes all solutions with a certain Hamming distance to the current best
solution.

We use a local search approach to optimize the acquisition function for all problems with a combina-
torial search space of only binary variables: When starting the optimization, we first create a set of
min(5000,max(2000, 200 · di)) random solutions. The choice of the number of random solutions
is based on TuRBO [25]. For each candidate, we first draw Li indices uniformly at random from
{1, . . . , di} without replacement, where Li is the TR length at the i-th iteration. We then sample di
values in {0, 1} and set the candidate at the sampled indices to the sampled values. All other values
are set to the values of the current best solution. Note that this construction ensures that each can-
didate solution lies in the TR bounds of the current best solution. We add all neighbors (i.e., points
with a Hamming distance of 1) of the current best solution to the set of candidates. This is inspired
by BODi [21]. We find the 20 candidates with the highest acquisition function value and use local
search to optimize the acquisition function within the TR bounds: At each local search step, we
create all direct neighbors that do not coincide with the current best solution or would violate the TR
bounds. We then move the current best solution to the neighbor with the highest acquisition function
value. We repeat this process until the acquisition function value does not increase anymore. Finally,
we return the best solution found during local search.

Categorical problems. We adopt the approach for binary problems, i.e., we first create a set of
random solutions with the same size as for purely binary problems and start the local search on the
20 best initial candidates.

Suppose the number of categorical variables of the problem is smaller or equal to the current TR
length. In that case, we sample, for each candidate and each categorical variable, an index uniformly
at random from {1, 2, . . . , |vi|} where |vi| is the number of values of the i-th categorical variable.
We then set the candidate at the sampled index to 1 and all other values to 0.

2https://github.com/QUVA-Lab/combo, unspecified license, last access: 2023-05-04
3https://github.com/aryandeshwal/bodi, no license provided, last access: 2023-05-04
4https://github.com/huawei-noah/HEBO/tree/master/RDUCB, MIT license, last access: 2023-10-

20
5https://github.com/automl/pysmac, AGPL-3.0 license, last access 2023-10-20
6https://github.com/xingchenwan/casmo, MIT license, last access: 2023-05-04

24

https://github.com/QUVA-Lab/combo
https://github.com/aryandeshwal/bodi
https://github.com/huawei-noah/HEBO/tree/master/RDUCB
https://github.com/automl/pysmac
https://github.com/xingchenwan/casmo

If the number of categorical variables of the problem is larger than the current TR length Li, we
first sample Li categorical variables uniformly at random from [di] without replacement. For each
initial candidate and each sampled categorical variable, we sample an index uniformly at random,
for which we set the categorical variable to 1 and all other values to 0. The values for the variables
that were not sampled are set to the values of the current best solution.

As for the binary case, we add all neighbors of the current best solution to the set of candidates, and
we sample the 20 candidates with the highest acquisition function value.

We then use multi-start local search to optimize the acquisition function within the TR bounds while
neighbors are created by changing the index of one categorical variable. Again, we repeat until
convergence and return the best solution found during the local search.

Ordinal problems. The construction for ordinal problems is similar to the one for categorical
problems.

Suppose the number of ordinal variables of the problem is smaller or equal to the current TR length.
In that case, we sample an ordinal value uniformly at random to set the ordinal variable for each
candidate and each ordinal variable. Otherwise, we choose as many ordinal variables as each candi-
date’s current TR length and sample an ordinal value uniformly at random to set the ordinal variable.
We add all neighbors of the current best solution, all solutions where the distance to the current best
solution is 1 for one ordinal variable, to the set of candidates. We then sample the 20 candidates
with the highest acquisition function value and use local search to optimize the acquisition function
within the TR bounds. In the local search, we increment or decrement the value of a single ordinal
variable.

Mixed problems. Mixed problems are effectively handled by treating every variable type sepa-
rately. Again, we create a set of initial random solutions where the values for the different variable
types are sampled according to the abovementioned approaches. This can lead to solutions outside
the TR bounds. We remove these solutions and find the 20 best candidates only across the solutions
within the TR bounds.

When optimizing the acquisition function, we differentiate between continuous and combinatorial
variables. We optimize the continuous variables by gradient descent with the same settings as purely
continuous problems. When optimizing, we fix the values for the combinatorial values.

We use local search to optimize the acquisition function for the combinatorial variables. In this step,
we fix the values for the continuous variables and only optimize the combinatorial variables. We
create the neighbors by creating neighbors within Hamming distance of 1 for each combinatorial
variable type and then combining these neighbors. Again, we run a local search until convergence.

We do five interleaved steps, starting with the continuous variables and ending with the combinatorial
variables.

G.2 Kernel choice
We use the CoCaBo kernel [67] with one global lengthscale for the combinatorial and ARD for the
continuous variables:

k(x,x′) = σ2
f (ρkcmb(xcmb,x

′
cmb)kcnt(xcnt,x

′
cnt)

+ (1− ρ)(kcmb(xcmb,x
′
cmb) + kcnt(xcnt,x

′
cnt)))

kcmb(xcmb,x
′
cmb) =

(
1 +

√
5rcmb

ℓcmb
+

5r2cmb

3ℓ2cmb

)
exp

(
−
√
5rcmb

ℓcmb

)
rcmb = ∥xcmb − x′

cmb∥

kcnt(xcnt,x
′
cnt) =

(
1 +
√
5rcnt + 5r2cnt

)
exp

(
−
√
5rcnt

)
rcnt =

√√√√ ∑
i∈[d]; di continuous

(xi − x′
i)

2

ℓ2cnt,i

where xcnt and xcmb are the continuous and combinatorial variables in x, respectively, i.e.,

xcmb = (xi : di is combinatorial)

25

xcnt = (xi : di is continuous)

and ρ ∈ [0, 1] is a tradeoff parameter learned jointly with the other hyperparameters during the
likelihood maximization. Here, ℓcmb and ℓcnt,i are the lengthscale hyperparameters.

H Additional analysis of BODi and COMBO
H.1 Analysis of BODi
Binary problems. BODi by Deshwal et al. [21] uses a dictionary of anchor points A =
(a1, . . . ,am) to encode a candidate point z. In particular, the i-th entry of the m-dimensional
embedding ϕA(z) is obtained by computing the Hamming-distance between z and ai. Notably,
Deshwal et al. [21] choose the dimensionality of the embedding m as 128, which is larger than the
dimensionality of the objective functions themselves.

The sampling procedure for dictionary elements ai is chosen to yield a wide range of sequencies.
The sequency of a binary string is defined as the number of times the string changes from 0 to 1
and vice versa. Deshwal et al. [21] propose two approaches to generate the dictionary elements: (i)
using binary wavelets, and (ii) by first drawing a Bernoulli parameter θi ∼ U(0, 1) for each i ∈ [m]
and then drawing a binary string ai from the distribution B(θi). The latter approach is their default
method.

We prove that BODi generates an all-zeros (or, by a similar symmetry argument, all-ones) representer
point with a probability that is significantly higher than 2−D. Moreover, we claim without proof that
a similarly increased probability holds for points with low Hamming distance to all-zeros or all-ones.
This is consistent with the intention of BODi to sample points of diverse sequency and not necessarily
an issue.

However, we claim without proof that having such points in the dictionary substantially increases the
probability that BODi evaluates the all-zeros (and, by symmetry, the all-ones) points. That hypothesis
is consistent with our observation in Section 4.6 that BODi has a much higher chance of finding good
or optimal solutions when they are near the all-zero point.

Deshwal et al. [21] choose the dictionary to have m = 128 dictionary elements. Given a Bernoulli
parameter θi, the probability that the i-th dictionary point ai is a point of sequency zero is given by
θDi + (1− θi)

D:

P(“zero sequency” | θi) =
m∏
i=1

θDi + (1− θi)
D

Then, since θi follows a uniform distribution, the overall probability for a point of zero sequency is
given by

P(“zero sequency”) = 1−
m∏
i=1

∫ 1

0

(
1− θDi − (1− θi)

D
)
p(θi)︸ ︷︷ ︸
=1

dθi

︸ ︷︷ ︸
prob. of m times not zero sequency

= 1−
m∏
i=1

(
θi −

θD+1
i

D + 1
+

(1− θi)
D+1

D + 1

)∣∣∣∣∣
θi=1

= 1−
(
1− 2

D + 1

)m

,

i.e., the probability of at least one dictionary element being of sequency zero is 1 −
(
1− 2

D+1

)m
.

The probability of BODi’s dictionary to contain a zero-sequency point increases with the number of
dictionary elements m and decreases with the function dimensionality D (see Figure 18).

For instance, for the 60-dimensional MaxSAT60 benchmark, the probability that at least one dictio-

nary element is of sequency zero is 1−
(
1− 2

60+1

)128
≈ 0.986 (see Figure 18).

Note that at least one point z∗ has a probability of ≤ 1/2d to be drawn. The probability of the
dictionary containing that z∗ is less than or equal to 1 −

(
1− 1/2d

)m
which is already less than

26

Figure 18: Probabilities of BODi to contain a zero-sequency solution for different choices of the
dictionary size m and the function dimensionality D.

0.01 for d = 14 and m = 128. In Section 4, we show that randomizing the optimal point structure
leads to performance degradation for BODi. We hypothesize this is due to the reduced probability of
the dictionary containing the optimal point after randomization.

Categorical problems. We calculate the probability that BODi contains a vector in its dictionary
where all elements are the same. For categorical problems, BODi first samples a vector θ from the
τmax-simplex ∆τmax for each vector ai in the dictionary, with τmax being the maximum number of
categories across all categorical variables of a problem. We assume that all variables have the same
number of categories as is the case for the benchmarks in Deshwal et al. [21]. Let τ be the number
of categories of the variables. For each element in ai, BODi draws a value from the categorical
distribution with probabilities θ. While line 7 in Algorithm 5 in Deshwal et al. [21] might suggest
that the elements in θ are shuffled for every element in ai, we observe that θ remains fixed based
on the implementation provided by the authors7. The random resampling of elements from θ is
probably only used for benchmarks where the number of realizations differs between categorical
variables.

Then, for a fixed θ, the probability that all D elements in ai for any i are equal to some fixed value
t ∈ {1, 2, . . . , τ} is given by θdt . The probability that, for any of the m dictionary elements, all D
elements in ai are equal to some fixed value t ∈ {1, 2, . . . , τ} is given by

P(“all one specific category”) = 1−
m∏
i=1

∫
(1− θDt)p(θt)dθt. (2)

We note that θ follows a Dirichlet distribution with α = 1 [54]. Then, θt is marginally Beta(1, τ−1)-
distributed [54]. With that, Eq. (2) becomes

P(“all one specific category”) = 1−
m∏
i=1

Eθt∼Beta(1,τ−1)

[
1− θDt

]
= 1−

m∏
i=1

1− Eθt∼Beta(1,τ−1)

[
θDt
]

now, by using the equality E[xD] =
∏D−1

r=0
α+r

α+β+r for the D-th raw moment of a Beta(α, β) distri-
bution [54]

= 1−

(
1−

D−1∏
r=0

1 + r

τ + r

)m

= 1−
(
1− 1

τ
· 2

τ + 1
· . . . · D

τ +D − 1

)m

7See https://github.com/aryandeshwal/bodi/blob/aa507d34a96407b647bf808375b5e162ddf10664/
bodi/categorical_dictionary_kernel.py#L18

27

https://github.com/aryandeshwal/bodi/blob/aa507d34a96407b647bf808375b5e162ddf10664/bodi/categorical_dictionary_kernel.py#L18
https://github.com/aryandeshwal/bodi/blob/aa507d34a96407b647bf808375b5e162ddf10664/bodi/categorical_dictionary_kernel.py#L18

Figure 19: Probabilities of BODi’s dictionary to contain at least one categorical point where each
category has the same value. The probability increases with the number of dictionary elements m
but decreases with the number of categories τ and the number of problem dimensions D.

= 1−
(
1− D! τ !

(τ +D − 1)!

)m

We discussed in Section 4.3 that the PestControl benchmark obtains a good solution at x = 5.
One could assume that BODi performs well on this benchmark because its dictionary will likely
contain this point. However, we observe that the probability is effectively zero for τ = 5, m = 128,
and D = 25 (see Figure 19), which are the choices for the PestControl benchmark in Deshwal
et al. [21]. This raises the question of (i) whether our hypothesis is wrong and (ii) what the reason
for BODi’s performance degradation on the PestControl benchmark is.

We show that BODi’s reference implementation differs from the algorithmic description in an impor-
tant detail, causing BODi to be considerably more likely to sample category five on PestControl
(or the “last” category for arbitrary benchmarks) than any other category.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
number of elements set to value

0

2000

4000

6000

8000

10000

12000

Co
un

t

Category 1
Category 2
Category 3
Category 4
Category 5

Figure 20: Histograms over the number of dictionary element entries set to each category for 20,000
repetitions of the sampling of dictionary elements for the PestControl benchmark. For each of the
five categories and each value on the x-axis, the figure shows how often the number of entries in a
dictionary element equals the value on the x-axis for the given category. For example, the count for
x = 0 and category 5 is zero, indicating that all 20,000 dictionary points had at least one entry ‘5’.
There is a considerably higher chance for a dictionary element entry to be set to category five than
to any of the other categories.

Figure 20 shows five histograms over the number of dictionary elements set to each category. The
values on the x-axis give the number of elements in a 25-dimensional categorical vector being set
to a specific category. One would expect that the histograms have a similar shape regardless of the
category. However, for category 5, we see that more elements are set to this category than for the
other categories: The probability of k elements being set to category 5 is almost twice as high as the
probability of being set to another category for k ≥ 3. In contrast, the probability that no element in
the vector belongs to category 5 is virtually zero. This behavior is beneficial for the PestControl
benchmark, which obtained the best value found during our experiments for x∗ = (5, 5, . . . , 5, 1)

28

(see Section 4). While we see that the probability of each dictionary entry being set to category 5 is
very low, we assume that we sample sufficiently many dictionary elements within a small Hamming
distance to the optimizer such that BODi’s GP can use this information to find the optimizer.

The reason for oversampling of the last category lies in a rounding issue in sampling dictionary
elements. In particular, for a given dictionary element ai and a corresponding vector θ with |θ| =
τ , for each i ∈ {1, 2, . . . , τ − 1}, Deshwal et al. [21] set ⌊Dθi⌋ elements to category i. The
remaining D −

∑τ−1
i=1 ⌊Dθi⌋ elements are then set to category τ . This causes the last category to

be overrepresented in the dictionary elements. For the choices of the PestControl benchmark,
D = 25 and τ = 5, the first four categories had a probability of ≈ 0.1805. In contrast, the last
one had a probability of ≈ 0.278 for 108 simulations8. We assume that the higher probability of the
last category is the reason for the performance difference between the modified and the unmodified
version of the PestControl benchmark.

H.2 COMBO on categorical problems

On the categorical PestControl benchmark, COMBO [56] behaved similar to BODi [21]

Figure 21: The histogram shows how many element entries of a 25-dimensional dictionary element
are set to each of the five categories. There is a considerably higher chance for a dictionary element
entry to be set to category 1 or 5 than to one of the other categories.

The histogram in Figure 21 shows how many element entries of a 25-dimensional dictionary element
are set to each of the five categories. We see that the first and the last categories are over-represented
on both benchmark versions. As discussed in Section 4, this benchmark attains the best observed
value for x∗ = (5, 5, . . . , 5, 1). We observe that on the original and modified version of the bench-
mark, where the categories are shuffled, COMBO sets disproportionately many elements to categories
one and five. Note that for the modified version of the benchmark, all categories are equally likely
in the optimal solution.

We argue that this behavior is at least partially caused by implementation error in the construction
of the adjacency matrix and the Laplacian for categorical problems9. This error causes categorical
variables to be modeled like ordinal variables. According to Oh et al. [56], categorical variables are
modeled as a complete graph (see Figure 22).

8The 95% confidence intervals for categories 1–5 are (0.1799, 0.1807), (0.1802, 0.1810), (0.1803, 0.1811),
(0.1801, 0.1809), (0.2775, 0.2783). Pairwise Wilcoxon signed-rank tests between categories 1–4 and category
5 gives p values of 0 (W ≈ 4.7 · 1010 each).

9https://github.com/QUVA-Lab/COMBO/blob/9529eabb86365ce3a2ca44fff08291a09a853ca2/
COMBO/experiments/test_functions/multiple_categorical.py#L137, last access: 2023-04-26

29

https://github.com/QUVA-Lab/COMBO/blob/9529eabb86365ce3a2ca44fff08291a09a853ca2/COMBO/experiments/test_functions/multiple_categorical.py#L137
https://github.com/QUVA-Lab/COMBO/blob/9529eabb86365ce3a2ca44fff08291a09a853ca2/COMBO/experiments/test_functions/multiple_categorical.py#L137

a0

a1

a2

a3

a4

Figure 22: Following the description in the paper of Oh et al. [56], a categorical variable with five
categories is modeled as a complete graph.

Looking into the source code of COMBO, we find the adjacency matrix for the first category of a
categorical variable with five categories is constructed as

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 ,

which is the adjacency matrix for a five-vertex path graph.

30

	Introduction
	Background and related work
	The Bounce algorithm
	The subspace embedding of mixed spaces
	Maximization of the acquisition function

	Experimental evaluation
	50D Low-Autocorrelation Binary Sequences (LABS)
	Industrial Maximum Satisfiability: 125D ClusterExpansion benchmark
	25D Categorical Pest Control
	SVM – a 53D AutoML task
	Bounce's efficacy for batch acquisition
	The sensitivity of BODi and COMBO to the location of the optima

	Discussion
	Consistency of Bounce
	Additional experiments
	Bounce and other algorithms on additional benchmarks
	The synthetic Ackley53 benchmark function
	Contamination control
	The MaxSAT60 benchmark

	An evaluation of Bounce on continuous problems
	Batched evaluations on mixed and combinatorial problems
	Low-sequency version of Bounce
	Effect of trust-region management
	Implementation details
	Optimization of the acquisition function
	Kernel choice

	Additional analysis of BODi and COMBO
	Analysis of BODi
	COMBO on categorical problems

