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ABSTRACT

In this study, we delve into an emerging optimization challenge involving a black-
box objective function that can only be gauged via a ranking oracle—a situa-
tion frequently encountered in real-world scenarios, especially when the function
is evaluated by human judges. Such challenge is inspired from Reinforcement
Learning with Human Feedback (RLHF), an approach recently employed to en-
hance the performance of Large Language Models (LLMs) using human guid-
ance (Ouyang et al., 2022; Liu et al., 2023; OpenAI, 2022; Bai et al., 2022).
We introduce ZO-RankSGD, an innovative zeroth-order optimization algorithm
designed to tackle this optimization problem, accompanied by theoretical assur-
ances. Our algorithm utilizes a novel rank-based random estimator to determine
the descent direction and guarantees convergence to a stationary point. More-
over, ZO-RankSGD is readily applicable to policy optimization problems in Rein-
forcement Learning (RL), particularly when only ranking oracles for the episode
reward are available. Last but not least, we demonstrate the effectiveness of ZO-
RankSGD in a novel application: improving the quality of images generated by
a diffusion generative model with human ranking feedback. Throughout experi-
ments, we found that ZO-RankSGD can significantly enhance the detail of gen-
erated images with only a few rounds of human feedback. Overall, our work
advances the field of zeroth-order optimization by addressing the problem of op-
timizing functions with only ranking feedback, and offers a new and effective
approach for aligning Artificial Intelligence (AI) with human intentions.

1 INTRODUCTION
Ranking data is an omnipresent feature of the internet, appearing on a variety of platforms and ap-
plications, such as search engines, social media feeds, online marketplaces, and review sites. It
plays a crucial role in how we navigate and make sense of the vast amount of information avail-
able online. Moreover, ranking information has a unique appeal to humans, as it enables them to
express their personal preferences in a straightforward and intuitive way (Ouyang et al., 2022; Liu
et al., 2023; OpenAI, 2022; Bai et al., 2022). The significance of ranking data becomes even more
apparent when some objective functions are evaluated through human beings, which is becoming
increasingly common in various applications. Assigning an exact score or rating can often require a
significant amount of cognitive burden or domain knowledge, making it impractical for human eval-
uators to provide precise feedback. In contrast, a ranking-based approach can be more natural and
straightforward, allowing human evaluators to express their preferences and judgments with ease
(Keeney & Raiffa, 1993). In this context, our paper makes the first attempt to study an important
optimization problem where the objective function can only be accessed via a ranking oracle.
Problem formulation. With an objective function f : Rd → R, we focus on the optimization
problem minx∈Rd f(x), where f is a black-box function, and we can only query it via a ranking
oracle that can sort every input based on the values of f . In this work, we focus on a particular
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family of ranking oracles where only the sorted indexes of top elements are returned. Such oracles
are acknowledged to be natural for human decision-making (Keeney & Raiffa, 1993). We formally
define this kind of oracle as follows:
Definition 1 ((m, k)-ranking oracle). Given a function f : Rd → R and m points x1, ..., xm to
query, an (m, k) ranking oracle O(m,k)

f returns k smallest points sorted in their order. For example,

if O(m,k)
f (x1, ..., xm) = (i1, ..., ik), then

f(xi1) ≤ f(xi2) ≤ ... ≤ f(xik) ≤ min
j /∈{i1,...,ik}

f(xj).

Applications. The optimization problem minx∈Rd f(x) with an (m, k)-ranking oracle is a com-
mon feature in many real-world applications, especially when the objective function f is evaluated
by human judges. One prominent inspiration for this type of problem is the growing field of Rein-
forcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022; Liu et al., 2023; OpenAI,
2022; Bai et al., 2022), where human evaluators are asked to rank the outputs of large AI mod-
els according to their personal preferences, with an aim to improve the generation quality of these
models. Inspired by these works, in Section 4, we propose a similar application in which human
feedback is used to enhance the quality of images generated by Stable Diffusion (Rombach et al.,
2022), a text-to-image generative model. An overview of this application is demonstrated in Figure
1. Beyond human feedback, ranking oracles have the potential to be useful in many other applica-
tions. For instance, in cases where the exact episode reward in reinforcement learning, or the precise
values of the objective function f must remain private, ranking data may provide a more secure and
confidential option for data sharing and analysis. This is particularly relevant in sensitive domains,
such as healthcare or finance, where the exact value of personal information must be protected.

Figure 1: Application of our proposed algorithm on enhancing the quality of images generated from
Stable Diffusion with human ranking feedback. At each iteration of this human-in-the-loop opti-
mization, we use Stable Diffusion to generate multiple images by perturbing the latent embedding
with random noise, which are then ranked by humans based on their quality. After that, the ranking
information is leveraged to update the latent embedding.

1.1 RELATED WORKS

Zeroth-Order Optimization. Zeroth-order optimization has been rigorously explored in the opti-
mization literature over several decades (Nelder & Mead, 1965; Frazier, 2018; Golovin et al., 2019;
Nesterov & Spokoiny, 2017). Despite this, most existing works make a significant assumption
that the value of the objective function is directly accessible—an assumption ill-suited for our con-
text, where only ranking data of the function value is available. Existing heuristic algorithms like
CMA-ES (Loshchilov & Hutter, 2016), which exclusively rely on ranking information, often lack
theoretical guarantees and may underperform in real-world scenarios. A notable exception is the
recent study by (Cai et al., 2022), which investigates a setting where a pairwise comparison oracle
of the objective function is available. This comparison oracle is indeed a (2, 1)-ranking oracle, mak-
ing it a special case within our work’s scope. (Cai et al., 2022) attempts to uncover the gradient of
the objective function using the 1-bit compressive sensing method. Beyond (Cai et al., 2022), (Yue
& Joachims, 2009; Ding & Zhou, 2018; Kumagai, 2017) also study the use of comparison oracle,
but in the context of online bandit optimization. One major problem in all these existing works on
comparison oracles is that the underlying objective is confined to be convex/strongly-convex, which
is particularly unrealistic in some applications involving human preference. Our work, in contrast,
contemplates a more general (m, k)-ranking oracle and focuses primarily on non-convex functions.
Rather than relying on compressive sensing techniques, our work introduces a novel theoretical
analysis capable of characterizing the expected convergence behavior of our proposed algorithm.
Bayesian Optimization with Comparison Oracles. Another relevant topic is Bayesian optimiza-
tion using pairwise comparison oracles, as demonstrated in (Astudillo & Frazier, 2020) and (Lin
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et al., 2022). Compared to the approach studied in this work, their approaches have two key is-
sues. Firstly, unlike gradient-based algorithms, these works lack strong theoretical guarantees for
optimization. Moreover, similar to the CMA-ES algorithm (Loshchilov & Hutter, 2016), Bayesian
Optimization faces scalability issues and struggles with high-dimensional optimization, which is not
a problem for gradient-based algorithms, as shown in (Duchi et al., 2015).
Reinforcement Learning with Human Feedback (RLHF). The general approach in existing
RLHF procedures involves collecting human ranking data to train a reward model, which is then
used to finetune a pre-trained model with policy gradients (Ouyang et al., 2022; Liu et al., 2023;
OpenAI, 2022; Bai et al., 2022). In this work, we explore an alternative setting that fuses reinforce-
ment learning with ranking feedback, where ranking occurs online and is based on the total reward
of the entire episode. Our proposed zeroth-order algorithm can be directly employed to optimize the
policy within this context.
Contributions in this work. Our main contributions are summarized as follows:

(1) First rank-based zeroth-order optimization algorithm with theoretical guarantee. We
present a novel method for optimizing objective functions via their ranking oracles. Our pro-
posed algorithm ZO-RankSGD is based on a new rank-based stochastic estimator for descent
direction and is proven to converge to a stationary point. Additionally, we provide a rigorous
analysis of how various ranking oracles can impact the convergence rate by employing a novel
variance analysis. Last but not least, ZO-RankSGD is also directly applicable to the policy
search problem in reinforcement learning with only a ranking oracle of the episode reward
available.

(2) A new method for using human feedback to guide AI models. ZO-RankSGD offers a fresh
and effective strategy for aligning human objectives with AI systems. We demonstrate its utility
by applying our algorithm to a novel task: enhancing the quality of images generated by Stable
Diffusion with human ranking feedback. We anticipate that our approach will stimulate further
exploration of such applications in the field of AI alignment.

Notations. For any x ∈ R, we define the sign operator as Sign(x) = 1 if x ≥ 0 and −1 otherwise,
and extend it to vectors by applying it element-wise. For a d-dimensional vector x, we denote the
d-dimensional standard Gaussian distribution by N (0, Id). The notation |S| refers to the number of
elements in the set S.
Paper organization. The rest of this paper is structured as follows: Section 2 introduces how to
estimate descent direction based on ranking information, with a theoretical analysis of how different
ranking oracles relate to the variance of the estimated direction. Built on the foundations in Section
2, Section 3 presents the main algorithm, ZO-RankSGD, along with the corresponding convergence
analysis. In Section 4, we demonstrate the effectiveness of ZO-RankSGD through various experi-
ments, ranging from synthetic data to real-world applications. Finally, Section 5 concludes the paper
by summarizing our findings and suggesting future research directions.

2 FINDING DESCENT DIRECTION FROM THE RANKING INFORMATION

Assumption 1. Throughout this paper, we have these assumptions on the function f : (1) f is twice
continuously differentiable. (2) f is L-smooth, meaning that ∥∇2f(x)∥ ≤ L. (3) f is lower bounded
by a value f∗, that is, f(x) ≥ f∗ for all x.

2.1 A COMPARISON-BASED ESTIMATOR FOR DESCENT DIRECTION

In contrast to the prior work (Cai et al., 2022), which relies on one-bit compressive sensing to recover
the gradient, we propose a simple yet effective estimator for descent direction without requiring
solving any compressive sensing problem. Given an objective function f and a point x, we estimate
the descent direction of f using two independent Gaussian random vectors ξ1 and ξ2 as follows:

ĝ(x) = Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2), (1)

where µ > 0 is a constant, and Sf (x, ξ1, ξ2, µ) : Rd × Rd × Rd × R+ → {1,−1} is defined as:

Sf (x, ξ1, ξ2, µ)
def.
= Sign ((f(x+ µξ1)− f(x+ µξ2))). (2)

We prove in Lemma 1, which is one of the most important technical tools in this work, that ĝ(x) is
an effective estimator for descent direction.
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Lemma 1. For any x ∈ Rd, we have

⟨∇f(x),E[ĝ(x)]⟩ ≥ ∥∇f(x)∥ − CdµL, (3)

where Cd ≥ 0 is some constant that only depends on d.

Denote γ > 0 as the step size. With the L-smoothness of f and Lemma 1, we can show that

E
ξ1,ξ2

[f(x− γĝ(x))]− f(x) ≤ −γ ⟨∇f(x),E[ĝ(x)]⟩+ γ2L

2
E
[
∥ĝ(x)∥2

]
≤ −γ∥∇f(x)∥+ γCdµL+ γ2Ld, (4)

where we note that E[∥ĝ(x)∥2] = E[∥ξ1 − ξ2∥2] = 2d. Therefore, whenever ∥∇f(x)∥ ̸= 0,
the value Eξ1,ξ2 [f(x− γĝ(x))] would be strictly smaller than f(x) with sufficiently small γ and µ.
More importantly, unlike the comparison-based gradient estimator proposed in (Cai et al., 2022), our
estimator (1) can be directly incorporated with ranking oracles, as we will see in the next section.

2.2 FROM RANKING INFORMATION TO PAIRWISE COMPARISON

Figure 2: The cor-
responding DAG for
the ranking result
O

(5,3)
f (x1, x2, x3, x4

, x5) = (1, 3, 2).

We first observe that ranking information can be translated into pairwise
comparisons. For instance, knowing that x1 is the best among x1, x2, x3

can be represented using two pairwise comparisons: x1 is better than x2 and
x1 is better than x3. Therefore, we propose to represent the input and output
of (m, k)-ranking oracles as a directed acyclic graph (DAG), G = (N , E),
where the node set N = {1, . . . ,m} and the directed edge set E = {(i, j) |
f(xi) < f(xj)}. An example of such a DAG is shown in Figure 2. Given
access to an (m, k)-ranking oracle O

(m,k)
f and a starting point x, we query

O
(m,k)
f with the inputs xi = x+µξi, ξi ∼ N (0, Id), for i = 1, . . . ,m. With

the graph G constructed from the ranking information of O(m,k)
f , we propose

the following rank-based gradient estimator:

g̃(x) =
1

|E|
∑

(i,j)∈E

xj − xi

µ
=

1

|E|
∑

(i,j)∈E

(ξj − ξi). (5)

Remark 1. Notice that (5) can be simply expressed as a linearly weighted combination of ξ1, ..., ξm.
We provide the specific form in Appendix A.

We note that (1) is a special case of (5) with m = 2 and k = 1, and it can be easily shown
that E[g̃(x)] = E[ĝ(x)] and E[∥g̃(x)∥2] ≤ E[∥ĝ(x)∥2], indicating that the benefit of using ranking
information over a single comparison is a reduced variance of the gradient estimator. However, to
determine the extent of variance reduction, we must examine the graph topology of G.
Graph topology of G. The construction of the DAG G described above reveals that the graph
topology of G is uniquely determined by m and k. There are two important statistics in this graph
topology. The first one is the number of edges |E|, which is related to the number of pairwise
comparisons, extracted from the ranking result. In the precedent work (Cai et al., 2022), the number
of pairwise comparisons can be used to determine the variance of the gradient estimator. However,
this is insufficient for our case, as the pairwise comparisons in (5) are not independent. Therefore,
we require the second statistic of the DAG, which is the number of neighboring edge pairs in E . We
define a neighboring edge pair as a pair of edges that share the same node. For instance, in Figure
2, one neighboring edge pair is (x1, x3) and (x1, x2). We denote this number as N(E) and define
it formally as N(E) def.

= |{((i, j), (i′, j)) ∈ Ē × Ē| i ̸= i′}|, where Ē is the undirected copy of E ,
i.e, (i, j) ∈ Ē if and if only (j, i) in E or (i, j) in E . As mentioned, the graph topology of G is
determined by m and k. Therefore, we can analytically compute |E| and N(E) using m and k. We
state these calculations in the following lemma:
Lemma 2. Let G = (N , E) be the DAG constructed from the ranking information of O(m,k)

f . Then,

|E| = km− (k2 + k)/2, (6)

N(E) = m2k +mk2 − k3 + k2 − 4mk + 2k. (7)
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Variance analysis of (5) based on the graph topology. To analyze the variance of the estimator
(5), we introduce two important metrics M1(f, µ) and M2(f, µ) on the function f .

Definition 2.

M1(f, µ)
def.
= max

x

∥∥∥∥ E
ξ1,ξ2

[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]

∥∥∥∥2 , (8)

M2(f, µ)
def.
= max

x
E

ξ1,ξ2,ξ3
[Sf (x, ξ1, ξ2, µ)Sf (x, ξ1, ξ3, µ)⟨ξ1 − ξ2, ξ1 − ξ3⟩] , (9)

where ξ1, ξ2 and ξ3 are three independent random vectors drawn from N (0, Id).

We also provide some useful upper bounds on M1(f, µ) and M2(f, µ) in Lemma 3, which help to
understand the scale of these two quantities.

Lemma 3. For any function f and µ > 0, we have M1(f, µ) ≤ 2d, M2(f, µ) ≤ 2d. Moreover, if f
satisfies that ∇2f(x) = cId where c ∈ R is some constant, we have M1(f, µ) ≤ 32/π.

With M1(f, µ) and M2(f, µ), we can bound the second order moment of (5) as shown in Lemma 4.

Lemma 4. For any x ∈ Rd, we have

E[∥g̃(x)∥2] ≤ 2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ). (10)

Discussion on Lemma 4. With Lemma 2 and Lemma 3, we observe that the first variance term in
(10), namely, 2d

|E| , is O( 1
km ), and thus vanishes as m → ∞. In contrast, the second variance term

N(E)
|E|2 M2(f, µ) does not disappear as m grows, because

lim
m→∞

N(E)
|E|2

= lim
m→∞

m2k +mk2 − k3 + k2 − 4mk + 2k

(km− (k2 + k)/2)
2 =

1

k
, (11)

and thus only vanishes when both k and m tend to infinity. However, there is a non-diminishing
term M1(f, µ) remaining in (10). Fortunately, as shown in Lemma 3, M1(f, µ) is smaller than 2d
and can be bounded by a dimension-independent constant for a certain family of quadratic functions.
Finally, it is worth noting that our approach for the variance analysis can be directly extended to any
ranking oracles beyond the (m, k)-ranking oracle.

3 ZO-RANKSGD: ZEROTH-ORDER RANK-BASED STOCHASTIC GRADIENT
DESCENT

With all of our findings in Sections 2, now we are ready to introduce our proposed algorithm, ZO-
RankSGD. The pseudocode for ZO-RankSGD is outlined in Algorithm 1.

Algorithm 1 ZO-RankSGD
Require: Initial point x0, stepsize η, number of iterations T , smoothing parameter µ, (m, k)-ranking oracle

O
(m,k)
f .

1: for t = 1 to T do
2: Sample m i.i.d. random vectors {ξ(t,1), · · · , ξ(t,m)} from N(0, Id).
3: Query the (m, k)-ranking oracle O(m,k)

f with input {xt−1+µξ(t,1), · · · , xt−1+µξ(t,m)}, and constuct
the corresponding DAG G = (N , E) as described in Section 2.2.

4: Compute the gradient estimator using: gt = 1
|E|

∑
(i,j)∈E(ξ(t,j) − ξ(t,i))

5: xt = xt−1 − ηgt.
6: end for

3.1 THEORETICAL GUARANTEE OF ZO-RANKSGD
Now we present the convergence result of Algorithm 1 in the following Theorem 1.
Theorem 1. For any η > 0, µ > 0, T ∈ N, after running Algorithm 1 for T iterations, we have:

E
[

min
t∈{1,...,T}

∥∇f(xt−1)∥
]
≤ f(x0)− f∗

ηT
+ CdµL+

ηL

2

(
2d

|E| +
N(E)
|E|2 M2(f, µ) +M1(f, µ)

)
, (12)

where Cd is some constant that only depends on d.
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Corollary 1. By taking η =
√

1
dT and µ =

√
d

C2
dT

in Theorem 1, we have

E
[

min
t∈{1,...,T}

∥∇f(xt−1)∥
]
= O

(√
d

T

)
. (13)

Effect of m and k on the convergence speed of Algorithm 1. As we have discussed in Section 2.2,
m and k affect the convergence speed through the variance of the gradient estimator. Specifically,
in the upper bound of (12), we have 2d

|E| +
N(E)
|E|2 M2(f, µ) = O

(
d

km + d
k

)
.

How to choose µ in Algorithm 1. As we can see from (12), a smaller µ generally leads to
a tighter bound as the estimated gradient aligns better with the true gradient. However, practical
implementation demands striking a balance, as an excessively small µ might result in perturbed
instances that are extremely similar to humans, making the ranking decision of them challenging.
Therefore, a practical rule for choosing µ is: While we should try to minimize µ, it should remain
within the range of human discriminability.

3.2 LINE SEARCH VIA RANKING ORACLE

In this section, we discuss two potential issues that may arise when implementing Algorithm 1.
Firstly, it can be cumbersome to manually tune the step size η required for each iteration. Secondly,
it may be challenging for users to know whether the objective function is decreasing in each iteration
as the function values are not accessible. In order to address these challenges, we propose a simple
and effective line search method that leverages the (l, 1)-ranking oracle to determine the optimal step
size for each iteration. The method involves querying the oracle with a set of inputs {xt−1, xt−1 −
ηγgt, ..., xt−1 − ηγl−1gt}, where γ ∈ (0, 1) represents a scaling factor that controls the rate of step
size reduction. By monitoring whether or not xt is equal to xt−1, users can observe the progress
of Algorithm 1, while simultaneously selecting a suitable step size to achieve the best results. It
is worth noting that this line search technique is not unique to Algorithm 1 and can be applied to
any gradient-based optimization algorithm, including those in (Nesterov & Spokoiny, 2017; Cai
et al., 2022). To reflect this, we present the proposed line search method as Algorithm 2, under the
assumption that the gradient estimator gt has already been computed.

Algorithm 2 Line search strategy for gradient-based optimization algorithms
Require: Initial point x0, stepsize η, number of iterations T , shrinking rate γ ∈ (0, 1), number of trials l.
1: for t = 1 to T do
2: Compute the gradient estimator gt.
3: xt = argminx∈Xt

f(x), where Xt = {xt−1, xt−1 − ηγgt, ..., xt−1 − ηγl−1gt}.
4: end for

4 EXPERIMENTS

4.1 SIMPLE FUNCTIONS

(a) Quadratic function (b) Rosenbrock function

Figure 3: Performance of different algorithms.

In this section, we present experimental re-
sults demonstrating the effectiveness of Al-
gorithm 1 on two simple functions: (1)
Quadratic function: f(x) = ∥x∥22, x ∈
R100. (2) Rosenbrock function: f(x) =∑99

i=1

(
(1− xi)

2 + 100(xi+1 − x2
i )

2
)
, x =

[x1, ..., x100]
⊤ ∈ R100. To demonstrate the effectiveness of our algorithm and verify our theoretical

claims, we conduct two experiments, and all figures are obtained by averaging over 10 independent
runs and are visualized in the form of mean±std.

Comparing Algorithm 1 with existing algortihms. In this first experiment, we compare Algo-
rithm 1 with the following algorithms in the existing literature: (1) ZO-SGD (Nesterov & Spokoiny,
2017): A zeroth-order optimization algorithm for valuing oracle. (2) SCOBO (Cai et al., 2022):
A zeroth-order algorithm for pairwise comparing oracle. (3) GLD-Fast (Golovin et al., 2019): A
direct search algorithm for top-1 oracle, namely, (m, 1)-ranking oracle. (4) CMA-ES (Loshchilov
& Hutter, 2016; Hansen et al., 2019): A heuristic optimization algorithm for ranking oracle.

To ensure a meaningful comparison, we fix the number of queries m = 15 at each iteration for
all algorithms. For gradient-based algorithms, ZO-SGD, SCOBO, and our ZO-RankSGD, we use
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query points for gradient estimation and 5 points for the line search. In this experiment, we set
m = k for ZO-RankSGD, i.e. it can receive the full ranking information. Moreover, we tune the
hyperparameters such as stepsize, smoothing parameter, and line search parameter via grid search
for each algorithm, and the details are provided in Appendix C.1. A high-dimensional experiment
is also included in Appendix C.2. Our experiment results in Figure 3 on the two functions show
that the gradient-based algorithm can outperform the direct search algorithm GLD-Fast and the
heuristic algorithm CMA-ES. Besides, Algorithm 1 can outperform SCOBO because the ranking
oracle contains more information than the pairwise comparison oracle. Additionally, Algorithm 1
behaves similarly to ZO-SGD, indicating that the ranking oracle can be almost as informative as the
valuing oracle for zeroth-order optimization.

(a) Quadratic function (b) Rosenbrock function

Figure 4: Performance of ZO-RankSGD under
different combinations of m and k.

Investigating the impact of m and k on Algo-
rithm 1. In this part, we aim to validate the
findings presented in Lemma 4 and Theorem
1 by running Algorithm 1 with various values
of m and k. To keep the setup simple, we set
the step size η to 50 and the smoothing param-
eter µ to 0.01 for Algorithm 1 with line search
(where l = 5 and γ = 0.1). Figure 4 illus-
trates the performance of ZO-RankSGD under
different combinations of m and k on the two
functions, which confirm our theoretical find-
ings presented in Lemma 4. For example, we observe that (m = 10, k = 10) yields better perfor-
mance than (m = 100, k = 1), as predicted by the second variance term in (10), which dominates
and scales as O(1/k).

Noisy ranking oracles. In practice, the ranking feedback we receive from human evaluators
may have some mistakes or inaccuracies. In Appendix C.3, we also present experimental results
with noisy ranking oracles, namely, these oracles do not always give the correct ranking feedback.
Remarkably, our proposed ZO-RankSGD algorithm shows robustness in handling this kind of noisy
feedback, making it well-suited for real-world applications. Looking forward, an interesting area
for further exploration is the theoretical understanding of these noisy ranking oracles. This involves
understanding how to formally represent the inaccuracy inherent in such oracles, similar to what
(Cai et al., 2022) did for comparison oracles.

(a) Reacher-v2 (b) Swimmer-v2 (c) HalfCheetah-v2

Figure 5: Perfomance of ZO-RankSGD and CMA-ES on three MuJoCo environments

4.2 REINFORCEMENT LEARNING WITH RANKING ORACLES

Motivation. In this section, we illustrate how ZO-RankSGD can be seamlessly employed for policy
optimization in reinforcement learning, given only a ranking oracle of the episode reward. Such a
setting especially captures the scenario where human evaluators are asked to rank multiple episodes
based on their expertise. Specifically, we adopt a similar experimental setup as (Cai et al., 2022;
Duan et al., 2016), where the goal is to learn a policy for simulated robot control with several
problems from the MuJoCo suite of benchmarks (Todorov et al., 2012). We compare ZO-RankSGD
to the CMA-ES algorithm, a commonly used optimization baseline in reinforcement learning (Bengs
et al., 2021) that also solely relies on a ranking oracle. Both algorithms are restricted to query the
episode reward via a (5, 5)-ranking oracle. To demonstrate the performance gap between ranking
oracle and value oracle, we also include ZO-SGD for comparison. To make a fair comparison,
ZO-SGD is designed to receive value feedback of 5 points for each query. Additionally, we draw
a comparison between ZO-RankSGD and SCOBO; however, given the disparate nature of their
query oracles, the comparison is intricate. For a comprehensive discussion of this aspect and more
experiment details, we refer the readers to Appendix C.4.
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Results. The experiment results are shown in Figure 5, where the x-axis is the number of queries
to the ranking oracle, and the y-axis is the ground-truth episode reward. In these experiments, we
do not use line search for ZO-RankSGD, instead, we let η = µ, and decay them exponentially
after every rollout. As can be seen from Figure 5, our algorithm can outperform CMA-ES by a
significant margin on all three tasks, exhibiting a better ability to incorporate ranking information.
Additionally, ZO-RankSGD exhibits performance on par with ZO-SGD, reinforcing our findings
from the experiment illustrated in Figure 3 and underscoring the effectiveness of the ranking oracle
in providing substantial optimization-relevant information.

(a) Original (b) Perturbed 1 (c) Perturbed 2 (d) Perturbed 3

Figure 6: Continuous property of reverse diffusion process. The used text prompt is A teddy bear is skiing,
detailed, realistic, 4K, 3D.

4.3 TAMING DIFFUSION GENERATIVE MODEL WITH HUMAN FEEDBACK

In recent years, there has been a growing interest in diffusion generative models, which have demon-
strated remarkable performance in generating high-quality images (Ho et al., 2020; Song et al.,
2020b; Dhariwal & Nichol, 2021). Despite these advancements, these models often struggle with
capturing intricate details, such as human fingers or key elements in prompts, and sometimes fail
to align with user aesthetics. To address this issue, we draw inspiration from recent successes in
aligning Language Models with human feedback (Ouyang et al., 2022; Liu et al., 2023; OpenAI,
2022; Bai et al., 2022), and propose to utilize human ranking feedback to enhance the generated
images. We noticed a concurrent work (Lee et al., 2023) sharing a similar motivation with us.
Specifically, their method is based on the existing approach of RLHF and utilizes a considerable
amount of pre-collected data for fine-tuning the diffusion model. Despite this shared motivation,
our method tackles a distinct problem from theirs, as our proposed method is not designed for fine-
tuning, but to help the model better adapt to the need of new users at inference time, and the human
feedback is collected in an online fashion. In this experiment, we aim to demonstrate the ability of
ZO-RankSGD to improve the model’s output at inference time by optimizing the control variables
of generation, such as the latent embedding, with the underlying model fixed. A detailed description
is provided below.

Experimental Setting. We focus on the task of text-to-image generation, using the state-of-the-art
Stable Diffusion model (Rombach et al., 2022) to generate images based on given text prompts.
Firstly, we observe that a common practice for generating high-quality images in the community
of Stable Diffusion is to run the sampling process multiple times with different random seeds, and
then pick the optimal one. Inspired by this, we choose to optimize the latent noise embedding,
which is equivalent to random seed, using human ranking feedback through our proposed Algorithm
1, with an aim to produce images that are more appealing to humans. This experimental setting
offers several advantages, including: (1) The latent embedding is a low-dimensional vector and thus
requires only a few rounds of human feedback for optimization. (2) It can also serve as a data-
collecting step before fine-tuning the model. It is also worth noting that any continuous parameter
in the diffusion model can be optimized similarly using human feedback.

Reverse diffusion process as a continuous mapping. Firstly, we remark that only ODE-based
diffusion samplers, like DDIM (Song et al., 2020a) and DPM-solver (Lu et al., 2022), are used in
this study, as now the reverse diffusion process will be deterministic and only depends on the latent
embedding. We demonstrate that optimizing the latent embedding is a valid continuous optimization
problem by showing that, with slight perturbations of the latent embedding, diffusion samplers can
usually generate multiple similar images. An example of this phenomenon is in Figure 6, where the
first image is generated using a given latent embedding, while the next three images are generated
by perturbing this embedding with noise drawn from N (0, 0.1Id).

Examples. We illustrate several optimization results in Figure 7, where we ourselves provided the
human ranking feedback during these experiments. These instances highlight the improvements
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in realism and detail that our proposed Algorithm 1 can bring about through the use of human
ranking feedback. To illustrate, in the first example, the image optimized with human guidance
portrays human fingers and eyes with enhanced accuracy. In the second example, the optimized
image adheres more closely to the prompt instruction, successfully capturing the intended item –
orange juice. In the third example, the optimized image delivers a more visually appealing depiction
of muscularity. Taken together, these results demonstrate the potential of our approach in refining
the quality of generated images using human feedback. For more examples like the ones in Figure
7, and the details of the entire optimization process, we refer the readers to Appendix C.5.

Figure 7: Examples of optimizing latent embedding in diffusion generative model. Initial: The initial images
selected through multiple randomly generated latent embeddings serve as the initial points for the later opti-
mization process. Human: The images obtained by optimizing human preference. CLIP: The images obtained
by optimizing the CLIP similarity score.

Human feedback vs. CLIP similarity score. To underscore the unique advantage of human
feedback, we hold the ZO-RankSGD algorithm constant, and contrast images that were optimized
with human preference against those optimized using the CLIP similarity score (Radford et al.,
2021). CLIP, a cutting-edge model that contrasts language with images, calculates the similarity
between given texts and images. However, when comparing the third and fourth columns in Figure
7, it is clear that since CLIP is trained on noisy text-image pairs from the internet, the images
optimized using its similarity score can sometimes fall short of the original ones. Moreover, these
CLIP-optimized images may not always resonate with human evaluators, further emphasizing the
unique value of human feedback in refining image generation.

5 CONCLUSION
In this paper, we have rigorously studied a novel optimization problem where only ranking ora-
cles of the objective function are available. For this problem, we have proposed the first provable
zeroth-order optimization algorithm, ZO-RankSGD, which has consistently demonstrated its effi-
cacy across simulated and real-world applications. We also have presented how different ranking
oracles can impact optimization performance, providing guidance on designing the user interface for
ranking feedback. Our algorithm has been shown to be a practical and effective way to incorporate
human feedback, for example, it can be used to improve the detail of images generated by Stable
Diffusion with human guidance. Possible future directions to this work may include extending the
theoretical results to incorporate noisy and uncertain ranking feedback, combining ZO-RankSGD
with a model-based approach like Bayesian Optimization (Frazier, 2018), or the techniques from
active learning (Monarch, 2021), to further improve the query efficiency, and also applying it to
other scenarios beyond human feedback. Besides, another important point is to investigate what is
the optimal choice of m and k if we jointly consider the cognitive burden of humans and the query
complexity via real social experiments.
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online learning with dueling bandits: A survey. J. Mach. Learn. Res., 22:7–1, 2021.

HanQin Cai, Daniel Mckenzie, Wotao Yin, and Zhenliang Zhang. A one-bit, comparison-based
gradient estimator. Applied and Computational Harmonic Analysis, 60:242–266, 2022.

Suiyao Chen, Lu Lu, Qiong Zhang, and Mingyang Li. Optimal binomial reliability demonstration
tests design under acceptance decision uncertainty. Quality Engineering, 32(3):492–508, 2020.

Suiyao Chen, Jing Wu, Naira Hovakimyan, and Handong Yao. Recontab: Regularized contrastive
representation learning for tabular data. arXiv preprint arXiv:2310.18541, 2023a.

Yinda Chen, Wei Huang, Xiaoyu Liu, Qi Chen, and Zhiwei Xiong. Learning multiscale consistency
for self-supervised electron microscopy instance segmentation. In IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2023b.

Yinda Chen, Wei Huang, Shenglong Zhou, Qi Chen, and Zhiwei Xiong. Self-supervised neuron
segmentation with multi-agent reinforcement learning. In Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence, pp. 609–617, 2023c.

Yinda Chen, Che Liu, Wei Huang, Sibo Cheng, Rossella Arcucci, and Zhiwei Xiong. Genera-
tive text-guided 3d vision-language pretraining for unified medical image segmentation. arXiv
preprint arXiv:2306.04811, 2023d.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. Differentially private federated
bayesian optimization with distributed exploration. Advances in Neural Information Processing
Systems, 34:9125–9139, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in Neural Information Processing Systems, 34:8780–8794, 2021.

Yao-Xiang Ding and Zhi-Hua Zhou. Preference based adaptation for learning objectives. Advances
in Neural Information Processing Systems, 31, 2018.

Jinshuo Dong, Aaron Roth, and Weijie Su. Gaussian differential privacy. Journal of the Royal
Statistical Society, 2021.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

10



Published as a conference paper at ICLR 2024

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

M. Gao, Y. Wei, Y. He, D. Zhang, Y. Tian, B. Huang, and C. Zheng. Fuzzy controller-based design
and simulation of an automatic parking system. Journal of Software Engineering and Applica-
tions, 16:505–520, 2023. doi: 10.4236/jsea.2023.169025.

Daniel Golovin, John Karro, Greg Kochanski, Chansoo Lee, Xingyou Song, and Qiuyi Zhang. Gra-
dientless descent: High-dimensional zeroth-order optimization. arXiv preprint arXiv:1911.06317,
2019.

Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. Zen-
odo, DOI:10.5281/zenodo.2559634, February 2019. URL https://doi.org/10.5281/
zenodo.2559634.

Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. Sega: Variance reduction via gradient
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APPENDIX

A A SIMPLIFIED EXPRESSION FOR (5)

Let G = (N , E) be the DAG constructed from the ranking information of O(m,k)
f , we denote the

input degrees and output degrees of xi ∈ N as degin(i) and degout(i) respectively. We first notice
that ∑

(i,j)∈E

(ξj − ξi) =

m∑
i=1

(degin(i)− degout(i)) ξi. (14)

Denote wi = degin(i)− degout(i), if O(m,k)
f (x1, ..., xm) = (i1, ..., ik), then we can compute that

wij = degin(ij)− degout(ij) = j − 1− (m− j) = 2j −m− 1, j = 1, ..., k. (15)

wq = degin(q)− degout(q) = k − 0 = k, q /∈ {i1, ..., ik}. (16)

B MISSING PROOF

Proof of Lemma 1. In the following proof, we denote p(·) as the pdf function of N (0, Id) for arbi-
trary dimension d.

We first rewrite ⟨∇f(x), ĝ(x)⟩ as follows:

⟨∇f(x), ĝ(x)⟩ = ⟨∇f(x), Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)⟩ = Sf (x, ξ1, ξ2, µ) · ⟨∇f(x), ξ1 − ξ2⟩ . (17)

By the second-order Taylor expansion with Cauchy remainders, we notice that

f(x+ µξ1) = f(x) + µ⟨∇f(x), ξ1⟩+
µ2

2
ξ⊤1 ∇2f(x1)ξ1, (18)

f(x+ µξ2) = f(x) + µ⟨∇f(x), ξ2⟩+
µ2

2
ξ⊤2 ∇2f(x2)ξ2, (19)

where x1 and x2 are two points around x.

14
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With (18) and (19) we can write Sf (x, ξ1, ξ2, µ) as follows:

Sf (x, ξ1, ξ2, µ) = Sign
(
⟨∇f(x), ξ1 − ξ2⟩+

µ

2
ξ⊤1 ∇2f(x1)ξ1 −

µ

2
ξ⊤2 ∇2f(x2)ξ2

)
. (20)

Now we start to bound the term

E [Sf (x, ξ1, ξ2, µ) · ⟨∇f(x), ξ1 − ξ2⟩] , (21)

where the expectation is taken over the random direction ξ1 and ξ2.

Before doing that, we first define two important regions:

R1 = {(ξ1, ξ2) | ⟨∇f(x), ξ1 − ξ2⟩ > 0}, (22)
R11 = {(ξ1, ξ2) | (ξ1, ξ2) ∈ R1, Sf (x, ξ1, ξ2, µ) ̸= Sign (⟨∇f(x), ξ1 − ξ2⟩)}. (23)

Notice that when (ξ1, ξ2) ∈ R1, Sf (x, ξ1, ξ2, µ) ̸= Sign (⟨∇f(x), ξ1 − ξ2⟩) is equivalent to

⟨∇f(x), ξ1 − ξ2⟩+
µ

2
ξ⊤1 ∇2f(x1)ξ1 −

µ

2
ξ⊤2 ∇2f(x2)ξ2 < 0.

Also, from L-smoothness, we can know that

−µL

2

(
∥ξ1∥22 + ∥ξ2∥22

)
≤ µ

2
ξ⊤1 ∇2f(x1)ξ1 −

µ

2
ξ⊤2 ∇2f(x2)ξ2.

We denote the region

R̄11 = {(ξ1, ξ2) | (ξ1, ξ2) ∈ R1, ⟨∇f(x), ξ1 − ξ2⟩ −
µL

2

(
∥ξ1∥22 + ∥ξ2∥22

)
< 0}. (24)

It is easy to verify that R11 ⊆ R̄11. Let R12 = R1/R̄11, we can have the following inequality.

∫
R1

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (25)

=

∫
R1/R11

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

+

∫
R11

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (26)

=

∫
R1/R11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

−
∫
R11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (27)

≥
∫
R1/R̄11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

−
∫
R̄11

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (28)

=2

∫
R12

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2

−
∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2. (29)

Before we proceed to study the property of the integral in (29), let us first define an important
function. Consider the function h(v, r, d) : R× R+ × Z+ → R defined as follows:

h(v, r, d)
def.
=

√
2v

∫ 2
√

2v
r

0

xF2d−1

((
2
√
2v

r
− x

)
x

)
p(x)dx, (30)

where F2d−1(·) is the CDF of the χ2 distribution with 2d−1 degrees of freedom. With this function,
we can have the following lemma that presents the close form of the integrals in (29).
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Lemma 5. ∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 =
1√
π
∥∇f(x)∥, (31)∫

R12

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 = h(∥∇f(x)∥ , µL, d). (32)

Also, we need an important lemma on h(v, r, d).

Lemma 6. For any d ∈ Z+, there exist a constant Cd > 0 such that for any v ≥ 0, r > 0,

h(v, r, d) ≥
(

1

2
√
π
+

1

4

)
v − 1

4
Cdr. (33)

Combining (29), (31), (32) and (33), we have

∫
R1

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 ≥ 1

2
∥∇f(x)∥ − 1

2
CdµL. (34)

Similarly, if we define
R2 = {(ξ1, ξ2) | ⟨∇f(x), ξ1 − ξ2⟩ < 0},

we have

∫
R2

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (35)

=

∫
R2

Sf (x, ξ2, ξ1, µ) ⟨∇f(x), ξ2 − ξ1⟩ p(ξ1)p(ξ2)dξ1dξ2 (36)

=

∫
R1

Sf (x, ξ1, ξ2, µ) ⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2, (37)

becasue the integral on R1 is symmetric to the integral on R2 by swapping ξ1 and ξ2. Since
R2d/(R1 ∪R2) has zero measure, we have

E [Sf (x, ξ1, ξ2, µ) · ⟨∇f(x), ξ1 − ξ2⟩]

=2

∫
R1

⟨∇f(x), ξ2 − ξ1⟩ p(ξ1)p(ξ2)dξ1dξ2 (38)

≥∥∇f(x)∥ − CdµL. (39)

Proof of Lemma 2. Suppose that O(m,k)
f (x1, ..., xm) = (i1, ..., ik), we seperate N into two node

set:
N1 = {i1, ..., ik} and N2 = {q ∈ {1, ...,m} | q /∈ {i1, ..., ik}}.

Firstly, since the subgraph of G on N1 is a complete graph, the number of edges in this subgraph is
k(k− 1)/2. The remaining edges in G connect the node in N2 to the node in N1, hence the number
of them is k(m− k). Therefore,

|E| = k(k − 1)/2 + k(m− k) = km− (k2 + k)/2. (40)

Now we denote the set of neighbooring edge pairs as S = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′}. We can
split S as the following five set:

S1 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N1, i
′ ∈ N1, j ∈ N1}, (41)

S2 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N1, i
′ ∈ N1, j ∈ N2}, (42)

S3 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N1, i
′ ∈ N2, j ∈ N1}, (43)

S4 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N2, i
′ ∈ N1, j ∈ N1}, (44)

S5 = {((i, j), (i′, j)) ∈ Ē × Ē|i ̸= i′, i ∈ N2, i
′ ∈ N2, j ∈ N1}. (45)
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For the first set S1, we can compute that

|S1| = 6

(
k

3

)
= k(k − 1)(k − 2), (46)

because every edge pair composes of three nodes, and every three nodes can form 6 edge pairs.

For the second set S2, we have

|S2| = 2(m− k)

(
k

2

)
= (m− k)k(k − 1), (47)

because |N2| = m− k and |{(i, i′) ∈ N1 ×N1 | i ̸= i′}| = 2
(
k
2

)
.

Similarly, for the set S3 and S4, we can obtain

|S3| = |S4| = 2(m− k)

(
k

2

)
= (m− k)k(k − 1). (48)

Finally, for the set S5, we can compute that

|S5| = 2k

(
m− k

2

)
= k(m− k)(m− k − 1), (49)

because |N1| = k and |{(i, i′) ∈ N2 ×N2 | i ̸= i′}| = 2
(
m−k
2

)
.

In all, we have
|S| = |S1|+ |S2|+ |S3|+ |S4|+ |S5| (50)

= k(k − 1)(k − 2) + 3(m− k)k(k − 1) + k(m− k)(m− k − 1) (51)

= m2k +mk2 − k3 + k2 − 4mk + 2k. (52)

Proof of Lemma 3. We first prove that M1(f, µ) ≤ 2d. From convexity of ∥ · ∥2 and Jensen’s
inequality, we have∥∥∥∥ E

ξ1,ξ2
[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]

∥∥∥∥2 ≤ E
ξ1,ξ2

∥[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]∥2 = 2d. (53)

Then we prove M2(f, µ) ≤ 2d. From the Cauchy-Schwarz inequality, we have
E

ξ1,ξ2,ξ3
[Sf (x, ξ1, ξ2, µ)Sf (x, ξ1, ξ3, µ)⟨ξ1 − ξ2, ξ1 − ξ3⟩] (54)

≤
√

E
ξ1,ξ2

[
∥ξ1 − ξ2∥2

]
E

ξ1,ξ3

[
∥ξ1 − ξ3∥2

]
= 2d. (55)

Now we study the mean vector Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] under the condition ∇2f(x) = cId.
We first write it as a sum of three vectors.

Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] =

∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (56)

+

∫
f(x+µξ1)=f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (57)

+

∫
f(x+µξ1)<f(x+µξ2)

(ξ2 − ξ1)p(ξ1)p(ξ2)dξ1dξ2. (58)

For the three vectors, we have∫
f(x+µξ1)=f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (59)

=

∫
f(x+µξ1)=f(x+µξ2)

ξ1p(ξ1)p(ξ2)dξ1dξ2 −
∫
f(x+µξ1)=f(x+µξ2)

ξ2p(ξ1)p(ξ2)dξ1dξ2 (60)

=0, (61)
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and ∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (62)

=

∫
f(x+µξ2)>f(x+µξ1)

(ξ2 − ξ1)p(ξ1)p(ξ2)dξ1dξ2 (63)

=

∫
f(x+µξ1)<f(x+µξ2)

(ξ2 − ξ1)p(ξ1)p(ξ2)dξ1dξ2. (64)

Therefore, we can write Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] as

Eξ1,ξ2 [Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)] = 2

∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2. (65)

Now we study the integrals
∫
f(x+µξ1)>f(x+µξ2)

ξ1p(ξ1)p(ξ2)dξ1dξ2 and∫
f(x+µξ1)>f(x+µξ2)

ξ2p(ξ1)p(ξ2)dξ1dξ2. We can compute that

∫
f(x+µξ1)>f(x+µξ2)

ξ1p(ξ1)p(ξ2)dξ1dξ2 (66)

=

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1, (67)

and, ∫
f(x+µξ1)>f(x+µξ2)

ξ2p(ξ1)p(ξ2)dξ1dξ2 (68)

=

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ1)dξ1

)
ξ2p(ξ2)dξ2 (69)

=

∫
Rd

(∫
f(x+µξ2)>f(x+µξ1)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1 (70)

The condition ∇2f(x) = cId implies that f is a quadratic function. We denote M(·) as the
Lebesgue measure on Rd. Notice that M({ξ2 | f(x + µξ2) = f(x + µξ1)}) = 0 because it is
known that the zero point set of any polynomial function has zero Lebesgue measure. Therefore, we
have ∫

f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2 +

∫
f(x+µξ2)>f(x+µξ1)

p(ξ2)dξ2 (71)

=1−
∫
f(x+µξ2)=f(x+µξ1)

p(ξ2)dξ2 = 1. (72)

Hence we have ∫
f(x+µξ1)>f(x+µξ2)

(ξ1 − ξ2)p(ξ1)p(ξ2)dξ1dξ2 (73)

=2

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1 −

∫
Rd

ξ1p(ξ1)dξ1 (74)

=2

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1. (75)

Since ∇2f(x) = cId, we have

f(x+ µξ1) = f(x) + µ∇f(x)T ξ1 +
1

2
µ2∥ξ1∥2.
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Without loss of generality, we assume ∥∇f(x)∥ ≠ 0 and denote ξ′1 = 2⟨∇f(x),ξ1⟩
∥∇f(x)∥2 ∇f(x)− ξ1. It is

easy to verify that ξ′1 also follows N (0, Id), ∥ξ′1∥ = ∥ξ1∥ and f(x+µξ1) = f(x+µξ′1). Therefore,
we have

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ1p(ξ1)dξ1 (76)

=

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
ξ′1p(ξ

′
1)dξ

′
1 (77)

=
1

2

∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
(ξ1 + ξ′) p(ξ1)dξ1. (78)

=

(∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
⟨∇f(x), ξ1⟩
∥∇f(x)∥

p(ξ1)dξ1

)
∇f(x)

∥∇f(x)∥
. (79)

Furthermore,∣∣∣∣∣
∫
Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
⟨∇f(x), ξ1⟩
∥∇f(x)∥

p(ξ1)dξ1

∣∣∣∣∣ ≤
∫
Rd

|⟨∇f(x), ξ1⟩|
∥∇f(x)∥

p(ξ1)dξ1 =

√
2

π
.

(80)

Finally, we have∥∥∥∥ E
ξ1,ξ2

[Sf (x, ξ1, ξ2, µ)(ξ1 − ξ2)]

∥∥∥∥2 (81)

=

∥∥∥∥∥4
(∫

Rd

(∫
f(x+µξ1)>f(x+µξ2)

p(ξ2)dξ2

)
⟨∇f(x), ξ1⟩
∥∇f(x)∥

p(ξ1)dξ1

)
∇f(x)

∥∇f(x)∥

∥∥∥∥∥
2

(82)

≤32

π
. (83)

Proof of Lemma 4. We first compute that

E
[
∥g̃(x)∥22

]
=

1

|E|2
E


∥∥∥∥∥∥
∑

(i,j)∈E

(ξj − ξi)

∥∥∥∥∥∥
2

2

 . (84)

For ease of writing, we denote B(i,j) = ξj − ξi = Sf (x, ξi, ξj , µ)(ξi − ξj) and Ē as the undirected
version of E .

E


∥∥∥∥∥∥
∑

(i,j)∈E

B(i,j)

∥∥∥∥∥∥
2

2

 (85)

=E


∑

(i,j)∈E

∥∥B(i,j)

∥∥2
2
+

∑
(i,j)∈Ē
(i′,j)∈Ē
i ̸=i′

〈
B(i,j), B(i′,j)

〉
+

∑
(i,j)∈Ē
(i′,j′)∈Ē
i ̸=i′,j ̸=j′

〈
B(i,j), B(i′,j′)

〉
.

 (86)
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With the two metrics M1(f, µ), M2(f, µ), we can bound the four terms in (86) as follows:

E
[∥∥B(i,j)

∥∥2
2

]
= E

[
∥ξj − ξi∥22

]
= 2d, (87)

E
[〈
B(i,j), B(i′,j)

〉]
= E

[〈
B(i,j), B(i,j′)

〉]
≤ M2(f, µ), (88)

E
[〈
B(i,j), B(i′,j′)

〉]
=
∥∥E [B(i,j)

]∥∥2
2
≤ M1(f, µ). (89)

Taking (87), (88) and (89) into (86), we obtain

E


∥∥∥∥∥∥
∑

(i,j)∈E

B(i,j)

∥∥∥∥∥∥
2

2

 (90)

≤
∑

(i,j)∈E

2d+
∑

(i,j)∈Ē
(i′,j)∈Ē
i ̸=i′

M2(f, µ) +
∑

(i,j)∈Ē
(i′,j′)∈Ē
i ̸=i′,j ̸=j′

M1(f, µ) (91)

= 2|E|d+N(E)M2(f, µ) + (|E|2 −N(E)− |E|)M1(f, µ). (92)

Combing (92) with (84), we obtain

E
[
∥g̃(x)∥22

]
≤ 2d

|E|
+

N(E)
|E|2

M2(f, µ) +
|E|2 −N(E)− |E|

|E|2
M1(f, µ) (93)

≤ 2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ). (94)

Proof of Theorem 1. Consider the t-th iteration, from L-smoothness we know that

f(xt)− f(xt−1) ≤ −η⟨∇f(xt−1), gt⟩+
η2L

2
∥gt∥22. (95)

Using Lemma 1 and Lemma 4, we have

E[f(xt)− f(xt−1)] ≤ −η⟨∇f(xt−1), E[gt]⟩+
η2L

2
E
[
∥gt∥22

]
(96)

≤ −η∥∇f(xt−1)∥+ CdηµL+
η2L

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
,

(97)
where the expectation is taken over the random direction ξ(t,1), · · · , ξ(t,m).

Rearrange the inequality to obtain

∥∇f(xt−1)∥ ≤ E[f(xt−1)− f(xt)]

η
+ CdµL+

ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
.

(98)

Summing up over T iterations and dividing both sides by T , we finally obtain

E

[
1

T

T∑
t=1

∥∇f(xt−1)∥

]
≤ E[f(x0)− f(xT )]

ηT
+ CdµL+

ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
(99)

≤ f(x0)− f∗

ηT
+ CdµL+

ηL

2

(
2d

|E|
+

N(E)
|E|2

M2(f, µ) +M1(f, µ)

)
.

(100)
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The proof is completed by noting that

E
[

min
t∈{1,...,T}

∥∇f(xt−1)∥
]
≤ E

[
1

T

T∑
t=1

∥∇f(xt−1)∥

]
.

Proof of Lemma 5. Without loss of generality, we assume ∥∇f(x)∥ ≠ 0. We first prove that∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 =
1√
π
∥∇f(x)∥.

Now we denote

x =
⟨∇f(x), ξ1 − ξ2⟩√

2∥∇f(x)∥
.

Notice that x follows the distribution N (0, 1). Therefore, we have∫
R1

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 (101)

=
√
2∥∇f(x)∥

∫
x>0

xp(x)dx =
1√
π
∥∇f(x)∥, (102)

where we use a well-known fact that
∫
x>0

xp(x)dx = 1√
2π

.

Then we will prove∫
R12

⟨∇f(x), ξ1 − ξ2⟩ p(ξ1)p(ξ2)dξ1dξ2 = h(∥∇f(x)∥ , µL, d).

Notice that

R12 = {(ξ1, ξ2) | (ξ1, ξ2) ∈ R1, ⟨∇f(x), ξ1 − ξ2⟩ −
µL

2

(
∥ξ1∥22 + ∥ξ2∥22

)
≥ 0}.

We can see that R12 is a ball in R2d:

R12 =

{
(ξ1, ξ2) |

∥∥∥∥ξ1 − 1

µL
∇f(x)

∥∥∥∥2
2

+

∥∥∥∥ξ2 + 1

µL
∇f(x)

∥∥∥∥2
2

<
2∥∇f(x)∥22

µ2L2

}
. (103)

Now we denote ζ = [−ξ⊤1 , ξ⊤2 ]⊤ ∈ R2d, ϕ = [∇f(x)⊤,∇f(x)⊤]⊤ ∈ R2d. Notice that ζ still
follows an isotropic multivariate Gaussian distribution, we can simplify the integral in LHS of (32)
as: ∫

Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ (104)

where Sζ(ϕ) =

{
ζ |
∥∥∥ζ − 1

µLϕ
∥∥∥2
2
<

∥ϕ∥2
2

µ2L2

}
.

We argue that for any rotation matrix R ∈ R2d×2d, i.e., det(R) = 1 and R⊤ = R−1. We have∫
Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ =

∫
Sζ(Rϕ)

⟨Rϕ, ζ⟩ p(ζ)dζ. (105)

To see that, we can rotate ζ by R. Denote ζ ′ = R⊤ζ, we first have
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Sζ(Rϕ) =

{
ζ |
∥∥∥∥ζ − 1

µL
Rϕ

∥∥∥∥2
2

<
∥ϕ∥22
µ2L2

}
=

{
Rζ ′ |

∥∥∥∥ζ ′ − 1

µL
ϕ

∥∥∥∥2
2

<
∥ϕ∥22
µ2L2

}
= {Rζ ′|ζ ′ ∈ Sζ′(ϕ)}

(106)

∫
Sζ(Rϕ)

⟨Rϕ, ζ⟩ p(ζ)dζ =

∫
{Rζ′|ζ′∈Sζ′ (ϕ)}

⟨Rϕ,Rζ ′⟩ p(Rζ ′)dRζ ′ =

∫
Sζ′ (ϕ)

⟨ϕ, ζ ′⟩ p(ζ ′)dζ ′,

(107)

where we use the property of p(·): p(Rζ ′) = p(ζ ′).

Now we denote ϕ′ = [∥ϕ∥, 0, ..., 0]⊤ ∈ R2d, it is easy to see that ϕ′ is a rotated version of ϕ,
i.e., there exists a rotation matrix R′ such that ϕ′ = R′ϕ. Denote ζ = [ζ1, ..., ζ2d]

⊤, and ζ/1 =

[ζ2, ..., ζ2d]
⊤. We have∫

Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ (108)

=

∫
Sζ(ϕ′)

⟨ϕ′, ζ⟩ p(ζ)dζ (109)

=∥ϕ∥
∫
(ζ1− ∥ϕ∥

µL )
2
+ζ2

2+...+ζ2
2d≤

∥ϕ∥2
µ2L2

ζ1p(ζ)dζ (110)

=∥ϕ∥
∫ 2∥ϕ∥

µL

0

ζ1

(∫
ζ2
2+...+ζ2

2d≤
∥ϕ∥2
µ2L2 −(ζ1− ∥ϕ∥

µL )
2
p(ζ/1)dζ/1

)
p(ζ1)dζ1. (111)

Notice that ζ2, ..., ζ2d are i.i.d and following standard Gaussian distribution, and hence ζ22 + ...+ ζ22d
follows the Chi-square distribution with 2d− 1 degrees of freedom. Therefore,

∫
Sζ(ϕ)

⟨ϕ, ζ⟩ p(ζ)dζ (112)

=∥ϕ∥
∫ 2∥ϕ∥

µL

0

ζ1F2d−1

(
∥ϕ∥2

µ2L2
−
(
ζ1 −

∥ϕ∥
µL

)2
)
p(ζ1)dζ1 (113)

=∥ϕ∥
∫ 2∥ϕ∥

µL

0

ζ1F2d−1

((
2∥ϕ∥
µL

− ζ1

)
ζ1

)
p(ζ1)dζ1 (114)

=
√
2 ∥∇f(x)∥

∫ 2
√

2∥∇f(x)∥
µL

0

ζ1F2d−1

((
2
√
2 ∥∇f(x)∥
µL

− ζ1

)
ζ1

)
p(ζ1)dζ1 (115)

=h(∥∇f(x)∥ , µL, d). (116)

Proof of Lemma 6. We define the fucntion q(u, d) : R+ × Z+ → R+ as follows:

q(u, d) =

∫ 2
√
2u

0

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx. (117)

Notice that h(v, r, d) =
√
2vq(v/r, d).

We first need to prove an important property of the function q(u, d):

lim
u→∞

q(u, d) =
1√
2π

.
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Consider an arbitrary ϵ > 0. Since
∫ +∞
0

xp(x)dx = 1√
2π

, there exists N2 > N1 > 0 and such that

0 <

∫ N1

0

xp(x)dx ≤ ϵ

3
, (118)

0 <

∫ ∞

N2

xp(x)dx ≤ ϵ

3
. (119)

On the other hands, for every u > N2√
2

, since
(
2
√
2u− x

)
x is monotonically increasing on [N1, N2],

we have∫ N2

N1

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx > F2d−1

((
2
√
2u−N1

)
N1

)∫ N2

N1

xp(x)dx. (120)

Notice that
lim
u→∞

F2d−1

((
2
√
2u−N1

)
N1

)
= 1,

there must exist a number N3 such that if u > N3, then

F2d−1

((
2
√
2u−N1

)
N1

)
> 1−

√
2πϵ. (121)

Putting together (120) and (121), because 0 ≤ F2d−1

((
2
√
2u− x

)
x
)
≤ 1, if u > max{N2√

2
, N3},

we can obtain

0 <

∫ +∞

0

xp(x)dx−
∫ 2

√
2u

0

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx (122)

≤ 2ϵ

3
+

∫ N2

N1

xp(x)dx−
∫ N2

N1

xF2d−1

((
2
√
2u− x

)
x
)
p(x)dx (123)

≤ 2ϵ

3
+

∫ N2

N1

xp(x)dx− F2d−1

((
2
√
2u−N1

)
N1

)∫ N2

N1

xp(x)dx (124)

≤ 2ϵ

3
+

∫ N2

N1

xp(x)dx−
(
1−

√
2πϵ
)∫ N2

N1

xp(x)dx (125)

=
2ϵ

3
+

ϵ

3

∫ N2

N1

xp(x)dx <
2ϵ

3
+

√
2πϵ

1√
2π

= ϵ. (126)

Taking ϵ → 0, hence we know that

lim
u→∞

q(u, d) =

∫ +∞

0

xp(x)dx =
1√
2π

.

Since limu→∞ q(u, d) = 1√
2π

, there exists a constant Cd such that whenever
(

1
2
√
π
+ 1

4

)
u > 1

4Cd,
we have

q(u, d) ≥ 1√
2π

−
(

1

2
√
2π

− 1

4
√
2

)
=

1

2
√
2π

+
1

4
√
2
. (127)

Therefore, whenever
(

1
2
√
π
+ 1

4

)
v > 1

4Cdr, we have

h(v, r, d) =
√
2vq(v/r, d) ≥

(
1

2
√
π
+

1

4

)
v ≥

(
1

2
√
π
+

1

4

)
v − 1

4
Cdr. (128)

On the other hand, when
(

1
2
√
π
+ 1

4

)
v ≤ 1

4Cdr, we have

h(v, r, d) =
√
2vq(v/r, d) ≥ 0 ≥

(
1

2
√
π
+

1

4

)
v − 1

4
Cdr. (129)
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C EXPERIMENT DETAILS

C.1 HYPERPARAMETER CHOICES FOR THE EXPERIMENTS IN SECTION 4.1

Figure 8 and 9 show the performance of tested algorithms in Figure 3 under different hyperparameter
settings. For gradient-based algorithms, ZO-SGD, SCOBO, and ZO-RankSGD, we tune the stepsize
and set γ = 0.1 for the line search. We need to remark that when implementing the SCOBO (Cai
et al., 2022), we remove the sparsity constraint because we found that it will lead to degraded per-
formance for non-sparse problems like the ones we tested. For GLD-Fast, we tune for the diameter
of search sparse, denoted as µ. For CMA-ES, we tune for the initial variance, also denoted as µ in
the figures. To run the experiment in Figure 3, we select the optimal choices of hyperparameters
based on Figure 8 and 9 for each algorithm, respectively.

(a) ZO-SGD (b) SCOBO (c) ZO-RankSGD

(d) GLD-Fast (e) CMA-ES

Figure 8: Hyperparameter tuning on Quadratic function.

C.2 EXPERIMENTS ON HIGH-DIMENSIONAL OPTIMIZATION PROBLEM

In this section, we examine the performance of ZO-RankSGD on a high-dimensional optimization
problem, and the results is presented in Figure 10. Specifically, we adopt the same setting as the
experiments in Figure 3, except that we increase the problem dimension to 10000. It is worth noting
that the CMA-ES is no longer included in this experiment due to the overwhelming computation
time. This is mainly because, at this problem scale, CMA-ES requires updating a 10000 × 10000
covariance matrix.

As we can see, the phenomenon is similar to the results presented in Figure 3, showcasing the ability
of ZO-RankSGD on tackling high-dimensional problems.

We also provide more details for the hyperparameters selection in these experiments as we did in
Section C.1. See Figure 11 and 12 for this information.
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(a) ZO-SGD (b) SCOBO (c) ZO-RankSGD

(d) GLD-Fast (e) CMA-ES

Figure 9: Hyperparameter tuning on Rosenbrock function.

(a) Quadratic function (b) Rosenbrock function

Figure 10: Performance of different algorithms on the 10000-dims optimization problems.
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(a) ZO-SGD (b) SCOBO (c) ZO-RankSGD

(d) GLD-Fast

Figure 11: Hyperparameter tuning on Quadratic function.

(a) ZO-SGD (b) SCOBO (c) ZO-RankSGD

(d) GLD-Fast

Figure 12: Hyperparameter tuning on Rosenbrock function.

C.3 EXPERIMENTS WITH NOISY RANKING ORACLES

In this section, we present preliminary results to assess the performance of ZO-RankSGD when
confronted with noisy ranking oracles. It is essential to note that, unlike the comparison oracle
introduced by Cai et al. (2022), which employs flipping probabilities to represent errors in noisy
comparison feedback, modeling errors in noisy ranking feedback is not straightforward.

To simulate noisy ranking oracles for our experiments, we empirically introduce Gaussian noise to
the ground-truth function value. We then construct the corresponding noisy ranking feedback based
on the perturbed values.
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Figure 13 illustrates the performance of both ZO-SGD and ZO-RankSGD under varying levels of
noise, denoted by the variance parameter η, added to the function value. We select the optimal
stepsize independently for ZO-SGD and ZO-RankSGD. Remarkably, ZO-RankSGD demonstrates
resilience to additive noise across different levels of variance, consistently maintaining performance
comparable to ZO-SGD. Notably, for the Rosenbrock function, ZO-RankSGD outperforms ZO-
SGD, indicating superior robustness to additive noise. We speculate that this advantage stems from
ZO-RankSGD relying solely on rank information for optimization, which may exhibit less variabil-
ity under mild additive noise.

Looking forward, our aim is to establish a well-defined framework for noisy ranking oracles and ex-
tend the theoretical analysis of ZO-RankSGD within this context. Additionally, we hope to explore
the theoretical robustness of ZO-RankSGD to noise.

(a) Quadratic function (b) Rosenbrock function

Figure 13: Performance of ZO-RankSGD and ZO-SGD under noisy feedback.

C.4 DETAILS FOR THE EXPERIMENTS IN SECTION 4.2

Problem dimension. In this experiment, for all three scenarios from Mujoco environment, we seek
to optimize a linear policy mapping states to actions. Specifically, the dimensions for the Reacher-
v2, Swimmer-v2, and HalfCheetah-v2 are 24, 18, 108 respectively.

Comparing ZO-RankSGD with SCOBO in policy optimization. In this part, we delve into a
detailed comparison between ZO-RankSGD and SCOBO. It is important to note that a direct com-
parison is challenging, as they depend on fundamentally different query oracles. However, we pro-
pose an alternative comparison approach from an information perspective. Specifically, given a
budget of 5 query points per iteration, SCOBO can make only 4 independent pairwise comparisons,
while ZO-RankSGD can obtain information from 10 dependent pairwise comparisons by querying
a (5, 5)-ranking oracle.

From this standpoint, we anticipate that ZO-RankSGD would outshine SCOBO with m = 5 (which
can only query information of 5 points via 4 independent pairwise comparisons), but might fall
short when compared to SCOBO with m = 11 (which can query information of 11 points via 10
independent pairwise comparisons).

To test this hypothesis, we benchmark ZO-RankSGD, SCOBO (m = 5), and SCOBO (m = 11)
on the same policy optimization problem discussed in Section 4.2. The results, shown in Figure 14,
align precisely with our prediction, thus validating our perspective.
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(a) Reacher-v2 (b) Swimmer-v2 (c) HalfCheetah-v2

Figure 14: Perfomance of ZO-RankSGD and SCOBO on three MuJoCo environments

C.5 DETAILS FOR THE EXPERIMENT IN SECTION 4.3

Modified ZO-RankSGD algorithm for optimizing latent embeddings of Stable Diffusion. To
enhance the efficiency of Algorithm 1, we make a modification to preserve the best image obtained
during the optimization process. Specifically, in the original algorithm, the best point among all
queried images is not saved, which can lead to inefficiencies. Therefore, we modify the algorithm to
store the best point in the gradient estimation step as x∗∗ and add it to the later line search step. This
modification can be viewed as a combination of ZO-RankSGD and Direct Search (Powell, 1998).
Another useful feature of Algorithm 3 is that if the best point is not updated in the line search step,
the algorithm returns to the gradient estimation step to form a more accurate gradient estimator. The
modified algorithm is presented in Algorithm 3. At every iteration in Algorithm 3, we evaluate the
latent embeddings by passing them to the DPM-solver with Stable Diffusion and then ask human or
CLIP model to rank the generated images.

Algorithm 3 Modified ZO-RankSGD algorithm for optimizing latent embeddings of Stable Diffu-
sion.
Require: Objective function f (Evaluated by human or CLIP model), initial point x0, number of queries m,

stepsize η, smoothing parameter µ, shrinking rate γ ∈ (0, 1), number of trials l.
1: Initialize the best point x∗ = x0.
2: Initialize the gradient memory ḡ with all-zero vectors.
3: Set τ = 0.
4: while not terminated by user do
5: Sample m i.i.d. direction {ξ1, · · · , ξm} from N(0, I).
6: Query O

(m,k)
f with input X1 = {x∗ +µξ1, · · · , x∗ +µξm} for some k ≤ m. Denote I1 as the output.

7: Set x∗∗ to be the point in X1 with minimal objective value.
8: Compuate the gradient ĝ using the ranking information I1 as in Algorithm 1.
9: ḡ = (τ ḡ + ĝ)/(τ + 1)

10: τ = τ + 1
11: Query O

(m,1)
f with input X2 = {x∗, x∗∗, x∗ − ηḡ, x∗ − ηγḡ, ..., x∗ − ηγm−2ḡ}. Denote I2 as the

output.
12: if 1 ∈ I2, i.e., x∗ has the minimal objective value then
13: Go back to line 5.
14: else
15: Set x∗ to be the point in X2 with minimal objective value.
16: Initialize the gradient memory ḡ with all-zero vectors.
17: Set τ = 0.
18: end if
19: end while

The User Interface for Algorithm 3. Figure 15 presents the corresponding user interface (UI)
designed for collecting human feedback in Algorithm 3, where 6 images are presented to the users
at each round. When the user receives the instruction ”Please rank the following image from best
to worst,” it indicates that the algorithm is in the gradient estimation step. In this case, users are
required to rank k best images, where k can be any number they choose. Then, the user receives
the instruction ”Please input the ID of the best image,” indicating that the algorithm has moved to
the line search step, and users only need to choose the best image from the presented images. This
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interface enables easy and intuitive communication between the user and the algorithm, facilitating
the optimization process.

Round 1: Please rank the following image from best to worst -> 4 2 1 5 3 6 

 
Round 2: Please input the ID of best image -> 1 

 
Round 3: Please rank the following image from best to worst -> 2 6 1 3 5 4 

 
Round 4: Please input the ID of best image -> 2 

 
  
 
Round 13: Please rank the following image from best to worst -> 6 3 1 5 

 
Round 14: Please input the ID of best image -> 6 

 
Round 15: Exit 
 

…
…

 

Figure 15: The User Interface of Algorithm 3.

In this experiment, we use some popular text prompts from the internet1. More examples like the
ones in Figure 7 are presented in Figure 16.

1https://mpost.io/best-100-stable-diffusion-prompts-the-most-beautiful-ai-text-to-image-prompts
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Other details. For all the examples in Figure 7 and Figure 16, we set the number of rounds
for human feedback between 10 and 20, which was determined based on our experience with the
optimization process. For the images obtained from the CLIP similarity score, we fixed the number
of querying rounds to 50. Both the optimization from human feedback and CLIP similarity score
used the same parameters for Algorithm 3: η = 1, µ = 0.1, and γ = 0.5. Especially, the µ = 0.1 is
chosen according to the rule discussed in Section 3.1, as we select a sufficiently small µ value which
still allows humans to perceive differences between perturbed images. Since the latent embedding
of Stable Diffusion is 64× 3× 3, the problem dimension of the optimization problem is 576.
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Figure 16: More examples.
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