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ABSTRACT

Recent advancements in large language models (LLMs) have greatly improved code
generation, specifically at the function level. For instance, GPT-4o has achieved a
91.0% pass rate on HumanEval. However, this draws into question the adequacy
of existing benchmarks in thoroughly assessing function-level code generation
capabilities. Our study analyzed two common benchmarks, HumanEval and MBPP,
and found that these might not thoroughly evaluate LLMs’ code generation ca-
pacities due to limitations in quality, difficulty, and granularity. To resolve this,
we introduce the Mostly Hard Python Problems (MHPP) dataset, consisting of
210 unique human-curated problems. By focusing on the combination of natu-
ral language and code reasoning, MHPP gauges LLMs’ abilities to comprehend
specifications and restrictions, engage in multi-step reasoning, and apply cod-
ing knowledge effectively. Initial evaluations of 26 LLMs using MHPP showed
many high-performing models on HumanEval failed to achieve similar success on
MHPP. Moreover, MHPP highlighted various previously undiscovered limitations
within various LLMs, leading us to believe that it could pave the way for a better
understanding of LLMs’ capabilities and limitations.

1 INTRODUCTION

Large language models (LLMs) have recently driven striking performance improvements across
various tasks (Ouyang et al., 2022; Touvron et al., 2023; OpenAI, 2023). Recent models such as
Llama 3.1 (Dubey et al., 2024), CodeLlama (Rozière et al., 2023), CodeGemma (Team et al., 2024),
and GPT-4o (OpenAI, 2024) have been successful in demonstrating their efficacy in code-related tasks
from program repair (Haque et al., 2022; Jin et al., 2023) to automated testing (Lemieux et al., 2023;
Schäfer et al., 2024). LLMs are utilized to develop innovative tools aimed at aiding programmers to
write code more efficiently (Chen et al., 2021).

Code generation is a key area for evaluating LLMs’ capabilities. Code generation broadly spans
converting natural language prompts into executable code, not limited to predefined templates such
as function signatures and docstrings. This process can range from pure text descriptions to complete
code generation, emphasizing the versatility and adaptability required for LLMs. Our focus is on
Function-Level Code Generation. An example is illustrated in Figure 1. It emphasizes the translation
of natural language into functional code, underlining natural language comprehension’s importance
for creating accurate programming constructs. Benchmarks like HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) stand out in assessing these models, showcasing LLMs’ strengths in code
generation through their understanding of natural language and generation abilities. For instance,
GPT-4o (OpenAI, 2024) achieves a 91.0% pass rate on HumanEval (Chen et al., 2021).

However, on existing benchmarks, performance differences between models are insignificant - all
achieve high pass rates. We thus raise two concerns: 1) Basic datasets lack discriminative power to
distinguish model capabilities, making it difficult to assess their relative strengths and weaknesses.
2) High overall pass rates on existing tasks alone cannot determine if models have truly mastered
functional programming competency and encoding skills to address diverse challenges. To answer
these questions, we conducted detailed experiments with strong code models on the market, including
closed-source models like GPT-4 (OpenAI, 2023), GPT-3.5 (OpenAI, 2022), and open-source models
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Figure 1: A concise example from MHPP. The
function is defined (1), documented with a de-
scription in its docstring (2), and is accompanied
by an input example (3). A canonical answer is
presented (4), and the function’s correctness is
ensured through an assertion test (5).

Codesense: 52

Basic: 45

Cornercase: 13

Distraction: 5

Commonsense: 39

Redefinition: 35

Shortcut: 13

Complex: 30

0 0.1 0.2 0.3 0.4 0.5

GPT-3.5 DeepSeek-I 33B GPT-4

Figure 2: Distribution of error types of GPT-
3.5, GPT-4 and DeepSeek-Instruct 33B on Hu-
manEval. Models tend to make mistakes on prob-
lems of the Complex type, while they are good
at Basic, Distraction, and Codesense types.

like DeepSeek Coder (DeepSeekAI, 2023), using the HumanEval and MBPP benchmarks. Results
are displayed in Figure 2. Our error analysis revealed that different models make similar mistakes on
the same problems, highlighting corresponding challenges.

Through an extensive manual analysis, we identified 7 main challenges in code generation tasks,
leading to the introduction of the Mostly Hard Python Problems (MHPP) dataset. MHPP consists
of 210 unique, manually created Python programming problems, each supplemented by unit tests.
MHPP focuses on comprehensively evaluating LLMs’ abilities to tackle various challenges in code
generation. This includes handling variance in natural language inputs, understanding newly defined
contexts, demonstrating commonsense, dealing with edge cases, following complex instructions,
using mathematical and algorithmic knowledge, and showing familiarity with coding principles. It is
important to note that each challenge within MHPP necessitates different degrees of natural language
comprehension and code reasoning abilities.

We extensively evaluated 26 LLMs on MHPP, revealing many previously undiscovered limitations and
different weaknesses across models when addressing various challenges involved in code generation
tasks. Notably, the models struggled the most with challenges that required advanced algorithmic
reasoning. Our comprehensive experiments demonstrate that MHPP can effectively test model
performance against diverse code generation challenges. We hope MHPP can serve as a stepping
stone for a better understanding of LLM capabilities and limitations to advance code generation.
particularly in the domain of algorithmic reasoning.

2 DATASET ANALYSIS

In this section, we carry out a comprehensive manual analysis of two standard benchmarks: MBPP
and HumanEval along multiple axes. Our findings indicate that these benchmarks may not fully
assess LLMs’ code generation capacities due to LLMs’ rapid development.

2.1 MBPP

The analysis of the MBPP test set revealed three main issues. Firstly, data contamination was
identified as a significant problem. Through manual inspection, we found that many instances
appeared on the open-access websites, such as GeeksforGeeks1. To further investigate this issue, we
calculated the contamination rate using the leakage detection tool (Li, 2023), 65.4% of instances
in the test set were found to be contaminated. For more details refer to Appendix B. This issue

1https://www.geeksforgeeks.org/
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Figure 3: The imbalance distribution of challenges and problem types in HumanEval and MBPP.

may be attributed to the annotation process of MBPP, which allows crowd workers to use internet
references without implementing measures to filter out questions collected directly from websites.
The presence of contaminated data enables models to “cheat” by memorizing test data rather than
demonstrating genuine generalization, thus distorting model comparisons and undermining the
reliability of benchmarks (Jacovi et al., 2023; Sainz et al., 2023).

Additionally, upon conducting an error analysis based on strong models (e.g. GPT-4), we found that
18.82% of errors identified were attributed to the quality of the test instances in MBPP. Specifically,
these errors were categorized into two types: 10.59% of the errors were associated with unclear prob-
lem descriptions, while 8.23% were caused by instances lacking necessary constraints or containing
incorrect test cases. A more detailed analysis, along with specific cases, can be found in Appendix I.
Lastly, the problems within MBPP primarily center around basic code generation, covering tasks that
entail simple arithmetic or standard library usage. The length of the natural language descriptions
averages about 15.7 words per sentence, with predominantly unbalanced types, wherein 77% were
related to mathematical and list as shown in Figure 3. The imbalance in problem types and difficulty
levels may not thoroughly assess the capabilities of LLMs, particularly given the rapid development.

2.2 HUMANEVAL

We conduct an extensive error analysis for 3 LLMs on HumanEval, including GPT-4 (OpenAI, 2023),
GPT-3.5 (OpenAI, 2022) and DeepSeekCoder (DeepSeekAI, 2023) as depicted in Figure 2. We
analyze the errors made by LLMs on HumanEval and categorize the code generation challenges that
led to these mistakes into 7 types:

Distraction: The description is lengthy and contains redundant information. To address this challenge,
LLMs need to extract essential information needed for accurate code generation.

Redefinition: The description introduces new concepts or operational rules, presenting a counter-
factual scenario with corresponding explanations. LLMs need to comprehend this newly introduced
context for accurate code generation.

Shortcut: This challenge requires LLMs’ unconventional thinking, solving such problems often
involves concise solutions derived from logical reasoning, lateral thinking, and a grasp of knowledge
including mathematics and game theory.

Commonsense: Understanding the problem relies on commonsense knowledge not explicitly ex-
plained in the description. Commonsense involves universally understood facts for humans, such as
temporal, spatial, and geometric knowledge. LLMs need a solid grasp of commonsense to interpret
the context and then generate code.

Cornercase: This challenge demands thorough thinking of the problem, paying close attention to
implicit boundary conditions that could affect the outcome. LLMs need to consider all the corner
cases for correct code generation.
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Table 1: Detailed statistics of MHPP. Avg. Input Words represents the average number of words
contained in the input, Avg. Code Lines means the average number of lines in code solutions and
Avg. Tests represents the average number of test cases per problem. Reasoning level indicates the
level of reasoning difficulties in solving the specific challenge.

Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total

Avg. Input Words 260.9 153.4 141.2 148.0 142.3 189.9 137.1 167.6
Avg. Code Lines 16.1 13.2 7.3 13.4 17.5 27.9 8.9 14.9
Avg. Tests 13.8 14.6 11.4 15.0 16.9 15.4 11.1 14.0

Top5 Types

DP(14%) Array(22%) Math(31%) Math(18%) Array(15%) DP(14%) String(17%) Array(14%)
Array(9%) DP(14%) Array(15%) Array(12%) Search(12%) Array(13%) Math(11%) Math(13%)

Search(8%) Math(12%) GameTheory(13%) Greedy(8%) DP(12%) String(8%) Array(11%) DP(10%)
Math(8%) Simulation(6%) Greedy(9%) Geometry(8%) String(10%) Stack(8%) Sorting(8%) String(8%)
Hash(8%) Hash(6%) Sorting(7%) DP(8%) Math(7%) Search(8%) Hash(6%) Sort(6%)

Reasoning Level Medium Medium Difficult Easy Medium Difficult Easy -

Complexity: The description contains multiple constraints or requires executing multiple steps to
reach a solution. This complexity necessitates advanced logical reasoning or complex instruction
following capabilities for code generation.

Codesense: This challenge requires a deep understanding of the Python language and broader
programming knowledge, including familiarity with specific Python packages and the parameters
needed for function calls.

In addition to seven identified challenges, we incorporated a Basic category in HumanEval that
necessitates elementary programming abilities, such as string manipulation or arithmetic operations.
Our analysis reveals an imbalance in HumanEval’s challenge and problem type distribution, with
Basic and Codesense problems comprising 17.7% and 20.1% respectively, as depicted in Figure 3a
and further illustrated in Figure 3. Codesense, demanding minimal Python proficiency, along with
Basic, exhibits significantly lower error rates compared to other categories. To sum up, both MBPP
and HumanEval face challenges concerning data contamination, quality, distribution, and difficulty
levels, potentially affecting the reliability of benchmarking processes and the precise evaluation of
LLMs’ code generation capabilities.

3 BENCHMARK CONSTRUCTION

To delve deeper into the capabilities and limitations of LLMs beyond the basic code generation capa-
bilities identified by MBPP and HumanEval, we have created a unique code generation benchmark
Mostly Hard Python Problems (MHPP). This benchmark comprises expert-curated problems tailored
specifically for the seven challenges we identified in code generation. Note that using HumanEval as
a starting point may limit the coverage of problem types and error patterns. Therefore, we actively
sought to generalize the problem types and address more realistic and challenging error patterns in
the creation of MHPP. We refer readers to Appendix C. Our annotation team includes 12 members,
all of whom possess either a master’s or a Ph.D. degree in computer science.

To ensure the quality of our dataset, three members serve as meta-annotators. Based on the seven
challenges, the annotators were tasked with defining the problem statement for each challenge,
creating a single, self-contained Python function to solve the given problem, and developing test
cases to validate the semantic correctness of the function, as detailed in Section 3.1. Additionally, the
annotators were required to provide a ground-truth solution that successfully passed all the proposed
test cases.

In defining the problems, annotators were instructed to formulate descriptions clear and detailed
enough to allow for the translation of these descriptions into code by a human, without further
clarification. To maintain the originality and integrity of MHPP, annotators were strictly prohibited
from directly copying problems from publicly accessible websites, or employing simple modifications
to existing problems, such as synonym replacements or paraphrasing, as outlined in Section 3.2.

3.1 CHALLENGE-SPECIFIC ANNOTATION

We provide guidelines catered to the diverse requirements of annotating different challenges.

4
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Distraction: Annotators are required to create elaborate natural language descriptions that incorporate
redundant information. These descriptions should exceed 200 words and introduce distractions.

Redefinition: Annotators are required to introduce new concepts or operational rules, effectively
creating counterfactual scenarios. Each problem should introduce more than one new concept along
with comprehensive explanations.

Shortcut: Annotators are required to craft problems that permit concise solutions by lateral thinking,
or applying knowledge from mathematics and game theory.

Commonsense: Annotators are required to construct problems that are grounded in foundational
commonsense concepts. These problems should not include explicit explanations of the involved
commonsense principles, and more than one concept should be featured.

Cornercase: Annotators are required to write problems with solutions that need to consider more
than 1 corner case.

Complexity: Annotators are required to develop problems that have more than 3 operational steps
or hops of reasoning. An example would be a problem that necessitates sorting a list, extracting
maximum and minimum elements, and then calculating the difference between these elements.

Codesense: Annotators are required to craft problems that necessitate the utilization of more than 1
specific Python package, both internal and external, such as RE and Numpy.

3.2 QUALITY ASSURANCE

To ensure the quality of MHPP, we initiated a comprehensive two-phase quality assurance process.
Our primary goal in the first phase is to eliminate any risk of data contamination that may arise from
the inclusion of problems that have previously appeared on open-access websites. To achieve this,
we tasked meta-reviewers with meticulously searching the Internet to ensure none of the problems
selected were already publicly available. Additionally, we employed a contamination detector (Li,
2023), to confirm a 0% contamination rate, resulting in the exclusion of 6 problems identified at this
stage. We then asked the annotators to annotate another 6 problems until all of the problems met the
requirements. Progressing to the second phase, our focus shifted towards ensuring that each problem
rigorously meets the specific criteria for the respective challenges. This entailed a detailed review of
every aspect of the problem, including the natural language description, the reference solution, and
the test cases, conducted by a panel of three meta-annotators.

To guarantee consistency and accuracy, we adopted an iterative approach wherein annotators were
tasked with addressing and rectifying any issues flagged by the meta-reviewers until unanimous
approval was obtained. In addition, in order to prevent the risk of future data contamination, we
build an evaluation pipeline to mitigate data leakage, rather than releasing the whole MHPP dataset
on popular platforms including HuggingFace or GitHub. Researcher can only get a result report by
submitting model outputs using API without knowing any test case or canonical solution.

3.3 DATASET STATISTICS

Detailed statistics of MHPP are outlined in Table 1. The total number of our dataset is 210 and each
challenge category contains 30 questions. A significant observation is that the average problem in
MHPP contains 167.6 words and the corresponding solutions span across 14.9 lines of code. This
indicates a considerable increase in verbosity and code complexity when compared to benchmarks
such as MBPP and HumanEval. Furthermore, MHPP surpasses these benchmarks in the number of
test cases, with an average of 14.0 test cases per problem—higher than MBPP’s 3.0 and HumanEval’s
7.2. Further comparisons can be found in Appendix A.

Crucially, the design of MHPP specifically addresses more nuanced challenges and diverse context
formats, a distinction not observed in other datasets. For instance, challenges categorized under the
Distraction and Complex categories are marked by significantly longer descriptions, posing unique
challenges in context comprehension. Conversely, problems falling under the Shortcut class feature
notably fewer lines of code in their solutions, highlighting challenges in achieving concise problem
solutions.
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Table 2: LLMs’ performance on MHPP in terms of pass@1 and pass@5 scores. We pinpoint
top performers in open-source LLMs based on pass@1 and pass@5 scores. The best models are
highlighted in bold, while those in second place are underscored, including ties. The performance of
LLMs on MHPP using greedy-search decoding can be seen in Appendix E.

Model Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total
k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5

Closed-Source LLMs

GPT-4o-2024-05-13 52.9 62.8 60.1 71.8 36.3 54.6 58.8 75.7 45.4 55.4 46.1 63.0 58.2 67.5 51.1 64.4
GPT-4o-Mini-2024-07-18 44.4 55.4 53.7 67.0 37.6 50.8 44.9 57.7 40.1 52.9 34.7 48.5 54.2 65.3 44.2 56.8
GPT-4-Turbo-2024-04-09 42.5 57.1 58.6 66.7 33.6 44.7 48.9 62.4 42.2 59.2 37.8 57.6 52.3 62.8 45.1 58.7
GPT-3.5-Turbo-0125 29.6 47.8 39.6 58.1 27.9 43.6 35.9 53.1 23.8 35.6 13.0 30.1 37.1 54.0 29.6 46.0

Open-Source LLMs

Phi-3-medium 14B 16.8 33.1 22.5 41.2 16.7 28.4 21.8 42.8 19.3 33.8 8.9 23.4 23.1 45.9 18.4 35.5
Phi-3-small 7B 15.4 28.6 19.0 37.5 10.9 25.0 16.6 34.2 15.1 29.6 6.3 16.5 21.0 46.4 14.9 31.1
Phi-3-mini 3.8B 12.5 26.3 22.7 35.3 13.3 28.4 16.3 31.0 16.3 31.5 6.3 13.8 20.7 38.0 15.4 29.2

Llama 3.1 8B 6.8 17.0 10.4 23.8 3.9 13.2 11.7 28.4 5.4 15.3 1.8 7.5 9.5 23.4 7.1 18.4

Gemma2 IT 9B 15.7 23.9 20.0 30.3 20.7 24.2 17.3 24.6 14.6 22.7 5.9 15.4 18.3 31.3 16.1 24.6
Gemma2 IT 2B 8.6 15.9 7.9 18.1 2.9 7.5 5.9 13.4 7.0 14.3 0.1 0.6 8.5 20.4 5.8 12.9

Mistral-7B-v0.3 6.7 15.1 9.8 19.8 4.3 11.7 9.6 19.3 5.8 12.5 0.9 3.9 10.4 24.1 6.8 15.2
Codestral 22B 28.9 43.5 34.0 50.8 17.4 32.7 31.6 49.2 24.0 40.6 12.2 27.1 34.5 52.4 26.1 42.3

DeepSeek-V2.5 37.8 47.4 51.9 59.6 37.7 50.0 55.5 66.3 40.2 45.0 25.4 38.0 45.7 52.6 42.0 51.3
DeepSeek-33B 28.0 41.3 33.8 49.0 21.3 33.1 39.1 55.9 25.9 38.7 11.4 29.2 35.2 56.3 27.8 43.4
DeepSeek-6.7B 19.8 35.6 30.9 44.8 19.2 30.1 25.1 45.3 18.6 33.0 6.0 17.6 25.9 44.3 20.8 35.8
DeepSeek-1.3B 10.8 20.2 10.3 21.9 10.8 22.2 15.3 26.6 8.2 15.4 0.5 2.4 12.8 28.3 9.8 19.6

As detailed in Table 1, our analysis of the top 5 distribution of problem types underscores the
unparalleled diversity in MHPP, in contrast to MBPP and HumanEval where three types predominantly
emerge. This diversity extends to the varied problem types observed across different challenges; for
example, while dynamic programming is a prevalent theme in the Complex category, it appears less
frequently in the Redefinition and Cornercase categories, showcasing the diverse range of challenges
encapsulated within MHPP.

MHPP spans a wide range of complexity levels, testing the reasoning capabilities of LLMs to
varying degrees. Commonsense and Codesense challenges involve basic logical operations, such
as identifying concepts and patterns, applying factual and programming knowledge, and drawing
simple inferences. Distraction, Redefinition, and Cornercase challenges demand complex cognitive
processes. These include analyzing the docstring, evaluating the context, and forming conclusions
based on multiple conditions. Shortcut and Complex challenges necessitate even more advanced
reasoning, involving abstract thinking, critical analysis, and optimization under various constraints. In
essence, MHPP provides a spectrum of complexity, testing LLMs’ ability to perform natural language
and algorithmic reasoning at different levels.

4 EXPERIMENT

4.1 SETUP

Following prior works (Chen et al., 2021; Nijkamp et al., 2023), code generation is conducted
under the setting of greedy-search and sampling decoding with a temperature of 0.7, which are
evaluated with unbiased versions of pass@1 and pass@5 scores, respectively. We examined 26
LLMs on MHPP to demonstrate a comprehensive study, including the open-sourced LLMs such as
DeepSeek (DeepSeekAI, 2023) and Llama 3.1 (Dubey et al., 2024). GPT-4o OpenAI (2024) and its
predecessor are also evaluated. Each model is prompted with “Write a Python function according
to the function name and the problem description in the docstring below. [function definition with
docstring]”, while all finetuned LLMs are equipped with the additional instruction template used
during their specific finetuning. To carry out an in-depth investigation of LLMs’ capability of code
generation and the effectiveness of MHPP, three research questions are naturally raised:
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Figure 4: Error distribution of GPT-4o, GPT-
4-turbo, Mistral-large 2 and Llama 3.1 70B.
Most models performed poorly on MHPP.
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Figure 5: The correlation between HumanEval
pass@1 scores and MHPP pass@1 scores.
Instruction-finetuned models are labeled with ‘-I’.

RQ1 How do open-sourced coding models compare to proprietary models like GPT-4o (OpenAI,
2024) in their ability to generate high-quality code? (Section 4.2)

RQ2 What weaknesses do even the most advanced models still exhibit? (Section 4.3)

RQ3 How well does performance on MHPP correlate with performance on the existing HumanEval
benchmark for evaluating code generation capabilities? (Section 4.4)

4.2 MAIN RESULTS

Open-sourced LLMs are impressive, however still fall short of the performance compared with GPT-
4o. Table 2 illustrate a significant performance gap between GPT-4o and other baseline models. This
is in contrast to results from HumanEval and MBPP, where many open-source models are competitive
with GPT models. Surprisingly, DeepSeek V2.5 reaches 42.1 pass@1 and 51.3 pass@5 score, which
surpasses GPT-3.5-turbo by a substantial margin, challenging the long-standing dominance of GPT
models in the field of code generation and highlighting its potential to shape the future of open-source
LLMs. Furthermore, the results indicate that open-source LLMs benefit significantly from increases
in model size, as evidenced by the impressive performance-to-size ratio achieved by the DeepSeek
and Gemma families. However, this trend is not observed in the Phi3-medium, Phi3-small, and
Phi3-mini models, where performance appears to fluctuate randomly with changes in size.

Additionally, most open-source LLMs still struggle to generate acceptable responses to the challenging
questions presented in MHPP. This suggests that our proposed MHPP effectively highlights the
difficulties faced by LLMs in code generation, indicating that the development of open-source coding
LLMs still faces significant challenges and warrants further exploration. Furthermore, we extend
our research beyond Python by translating MHPP’s problems and test cases into Java and C++. The
results of GPT-4’s performance in these languages are in Appendix D.

4.3 RESULTS ON DIFFERENT TYPES OF CHALLENGES

Challenges in MHPP are still hard even for top-performance LLMs. Especially those are ignored in
MBPP and HumanEval. Despite the impressive performance compared with all the other baselines,
GPT models’ error rates are still unignorable. Figure 4 illustrates that MHPP challenges LLMs
across all areas. Notably, GPT-4-turbo performed poorly in every MHPP category, with a 60% error
rate in the most challenging category, shortcut challenges, which are among the least represented in
HumanEval. Furthermore, even in the category with the best performance, GPT-4-turbo still had over
a 40% error rate, which is inadequate to generate comprehensive and informative codes solutions
when facing challenges.

Although GPT-4o surpasses its predecessor across all subjects, it still has a considerable way to go
before fully mastering MHPP problems, particularly shortcut questions. These experimental results
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Table 3: Models’ Pass@1 and Pass@5 with corresponding 95% confidence intervals. To calculate
the Confidence Intervals, we conducted 10 rounds of testing for each model and computed the mean
pass@k value. The variance for performance on MHPP is small enough, even for each category.

Model Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total

Pass@1
GPT-4o-2024-05-13 53.03 ±0.18 60.19 ±0.38 36.21 ±0.32 58.62 ±0.52 45.57 ±0.23 46.23 ±0.24 58.29 ±0.26 51.16 ±0.11
GPT-4-Turbo-2024-04-09 42.78 ±0.28 58.91 ±0.18 33.5 ±0.21 49.25 ±0.24 42.29 ±0.35 37.76 ±0.34 52.43 ±0.26 45.27 ±0.11
DeepSeek-V2.5 42.04 ±0.07 37.65 ±0.12 51.85 ±0.27 37.93 ±0.25 55.32 ±0.28 40.17 ±0.23 25.64 ±0.24 45.73 ±0.18

Pass@5
GPT-4o-2024-05-13 62.7 ±0.27 71.72 ±0.34 54.08 ±0.52 75.6 ±0.27 55.85 ±0.34 62.95 ±0.51 67.64 ±0.36 64.36 ±0.13
GPT-4-Turbo-2024-04-09 57.55 ±0.68 66.74 ±0.22 44.91 ±0.34 63.12 ±0.49 59.05 ±0.35 57.12 ±0.72 62.92 ±0.39 58.77 ±0.16
DeepSeek-V2.5 51.34 ±0.15 47.19 ±0.48 59.4 ±0.38 50.29 ±0.55 66.45 ±0.36 45.03 ±0.37 37.91 ±0.43 53.12 ±0.4

demonstrate that MHPP provides a comprehensive assessment of LLMs’ code generation. To help
the community further improve performance on fine-grained code generation tasks, we have devised
a set of potential strategies tailored to each category of challenges presented in MHPP, as detailed in
Appendix F.

4.4 CORRELATION BETWEEN MHPP AND HUMANEVAL

MHPP is closely correlated with HumanEval, yet it presents more challenging and representative
questions. Following the CRUXEval (Gu et al., 2024), Figure 5 illustrates the correlation between
HumanEval and MHPP. Notably, GPT-4o outperforms other models in both MHPP and HumanEval.
As discussed in Section 4.2, certain model families benefit from increased model size, achieving
an impressive performance-to-size ratio. Specifically, for Llama 3.1-instruct and GPT models, the
advantages of scaling up LLMs are evident and exhibit relatively similar growth on both MHPP
and HumanEval, suggesting that model scaling may enhance the reasoning capabilities of these
LLMs on general coding tasks. However, for Gemma2 and Mixtral models, the benefits of scaling up
are significantly less pronounced on MHPP than on HumanEval, indicating that these models may
exhibit overfitting to the problems presented in HumanEval and that MHPP presents more complex
challenges not solely addressed by increasing model size.

Moreover, on HumanEval, the performance gap between open-source models and the GPT series has
significantly narrowed, with Llama 3.1 405B and DeepSeek V2.5 scoring close to GPT-4o. This trend,
however, does not extend to MHPP, where GPT-4o’s coding capabilities remain substantially superior
to all other models, including GPT-4-turbo, GPT-4o-mini, and DeepSeek V2.5. This disparity can
be attributed to MHPP’s anti-data contamination feature and its more demanding and representative
questions. Consequently, although MHPP is largely correlated with HumanEval, it more accurately
assesses a model’s performance in complex scenarios.

5 ANALYSIS

5.1 CONFIDENCE INTERVALS

To validate the effectiveness and reliability of the MHPP, we conducted a comprehensive analysis of
the confidence intervals (CIs). This analysis encompasses the overall CI for the challenges addressed
by our proposed MHPP, underscoring its general reliability, and extends to the CIs for each subclass
to elucidate the rationale behind MHPP’s structure.

Following the decoding strategies and evaluation metrics delineated in Section 4.1, we estimated the
CI from pass@1 to pass@20. To substantiate the CIs, we conducted 10 rounds of testing for each
model and computed the mean pass@k value, denoted as x̄. In each testing round, we randomly
selected 50 out of 100 generated samples of each model to estimate pass@k. Subsequently, we
calculated the Confidence Intervals (CIs) using the formula:

CI = x̄± z · s√
n

(1)

where s represents the standard deviation, and n denotes the sample size. We evaluated the CIs at a
95% confidence level, corresponding to a z-value of 1.96. Table 3 presents the confidence intervals for
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(a) Error in the Commonsense challenge. (b) Error in the Complex challenge

Figure 6: Two case studies showing that challenges we particularly set for certain problems can
indeed cause the model to make mistakes. The highlighted text in the docstring represents where
the model can be misunderstood. The pink-colored part in the code means the mistakes and the pale
blue-colored part in the code means that the model knows the correct implementation.

pass@1 and pass@5 scores. For ( k=1 ), the CI is narrow, indicating consistent performance across
different iterations. Moreover, the CI for performance across various categories is small, suggesting
that each model maintains a consistent level of accuracy regardless of the category. For pass@5, the
confidence intervals remain narrow, though slightly wider than pass@1, reflecting the models’ ability
to include the correct answer within the top five predictions. These results validate the robustness
of testing large language models (LLMs) using MHPP, further demonstrating its effectiveness and
reliability. More results of CI testing with k values ranging from 1 to 20 are shown in Figure 7.

5.2 CASE REVIEW

In this section, we reviewed the GPT-4’s failures to see if, for a particular problem, the model indeed
failed to solve it due to the specific challenge we set for the problem. Two examples are shown in
Figure 6, we refer the reader to Appendix K for more whole examples. From these examples, the
rationality of the challenge classification can also be confirmed.

Figure 6a shows one problem with “Commonsense” as its challenge and model’s solution. More
specifically, this problem concerns the model’s understanding of space or orientation. Only people
who are walking toward each other will meet, yet the model mistakenly believes it also needs to
calculate for people moving in opposite directions. This indicates that the model lacks real-world
spatial concepts.

The problem in Figure 6b addresses the challenge of multiple constraints - “Complex”. At the
position marked pale blue, the model knows it should use index 3 to retrieve the fourth number from
a Python array. However, for those parts marked by the color pink, even though the model claims
in the comments that it will operate on the fourth number, it still uses 4 as the index. Therefore, as
the number of constraints increases, the model commits errors that would not occur under fewer
constraints.

6 RELATED WORK

6.1 LLMS FOR CODE

The burgeoning interest in LLMs for code has coincided with the profusion of openly available
code repositories and the pressing need to enhance the productivity of software developers. Initial
models predominantly focused on code generation tasks have included CodeT5 (Wang et al., 2021),
AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al., 2023), InCoder (Fried et al., 2023), Star-
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Coder (Li et al., 2023a), SantaCoder (Allal et al., 2023), CodeFuse (Di et al., 2024), CodeShell (Xie
et al., 2024), and (DeepSeekAI, 2023; DeepSeek-AI et al., 2024), all of which were trained on
code. Contrastingly, models such as Codex (Chen et al., 2021) and CodeLLaMA (Rozière et al.,
2023) represent a subsequent stride, having been fine-tuned from foundation models (Brown et al.,
2020; Touvron et al., 2023). The evolution continued as LLMs leveraged instruction-like datasets
for fine-tuning. Among these, WizardCoder (Luo et al., 2023), Phi (Gunasekar et al., 2023; Li
et al., 2023b), MagiCoder (Wei et al., 2024), and SafeCoder (He et al., 2024) are notable examples.
Across various coding applications, these code LLMs have set new standards of excellence, show-
casing their prowess in domains including program repair (Haque et al., 2022; Jiang et al., 2023),
automated testing (Lemieux et al., 2023; Deng et al., 2023), code translation (Rozière et al., 2020;
Ahmad et al., 2023; Xue et al., 2024), type prediction (Mir et al., 2022; Wei et al., 2023), and code
summarization (Hasan et al., 2021; Ahmed & Devanbu, 2022).

6.2 CODE GENERATION BENCHMARKS

Code generation (Chen et al., 2021; Austin et al., 2021) has emerged as a vital domain for evaluating
LLMs, where models generate code snippets based on natural language descriptions, often given in
the form of docstrings. Creating datasets for this task is challenging, leading most efforts to source
natural language and code pairs from the Internet (Hendrycks et al., 2021; Li et al., 2022; Chandel
et al., 2022; Jain et al., 2022; Shinn et al., 2023) or use distant supervision (Agashe et al., 2019). For
instance, APPS (Hendrycks et al., 2021) compiles questions from open-access coding portals like
Codeforces and Kattis, covering a wide difficulty range. Similarly, CodeContests (Li et al., 2022) and
LeetcodeHard (Shinn et al., 2023) draw problems from specific platforms, enriching the diversity and
challenge of datasets. However, the training of LLMs on vast repositories, including GitHub, poses a
risk of including solutions to these problems, thereby emphasizing the importance of hand-written
sets like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for accurate benchmarks.
These datasets, based entirely on human-written questions, are pivotal despite their focus on simpler
functions, highlighting a need for advancing benchmarks to match the growing capabilities of LLMs.
More code generation benchmarks are discussed in Appendix A.

7 CONCLUSION

In this work, we construct the MHPP benchmark comprising 210 unique, manually created Python
problems. The prime focus of MHPP is the semantic grounding of code generation, effectively
measuring LLMs’ competence in comprehending detailed specifications and restrictions in natural
language descriptions, undertaking complex reasoning, and employing code knowledge to facilitate
the desired functionality. Upon applying MHPP, we observe that the most powerful LLM still struggles
on this challenging benchmark. We hope MHPP can shed light on understanding the capabilities and
limitations of LLMs for code generation and form a foundation for further improvements. Though
MHPP offers valuable insights into code generation, it’s important to acknowledge its limitations in
terms of data size and potential bias, which are provided in Appendix G.
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
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Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/
10.48550/arXiv.2307.09288.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13818–13843. Association for Computational Linguistics,
2023a. doi: 10.18653/V1/2023.ACL-LONG.773. URL https://doi.org/10.18653/v1/
2023.acl-long.773.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Association for Computational
Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.685. URL https://doi.org/10.
18653/v1/2021.emnlp-main.685.

17

https://aclanthology.org/2023.findings-emnlp.722
https://aclanthology.org/2023.findings-emnlp.722
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.48550/arXiv.2303.11366
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://arxiv.org/abs/2406.11409
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10,
2023, pp. 1271–1290. Association for Computational Linguistics, 2023b. URL https://
aclanthology.org/2023.findings-emnlp.89.

Zora Z. Wang, Akari Asai, Xiyan V. Yu, Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel Fried.
Coderag-bench: Can retrieval augment code generation? 2024.

Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis.
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=4TyNEhI2GdN.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct, 2024. URL https://arxiv.org/abs/2312.02120.

Rui Xie, Zhengran Zeng, Zhuohao Yu, Chang Gao, Shikun Zhang, and Wei Ye. Codeshell technical
report, 2024. URL https://arxiv.org/abs/2403.15747.

Min Xue, Artur Andrzejak, and Marla Leuther. An interpretable error correction method for enhancing
code-to-code translation. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=fVxIEHGnVT.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Hari Sundaram, and Shuiguang Deng. Codescope: An execution-based multilingual
multitask multidimensional benchmark for evaluating llms on code understanding and generation,
2024. URL https://arxiv.org/abs/2311.08588.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. In Anna Rogers,
Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 126–173. Association for Computational Linguistics, 2023. doi:
10.18653/V1/2023.ACL-LONG.9. URL https://doi.org/10.18653/v1/2023.acl-
long.9.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. CERT: continual pre-training on sketches for library-oriented code generation.
In Luc De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. 2369–2375. ijcai.org, 2022. doi:
10.24963/IJCAI.2022/329. URL https://doi.org/10.24963/ijcai.2022/329.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 2471–2484. Association for Computational Linguistics, 2023. URL
https://aclanthology.org/2023.emnlp-main.151.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-x. CoRR, abs/2303.17568, 2023. doi: 10.
48550/ARXIV.2303.17568. URL https://doi.org/10.48550/arXiv.2303.17568.

18

https://aclanthology.org/2023.findings-emnlp.89
https://aclanthology.org/2023.findings-emnlp.89
https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/pdf?id=4TyNEhI2GdN
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2403.15747
https://openreview.net/forum?id=fVxIEHGnVT
https://arxiv.org/abs/2311.08588
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.24963/ijcai.2022/329
https://aclanthology.org/2023.emnlp-main.151
https://doi.org/10.48550/arXiv.2303.17568


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Comparison of MHPP to other benchmarks. #Cases denotes the average number of test
cases. #Words denotes the average of problem words. #Codes denotes the average of lines of code for
reference solution. Notice that we only include the statistics of the test set. The two three benchmarks
target general Python usage, the middle three benchmarks aim at harder problems, and the last four
involve data science code generation.

Dataset Written Perturb Source Problems Evaluation #Cases #Words #Codes

MBPP (Austin et al., 2021) ✓ N/A N/A 974 Test Cases 3.0 15.7 6.7
HumanEval (Chen et al., 2021) ✓ N/A N/A 164 Test Cases 7.2 23.0 6.3

APPS (Hendrycks et al., 2021) ✗ ✗ Websites 5000 Test Cases 13.2 293.2 18.0
CodeContests (Li et al., 2022) ✗ ✗ Codeforces 165 Test Cases 204.6 401.3 52

LeetCodeHard (Shinn et al., 2023) ✗ ✗ LeetCode 40 Test Cases N/A 275.8 N/A

DSP (Chandel et al., 2022) ✗ ✗ Github 1137 Test Cases 2.1 71.9 4.5
PandasEval (Jain et al., 2022) ✗ ✗ Github 725 Accuracy N/A 12.5 1.8

DS-1000 (Lai et al., 2023) ✗ ✓ StackOverflow 1000 Test Cases 1.6 140.0 3.6
ARCADE (Yin et al., 2023) ✓ N/A N/A 661 Fuzzy Match N/A 18.4 3.1

MHPP ✓ N/A N/A 210 Test Cases 14.0 167.6 14.9

A RELATED WORKS FOR OTHER CODE GENERATION TAKS

Recent works try to improve HumanEval and MBPP from different perspectives. For example,
HumanEval+ (Liu et al., 2023a) enhances the HumanEval with improved test cases, remedying
the issue of mistakenly accepted faulty solutions. Meanwhile, ReCode (Wang et al., 2023a) takes
a different approach by altering function names and docstrings within the HumanEval structure.
Expanding the scope beyond Python, HumanEval-X (Zheng et al., 2023), MultiPLe (Cassano et al.,
2023), and MBXP (Athiwaratkun et al., 2023) extend the HumanEval and MBPP benchmarks to
incorporate a variety of programming languages. The universe of code generation benchmarks
widens further when we consider the specialized needs of data science. DS-1000 (Lai et al., 2023),
ARCADE (Yin et al., 2023), NumpyEval (Zan et al., 2022), and PandasEval (Jain et al., 2022) focus
on the generation of code within this context. Beyond mere code creation, there are benchmarks
like APIBench (Patil et al., 2023), MTPB (Nijkamp et al., 2023), RepoBench (Liu et al., 2023b),
ODEX (Wang et al., 2023b), SWE-Bench (Jimenez et al., 2023), GoogleCodeRepo (Shrivastava
et al., 2023), RepoEval (Zhang et al., 2023), and Cocomic-Data (Ding et al., 2022), which ratchet up
the complexity by evaluating a model’s prowess in utilizing APIs or completing broader software
engineering tasks. Additionally, CodeScope (Yan et al., 2024) evaluates the capabilities of large
language models (LLMs) in understanding and generating code across multilingual, multidimensional,
and multitasking contexts. Meanwhile, benchmarks such as Long Code Arena (Bogomolov et al.,
2024) and CodeRag-Bench (Wang et al., 2024) assess the models’ abilities in long-form code
generation and comprehension. Table 4 shows comparisons among MHPP and several representative
benchmarks.

B DATA CONTAMINATION

Following the official guideline of the contamination detector 2, we extract only the question stems
from MBPP and use Bing Search to find related content online. When matches are discovered, they
are evaluated based on token-level similarity. This evaluation helps determine how similar the test
sample is to online content, assisting in identifying potential contamination. We set a threshold of
0.7, meaning a match is considered contaminated if the similarity exceeds 0.7.

C GENERALIZATION BEYOND CHALLENGE OF HUMANEVAL

Using HumanEval as a starting point may limit the coverage of problem types and error patterns.
Therefore, we actively sought to generalize the problem types and address more realistic and challeng-
ing error patterns in the creation of MHPP. We provide how we generalize from different challenges
as follows:

2https://github.com/liyucheng09/Contamination_Detector/tree/master
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Distraction: there is only one problem in which there are some short sentences that are irrelevant
to solving the problem, but we design more subtypes of this challenge, for example, we add a lot
of background information to the problem to evaluate the model’s ability to accurately filter out
redundant information and focus on core functionalities, some problems have more than 500 words
(indeed, the context is not as long as those in SWE-bench (Jimenez et al., 2023) or other repo-level
benchmarks, but we do find that many strong models have extremely low performances on these
benchmarks, such and Claude2 (4.8%) and GPT4 (1.74%) on SWE-bench, currently there are still
many models have small context window like 4096 tokens, we think it’s still necessary to have a in-
between benchmark to distinguish models’ ability). We also inserted tables or misleading/ambiguous
descriptions into the problem. These are all points beyond which using HumanEval can evaluated.

Redefinition: in HumanEval there are always equations defined in problems or some redefinition
of concepts in the real world, we generalize subtypes by adding more counterfactual concepts, to
challenge the model’s ability to focus on current context but not the common sense it learned in the
pre-training.

Shortcut: compared to those in HumanEval which can only be classified as arithmetic or brainstorm-
ing tricks, we not only keep original subtypes but also make it more general and comprehensive to be
math algorithms or even gaming theory problems.

Commonsense: there are merely problems with simple common sense like the alphabet or cars. We
make this situation more general, by adding problems relevant to temporal or spatial concepts, and
academic knowledge like chemistry problems, optical problems, physics problems, etc.

Cornercase: there are only several problems in HumanEval contain the requirement of branches to
handle simple corner cases (like dealing with the case when the input is 0), we further generalize the
subtypes to be more practical cases as well as those that have hidden requirements (for example, a
model must know requirements of forming a triangle before judging a triangle whether is isosceles),
there are more real-world scenarios like this which are important in real-world programming tasks.

Complexity: there are also different subtypes from that in HumanEval, such as combining multiple
simple logic units, focusing on numbers of control flow statements, dynamic programming relevant
problems that are more abstract in complexity, and problems requiring models to have planning
ability.

Codesense: we can barely say that the questions in HumanEval assess function calls, as the required
function calls are either too few or too basic. We further extend it to more libraries that can be used
in real-world programming tasks, for example, like the scientific computing library Numpy, or the
calendar library that could be used in actual development. Additionally, the number of calls in one
problem is more than that in HumanEval.

D JAVA AND C++ RESULTS ON MHPP

Table 5: GPT-4’s pass@1 performance on partial MHPP across different languages.

Distraction Redefinition Shortcut Commonsense Cornercase Complexity Codesense Total
Python 35.0 65.0 40.0 70.0 55.0 55.0 55.0 53.6

Java 20.0 35.0 20.0 45.0 20.0 20.0 15.0 25.0
C++ 45.0 30.0 10.0 40.0 25.0 25.0 20.0 27.9

We have translated the MHPP’s problems and test cases into Java and C++ and tested the GPT-
4 model’s performance in these languages. While translation is labor-intensive, we tested only
140 problems. The results, as depicted in the newly introduced Table 5, reveal that the model’s
performance in Python significantly surpasses that of Java and C++, with pass@1 rates of 25.00% and
27.86% respectively. This disparity suggests that the model has been more comprehensively trained
in Python. Interestingly, we noticed a more pronounced performance drop from Python to other
languages in our dataset compared to other function-level code generation datasets, such as from
HumanEval (Chen et al., 2021) to HumanEval-X (Zheng et al., 2023). We hypothesize that this could
be attributed to the increased difficulty level of the problems, making it more challenging for LLMs
to solve them in languages other than Python. Upon closer examination of the data across different
categories, we found that the model exhibits a stronger performance in “Commonsense” problems,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: The performance of LLMs on MHPP using greedy decoding.

.

Model Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total

Closed-Source LLMs

GPT-4o-2024-05-13 50.0 66.7 40.0 60.0 43.3 46.7 53.3 51.4
GPT-4-Turbo-2024-04-09 43.3 56.7 33.3 46.7 40.0 36.7 50.0 43.8
GPT-4o-Mini-2024-07-18 46.7 53.3 40.0 40.0 40.0 26.7 50.0 42.4
GPT-3.5-Turbo-0125 30.0 30.0 30.0 23.3 23.3 16.7 43.3 28.1

Open-Source LLMs

DeepSeek-V2.5 33.3 56.7 33.3 53.3 36.7 20.0 46.7 40.0

Phi-3-medium 14B 13.3 23.3 16.7 20.0 20.0 23.3 30.0 21.0
Phi-3-small 7B 16.7 23.3 16.7 13.3 16.7 13.3 36.7 19.5
Phi-3-mini 3.8B 20.0 26.7 13.3 26.7 20.0 3.3 26.7 19.5

Llama 3.1 405B 36.7 43.3 36.7 40.0 36.7 36.7 46.7 39.5
Llama 3.1 70B 40.0 43.3 23.3 36.7 33.3 23.3 36.7 33.8
Llama 3.1 8B 20.0 23.3 16.7 26.7 10.0 3.3 20.0 17.1

Mistral Large 2 43.3 43.3 33.3 40.0 40.0 33.3 56.7 41.4
Mistral 7B v03 6.7 13.3 6.7 16.7 6.7 3.3 10.0 9.0
Codestral 22B 26.7 40.0 13.3 30.0 16.7 10.0 40.0 25.2
Codestral Mamba 7B 23.3 26.7 16.7 20.0 10.0 10.0 33.3 20.0
Mixtral 8x22b Instruct v0.1 20.0 33.3 16.7 26.7 26.7 3.3 26.7 21.9
Mixtral 8x7B Instruct v0.1 6.7 16.7 6.7 13.3 13.3 3.3 16.7 11.0

Gemma2 IT 27B 26.7 36.7 23.3 26.7 20.0 23.3 43.3 28.6
Gemma2 IT 9B 20.0 20.0 23.3 20.0 16.7 3.3 23.3 18.1
Gemma2 IT 2B 10.0 10.0 3.3 10.0 10.0 0.0 23.3 9.5
CodeGemma 7B 1.1 16.7 23.3 13.3 13.3 20.0 6.7 16.7 15.7

but struggles with “Shortcut” problems. This indicates that the model has a better understanding of
common sense concepts compared to abstract mathematical algorithms.

E LLMS’ PERFORMANCE ON MHPP USING GREEDY SEARCH DECODING

F POTENTIAL STRATEGIES FOR IMPROVING LLMS ON MHPP

Based on the experimental results of various LLMs on MHPP. We propose potential strategies for
overcoming the challenges of MHPP. We have devised a set of strategies tailored to each category of
challenges as follows:

Distraction: To tackle this challenge, we propose incorporating controlled noise into the training data
and designing tasks that require the model to identify the genuine development intent and generate
corresponding code.

Redefinition: We recommend enhancing the model’s exposure to knowledge-based data. This will
improve its ability to comprehend concepts within questions. For new or contradictory definitions,
we suggest refining the model’s in-context learning to prioritize the given context over general world
knowledge. Techniques like symbol tuning could be beneficial for this purpose.

Shortcut: To address this, we propose augmenting the training data with more mathematical and
logical reasoning tasks to help the model recognize patterns.

Commonsense: We recommend incorporating more relevant knowledge data. However, it’s crucial
to avoid overfitting. Models can benefit from interacting with real-world data, such as world models
and multimodal data, including images, to enhance their understanding of spatial concepts.

Cornercase: We suggest training models with more real-world code data, especially data rich in
corner cases, to strengthen this capability. Using non-code data with many corner cases and extremes
can also enhance the model’s robustness and accuracy during training.
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Figure 7: Pass@k with confidence intervals vs k for Models on MHPP. Each model is represented by
a distinct line, with the shaded areas around each line depicting the confidence intervals

Complexity: It’s beneficial to construct longer training data with more logical units, teaching the
model to handle intricate logic. Strategies like curriculum learning can help models gradually master
complex reasoning.

Codesense: We recommend providing rich programming language materials, such as official docu-
mentation and open-source libraries.

Furthermore, we suggest leveraging interpreters’ execution feedback to enhance the language model
for the latter categories. For instance, rich test cases with execution feedback can make it easier
to identify missing logic and correct generated code in Cornercase challenges. For Complexity
challenges, feedback can help break down problems into smaller, more manageable tasks for improved
accuracy. For Codesense challenges, error messages from code libraries can guide the model in
understanding how to correctly use a library or function, leading to accurate solutions.

We believe that a well-designed dataset like MHPP can provide insights to guide strategies for
improving model capabilities. By categorizing problems based on specific coding abilities, MHPP
not only benchmarks models but also highlights areas for improvement. For example, if a model
performs poorly on “code reasoning” problems, it suggests that incorporating more coding knowledge
into the training data could help boost its capabilities in that area.

G LIMITATIONS OF MHPP

Data Size: The MHPP dataset indeed has a smaller scale compared to automatically generated
datasets. This characteristic is intrinsic to hand-written datasets like HumanEval, to which MHPP is
similar in terms of scale. While the dataset’s size enables a detailed analysis, we acknowledge that it
could potentially restrict the diversity and representativeness of the data, thereby limiting the model’s
ability to generalize to larger, more diverse codebases.

Potential Bias: The focus of MHPP on function-level code generation might introduce certain
biases due to the annotation process primarily targeting challenges encountered during the writing
of functions. This emphasis may result in a bias towards specific types of errors or difficulties,
which might not comprehensively represent the wide array of challenges encountered in real-world
coding practices. We recognize the importance of acknowledging these potential biases in the dataset
collection procedure.
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These limitations highlight the need for further research to develop strategies for effectively scaling
up hand-written datasets while maintaining annotation quality. Extending the scope of the dataset
beyond the function level to capture the broader context of code generation tasks is also important.
By addressing these limitations, future code generation datasets can provide a more comprehensive
picture of real-world software development challenges, ultimately leading to the development of
more robust and versatile code generation models.

H PASS@K VS K FOR MODELS ON MHPP

We plot pass@k against k for models on MHPP in figure 7, the x-axis represents various k values
(1, 2, 3, 4, 5, 10, 15, 20), and the y-axis shows the corresponding pass@k values. Each model is
illustrated by a distinct line, with shaded areas around each line representing the confidence intervals.
For smaller k values, the CI appears narrow and even invisible, indicating consistent performance
across different iterations. For larger k values, the CI remains indicative of reliable and robust testing
results. These results further validated the effectiveness and reliability of our proposed MHPP.

I ERROR ANALYSIS ON MBPP

Upon analyzing GPT-4 errors in the MBPP benchmark, several critical issues have been identified.
Text highlighted in red indicates the specific areas where the model makes mistakes or the error
patterns appear. These issues encompass a range of deficiencies, including the absence of explicit
return format specifications, the presence of ambiguous requirements, and inconsistencies between
the parameters specified in function definitions and those utilized in test codes.

# Q1: Write a function to find sequences of lowercase letters
joined with an underscore.↪→

# Canonical ans
def _text_lowercase_underscore(text):

import re
patterns = 'ˆ[a-z]+_[a-z]+$'
if re.search(patterns, text):

return 'Found a match!'
else:

return('Not matched!')

# GPT4's ans
def text_lowercase_underscore(text):

import re
pattern = '[a-z]+_[a-z]+'
result = re.findall(pattern, text)
return result

assert text_lowercase_underscore("aab_cbbbc")==('Found a match!')
assert text_lowercase_underscore("aab_Abbbc")==('Not matched!')
assert text_lowercase_underscore("Aaab_abbbc")==('Not matched!')
assert text_lowercase_underscore("aab-cbbbc")==('Not matched!')

Example 1: No specification for the return format: The question does not declare that a specific string
like ’Found a match!’ or ’Not matched!’ should be returned when indicating a match or not. The
generated code will not address this issue at all.

# Q2: Write a python function to find the product of non-repeated
elements in a given array.↪→
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# Canonical ans
def _find_Product(arr,n):

arr.sort()
prod = 1
for i in range(0,n,1):
if (arr[i - 1] != arr[i]):

prod = prod * arr[i]
return prod

# GPT4's ans
def find_Product(arr,n):

product = 1
for i in range(n):

if arr.count(arr[i]) == 1:
product *= arr[i]

return product

assert find_Product([1,1,2,3],4) == 6
assert find_Product([1,2,3,1,1],5) == 6
assert find_Product([1,1,4,5,6],5) == 120
assert find_Product([1,1,4,5,6,5,7,1,1,3,4],11) == 2520

Example 2: The question is ambiguous, for example, it is unclear whether the term ’non-repeated’
should retain or not retain duplicate elements, but the question does not provide any example to
clarify this.

# Q3: Write a python function to find the missing number in a
sorted array.↪→

# Canonical ans
def _find_missing(ar,N):

l = 0
r = N - 1
while (l <= r):

mid = (l + r) / 2
mid= int (mid)
if (ar[mid] != mid + 1 and ar[mid - 1] == mid):

return (mid + 1)
elif (ar[mid] != mid + 1):

r = mid - 1
else:

l = mid + 1
return (-1)

# GPT4's ans
def find_missing(ar, N):

total = (N+1)*(N+2)/2
sum_of_ar = sum(ar)
return total - sum_of_ar

assert find_missing([1,2,3,5],4) == 4
assert find_missing([1,3,4,5],4) == 2
assert find_missing([1,2,3,5,6,7],5) == 4

Example 3: Missing conditions regarding parameters: it is unclear and does not explain what N
represents as a parameter.
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# Q4: Write a function to check if the letters of a given string
can be rearranged so that two characters that are adjacent to
each other are different.

↪→

↪→

# Canonical ans
import heapq
from collections import Counter
def _rearange_string(S):

ctr = Counter(S)
heap = [(-value, key) for key, value in ctr.items()]
heapq.heapify(heap)
if (-heap[0][0]) * 2 > len(S) + 1:
return ""

ans = []
while len(heap) >= 2:

nct1, char1 = heapq.heappop(heap)
nct2, char2 = heapq.heappop(heap)
ans.extend([char1, char2])
if nct1 + 1: heapq.heappush(heap, (nct1 + 1, char1))
if nct2 + 1: heapq.heappush(heap, (nct2 + 1, char2))

return "".join(ans) + (heap[0][1] if heap else "")

# GPT4's ans
import heapq
from collections import Counter

def rearrange_string(S):
counter = Counter(S)
max_heap = []
for k, v in counter.items():

heapq.heappush(max_heap, (-v, k))
prev_char, prev_freq = '', 0
result = []
while max_heap:

freq, char = heapq.heappop(max_heap)
if prev_char and prev_freq:

heapq.heappush(max_heap, (prev_freq, prev_char))
if not result or char != result[-1]:

result.append(char)
if -freq > 1:

prev_char, prev_freq = char, freq + 1
else:

prev_char, prev_freq = '', 0
else:

return ''
return ''.join(result) if len(result) == len(S) else ''

assert rearange_string("aab")==('aba')
assert rearange_string("aabb")==('abab')
assert rearange_string("abccdd")==('cdabcd')

Example 4: Incorrect function name in the test code (missing “r” in “arrange”): a normal language
model should generate the correct function name and should not have this error in the test code.

# Q5: Write a function to find the list with minimum length using
lambda function.↪→
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# Canonical ans
def _min_length_list(input_list):

min_length = min(len(x) for x in input_list )
min_list = min(input_list, key = lambda i: len(i))
return(min_length, min_list)

# GPT4's ans
def min_length_list(input_list):

return min(input_list, key=lambda x: len(x))

assert min_length_list([[0], [1, 3], [5, 7], [9, 11], [13, 15,
17]])==(1, [0])↪→

assert min_length_list([[1,2,3,4,5],[1,2,3,4],[1,2,3],[1,2],[1]]) ⌋
==(1,[1])↪→

assert min_length_list([[3,4,5],[6,7,8,9],[10,11,12],[1,2]])==(2, ⌋
[1,2])↪→

Example 5: The question does not specify the return format: it is unclear that two elements need to
be returned.

# Q6: Write a function to find the maximum length of the
subsequence with difference between adjacent elements for the
given array.

↪→

↪→

# Canonical ans
def _max_len_sub( arr, n):

mls=[]
max = 0
for i in range(n):
mls.append(1)

for i in range(n):
for j in range(i):

if (abs(arr[i] - arr[j]) <= 1 and mls[i] < mls[j] + 1):
mls[i] = mls[j] + 1

for i in range(n):
if (max < mls[i]):

max = mls[i]
return max

# GPT4's ans
def max_len_sub(arr, n):

# Initialize the dp array
dp = [[1 for i in range(n)] for j in range(n)]
# Fill the dp array
for i in range(n):

for j in range(i+1, n):
if abs(arr[j] - arr[i]) == 1:

dp[i][j] = max(dp[i][j], dp[i][j-1] + 1)
else:

dp[i][j] = max(dp[i][j], dp[i][j-1])
# Find the maximum length
max_len = 0
for i in range(n):

max_len = max(max_len, max(dp[i]))
return max_len

assert max_len_sub([2, 5, 6, 3, 7, 6, 5, 8], 8) == 5
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assert max_len_sub([-2, -1, 5, -1, 4, 0, 3], 7) == 4
assert max_len_sub([9, 11, 13, 15, 18], 5) == 1

Example 6: Copying the question missed a requirement: “Given an array of n integers. The problem
is to find the maximum length of the sub-sequence with the difference between adjacent elements as
either 0 or 1.”

# Q7: Write a python function to find the perimeter of a cylinder.

# Canonical ans
def _perimeter(diameter,height) :

return 2*(diameter+height)

# GPT4's ans
import math

def perimeter(diameter, height):
radius = diameter / 2
return 2 * math.pi * radius + 2 * height

assert perimeter(2,4) == 12
assert perimeter(1,2) == 6
assert perimeter(3,1) == 8

Example 7: Missing original question formula images, etc.

# Q8: Write a function to find the triplet with sum of the given
array↪→

# Canonical ans
def _check_triplet(A, n, sum, count):

if count == 3 and sum == 0:
return True

if count == 3 or n == 0 or sum < 0:
return False

return check_triplet(A, n - 1, sum - A[n - 1], count + 1) or
check_triplet(A, n - 1, sum, count)↪→

# GPT4's ans
def check_triplet(A, n, sum):

# Sort the array
A.sort()

# Iterate over the array
for i in range(0, n-2):

# Initialize two pointers
left = i + 1
right = n - 1

# Traverse the array from both ends
while left < right:

# If sum of triplet is equal to sum
if (A[i] + A[left] + A[right] == sum):

return True
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# If sum of triplet is less than sum
elif (A[i] + A[left] + A[right] < sum):

left += 1

# If sum of triplet is greater than sum
else:

right -= 1

# If no triplet with given sum found in array
return False

assert check_triplet([2, 7, 4, 0, 9, 5, 1, 3], 8, 6, 0) == True
assert check_triplet([1, 4, 5, 6, 7, 8, 5, 9], 8, 6, 0) == False
assert check_triplet([10, 4, 2, 3, 5], 5, 15, 0) == True

Example 8: The number of parameters in the function does not match those in the test code.

# Q9: Write a function to find n’th smart number.

# Canonical ans
MAX = 3000
def _smartNumber(n):

primes = [0] * MAX
result = []
for i in range(2, MAX):
if (primes[i] == 0):

primes[i] = 1
j = i * 2
while (j < MAX):

primes[j] -= 1
if ( (primes[j] + 3) == 0):

result.append(j)
j = j + i

result.sort()
return result[n - 1]

# GPT4's ans
def smartNumber(n):

# The n'th smart number is the square of n
return n * n

assert smartNumber(1) == 30
assert smartNumber(50) == 273
assert smartNumber(1000) == 2664

Example 9: The definition from the question is missing.

J ERROR ANALYSIS ON HUMANEVAL

def compare(game,guess):
"""I think we all remember that feeling when the result of

some long-awaited↪→

event is finally known. The feelings and thoughts you have at
that moment are↪→

definitely worth noting down and comparing.
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Your task is to determine if a person correctly guessed the
results of a number of matches.↪→

You are given two arrays of scores and guesses of equal
length, where each index shows a match.↪→

Return an array of the same length denoting how far off each
guess was. If they have guessed correctly,↪→

the value is 0, and if not, the value is the absolute
difference between the guess and the score.↪→

example:

compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
"""

Example 1 - Distraction: The first paragraph of the problem talks a lot about background information
that is not very relevant to solving the problem.

def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by

mathematicians in↪→

the last couple centuries. However, what people don't know is
Tribonacci sequence.↪→

Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)

= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a

return a list of the↪→

first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""

Example 2 - Redefinition: This problem typically defines or redefines a new concept called Tribonacci
sequence.

def starts_one_ends(n):
"""
Given a positive integer n, return the count of the numbers of

n-digit↪→

positive integers that start or end with 1.
"""

Example 3 - Shortcut: A shortcut to this problem does exist (number of 1s equals to 18 * (10 ** (n -
2)) when n is larger or equals to 2), by using a formula, this problem can be more easily solved.

def car_race_collision(n: int):
"""
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Imagine a road that's a perfectly straight infinitely long
line.↪→

n cars are driving left to right; simultaneously, a different
set of n cars↪→

are driving right to left. The two sets of cars start out
being very far from↪→

each other. All cars move in the same speed. Two cars are
said to collide↪→

when a car that's moving left to right hits a car that's
moving right to left.↪→

However, the cars are infinitely sturdy and strong; as a
result, they continue moving↪→

in their trajectory as if they did not collide.

This function outputs the number of such collisions.
"""

Example 4 - Commonsense: The problem requires the model to understand the concept of collisions
and spatial concepts.

from typing import List

def intersperse(numbers: List[int], delimeter: int) -> List[int]:
""" Insert a number 'delimeter' between every two consecutive

elements of input list `numbers'↪→

>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
"""

Example 5 - Cornercase: The problem has a corner case which is that the numbers are an empty list,
the solution is expected to have a single control branch to handle this case.

def unique_digits(x):
"""Given a list of positive integers x. return a sorted list

of all↪→

elements that hasn't any even digit.

Note: Returned list should be sorted in increasing order.

For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""

Example 6 - Complex: There are many constraints in this problem.

def solve(N):
"""Given a positive integer N, return the total sum of its

digits in binary.↪→

Example

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

For N = 1000, the sum of digits will be 1 the output
should be "1".↪→

For N = 150, the sum of digits will be 6 the output should
be "110".↪→

For N = 147, the sum of digits will be 12 the output
should be "1100".↪→

Variables:
@N integer

Constraints: 0 <= N <= 10000.
Output:

a string of binary number
"""

Example 7 - Codesense: The model needs to know the knowledge of binary operators.

K ERROR ANALYSIS ON MHPP

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def least_goods_number(n: int) -> int:
"""Given a list of products where the first column represents the product name and the second column
represents the product price. You have n dollers, please calculate and return the minimum number of

products↪→
required to spend the total amount exactly. If no combination of products can add up to the total amount,
return -1. You can assume that the quantity of each product is unlimited.
+---------------+---------------+
| Milk | 2 |
|---------------|---------------|
| Soap | 3 |
|---------------|---------------|
| Batteries | 5 |
|---------------|---------------|
| Eggs | 1 |
+---------------+---------------+
>>> least_goods_number(11)
3
>>> least_goods_number(5)
1
"""

# RESPONSE:

return None

def is_valid_parentheses(p: str) -> bool:
"""Given a string p consisting only of '(' and ')', return true if every opening parenthesis is closed in

the↪→
right order. Otherwise, return false.
+--------------+--------------+
| Example 1 | Example 2 |
|--------------|--------------|
| '()' | '(]' |
| | |
+--------------+--------------+
>>> is_valid_parentheses('()')
True
>>> is_valid_parentheses('(]')
False
"""
return None

def is_perfect(num: int) -> bool:
"""Given an integer, return True if the integer is a perfect number or False otherwise.
A perfect number is a positive integer that is equal to the sum of its positive divisors excluding the

number↪→
itself.
+----------------------------------------+-----------------------------+
| Numbers | Perfect Numbers |
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|----------------------------------------|-----------------------------|
| 6 | 6 |
|----------------------------------------|-----------------------------|
| 28 | 496 |
|----------------------------------------|-----------------------------|
| 496 | 8128 |
+----------------------------------------+-----------------------------+
>>> is_perfect(6)
True
>>> is_perfect(28)
True
>>> is_perfect(496)
True
"""
return False

def is_pangram(sentence: str) -> bool:
"""Given a sentence, return True if the sentence is a pangram or False otherwise.
A pangram is a sentence that contains all the alphabetic characters from the alphabet.
+---------------------------------------------------------------------------------+
| Sentence | Pangram | Not Pangram | Pangram |
|--------------------------------------------------------------------------------|
| "The quick brown fox jumps | False | True | True |
|--------------------------------------------------------------------------------|
| "The quick brown fox jumped | False | True | True |
+--------------------------------------------------------------------------------+
>>> is_pangram('The quick brown fox jumps over the lazy dog')
True
>>> is_pangram('The quick brown fox jumped over the lazy dog')
True
"""
return False

def grid_search(matrix: list, pattern: list) -> list:
"""Given a matrix of size m x n, where each cell has a character, and a pattern, find all occurrences of

the↪→
pattern in the matrix by moving left to right, top to bottom. Return a list of all occurrences of the

pattern↪→
in the form of [row, column] (0-based indexing).
+----------------------------------------------------------------------------------------+
| Matrix | Pattern | Occurrences |
|----------------------------------------------------------------------------------------|
| [ |
| 'A', 'B', 'C', 'E', 'E', 'F', 'G', 'G', 'H', 'I', 'I', 'J', 'K', 'L', 'M', 'O', 'O', |
| 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' |
| ] |
|----------------------------------------------------------------------------------------|
| 'C', 'G', 'G', 'G', 'C', 'C', 'C' |
|----------------------------------------------------------------------------------------|
| [2, 6], [2, 7], [2, 8] |
+----------------------------------------------------------------------------------------+
>>> grid_search(['ABCD', 'EFGH', 'IJKL', 'MNOP'], ['CD', 'EF', 'IJK', 'OP'])
[[3, 1], [3, 2]]
"""
return None

Example 1 - Distraction: By introducing a table in the question to distract the model’s focus,
the strategy was indeed effective, leading the model to produce a series of table-based problems,
completely deviating from solving the original question properly.

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

from typing import List

def max_balance_factor(weights: List[int]) -> int:
"""Write a function to find the maximum balance factor of

object weights.↪→

The maximum balance factor refers to the size of the sum that
results↪→

from extracting some or all elements from weights, dividing
them into two↪→

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

parts, and ensuring that the sums of these two parts are
equal.↪→

If such a maximum balance factor does not exist. return 0
>>> max_balance_factor([4, 2, 3, 9])
9
>>> max_balance_factor([7, 1, 9])
0
"""

# RESPONSE:
To solve this problem, we can use dynamic programming. We will

first calculate the total sum of the weights and then try to
find if there is a subset of weights that sums up to half of
the total sum. The maximum balance factor would be half of the
total sum if such a subset exists.

↪→

↪→

↪→

↪→

Here's the function:

```python

from typing import List

def max_balance_factor(weights: List[int]) -> int:
"""Return the maximum balance factor of a list of weights."""
total_weight = sum(weights)
# The balance factor can only exist if the total weight is

even.↪→

if total_weight % 2 != 0:
return 0

half_weight = total_weight // 2
# Dynamic programming array to track the possible sums with

subsets.↪→

possible_sums = [False] * (half_weight + 1)
possible_sums[0] = True # zero is always possible

for weight in weights:
# Update the possible sums in reverse order to avoid using

the same weight multiple times.↪→

for j in range(half_weight, weight - 1, -1):
if possible_sums[j - weight]:

possible_sums[j] = True

# Check if half_weight is possible as a sum of a subset of
weights.↪→

if possible_sums[half_weight]:
return half_weight

else:
return 0

# Examples
print(max_balance_factor([4, 2, 3, 9])) # Output: 9
print(max_balance_factor([7, 1, 9])) # Output: 0
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```

The function first checks if the total sum is even, because if
it's not, there is no way to divide it into two parts with
equal sums. Then, it initializes a list of boolean values
(`possible_sums`) that will help to track which sums are
possible with the given subset of weights. Each weight is
processed to update the `possible_sums`, and after processing
all weights, the function checks whether `half_weight` is a
possible sum, which would be the maximum balance factor if it
exists. If `half_weight` is indeed possible, it returns
`half_weight`; otherwise, it returns 0.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Example 2 - Redefinition: The model did not grasp the concept of redefinition; it misunderstood that
the balance factor is only applicable if the total weight is even.

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def counting_game(n: int) -> int:
"""In a playful counting game, children start counting from 1

but they skip any number that contains the digit 9,↪→

considering it to be unlucky. This results in a sequence that
avoids the number 9 entirely,↪→

such as 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and so forth.

Given an integer n, return the nth number in this new integer
sequence where the indexing begins at 1.↪→

>>> counting_game(4)
4
>>> counting_game(10)
11
"""

# RESPONSE:

Below is the Python function that implements the counting game
logic described in the docstring:↪→

Here's the function:
```python

def counting_game(n: int) -> int:
"""
In a playful counting game, children start counting from 1 but

they skip any number that contains↪→

the digit 9, considering it to be unlucky. This results in a
sequence that avoids the number 9 entirely,↪→

such as 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and so forth.

Given an integer n, return the nth number in this new integer
sequence where the indexing begins at 1.↪→

"""
count = 0 # Initialize the count for the number of valid

numbers found↪→

current_number = 1 # Start counting from 1
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while True:
if '9' in str(current_number):

# Skip the number if it contains the digit 9
current_number += 1
continue

else:
# Increment the count since this number doesn't

contain the digit 9↪→

count += 1
if count == n:

# If the count matches the desired position,
return the current number↪→

return current_number
# Move to the next number to check
current_number += 1

# Example usage:
print(counting_game(4)) # Output: 4
print(counting_game(10)) # Output: 11

```

This function iterates through the natural numbers starting from 1
and increases a counter each time it finds a number that does
not contain the digit 9. When the counter matches the input
`n`, the function returns the current number.

↪→

↪→

↪→

Example 3 - Shortcut: It resulted in a timeout due to not knowing the shortcut.

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def morning_commute(a: int, b: int, c: int, d: int):
"""There are two companies located at both ends of a straight

road, with two towns in the middle.↪→

Every morning, 'a' people from the left town commute to work
at the left company and 'b' people commute↪→

to the right company. From the right town, 'c' people commute
to the left company and 'd' people commute↪→

to the right company. Everyone walks at the same pace. Please
calculate how many encounters occur in total on their
commute to work each morning.

↪→

↪→

>>> morning_commute(7,3,4,6)
12
>>> morning_commute(17,31,13,40)
403
"""

# RESPONSE:

Here's the Python function implementation for the problem
described in the docstring:↪→

```python

def morning_commute(a: int, b: int, c: int, d: int) -> int:
"""
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The number of encounters is determined by the pairings of
commuters going in opposite directions.↪→

For each person commuting to the left company from the left
town (group a),↪→

they will encounter all people commuting to the right company
from the right town (group d).↪→

Similarly, for each person commuting to the right company from
the left town (group b),↪→

they will encounter all people commuting to the left company
from the right town (group c).↪→

Therefore, the total encounters can be calculated as the
product of a and d plus the product of b and c.↪→

"""
return a * d + b * c

# Example usage:
print(morning_commute(7, 3, 4, 6)) # Expected output: 12
print(morning_commute(17, 31, 13, 40)) # Expected output: 403

```

Let's go through the function `morning_commute` step by step:
1. The function takes four arguments `a`, `b`, `c`, and `d`,

representing the number of people commuting.↪→

2. The encounters are calculated based on the fact that a person
from group `a` (left town to left company) will encounter all
`d` people (right town to right company), and similarly, a
person from group `b` (left town to right company) will
encounter all `c` people (right town to left company).

↪→

↪→

↪→

↪→

3. The total number of encounters is the sum of the products `a*d`
and `b*c`.↪→

4. The function returns the total number of encounters.

Example 4 - Commonsense: There is a complete lack of understanding of spatial awareness for
LLMs; those moving left from the right side won’t meet those moving right from the left side.

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def is_isosceles_triangle(x1, y1, x2, y2, x3, y3):
"""Given the coordinates of three points in a two-dimensional

plane, tell whether the figure formed↪→

by connecting these three points is an isosceles triangle
(which is a triangle that has at least two↪→

sides of equal length).
>>> is_isosceles_triangle(0, 0, 1, 0, 1, 1)
True
>>> is_isosceles_triangle(0, 0, 2, 0, 2, 1)
False
"""

# RESPONSE:
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Here is a Python function that implements the logic described in
the docstring. It calculates the distances between each pair
of points and checks if at least two distances are equal,
indicating an isosceles triangle.

↪→

↪→

↪→

```python

import math

def is_isosceles_triangle(x1, y1, x2, y2, x3, y3):
"""Given the coordinates of three points in a two-dimensional

plane, tell whether the figure formed↪→

by connecting these three points is an isosceles triangle
(which is a triangle that has at least two↪→

sides of equal length).

>>> is_isosceles_triangle(0, 0, 1, 0, 1, 1)
True
>>> is_isosceles_triangle(0, 0, 2, 0, 2, 1)
False
"""

def distance(px1, py1, px2, py2):
"""Calculate the distance between two points."""
return math.sqrt((px1 - px2) ** 2 + (py1 - py2) ** 2)

# Calculate the distances between all three points
d1 = distance(x1, y1, x2, y2)
d2 = distance(x2, y2, x3, y3)
d3 = distance(x3, y3, x1, y1)

# Check if at least two sides are equal
return d1 == d2 or d2 == d3 or d3 == d1

# Example usage:
print(is_isosceles_triangle(0, 0, 1, 0, 1, 1)) # Should return

True↪→

print(is_isosceles_triangle(0, 0, 2, 0, 2, 1)) # Should return
False↪→

```

This function uses a nested helper function `distance()` to
calculate the Euclidean distance between two points. It then
checks if any two of the three side lengths are equal, which
would mean the triangle is isosceles.

↪→

↪→

↪→

Example 5 - Cornercase: LLMs truly did not check for the boundary condition of being a triangle.

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

from typing import List

def is_new_year(numbers: List[int]):
"""
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Given a list containing four numbers. First, calculate the
square of the first number.↪→

For the second number, check if it is divisible by 3. If it
is, add it to the result, otherwise subtract it.↪→

Multiply the resulting value by the third number three times.
For the fourth number, calculate the sum of its digits↪→

and compare it with the first number. If the sum is greater,
add the fourth number to the result,↪→

otherwise keep the result unchanged. If the final result
equals 2024, return the string "Happy New Year",↪→

otherwise return "Whoops".
>>> is_new_year([2, 0, 2, 4])
"Whoops"
>>> is_new_year([3, 5, 6, 1160])
"Happy New Year"
"""

# RESPONSE:
Here is the Python function that follows the description provided

in the docstring:↪→

```python

from typing import List

def is_new_year(numbers: List[int]) -> str:
"""
Given a list containing four numbers. First, calculate the

square of the first number.↪→

For the second number, check if it is divisible by 3. If it
is, add it to the result, otherwise subtract it.↪→

Multiply the resulting value by the third number three times.
For the fourth number, calculate the sum of its digits↪→

and compare it with the first number. If the sum is greater,
add the fourth number to the result,↪→

otherwise keep the result unchanged. If the final result
equals 2024, return the string "Happy New Year",↪→

otherwise return "Whoops".
"""
# Calculate the square of the first number
result = numbers[0] ** 2

# Check if the second number is divisible by 3 and
add/subtract accordingly↪→

if numbers[1] % 3 == 0:
result += numbers[1]

else:
result -= numbers[1]

# Multiply the resulting value by the third number three times
result *= numbers[2] ** 3

# Calculate the sum of the digits of the fourth number
sum_of_digits = sum(int(digit) for digit in str(numbers[3]))

# Compare the sum of the digits with the first number and add
the fourth number if the sum is greater↪→

if sum_of_digits > numbers[0]:
result += numbers[4]
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# Return "Happy New Year" if the final result equals 2024,
otherwise "Whoops"↪→

return "Happy New Year" if result == 2024 else "Whoops"

# Example calls to the function
print(is_new_year([2, 0, 2, 4])) # Output should be "Whoops"
print(is_new_year([3, 5, 6, 1160])) # Output should be "Happy New

Year"↪→

```

This Python function follows the steps described in the problem
statement and uses conditional logic to manipulate the result
according to the given instructions.

↪→

↪→

Example 6 - Complex: The model knows that it should use index 3 to retrieve the fourth number
from a Python array in early lines. However, even though the model claims in the comments that it
will operate on the fourth number, it still uses 4 as the index. As the number of constraints increases,
the model commits errors that would not occur under fewer constraints.

# PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def custom_sort(dictionary):
"""Given a dictionary with non-negative integers as keys, sort

the key-value pairs in the↪→

dictionary where the values are strings. Arrange these
key-value pairs in descending order↪→

based on the count of ones in the ternary representation of
the keys. In case of equal↪→

counts of ones, arrange them in ascending order based on the
alphabetical order of the values.↪→

Return the sorted list.
>>> custom_sort({1: 'apple', 2: 123, 3: 'banana', 4: 'orange',

5: 456, 6: 'cherry'})↪→

[(4, 'orange'), (1, 'apple'), (3, 'banana'), (6, 'cherry')]
"""

# RESPONSE:
To implement the `custom_sort` function, we need to follow these

steps:↪→

1. Convert the keys to their ternary representation.
2. Count the number of ones in the ternary representation of each

key.↪→

3. Sort the key-value pairs first by the count of ones in
descending order, and then by the value in ascending
alphabetical order if there's a tie in the count of ones.

↪→

↪→

4. Return the sorted list of key-value pairs.

Here's the implementation of the function:

```python
def count_ones_in_ternary(n):
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"""Helper function to count the number of ones in the ternary
representation of an integer."""↪→

return bin(n).count('1')

def custom_sort(dictionary):
"""Given a dictionary with non-negative integers as keys, sort

the key-value pairs in the↪→

dictionary where the values are strings. Arrange these
key-value pairs in descending order↪→

based on the count of ones in the ternary representation of
the keys. In case of equal↪→

counts of ones, arrange them in ascending order based on the
alphabetical order of the values.↪→

Return the sorted list.
"""
# Filter out non-string values
filtered_dict = {k: v for k, v in dictionary.items() if

isinstance(v, str)}↪→

# Sort the dictionary by the count of ones in the ternary
representation of the keys↪→

# and then by the values in case of a tie
sorted_items = sorted(filtered_dict.items(), key=lambda item:

(-count_ones_in_ternary(item[0]), item[1]))↪→

return sorted_items

# Example usage:
print(custom_sort({1: 'apple', 2: '123', 3: 'banana', 4: 'orange',

5: '456', 6: 'cherry'}))↪→

```

Please note that the example provided in the docstring contains
non-string values (123 and 456), which are not considered in
the sorting process as per the problem description. The
function filters out these non-string values before sorting.

↪→

↪→

↪→

Also, the helper function `count_ones_in_ternary` is incorrectly
named since it counts the number of ones in the binary
representation, not ternary. However, the example provided
does not require ternary representation, so the function works
for the given example. If ternary representation is needed,
the helper function should be modified accordingly.

↪→

↪→

↪→

↪→

↪→

```

When you run the `custom_sort` function with the example provided
in the docstring, it should return the sorted list as follows:↪→

```
[(4, 'orange'), (1, 'apple'), (3, 'banana'), (6, 'cherry')]
```

Please note that Python uses zero-based indexing, so the keys in
the example (1, 2, 3, 4, 5, 6) are not directly related to the
ternary representation but rather arbitrary non-negative
integer keys as stated in the problem description.

↪→

↪→

↪→

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Example 7 - Codesense: Despite understanding ternary, the model mistakenly used a binary function,
indicating a weakness in utilizing external functions.
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Figure 8: The variable name in the generated function didn’t match that in the MHPP but was the
same as in the training corpus.
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