
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MHPP: EXPLORING CAPABILITIES AND LIMITATIONS
OF LANGUAGE MODELS BEYOND BASIC CODE
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have greatly improved code
generation, specifically at the function level. For instance, GPT-4o has achieved a
91.0% pass rate on HumanEval. However, this draws into question the adequacy
of existing benchmarks in thoroughly assessing function-level code generation
capabilities. Our study analyzed two common benchmarks, HumanEval and MBPP,
and found that these might not thoroughly evaluate LLMs’ code generation ca-
pacities due to limitations in quality, difficulty, and granularity. To resolve this,
we introduce the Mostly Hard Python Problems (MHPP) dataset, consisting of
210 unique human-curated problems. By focusing on the combination of natu-
ral language and code reasoning, MHPP gauges LLMs’ abilities to comprehend
specifications and restrictions, engage in multi-step reasoning, and apply cod-
ing knowledge effectively. Initial evaluations of 26 LLMs using MHPP showed
many high-performing models on HumanEval failed to achieve similar success on
MHPP. Moreover, MHPP highlighted various previously undiscovered limitations
within various LLMs, leading us to believe that it could pave the way for a better
understanding of LLMs’ capabilities and limitations.

1 INTRODUCTION

Large language models (LLMs) have recently driven striking performance improvements across
various tasks (Ouyang et al., 2022; Touvron et al., 2023; OpenAI, 2023). Recent models such as
Llama 3.1 (Dubey et al., 2024), CodeLlama (Rozière et al., 2023), CodeGemma (Team et al., 2024),
and GPT-4o (OpenAI, 2024) have been successful in demonstrating their efficacy in code-related tasks
from program repair (Haque et al., 2022; Jin et al., 2023) to automated testing (Lemieux et al., 2023;
Schäfer et al., 2024). LLMs are utilized to develop innovative tools aimed at aiding programmers to
write code more efficiently (Chen et al., 2021).

Code generation is a key area for evaluating LLMs’ capabilities. Code generation broadly spans
converting natural language prompts into executable code, not limited to predefined templates such
as function signatures and docstrings. This process can range from pure text descriptions to complete
code generation, emphasizing the versatility and adaptability required for LLMs. Our focus is on
Function-Level Code Generation. An example is illustrated in Figure 1. It emphasizes the translation
of natural language into functional code, underlining natural language comprehension’s importance
for creating accurate programming constructs. Benchmarks like HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) stand out in assessing these models, showcasing LLMs’ strengths in code
generation through their understanding of natural language and generation abilities. For instance,
GPT-4o (OpenAI, 2024) achieves a 91.0% pass rate on HumanEval (Chen et al., 2021).

However, on existing benchmarks, performance differences between models are insignificant - all
achieve high pass rates. We thus raise two concerns: 1) Basic datasets lack discriminative power to
distinguish model capabilities, making it difficult to assess their relative strengths and weaknesses.
2) High overall pass rates on existing tasks alone cannot determine if models have truly mastered
functional programming competency and encoding skills to address diverse challenges. To answer
these questions, we conducted detailed experiments with strong code models on the market, including
closed-source models like GPT-4 (OpenAI, 2023), GPT-3.5 (OpenAI, 2022), and open-source models

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1

2

3

4
5

Figure 1: A concise example from MHPP. The
function is defined (1), documented with a de-
scription in its docstring (2), and is accompanied
by an input example (3). A canonical answer is
presented (4), and the function’s correctness is
ensured through an assertion test (5).

Codesense: 52

Basic: 45

Cornercase: 13

Distraction: 5

Commonsense: 39

Redefinition: 35

Shortcut: 13

Complex: 30

0 0.1 0.2 0.3 0.4 0.5

GPT-3.5 DeepSeek-I 33B GPT-4

Figure 2: Distribution of error types of GPT-
3.5, GPT-4 and DeepSeek-Instruct 33B on Hu-
manEval. Models tend to make mistakes on prob-
lems of the Complex type, while they are good
at Basic, Distraction, and Codesense types.

like DeepSeek Coder (DeepSeekAI, 2023), using the HumanEval and MBPP benchmarks. Results
are displayed in Figure 2. Our error analysis revealed that different models make similar mistakes on
the same problems, highlighting corresponding challenges.

Through an extensive manual analysis, we identified 7 main challenges in code generation tasks,
leading to the introduction of the Mostly Hard Python Problems (MHPP) dataset. MHPP consists
of 210 unique, manually created Python programming problems, each supplemented by unit tests.
MHPP focuses on comprehensively evaluating LLMs’ abilities to tackle various challenges in code
generation. This includes handling variance in natural language inputs, understanding newly defined
contexts, demonstrating commonsense, dealing with edge cases, following complex instructions,
using mathematical and algorithmic knowledge, and showing familiarity with coding principles. It is
important to note that each challenge within MHPP necessitates different degrees of natural language
comprehension and code reasoning abilities.

We extensively evaluated 26 LLMs on MHPP, revealing many previously undiscovered limitations and
different weaknesses across models when addressing various challenges involved in code generation
tasks. Notably, the models struggled the most with challenges that required advanced algorithmic
reasoning. Our comprehensive experiments demonstrate that MHPP can effectively test model
performance against diverse code generation challenges. We hope MHPP can serve as a stepping
stone for a better understanding of LLM capabilities and limitations to advance code generation.
particularly in the domain of algorithmic reasoning.

2 DATASET ANALYSIS

In this section, we carry out a comprehensive manual analysis of two standard benchmarks: MBPP
and HumanEval along multiple axes. Our findings indicate that these benchmarks may not fully
assess LLMs’ code generation capacities due to LLMs’ rapid development.

2.1 MBPP

The analysis of the MBPP test set revealed three main issues. Firstly, data contamination was
identified as a significant problem. Through manual inspection, we found that many instances
appeared on the open-access websites, such as GeeksforGeeks1. To further investigate this issue, we
calculated the contamination rate using the leakage detection tool (Li, 2023), 65.4% of instances
in the test set were found to be contaminated. For more details refer to Appendix B. This issue

1https://www.geeksforgeeks.org/

2

https://www.geeksforgeeks.org/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

15.2%

20.1%
17.7%

18.3%

15.9%
1.2%5.5%

6.1%

Commonsense
Codesense
Basic
Complex

Redefine
Distraction
Shortcut
Cornercase

(a) Challenges in HumanEval

29.5%

29.5%

21.5%

11.0%
3.0%

2.5%
1.5%

1.5%

String
Math
Array
Sorting

Hash Table
Stack
Search
Matrix

(b) Problem types in HumanEval

44.0%

33.0%

15.0%

6.0%

2.0%

Math
List
String

Array
Others

(c) Problem types in MBPP

Figure 3: The imbalance distribution of challenges and problem types in HumanEval and MBPP.

may be attributed to the annotation process of MBPP, which allows crowd workers to use internet
references without implementing measures to filter out questions collected directly from websites.
The presence of contaminated data enables models to “cheat” by memorizing test data rather than
demonstrating genuine generalization, thus distorting model comparisons and undermining the
reliability of benchmarks (Jacovi et al., 2023; Sainz et al., 2023).

Additionally, upon conducting an error analysis based on strong models (e.g. GPT-4), we found that
18.82% of errors identified were attributed to the quality of the test instances in MBPP. Specifically,
these errors were categorized into two types: 10.59% of the errors were associated with unclear prob-
lem descriptions, while 8.23% were caused by instances lacking necessary constraints or containing
incorrect test cases. A more detailed analysis, along with specific cases, can be found in Appendix I.
Lastly, the problems within MBPP primarily center around basic code generation, covering tasks that
entail simple arithmetic or standard library usage. The length of the natural language descriptions
averages about 15.7 words per sentence, with predominantly unbalanced types, wherein 77% were
related to mathematical and list as shown in Figure 3. The imbalance in problem types and difficulty
levels may not thoroughly assess the capabilities of LLMs, particularly given the rapid development.

2.2 HUMANEVAL

We conduct an extensive error analysis for 3 LLMs on HumanEval, including GPT-4 (OpenAI, 2023),
GPT-3.5 (OpenAI, 2022) and DeepSeekCoder (DeepSeekAI, 2023) as depicted in Figure 2. We
analyze the errors made by LLMs on HumanEval and categorize the code generation challenges that
led to these mistakes into 7 types:

Distraction: The description is lengthy and contains redundant information. To address this challenge,
LLMs need to extract essential information needed for accurate code generation.

Redefinition: The description introduces new concepts or operational rules, presenting a counter-
factual scenario with corresponding explanations. LLMs need to comprehend this newly introduced
context for accurate code generation.

Shortcut: This challenge requires LLMs’ unconventional thinking, solving such problems often
involves concise solutions derived from logical reasoning, lateral thinking, and a grasp of knowledge
including mathematics and game theory.

Commonsense: Understanding the problem relies on commonsense knowledge not explicitly ex-
plained in the description. Commonsense involves universally understood facts for humans, such as
temporal, spatial, and geometric knowledge. LLMs need a solid grasp of commonsense to interpret
the context and then generate code.

Cornercase: This challenge demands thorough thinking of the problem, paying close attention to
implicit boundary conditions that could affect the outcome. LLMs need to consider all the corner
cases for correct code generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Detailed statistics of MHPP. Avg. Input Words represents the average number of words
contained in the input, Avg. Code Lines means the average number of lines in code solutions and
Avg. Tests represents the average number of test cases per problem. Reasoning level indicates the
level of reasoning difficulties in solving the specific challenge.

Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total

Avg. Input Words 260.9 153.4 141.2 148.0 142.3 189.9 137.1 167.6
Avg. Code Lines 16.1 13.2 7.3 13.4 17.5 27.9 8.9 14.9
Avg. Tests 13.8 14.6 11.4 15.0 16.9 15.4 11.1 14.0

Top5 Types

DP(14%) Array(22%) Math(31%) Math(18%) Array(15%) DP(14%) String(17%) Array(14%)
Array(9%) DP(14%) Array(15%) Array(12%) Search(12%) Array(13%) Math(11%) Math(13%)

Search(8%) Math(12%) GameTheory(13%) Greedy(8%) DP(12%) String(8%) Array(11%) DP(10%)
Math(8%) Simulation(6%) Greedy(9%) Geometry(8%) String(10%) Stack(8%) Sorting(8%) String(8%)
Hash(8%) Hash(6%) Sorting(7%) DP(8%) Math(7%) Search(8%) Hash(6%) Sort(6%)

Reasoning Level Medium Medium Difficult Easy Medium Difficult Easy -

Complexity: The description contains multiple constraints or requires executing multiple steps to
reach a solution. This complexity necessitates advanced logical reasoning or complex instruction
following capabilities for code generation.

Codesense: This challenge requires a deep understanding of the Python language and broader
programming knowledge, including familiarity with specific Python packages and the parameters
needed for function calls.

In addition to seven identified challenges, we incorporated a Basic category in HumanEval that
necessitates elementary programming abilities, such as string manipulation or arithmetic operations.
Our analysis reveals an imbalance in HumanEval’s challenge and problem type distribution, with
Basic and Codesense problems comprising 17.7% and 20.1% respectively, as depicted in Figure 3a
and further illustrated in Figure 3. Codesense, demanding minimal Python proficiency, along with
Basic, exhibits significantly lower error rates compared to other categories. To sum up, both MBPP
and HumanEval face challenges concerning data contamination, quality, distribution, and difficulty
levels, potentially affecting the reliability of benchmarking processes and the precise evaluation of
LLMs’ code generation capabilities.

3 BENCHMARK CONSTRUCTION

To delve deeper into the capabilities and limitations of LLMs beyond the basic code generation capa-
bilities identified by MBPP and HumanEval, we have created a unique code generation benchmark
Mostly Hard Python Problems (MHPP). This benchmark comprises expert-curated problems tailored
specifically for the seven challenges we identified in code generation. Note that using HumanEval as
a starting point may limit the coverage of problem types and error patterns. Therefore, we actively
sought to generalize the problem types and address more realistic and challenging error patterns in
the creation of MHPP. We refer readers to Appendix C. Our annotation team includes 12 members,
all of whom possess either a master’s or a Ph.D. degree in computer science.

To ensure the quality of our dataset, three members serve as meta-annotators. Based on the seven
challenges, the annotators were tasked with defining the problem statement for each challenge,
creating a single, self-contained Python function to solve the given problem, and developing test
cases to validate the semantic correctness of the function, as detailed in Section 3.1. Additionally, the
annotators were required to provide a ground-truth solution that successfully passed all the proposed
test cases.

In defining the problems, annotators were instructed to formulate descriptions clear and detailed
enough to allow for the translation of these descriptions into code by a human, without further
clarification. To maintain the originality and integrity of MHPP, annotators were strictly prohibited
from directly copying problems from publicly accessible websites, or employing simple modifications
to existing problems, such as synonym replacements or paraphrasing, as outlined in Section 3.2.

3.1 CHALLENGE-SPECIFIC ANNOTATION

We provide guidelines catered to the diverse requirements of annotating different challenges.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Distraction: Annotators are required to create elaborate natural language descriptions that incorporate
redundant information. These descriptions should exceed 200 words and introduce distractions.

Redefinition: Annotators are required to introduce new concepts or operational rules, effectively
creating counterfactual scenarios. Each problem should introduce more than one new concept along
with comprehensive explanations.

Shortcut: Annotators are required to craft problems that permit concise solutions by lateral thinking,
or applying knowledge from mathematics and game theory.

Commonsense: Annotators are required to construct problems that are grounded in foundational
commonsense concepts. These problems should not include explicit explanations of the involved
commonsense principles, and more than one concept should be featured.

Cornercase: Annotators are required to write problems with solutions that need to consider more
than 1 corner case.

Complexity: Annotators are required to develop problems that have more than 3 operational steps
or hops of reasoning. An example would be a problem that necessitates sorting a list, extracting
maximum and minimum elements, and then calculating the difference between these elements.

Codesense: Annotators are required to craft problems that necessitate the utilization of more than 1
specific Python package, both internal and external, such as RE and Numpy.

3.2 QUALITY ASSURANCE

To ensure the quality of MHPP, we initiated a comprehensive two-phase quality assurance process.
Our primary goal in the first phase is to eliminate any risk of data contamination that may arise from
the inclusion of problems that have previously appeared on open-access websites. To achieve this,
we tasked meta-reviewers with meticulously searching the Internet to ensure none of the problems
selected were already publicly available. Additionally, we employed a contamination detector (Li,
2023), to confirm a 0% contamination rate, resulting in the exclusion of 6 problems identified at this
stage. We then asked the annotators to annotate another 6 problems until all of the problems met the
requirements. Progressing to the second phase, our focus shifted towards ensuring that each problem
rigorously meets the specific criteria for the respective challenges. This entailed a detailed review of
every aspect of the problem, including the natural language description, the reference solution, and
the test cases, conducted by a panel of three meta-annotators.

To guarantee consistency and accuracy, we adopted an iterative approach wherein annotators were
tasked with addressing and rectifying any issues flagged by the meta-reviewers until unanimous
approval was obtained. In addition, in order to prevent the risk of future data contamination, we
build an evaluation pipeline to mitigate data leakage, rather than releasing the whole MHPP dataset
on popular platforms including HuggingFace or GitHub. Researcher can only get a result report by
submitting model outputs using API without knowing any test case or canonical solution.

3.3 DATASET STATISTICS

Detailed statistics of MHPP are outlined in Table 1. The total number of our dataset is 210 and each
challenge category contains 30 questions. A significant observation is that the average problem in
MHPP contains 167.6 words and the corresponding solutions span across 14.9 lines of code. This
indicates a considerable increase in verbosity and code complexity when compared to benchmarks
such as MBPP and HumanEval. Furthermore, MHPP surpasses these benchmarks in the number of
test cases, with an average of 14.0 test cases per problem—higher than MBPP’s 3.0 and HumanEval’s
7.2. Further comparisons can be found in Appendix A.

Crucially, the design of MHPP specifically addresses more nuanced challenges and diverse context
formats, a distinction not observed in other datasets. For instance, challenges categorized under the
Distraction and Complex categories are marked by significantly longer descriptions, posing unique
challenges in context comprehension. Conversely, problems falling under the Shortcut class feature
notably fewer lines of code in their solutions, highlighting challenges in achieving concise problem
solutions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: LLMs’ performance on MHPP in terms of pass@1 and pass@5 scores. We pinpoint
top performers in open-source LLMs based on pass@1 and pass@5 scores. The best models are
highlighted in bold, while those in second place are underscored, including ties. The performance of
LLMs on MHPP using greedy-search decoding can be seen in Appendix E.

Model Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total
k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5

Closed-Source LLMs

GPT-4o-2024-05-13 52.9 62.8 60.1 71.8 36.3 54.6 58.8 75.7 45.4 55.4 46.1 63.0 58.2 67.5 51.1 64.4
GPT-4o-Mini-2024-07-18 44.4 55.4 53.7 67.0 37.6 50.8 44.9 57.7 40.1 52.9 34.7 48.5 54.2 65.3 44.2 56.8
GPT-4-Turbo-2024-04-09 42.5 57.1 58.6 66.7 33.6 44.7 48.9 62.4 42.2 59.2 37.8 57.6 52.3 62.8 45.1 58.7
GPT-3.5-Turbo-0125 29.6 47.8 39.6 58.1 27.9 43.6 35.9 53.1 23.8 35.6 13.0 30.1 37.1 54.0 29.6 46.0

Open-Source LLMs

Phi-3-medium 14B 16.8 33.1 22.5 41.2 16.7 28.4 21.8 42.8 19.3 33.8 8.9 23.4 23.1 45.9 18.4 35.5
Phi-3-small 7B 15.4 28.6 19.0 37.5 10.9 25.0 16.6 34.2 15.1 29.6 6.3 16.5 21.0 46.4 14.9 31.1
Phi-3-mini 3.8B 12.5 26.3 22.7 35.3 13.3 28.4 16.3 31.0 16.3 31.5 6.3 13.8 20.7 38.0 15.4 29.2

Llama 3.1 8B 6.8 17.0 10.4 23.8 3.9 13.2 11.7 28.4 5.4 15.3 1.8 7.5 9.5 23.4 7.1 18.4

Gemma2 IT 9B 15.7 23.9 20.0 30.3 20.7 24.2 17.3 24.6 14.6 22.7 5.9 15.4 18.3 31.3 16.1 24.6
Gemma2 IT 2B 8.6 15.9 7.9 18.1 2.9 7.5 5.9 13.4 7.0 14.3 0.1 0.6 8.5 20.4 5.8 12.9

Mistral-7B-v0.3 6.7 15.1 9.8 19.8 4.3 11.7 9.6 19.3 5.8 12.5 0.9 3.9 10.4 24.1 6.8 15.2
Codestral 22B 28.9 43.5 34.0 50.8 17.4 32.7 31.6 49.2 24.0 40.6 12.2 27.1 34.5 52.4 26.1 42.3

DeepSeek-V2.5 37.8 47.4 51.9 59.6 37.7 50.0 55.5 66.3 40.2 45.0 25.4 38.0 45.7 52.6 42.0 51.3
DeepSeek-33B 28.0 41.3 33.8 49.0 21.3 33.1 39.1 55.9 25.9 38.7 11.4 29.2 35.2 56.3 27.8 43.4
DeepSeek-6.7B 19.8 35.6 30.9 44.8 19.2 30.1 25.1 45.3 18.6 33.0 6.0 17.6 25.9 44.3 20.8 35.8
DeepSeek-1.3B 10.8 20.2 10.3 21.9 10.8 22.2 15.3 26.6 8.2 15.4 0.5 2.4 12.8 28.3 9.8 19.6

As detailed in Table 1, our analysis of the top 5 distribution of problem types underscores the
unparalleled diversity in MHPP, in contrast to MBPP and HumanEval where three types predominantly
emerge. This diversity extends to the varied problem types observed across different challenges; for
example, while dynamic programming is a prevalent theme in the Complex category, it appears less
frequently in the Redefinition and Cornercase categories, showcasing the diverse range of challenges
encapsulated within MHPP.

MHPP spans a wide range of complexity levels, testing the reasoning capabilities of LLMs to
varying degrees. Commonsense and Codesense challenges involve basic logical operations, such
as identifying concepts and patterns, applying factual and programming knowledge, and drawing
simple inferences. Distraction, Redefinition, and Cornercase challenges demand complex cognitive
processes. These include analyzing the docstring, evaluating the context, and forming conclusions
based on multiple conditions. Shortcut and Complex challenges necessitate even more advanced
reasoning, involving abstract thinking, critical analysis, and optimization under various constraints. In
essence, MHPP provides a spectrum of complexity, testing LLMs’ ability to perform natural language
and algorithmic reasoning at different levels.

4 EXPERIMENT

4.1 SETUP

Following prior works (Chen et al., 2021; Nijkamp et al., 2023), code generation is conducted
under the setting of greedy-search and sampling decoding with a temperature of 0.7, which are
evaluated with unbiased versions of pass@1 and pass@5 scores, respectively. We examined 26
LLMs on MHPP to demonstrate a comprehensive study, including the open-sourced LLMs such as
DeepSeek (DeepSeekAI, 2023) and Llama 3.1 (Dubey et al., 2024). GPT-4o OpenAI (2024) and its
predecessor are also evaluated. Each model is prompted with “Write a Python function according
to the function name and the problem description in the docstring below. [function definition with
docstring]”, while all finetuned LLMs are equipped with the additional instruction template used
during their specific finetuning. To carry out an in-depth investigation of LLMs’ capability of code
generation and the effectiveness of MHPP, three research questions are naturally raised:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Shortcut

Complex

Cornercase

Commonsense

Codesense

Distraction

Redefinition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Llama 3.1 70B Mistral-large GPT-4-turbo GPT-4o

Figure 4: Error distribution of GPT-4o, GPT-
4-turbo, Mistral-large 2 and Llama 3.1 70B.
Most models performed poorly on MHPP.

Gemma2 2B it

Gemma2 9B it

Gemma2 27B it

Mistral 8x7B-I v0.1

Phi3 mini-I

CodeGemma 7B 1.1
Phi3 small-I

GPT-4o 🏆

DeepSeek v2.5
Llama 3.1-I 405B

GPT-4o-mini
GPT-4-turbo

Llama 3.1-I 70B

GPT-3.5-turbo

Phi3 medium-I

Llama 3.1-I 8B

Mixtral 8x22B v0.1-I

HumanEval pass@1

M
H

P
P

 p
a

ss
@

1

Figure 5: The correlation between HumanEval
pass@1 scores and MHPP pass@1 scores.
Instruction-finetuned models are labeled with ‘-I’.

RQ1 How do open-sourced coding models compare to proprietary models like GPT-4o (OpenAI,
2024) in their ability to generate high-quality code? (Section 4.2)

RQ2 What weaknesses do even the most advanced models still exhibit? (Section 4.3)

RQ3 How well does performance on MHPP correlate with performance on the existing HumanEval
benchmark for evaluating code generation capabilities? (Section 4.4)

4.2 MAIN RESULTS

Open-sourced LLMs are impressive, however still fall short of the performance compared with GPT-
4o. Table 2 illustrate a significant performance gap between GPT-4o and other baseline models. This
is in contrast to results from HumanEval and MBPP, where many open-source models are competitive
with GPT models. Surprisingly, DeepSeek V2.5 reaches 42.1 pass@1 and 51.3 pass@5 score, which
surpasses GPT-3.5-turbo by a substantial margin, challenging the long-standing dominance of GPT
models in the field of code generation and highlighting its potential to shape the future of open-source
LLMs. Furthermore, the results indicate that open-source LLMs benefit significantly from increases
in model size, as evidenced by the impressive performance-to-size ratio achieved by the DeepSeek
and Gemma families. However, this trend is not observed in the Phi3-medium, Phi3-small, and
Phi3-mini models, where performance appears to fluctuate randomly with changes in size.

Additionally, most open-source LLMs still struggle to generate acceptable responses to the challenging
questions presented in MHPP. This suggests that our proposed MHPP effectively highlights the
difficulties faced by LLMs in code generation, indicating that the development of open-source coding
LLMs still faces significant challenges and warrants further exploration. Furthermore, we extend
our research beyond Python by translating MHPP’s problems and test cases into Java and C++. The
results of GPT-4’s performance in these languages are in Appendix D.

4.3 RESULTS ON DIFFERENT TYPES OF CHALLENGES

Challenges in MHPP are still hard even for top-performance LLMs. Especially those are ignored in
MBPP and HumanEval. Despite the impressive performance compared with all the other baselines,
GPT models’ error rates are still unignorable. Figure 4 illustrates that MHPP challenges LLMs
across all areas. Notably, GPT-4-turbo performed poorly in every MHPP category, with a 60% error
rate in the most challenging category, shortcut challenges, which are among the least represented in
HumanEval. Furthermore, even in the category with the best performance, GPT-4-turbo still had over
a 40% error rate, which is inadequate to generate comprehensive and informative codes solutions
when facing challenges.

Although GPT-4o surpasses its predecessor across all subjects, it still has a considerable way to go
before fully mastering MHPP problems, particularly shortcut questions. These experimental results

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Models’ Pass@1 and Pass@5 with corresponding 95% confidence intervals. To calculate
the Confidence Intervals, we conducted 10 rounds of testing for each model and computed the mean
pass@k value. The variance for performance on MHPP is small enough, even for each category.

Model Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total

Pass@1
GPT-4o-2024-05-13 53.03 ±0.18 60.19 ±0.38 36.21 ±0.32 58.62 ±0.52 45.57 ±0.23 46.23 ±0.24 58.29 ±0.26 51.16 ±0.11
GPT-4-Turbo-2024-04-09 42.78 ±0.28 58.91 ±0.18 33.5 ±0.21 49.25 ±0.24 42.29 ±0.35 37.76 ±0.34 52.43 ±0.26 45.27 ±0.11
DeepSeek-V2.5 42.04 ±0.07 37.65 ±0.12 51.85 ±0.27 37.93 ±0.25 55.32 ±0.28 40.17 ±0.23 25.64 ±0.24 45.73 ±0.18

Pass@5
GPT-4o-2024-05-13 62.7 ±0.27 71.72 ±0.34 54.08 ±0.52 75.6 ±0.27 55.85 ±0.34 62.95 ±0.51 67.64 ±0.36 64.36 ±0.13
GPT-4-Turbo-2024-04-09 57.55 ±0.68 66.74 ±0.22 44.91 ±0.34 63.12 ±0.49 59.05 ±0.35 57.12 ±0.72 62.92 ±0.39 58.77 ±0.16
DeepSeek-V2.5 51.34 ±0.15 47.19 ±0.48 59.4 ±0.38 50.29 ±0.55 66.45 ±0.36 45.03 ±0.37 37.91 ±0.43 53.12 ±0.4

demonstrate that MHPP provides a comprehensive assessment of LLMs’ code generation. To help
the community further improve performance on fine-grained code generation tasks, we have devised
a set of potential strategies tailored to each category of challenges presented in MHPP, as detailed in
Appendix F.

4.4 CORRELATION BETWEEN MHPP AND HUMANEVAL

MHPP is closely correlated with HumanEval, yet it presents more challenging and representative
questions. Following the CRUXEval (Gu et al., 2024), Figure 5 illustrates the correlation between
HumanEval and MHPP. Notably, GPT-4o outperforms other models in both MHPP and HumanEval.
As discussed in Section 4.2, certain model families benefit from increased model size, achieving
an impressive performance-to-size ratio. Specifically, for Llama 3.1-instruct and GPT models, the
advantages of scaling up LLMs are evident and exhibit relatively similar growth on both MHPP
and HumanEval, suggesting that model scaling may enhance the reasoning capabilities of these
LLMs on general coding tasks. However, for Gemma2 and Mixtral models, the benefits of scaling up
are significantly less pronounced on MHPP than on HumanEval, indicating that these models may
exhibit overfitting to the problems presented in HumanEval and that MHPP presents more complex
challenges not solely addressed by increasing model size.

Moreover, on HumanEval, the performance gap between open-source models and the GPT series has
significantly narrowed, with Llama 3.1 405B and DeepSeek V2.5 scoring close to GPT-4o. This trend,
however, does not extend to MHPP, where GPT-4o’s coding capabilities remain substantially superior
to all other models, including GPT-4-turbo, GPT-4o-mini, and DeepSeek V2.5. This disparity can
be attributed to MHPP’s anti-data contamination feature and its more demanding and representative
questions. Consequently, although MHPP is largely correlated with HumanEval, it more accurately
assesses a model’s performance in complex scenarios.

5 ANALYSIS

5.1 CONFIDENCE INTERVALS

To validate the effectiveness and reliability of the MHPP, we conducted a comprehensive analysis of
the confidence intervals (CIs). This analysis encompasses the overall CI for the challenges addressed
by our proposed MHPP, underscoring its general reliability, and extends to the CIs for each subclass
to elucidate the rationale behind MHPP’s structure.

Following the decoding strategies and evaluation metrics delineated in Section 4.1, we estimated the
CI from pass@1 to pass@20. To substantiate the CIs, we conducted 10 rounds of testing for each
model and computed the mean pass@k value, denoted as x̄. In each testing round, we randomly
selected 50 out of 100 generated samples of each model to estimate pass@k. Subsequently, we
calculated the Confidence Intervals (CIs) using the formula:

CI = x̄± z · s√
n

(1)

where s represents the standard deviation, and n denotes the sample size. We evaluated the CIs at a
95% confidence level, corresponding to a z-value of 1.96. Table 3 presents the confidence intervals for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Error in the Commonsense challenge. (b) Error in the Complex challenge

Figure 6: Two case studies showing that challenges we particularly set for certain problems can
indeed cause the model to make mistakes. The highlighted text in the docstring represents where
the model can be misunderstood. The pink-colored part in the code means the mistakes and the pale
blue-colored part in the code means that the model knows the correct implementation.

pass@1 and pass@5 scores. For (k=1), the CI is narrow, indicating consistent performance across
different iterations. Moreover, the CI for performance across various categories is small, suggesting
that each model maintains a consistent level of accuracy regardless of the category. For pass@5, the
confidence intervals remain narrow, though slightly wider than pass@1, reflecting the models’ ability
to include the correct answer within the top five predictions. These results validate the robustness
of testing large language models (LLMs) using MHPP, further demonstrating its effectiveness and
reliability. More results of CI testing with k values ranging from 1 to 20 are shown in Figure 7.

5.2 CASE REVIEW

In this section, we reviewed the GPT-4’s failures to see if, for a particular problem, the model indeed
failed to solve it due to the specific challenge we set for the problem. Two examples are shown in
Figure 6, we refer the reader to Appendix K for more whole examples. From these examples, the
rationality of the challenge classification can also be confirmed.

Figure 6a shows one problem with “Commonsense” as its challenge and model’s solution. More
specifically, this problem concerns the model’s understanding of space or orientation. Only people
who are walking toward each other will meet, yet the model mistakenly believes it also needs to
calculate for people moving in opposite directions. This indicates that the model lacks real-world
spatial concepts.

The problem in Figure 6b addresses the challenge of multiple constraints - “Complex”. At the
position marked pale blue, the model knows it should use index 3 to retrieve the fourth number from
a Python array. However, for those parts marked by the color pink, even though the model claims
in the comments that it will operate on the fourth number, it still uses 4 as the index. Therefore, as
the number of constraints increases, the model commits errors that would not occur under fewer
constraints.

6 RELATED WORK

6.1 LLMS FOR CODE

The burgeoning interest in LLMs for code has coincided with the profusion of openly available
code repositories and the pressing need to enhance the productivity of software developers. Initial
models predominantly focused on code generation tasks have included CodeT5 (Wang et al., 2021),
AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al., 2023), InCoder (Fried et al., 2023), Star-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Coder (Li et al., 2023a), SantaCoder (Allal et al., 2023), CodeFuse (Di et al., 2024), CodeShell (Xie
et al., 2024), and (DeepSeekAI, 2023; DeepSeek-AI et al., 2024), all of which were trained on
code. Contrastingly, models such as Codex (Chen et al., 2021) and CodeLLaMA (Rozière et al.,
2023) represent a subsequent stride, having been fine-tuned from foundation models (Brown et al.,
2020; Touvron et al., 2023). The evolution continued as LLMs leveraged instruction-like datasets
for fine-tuning. Among these, WizardCoder (Luo et al., 2023), Phi (Gunasekar et al., 2023; Li
et al., 2023b), MagiCoder (Wei et al., 2024), and SafeCoder (He et al., 2024) are notable examples.
Across various coding applications, these code LLMs have set new standards of excellence, show-
casing their prowess in domains including program repair (Haque et al., 2022; Jiang et al., 2023),
automated testing (Lemieux et al., 2023; Deng et al., 2023), code translation (Rozière et al., 2020;
Ahmad et al., 2023; Xue et al., 2024), type prediction (Mir et al., 2022; Wei et al., 2023), and code
summarization (Hasan et al., 2021; Ahmed & Devanbu, 2022).

6.2 CODE GENERATION BENCHMARKS

Code generation (Chen et al., 2021; Austin et al., 2021) has emerged as a vital domain for evaluating
LLMs, where models generate code snippets based on natural language descriptions, often given in
the form of docstrings. Creating datasets for this task is challenging, leading most efforts to source
natural language and code pairs from the Internet (Hendrycks et al., 2021; Li et al., 2022; Chandel
et al., 2022; Jain et al., 2022; Shinn et al., 2023) or use distant supervision (Agashe et al., 2019). For
instance, APPS (Hendrycks et al., 2021) compiles questions from open-access coding portals like
Codeforces and Kattis, covering a wide difficulty range. Similarly, CodeContests (Li et al., 2022) and
LeetcodeHard (Shinn et al., 2023) draw problems from specific platforms, enriching the diversity and
challenge of datasets. However, the training of LLMs on vast repositories, including GitHub, poses a
risk of including solutions to these problems, thereby emphasizing the importance of hand-written
sets like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) for accurate benchmarks.
These datasets, based entirely on human-written questions, are pivotal despite their focus on simpler
functions, highlighting a need for advancing benchmarks to match the growing capabilities of LLMs.
More code generation benchmarks are discussed in Appendix A.

7 CONCLUSION

In this work, we construct the MHPP benchmark comprising 210 unique, manually created Python
problems. The prime focus of MHPP is the semantic grounding of code generation, effectively
measuring LLMs’ competence in comprehending detailed specifications and restrictions in natural
language descriptions, undertaking complex reasoning, and employing code knowledge to facilitate
the desired functionality. Upon applying MHPP, we observe that the most powerful LLM still struggles
on this challenging benchmark. We hope MHPP can shed light on understanding the capabilities and
limitations of LLMs for code generation and form a foundation for further improvements. Though
MHPP offers valuable insights into code generation, it’s important to acknowledge its limitations in
terms of data size and potential bias, which are provided in Appendix G.

REFERENCES

Rajas Agashe, Srinivasan Iyer, and Luke Zettlemoyer. Juice: A large scale distantly supervised
dataset for open domain context-based code generation. In Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pp. 5435–5445.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1546. URL https:
//doi.org/10.18653/v1/D19-1546.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. AVATAR:
A parallel corpus for java-python program translation. In Anna Rogers, Jordan L. Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 2268–2281. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.FINDINGS-ACL.143. URL https://doi.org/10.18653/
v1/2023.findings-acl.143.

10

https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/D19-1546
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Toufique Ahmed and Premkumar T. Devanbu. Few-shot training llms for project-specific code-
summarization. In 37th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022, pp. 177:1–177:5. ACM, 2022. doi: 10.1145/
3551349.3559555. URL https://doi.org/10.1145/3551349.3559555.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-Poirier, Hailey Schoelkopf, Sergey Troshin,
Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo Garcı́a del
Rı́o, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas,
Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia
Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries,
and Leandro von Werra. Santacoder: don’t reach for the stars! CoRR, abs/2301.03988, 2023.
doi: 10.48550/ARXIV.2301.03988. URL https://doi.org/10.48550/arXiv.2301.
03988.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen Tian, Ming Tan,
Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang, Sujan Kumar Gonugondla, Hantian
Ding, Varun Kumar, Nathan Fulton, Arash Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng
Qian, Murali Krishna Ramanathan, and Ramesh Nallapati. Multi-lingual evaluation of code
generation models. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/pdf?id=Bo7eeXm6An8.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin,
Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, and
Timofey Bryksin. Long code arena: a set of benchmarks for long-context code models, 2024. URL
https://arxiv.org/abs/2406.11612.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q. Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and polyglot approach to bench-
marking neural code generation. IEEE Trans. Software Eng., 49(7):3675–3691, 2023. doi:
10.1109/TSE.2023.3267446. URL https://doi.org/10.1109/TSE.2023.3267446.

Shubham Chandel, Colin B. Clement, Guillermo Serrato, and Neel Sundaresan. Training and
evaluating a jupyter notebook data science assistant. CoRR, abs/2201.12901, 2022. URL https:
//arxiv.org/abs/2201.12901.

Mark Chen, Jerry Tworek, Heewoo gJun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios

11

https://doi.org/10.1145/3551349.3559555
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2301.03988
https://openreview.net/pdf?id=Bo7eeXm6An8
https://openreview.net/pdf?id=Bo7eeXm6An8
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2406.11612
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/TSE.2023.3267446
https://arxiv.org/abs/2201.12901
https://arxiv.org/abs/2201.12901

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bingxuan Wang,
Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence, 2024. URL https://arxiv.org/abs/2406.11931.

DeepSeekAI. Deepseek coder: Let the code write itself, 2023. URL https://deepseekcoder.
github.io/.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large language models are edge-case fuzzers: Testing deep learning libraries
via fuzzgpt. CoRR, abs/2304.02014, 2023. doi: 10.48550/ARXIV.2304.02014. URL https:
//doi.org/10.48550/arXiv.2304.02014.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
Hongwei Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong, Wen Hu, Tingting Guo, Zhichao Lei,
Ting Li, Zheng Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen Liu, Zhiwei Liu, Shaojun
Lu, Min Shen, Guangpei Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Jiawei Yang, Qing Ye,
Gehao Zhang, Yu Zhang, Zelin Zhao, Xunjin Zheng, Hailian Zhou, Lifu Zhu, and Xianying
Zhu. Codefuse-13b: A pretrained multi-lingual code large language model. In Proceedings of
the 46th International Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP ’24, pp. 418–429. ACM, April 2024. doi: 10.1145/3639477.3639719. URL http:
//dx.doi.org/10.1145/3639477.3639719.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly modeling
in-file and cross-file context. CoRR, abs/2212.10007, 2022. doi: 10.48550/ARXIV.2212.10007.
URL https://doi.org/10.48550/arXiv.2212.10007.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,

12

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2406.11931
https://deepseekcoder.github.io/
https://deepseekcoder.github.io/
https://doi.org/10.48550/arXiv.2304.02014
https://doi.org/10.48550/arXiv.2304.02014
http://dx.doi.org/10.1145/3639477.3639719
http://dx.doi.org/10.1145/3639477.3639719
https://doi.org/10.48550/arXiv.2212.10007

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen
Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=hQwb-lbM6EL.

Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and Sida I.
Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv preprint
arXiv:2401.03065, 2024.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023. doi: 10.
48550/ARXIV.2306.11644. URL https://doi.org/10.48550/arXiv.2306.11644.

Md. Mahim Anjum Haque, Wasi Uddin Ahmad, Ismini Lourentzou, and Chris Brown. Fixeval:
Execution-based evaluation of program fixes for competitive programming problems. CoRR,
abs/2206.07796, 2022. doi: 10.48550/ARXIV.2206.07796. URL https://doi.org/10.
48550/arXiv.2206.07796.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md. Mahim Anjum
Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat Shahriyar. Codesc: A
large code-description parallel dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021,
Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pp. 210–218.
Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.FINDINGS-ACL.18.
URL https://doi.org/10.18653/v1/2021.findings-acl.18.

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin Vechev. Instruction tuning for secure
code generation, 2024. URL https://arxiv.org/abs/2402.09497.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in plain
text: Practical strategies for mitigating data contamination by evaluation benchmarks. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp.
5075–5084. Association for Computational Linguistics, 2023. URL https://aclanthology.
org/2023.emnlp-main.308.

Naman Jain, Skanda Vaidyanath, Arun Shankar Iyer, Nagarajan Natarajan, Suresh Parthasarathy,
Sriram K. Rajamani, and Rahul Sharma. Jigsaw: Large language models meet program synthesis.
In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 25-27, 2022, pp. 1219–1231. ACM, 2022. doi: 10.1145/3510003.3510203. URL
https://doi.org/10.1145/3510003.3510203.

14

https://arxiv.org/abs/2407.21783
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.18653/v1/2021.findings-acl.18
https://arxiv.org/abs/2402.09497
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://aclanthology.org/2023.emnlp-main.308
https://aclanthology.org/2023.emnlp-main.308
https://doi.org/10.1145/3510003.3510203

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on automated
program repair. In 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023, pp. 1430–1442. IEEE, 2023. doi: 10.1109/ICSE48619.
2023.00125. URL https://doi.org/10.1109/ICSE48619.2023.00125.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? CoRR,
abs/2310.06770, 2023. doi: 10.48550/ARXIV.2310.06770. URL https://doi.org/10.
48550/arXiv.2310.06770.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Satish Chandra, Kelly Blincoe,
and Paolo Tonella (eds.), Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023, pp. 1646–1656. ACM, 2023. doi: 10.1145/3611643.
3613892. URL https://doi.org/10.1145/3611643.3613892.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau
Yih, Daniel Fried, Sida I. Wang, and Tao Yu. DS-1000: A natural and reliable benchmark for
data science code generation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 18319–18345. PMLR, 2023. URL https://proceedings.
mlr.press/v202/lai23b.html.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. Codamosa:
Escaping coverage plateaus in test generation with pre-trained large language models. In 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023, pp. 919–931. IEEE, 2023. doi: 10.1109/ICSE48619.2023.00085. URL https:
//doi.org/10.1109/ICSE48619.2023.00085.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may
the source be with you! CoRR, abs/2305.06161, 2023a. doi: 10.48550/ARXIV.2305.06161. URL
https://doi.org/10.48550/arXiv.2305.06161.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need II: phi-1.5 technical report. CoRR, abs/2309.05463, 2023b. doi: 10.
48550/ARXIV.2309.05463. URL https://doi.org/10.48550/arXiv.2309.05463.

Yucheng Li. An open source data contamination report for llama series models. CoRR,
abs/2310.17589, 2023. doi: 10.48550/ARXIV.2310.17589. URL https://doi.org/10.
48550/arXiv.2310.17589.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.07814.
URL https://doi.org/10.48550/arXiv.2203.07814.

15

https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.48550/arXiv.2310.06770
https://doi.org/10.1145/3611643.3613892
https://proceedings.mlr.press/v202/lai23b.html
https://proceedings.mlr.press/v202/lai23b.html
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2309.05463
https://doi.org/10.48550/arXiv.2310.17589
https://doi.org/10.48550/arXiv.2310.17589
https://doi.org/10.48550/arXiv.2203.07814

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. CoRR,
abs/2305.01210, 2023a. doi: 10.48550/ARXIV.2305.01210. URL https://doi.org/10.
48550/arXiv.2305.01210.

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. CoRR, abs/2306.03091, 2023b. doi: 10.48550/ARXIV.2306.03091.
URL https://doi.org/10.48550/arXiv.2306.03091.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct. CoRR, abs/2306.08568, 2023. doi: 10.48550/ARXIV.2306.08568. URL
https://doi.org/10.48550/arXiv.2306.08568.

Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. Type4py: Practical
deep similarity learning-based type inference for python. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pp. 2241–
2252. ACM, 2022. doi: 10.1145/3510003.3510124. URL https://doi.org/10.1145/
3510003.3510124.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=iaYcJKpY2B_.

OpenAI. ChatGPT, 2022. URL https://chat.openai.com.

OpenAI. GPT-4 Technical Report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

OpenAI. Gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. CoRR, abs/2305.15334, 2023. doi: 10.48550/ARXIV.2305.15334.
URL https://doi.org/10.48550/arXiv.2305.15334.

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi: 10.
48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

16

https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2306.03091
https://doi.org/10.48550/arXiv.2306.08568
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://chat.openai.com
https://doi.org/10.48550/arXiv.2303.08774
https://openai.com/index/hello-gpt-4o/
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2305.15334
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://doi.org/10.48550/arXiv.2308.12950

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Oscar Sainz, Jon Ander Campos, Iker Garcı́a-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and
Eneko Agirre. NLP evaluation in trouble: On the need to measure LLM data contamination for
each benchmark. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, pp. 10776–10787.
Association for Computational Linguistics, 2023. URL https://aclanthology.org/
2023.findings-emnlp.722.

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. An empirical evaluation of using large
language models for automated unit test generation. IEEE Trans. Software Eng., 50(1):85–105,
2024. doi: 10.1109/TSE.2023.3334955. URL https://doi.org/10.1109/TSE.2023.
3334955.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. CoRR, abs/2303.11366, 2023. doi: 10.48550/ARXIV.2303.11366.
URL https://doi.org/10.48550/arXiv.2303.11366.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 31693–31715. PMLR, 2023. URL https://proceedings.
mlr.press/v202/shrivastava23a.html.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea Hu,
Christopher A. Choquette-Choo, Jingyue Shen, Joe Kelley, Kshitij Bansal, Luke Vilnis, Mateo
Wirth, Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar, Sarmad Hashmi, Shubham Agrawal,
Zhitao Gong, Jane Fine, Tris Warkentin, Ale Jakse Hartman, Bin Ni, Kathy Korevec, Kelly
Schaefer, and Scott Huffman. Codegemma: Open code models based on gemma, 2024. URL
https://arxiv.org/abs/2406.11409.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/
10.48550/arXiv.2307.09288.

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. Recode: Robustness evaluation of code generation models. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13818–13843. Association for Computational Linguistics,
2023a. doi: 10.18653/V1/2023.ACL-LONG.773. URL https://doi.org/10.18653/v1/
2023.acl-long.773.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Association for Computational
Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.685. URL https://doi.org/10.
18653/v1/2021.emnlp-main.685.

17

https://aclanthology.org/2023.findings-emnlp.722
https://aclanthology.org/2023.findings-emnlp.722
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.48550/arXiv.2303.11366
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://arxiv.org/abs/2406.11409
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2023.acl-long.773
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Zhiruo Wang, Shuyan Zhou, Daniel Fried, and Graham Neubig. Execution-based evaluation for
open-domain code generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings
of the Association for Computational Linguistics: EMNLP 2023, Singapore, December 6-10,
2023, pp. 1271–1290. Association for Computational Linguistics, 2023b. URL https://
aclanthology.org/2023.findings-emnlp.89.

Zora Z. Wang, Akari Asai, Xiyan V. Yu, Frank F. Xu, Yiqing Xie, Graham Neubig, and Daniel Fried.
Coderag-bench: Can retrieval augment code generation? 2024.

Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis.
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=4TyNEhI2GdN.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct, 2024. URL https://arxiv.org/abs/2312.02120.

Rui Xie, Zhengran Zeng, Zhuohao Yu, Chang Gao, Shikun Zhang, and Wei Ye. Codeshell technical
report, 2024. URL https://arxiv.org/abs/2403.15747.

Min Xue, Artur Andrzejak, and Marla Leuther. An interpretable error correction method for enhancing
code-to-code translation. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=fVxIEHGnVT.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li, Qian Chen, Wen Wang, Tingyu Lin, Weishan
Zhao, Li Zhu, Hari Sundaram, and Shuiguang Deng. Codescope: An execution-based multilingual
multitask multidimensional benchmark for evaluating llms on code understanding and generation,
2024. URL https://arxiv.org/abs/2311.08588.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. In Anna Rogers,
Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pp. 126–173. Association for Computational Linguistics, 2023. doi:
10.18653/V1/2023.ACL-LONG.9. URL https://doi.org/10.18653/v1/2023.acl-
long.9.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. CERT: continual pre-training on sketches for library-oriented code generation.
In Luc De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI 2022, Vienna, Austria, 23-29 July 2022, pp. 2369–2375. ijcai.org, 2022. doi:
10.24963/IJCAI.2022/329. URL https://doi.org/10.24963/ijcai.2022/329.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 2471–2484. Association for Computational Linguistics, 2023. URL
https://aclanthology.org/2023.emnlp-main.151.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code
generation with multilingual evaluations on humaneval-x. CoRR, abs/2303.17568, 2023. doi: 10.
48550/ARXIV.2303.17568. URL https://doi.org/10.48550/arXiv.2303.17568.

18

https://aclanthology.org/2023.findings-emnlp.89
https://aclanthology.org/2023.findings-emnlp.89
https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/pdf?id=4TyNEhI2GdN
https://arxiv.org/abs/2312.02120
https://arxiv.org/abs/2403.15747
https://openreview.net/forum?id=fVxIEHGnVT
https://arxiv.org/abs/2311.08588
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.18653/v1/2023.acl-long.9
https://doi.org/10.24963/ijcai.2022/329
https://aclanthology.org/2023.emnlp-main.151
https://doi.org/10.48550/arXiv.2303.17568

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Comparison of MHPP to other benchmarks. #Cases denotes the average number of test
cases. #Words denotes the average of problem words. #Codes denotes the average of lines of code for
reference solution. Notice that we only include the statistics of the test set. The two three benchmarks
target general Python usage, the middle three benchmarks aim at harder problems, and the last four
involve data science code generation.

Dataset Written Perturb Source Problems Evaluation #Cases #Words #Codes

MBPP (Austin et al., 2021) ✓ N/A N/A 974 Test Cases 3.0 15.7 6.7
HumanEval (Chen et al., 2021) ✓ N/A N/A 164 Test Cases 7.2 23.0 6.3

APPS (Hendrycks et al., 2021) ✗ ✗ Websites 5000 Test Cases 13.2 293.2 18.0
CodeContests (Li et al., 2022) ✗ ✗ Codeforces 165 Test Cases 204.6 401.3 52

LeetCodeHard (Shinn et al., 2023) ✗ ✗ LeetCode 40 Test Cases N/A 275.8 N/A

DSP (Chandel et al., 2022) ✗ ✗ Github 1137 Test Cases 2.1 71.9 4.5
PandasEval (Jain et al., 2022) ✗ ✗ Github 725 Accuracy N/A 12.5 1.8

DS-1000 (Lai et al., 2023) ✗ ✓ StackOverflow 1000 Test Cases 1.6 140.0 3.6
ARCADE (Yin et al., 2023) ✓ N/A N/A 661 Fuzzy Match N/A 18.4 3.1

MHPP ✓ N/A N/A 210 Test Cases 14.0 167.6 14.9

A RELATED WORKS FOR OTHER CODE GENERATION TAKS

Recent works try to improve HumanEval and MBPP from different perspectives. For example,
HumanEval+ (Liu et al., 2023a) enhances the HumanEval with improved test cases, remedying
the issue of mistakenly accepted faulty solutions. Meanwhile, ReCode (Wang et al., 2023a) takes
a different approach by altering function names and docstrings within the HumanEval structure.
Expanding the scope beyond Python, HumanEval-X (Zheng et al., 2023), MultiPLe (Cassano et al.,
2023), and MBXP (Athiwaratkun et al., 2023) extend the HumanEval and MBPP benchmarks to
incorporate a variety of programming languages. The universe of code generation benchmarks
widens further when we consider the specialized needs of data science. DS-1000 (Lai et al., 2023),
ARCADE (Yin et al., 2023), NumpyEval (Zan et al., 2022), and PandasEval (Jain et al., 2022) focus
on the generation of code within this context. Beyond mere code creation, there are benchmarks
like APIBench (Patil et al., 2023), MTPB (Nijkamp et al., 2023), RepoBench (Liu et al., 2023b),
ODEX (Wang et al., 2023b), SWE-Bench (Jimenez et al., 2023), GoogleCodeRepo (Shrivastava
et al., 2023), RepoEval (Zhang et al., 2023), and Cocomic-Data (Ding et al., 2022), which ratchet up
the complexity by evaluating a model’s prowess in utilizing APIs or completing broader software
engineering tasks. Additionally, CodeScope (Yan et al., 2024) evaluates the capabilities of large
language models (LLMs) in understanding and generating code across multilingual, multidimensional,
and multitasking contexts. Meanwhile, benchmarks such as Long Code Arena (Bogomolov et al.,
2024) and CodeRag-Bench (Wang et al., 2024) assess the models’ abilities in long-form code
generation and comprehension. Table 4 shows comparisons among MHPP and several representative
benchmarks.

B DATA CONTAMINATION

Following the official guideline of the contamination detector 2, we extract only the question stems
from MBPP and use Bing Search to find related content online. When matches are discovered, they
are evaluated based on token-level similarity. This evaluation helps determine how similar the test
sample is to online content, assisting in identifying potential contamination. We set a threshold of
0.7, meaning a match is considered contaminated if the similarity exceeds 0.7.

C GENERALIZATION BEYOND CHALLENGE OF HUMANEVAL

Using HumanEval as a starting point may limit the coverage of problem types and error patterns.
Therefore, we actively sought to generalize the problem types and address more realistic and challeng-
ing error patterns in the creation of MHPP. We provide how we generalize from different challenges
as follows:

2https://github.com/liyucheng09/Contamination_Detector/tree/master

19

https://github.com/liyucheng09/Contamination_Detector/tree/master

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Distraction: there is only one problem in which there are some short sentences that are irrelevant
to solving the problem, but we design more subtypes of this challenge, for example, we add a lot
of background information to the problem to evaluate the model’s ability to accurately filter out
redundant information and focus on core functionalities, some problems have more than 500 words
(indeed, the context is not as long as those in SWE-bench (Jimenez et al., 2023) or other repo-level
benchmarks, but we do find that many strong models have extremely low performances on these
benchmarks, such and Claude2 (4.8%) and GPT4 (1.74%) on SWE-bench, currently there are still
many models have small context window like 4096 tokens, we think it’s still necessary to have a in-
between benchmark to distinguish models’ ability). We also inserted tables or misleading/ambiguous
descriptions into the problem. These are all points beyond which using HumanEval can evaluated.

Redefinition: in HumanEval there are always equations defined in problems or some redefinition
of concepts in the real world, we generalize subtypes by adding more counterfactual concepts, to
challenge the model’s ability to focus on current context but not the common sense it learned in the
pre-training.

Shortcut: compared to those in HumanEval which can only be classified as arithmetic or brainstorm-
ing tricks, we not only keep original subtypes but also make it more general and comprehensive to be
math algorithms or even gaming theory problems.

Commonsense: there are merely problems with simple common sense like the alphabet or cars. We
make this situation more general, by adding problems relevant to temporal or spatial concepts, and
academic knowledge like chemistry problems, optical problems, physics problems, etc.

Cornercase: there are only several problems in HumanEval contain the requirement of branches to
handle simple corner cases (like dealing with the case when the input is 0), we further generalize the
subtypes to be more practical cases as well as those that have hidden requirements (for example, a
model must know requirements of forming a triangle before judging a triangle whether is isosceles),
there are more real-world scenarios like this which are important in real-world programming tasks.

Complexity: there are also different subtypes from that in HumanEval, such as combining multiple
simple logic units, focusing on numbers of control flow statements, dynamic programming relevant
problems that are more abstract in complexity, and problems requiring models to have planning
ability.

Codesense: we can barely say that the questions in HumanEval assess function calls, as the required
function calls are either too few or too basic. We further extend it to more libraries that can be used
in real-world programming tasks, for example, like the scientific computing library Numpy, or the
calendar library that could be used in actual development. Additionally, the number of calls in one
problem is more than that in HumanEval.

D JAVA AND C++ RESULTS ON MHPP

Table 5: GPT-4’s pass@1 performance on partial MHPP across different languages.

Distraction Redefinition Shortcut Commonsense Cornercase Complexity Codesense Total
Python 35.0 65.0 40.0 70.0 55.0 55.0 55.0 53.6

Java 20.0 35.0 20.0 45.0 20.0 20.0 15.0 25.0
C++ 45.0 30.0 10.0 40.0 25.0 25.0 20.0 27.9

We have translated the MHPP’s problems and test cases into Java and C++ and tested the GPT-
4 model’s performance in these languages. While translation is labor-intensive, we tested only
140 problems. The results, as depicted in the newly introduced Table 5, reveal that the model’s
performance in Python significantly surpasses that of Java and C++, with pass@1 rates of 25.00% and
27.86% respectively. This disparity suggests that the model has been more comprehensively trained
in Python. Interestingly, we noticed a more pronounced performance drop from Python to other
languages in our dataset compared to other function-level code generation datasets, such as from
HumanEval (Chen et al., 2021) to HumanEval-X (Zheng et al., 2023). We hypothesize that this could
be attributed to the increased difficulty level of the problems, making it more challenging for LLMs
to solve them in languages other than Python. Upon closer examination of the data across different
categories, we found that the model exhibits a stronger performance in “Commonsense” problems,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: The performance of LLMs on MHPP using greedy decoding.

.

Model Distraction Redefinition Shortcut Commonsense Cornercase Complex Codesense Total

Closed-Source LLMs

GPT-4o-2024-05-13 50.0 66.7 40.0 60.0 43.3 46.7 53.3 51.4
GPT-4-Turbo-2024-04-09 43.3 56.7 33.3 46.7 40.0 36.7 50.0 43.8
GPT-4o-Mini-2024-07-18 46.7 53.3 40.0 40.0 40.0 26.7 50.0 42.4
GPT-3.5-Turbo-0125 30.0 30.0 30.0 23.3 23.3 16.7 43.3 28.1

Open-Source LLMs

DeepSeek-V2.5 33.3 56.7 33.3 53.3 36.7 20.0 46.7 40.0

Phi-3-medium 14B 13.3 23.3 16.7 20.0 20.0 23.3 30.0 21.0
Phi-3-small 7B 16.7 23.3 16.7 13.3 16.7 13.3 36.7 19.5
Phi-3-mini 3.8B 20.0 26.7 13.3 26.7 20.0 3.3 26.7 19.5

Llama 3.1 405B 36.7 43.3 36.7 40.0 36.7 36.7 46.7 39.5
Llama 3.1 70B 40.0 43.3 23.3 36.7 33.3 23.3 36.7 33.8
Llama 3.1 8B 20.0 23.3 16.7 26.7 10.0 3.3 20.0 17.1

Mistral Large 2 43.3 43.3 33.3 40.0 40.0 33.3 56.7 41.4
Mistral 7B v03 6.7 13.3 6.7 16.7 6.7 3.3 10.0 9.0
Codestral 22B 26.7 40.0 13.3 30.0 16.7 10.0 40.0 25.2
Codestral Mamba 7B 23.3 26.7 16.7 20.0 10.0 10.0 33.3 20.0
Mixtral 8x22b Instruct v0.1 20.0 33.3 16.7 26.7 26.7 3.3 26.7 21.9
Mixtral 8x7B Instruct v0.1 6.7 16.7 6.7 13.3 13.3 3.3 16.7 11.0

Gemma2 IT 27B 26.7 36.7 23.3 26.7 20.0 23.3 43.3 28.6
Gemma2 IT 9B 20.0 20.0 23.3 20.0 16.7 3.3 23.3 18.1
Gemma2 IT 2B 10.0 10.0 3.3 10.0 10.0 0.0 23.3 9.5
CodeGemma 7B 1.1 16.7 23.3 13.3 13.3 20.0 6.7 16.7 15.7

but struggles with “Shortcut” problems. This indicates that the model has a better understanding of
common sense concepts compared to abstract mathematical algorithms.

E LLMS’ PERFORMANCE ON MHPP USING GREEDY SEARCH DECODING

F POTENTIAL STRATEGIES FOR IMPROVING LLMS ON MHPP

Based on the experimental results of various LLMs on MHPP. We propose potential strategies for
overcoming the challenges of MHPP. We have devised a set of strategies tailored to each category of
challenges as follows:

Distraction: To tackle this challenge, we propose incorporating controlled noise into the training data
and designing tasks that require the model to identify the genuine development intent and generate
corresponding code.

Redefinition: We recommend enhancing the model’s exposure to knowledge-based data. This will
improve its ability to comprehend concepts within questions. For new or contradictory definitions,
we suggest refining the model’s in-context learning to prioritize the given context over general world
knowledge. Techniques like symbol tuning could be beneficial for this purpose.

Shortcut: To address this, we propose augmenting the training data with more mathematical and
logical reasoning tasks to help the model recognize patterns.

Commonsense: We recommend incorporating more relevant knowledge data. However, it’s crucial
to avoid overfitting. Models can benefit from interacting with real-world data, such as world models
and multimodal data, including images, to enhance their understanding of spatial concepts.

Cornercase: We suggest training models with more real-world code data, especially data rich in
corner cases, to strengthen this capability. Using non-code data with many corner cases and extremes
can also enhance the model’s robustness and accuracy during training.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1 2 3 4 5 10 15 20
k values

45

50

55

60

65

70

P
as

s@
k

Pass@k vs. k with CI

Model
DeepSeek-V2.5
GPT-4o-2024-05-13
GPT-4-Turbo-2024-04-09

Figure 7: Pass@k with confidence intervals vs k for Models on MHPP. Each model is represented by
a distinct line, with the shaded areas around each line depicting the confidence intervals

Complexity: It’s beneficial to construct longer training data with more logical units, teaching the
model to handle intricate logic. Strategies like curriculum learning can help models gradually master
complex reasoning.

Codesense: We recommend providing rich programming language materials, such as official docu-
mentation and open-source libraries.

Furthermore, we suggest leveraging interpreters’ execution feedback to enhance the language model
for the latter categories. For instance, rich test cases with execution feedback can make it easier
to identify missing logic and correct generated code in Cornercase challenges. For Complexity
challenges, feedback can help break down problems into smaller, more manageable tasks for improved
accuracy. For Codesense challenges, error messages from code libraries can guide the model in
understanding how to correctly use a library or function, leading to accurate solutions.

We believe that a well-designed dataset like MHPP can provide insights to guide strategies for
improving model capabilities. By categorizing problems based on specific coding abilities, MHPP
not only benchmarks models but also highlights areas for improvement. For example, if a model
performs poorly on “code reasoning” problems, it suggests that incorporating more coding knowledge
into the training data could help boost its capabilities in that area.

G LIMITATIONS OF MHPP

Data Size: The MHPP dataset indeed has a smaller scale compared to automatically generated
datasets. This characteristic is intrinsic to hand-written datasets like HumanEval, to which MHPP is
similar in terms of scale. While the dataset’s size enables a detailed analysis, we acknowledge that it
could potentially restrict the diversity and representativeness of the data, thereby limiting the model’s
ability to generalize to larger, more diverse codebases.

Potential Bias: The focus of MHPP on function-level code generation might introduce certain
biases due to the annotation process primarily targeting challenges encountered during the writing
of functions. This emphasis may result in a bias towards specific types of errors or difficulties,
which might not comprehensively represent the wide array of challenges encountered in real-world
coding practices. We recognize the importance of acknowledging these potential biases in the dataset
collection procedure.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

These limitations highlight the need for further research to develop strategies for effectively scaling
up hand-written datasets while maintaining annotation quality. Extending the scope of the dataset
beyond the function level to capture the broader context of code generation tasks is also important.
By addressing these limitations, future code generation datasets can provide a more comprehensive
picture of real-world software development challenges, ultimately leading to the development of
more robust and versatile code generation models.

H PASS@K VS K FOR MODELS ON MHPP

We plot pass@k against k for models on MHPP in figure 7, the x-axis represents various k values
(1, 2, 3, 4, 5, 10, 15, 20), and the y-axis shows the corresponding pass@k values. Each model is
illustrated by a distinct line, with shaded areas around each line representing the confidence intervals.
For smaller k values, the CI appears narrow and even invisible, indicating consistent performance
across different iterations. For larger k values, the CI remains indicative of reliable and robust testing
results. These results further validated the effectiveness and reliability of our proposed MHPP.

I ERROR ANALYSIS ON MBPP

Upon analyzing GPT-4 errors in the MBPP benchmark, several critical issues have been identified.
Text highlighted in red indicates the specific areas where the model makes mistakes or the error
patterns appear. These issues encompass a range of deficiencies, including the absence of explicit
return format specifications, the presence of ambiguous requirements, and inconsistencies between
the parameters specified in function definitions and those utilized in test codes.

Q1: Write a function to find sequences of lowercase letters
joined with an underscore.↪→

Canonical ans
def _text_lowercase_underscore(text):

import re
patterns = 'ˆ[a-z]+_[a-z]+$'
if re.search(patterns, text):

return 'Found a match!'
else:

return('Not matched!')

GPT4's ans
def text_lowercase_underscore(text):

import re
pattern = '[a-z]+_[a-z]+'
result = re.findall(pattern, text)
return result

assert text_lowercase_underscore("aab_cbbbc")==('Found a match!')
assert text_lowercase_underscore("aab_Abbbc")==('Not matched!')
assert text_lowercase_underscore("Aaab_abbbc")==('Not matched!')
assert text_lowercase_underscore("aab-cbbbc")==('Not matched!')

Example 1: No specification for the return format: The question does not declare that a specific string
like ’Found a match!’ or ’Not matched!’ should be returned when indicating a match or not. The
generated code will not address this issue at all.

Q2: Write a python function to find the product of non-repeated
elements in a given array.↪→

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Canonical ans
def _find_Product(arr,n):

arr.sort()
prod = 1
for i in range(0,n,1):
if (arr[i - 1] != arr[i]):

prod = prod * arr[i]
return prod

GPT4's ans
def find_Product(arr,n):

product = 1
for i in range(n):

if arr.count(arr[i]) == 1:
product *= arr[i]

return product

assert find_Product([1,1,2,3],4) == 6
assert find_Product([1,2,3,1,1],5) == 6
assert find_Product([1,1,4,5,6],5) == 120
assert find_Product([1,1,4,5,6,5,7,1,1,3,4],11) == 2520

Example 2: The question is ambiguous, for example, it is unclear whether the term ’non-repeated’
should retain or not retain duplicate elements, but the question does not provide any example to
clarify this.

Q3: Write a python function to find the missing number in a
sorted array.↪→

Canonical ans
def _find_missing(ar,N):

l = 0
r = N - 1
while (l <= r):

mid = (l + r) / 2
mid= int (mid)
if (ar[mid] != mid + 1 and ar[mid - 1] == mid):

return (mid + 1)
elif (ar[mid] != mid + 1):

r = mid - 1
else:

l = mid + 1
return (-1)

GPT4's ans
def find_missing(ar, N):

total = (N+1)*(N+2)/2
sum_of_ar = sum(ar)
return total - sum_of_ar

assert find_missing([1,2,3,5],4) == 4
assert find_missing([1,3,4,5],4) == 2
assert find_missing([1,2,3,5,6,7],5) == 4

Example 3: Missing conditions regarding parameters: it is unclear and does not explain what N
represents as a parameter.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Q4: Write a function to check if the letters of a given string
can be rearranged so that two characters that are adjacent to
each other are different.

↪→

↪→

Canonical ans
import heapq
from collections import Counter
def _rearange_string(S):

ctr = Counter(S)
heap = [(-value, key) for key, value in ctr.items()]
heapq.heapify(heap)
if (-heap[0][0]) * 2 > len(S) + 1:
return ""

ans = []
while len(heap) >= 2:

nct1, char1 = heapq.heappop(heap)
nct2, char2 = heapq.heappop(heap)
ans.extend([char1, char2])
if nct1 + 1: heapq.heappush(heap, (nct1 + 1, char1))
if nct2 + 1: heapq.heappush(heap, (nct2 + 1, char2))

return "".join(ans) + (heap[0][1] if heap else "")

GPT4's ans
import heapq
from collections import Counter

def rearrange_string(S):
counter = Counter(S)
max_heap = []
for k, v in counter.items():

heapq.heappush(max_heap, (-v, k))
prev_char, prev_freq = '', 0
result = []
while max_heap:

freq, char = heapq.heappop(max_heap)
if prev_char and prev_freq:

heapq.heappush(max_heap, (prev_freq, prev_char))
if not result or char != result[-1]:

result.append(char)
if -freq > 1:

prev_char, prev_freq = char, freq + 1
else:

prev_char, prev_freq = '', 0
else:

return ''
return ''.join(result) if len(result) == len(S) else ''

assert rearange_string("aab")==('aba')
assert rearange_string("aabb")==('abab')
assert rearange_string("abccdd")==('cdabcd')

Example 4: Incorrect function name in the test code (missing “r” in “arrange”): a normal language
model should generate the correct function name and should not have this error in the test code.

Q5: Write a function to find the list with minimum length using
lambda function.↪→

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Canonical ans
def _min_length_list(input_list):

min_length = min(len(x) for x in input_list)
min_list = min(input_list, key = lambda i: len(i))
return(min_length, min_list)

GPT4's ans
def min_length_list(input_list):

return min(input_list, key=lambda x: len(x))

assert min_length_list([[0], [1, 3], [5, 7], [9, 11], [13, 15,
17]])==(1, [0])↪→

assert min_length_list([[1,2,3,4,5],[1,2,3,4],[1,2,3],[1,2],[1]]) ⌋
==(1,[1])↪→

assert min_length_list([[3,4,5],[6,7,8,9],[10,11,12],[1,2]])==(2, ⌋
[1,2])↪→

Example 5: The question does not specify the return format: it is unclear that two elements need to
be returned.

Q6: Write a function to find the maximum length of the
subsequence with difference between adjacent elements for the
given array.

↪→

↪→

Canonical ans
def _max_len_sub(arr, n):

mls=[]
max = 0
for i in range(n):
mls.append(1)

for i in range(n):
for j in range(i):

if (abs(arr[i] - arr[j]) <= 1 and mls[i] < mls[j] + 1):
mls[i] = mls[j] + 1

for i in range(n):
if (max < mls[i]):

max = mls[i]
return max

GPT4's ans
def max_len_sub(arr, n):

Initialize the dp array
dp = [[1 for i in range(n)] for j in range(n)]
Fill the dp array
for i in range(n):

for j in range(i+1, n):
if abs(arr[j] - arr[i]) == 1:

dp[i][j] = max(dp[i][j], dp[i][j-1] + 1)
else:

dp[i][j] = max(dp[i][j], dp[i][j-1])
Find the maximum length
max_len = 0
for i in range(n):

max_len = max(max_len, max(dp[i]))
return max_len

assert max_len_sub([2, 5, 6, 3, 7, 6, 5, 8], 8) == 5

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

assert max_len_sub([-2, -1, 5, -1, 4, 0, 3], 7) == 4
assert max_len_sub([9, 11, 13, 15, 18], 5) == 1

Example 6: Copying the question missed a requirement: “Given an array of n integers. The problem
is to find the maximum length of the sub-sequence with the difference between adjacent elements as
either 0 or 1.”

Q7: Write a python function to find the perimeter of a cylinder.

Canonical ans
def _perimeter(diameter,height) :

return 2*(diameter+height)

GPT4's ans
import math

def perimeter(diameter, height):
radius = diameter / 2
return 2 * math.pi * radius + 2 * height

assert perimeter(2,4) == 12
assert perimeter(1,2) == 6
assert perimeter(3,1) == 8

Example 7: Missing original question formula images, etc.

Q8: Write a function to find the triplet with sum of the given
array↪→

Canonical ans
def _check_triplet(A, n, sum, count):

if count == 3 and sum == 0:
return True

if count == 3 or n == 0 or sum < 0:
return False

return check_triplet(A, n - 1, sum - A[n - 1], count + 1) or
check_triplet(A, n - 1, sum, count)↪→

GPT4's ans
def check_triplet(A, n, sum):

Sort the array
A.sort()

Iterate over the array
for i in range(0, n-2):

Initialize two pointers
left = i + 1
right = n - 1

Traverse the array from both ends
while left < right:

If sum of triplet is equal to sum
if (A[i] + A[left] + A[right] == sum):

return True

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

If sum of triplet is less than sum
elif (A[i] + A[left] + A[right] < sum):

left += 1

If sum of triplet is greater than sum
else:

right -= 1

If no triplet with given sum found in array
return False

assert check_triplet([2, 7, 4, 0, 9, 5, 1, 3], 8, 6, 0) == True
assert check_triplet([1, 4, 5, 6, 7, 8, 5, 9], 8, 6, 0) == False
assert check_triplet([10, 4, 2, 3, 5], 5, 15, 0) == True

Example 8: The number of parameters in the function does not match those in the test code.

Q9: Write a function to find n’th smart number.

Canonical ans
MAX = 3000
def _smartNumber(n):

primes = [0] * MAX
result = []
for i in range(2, MAX):
if (primes[i] == 0):

primes[i] = 1
j = i * 2
while (j < MAX):

primes[j] -= 1
if ((primes[j] + 3) == 0):

result.append(j)
j = j + i

result.sort()
return result[n - 1]

GPT4's ans
def smartNumber(n):

The n'th smart number is the square of n
return n * n

assert smartNumber(1) == 30
assert smartNumber(50) == 273
assert smartNumber(1000) == 2664

Example 9: The definition from the question is missing.

J ERROR ANALYSIS ON HUMANEVAL

def compare(game,guess):
"""I think we all remember that feeling when the result of

some long-awaited↪→

event is finally known. The feelings and thoughts you have at
that moment are↪→

definitely worth noting down and comparing.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Your task is to determine if a person correctly guessed the
results of a number of matches.↪→

You are given two arrays of scores and guesses of equal
length, where each index shows a match.↪→

Return an array of the same length denoting how far off each
guess was. If they have guessed correctly,↪→

the value is 0, and if not, the value is the absolute
difference between the guess and the score.↪→

example:

compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
"""

Example 1 - Distraction: The first paragraph of the problem talks a lot about background information
that is not very relevant to solving the problem.

def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by

mathematicians in↪→

the last couple centuries. However, what people don't know is
Tribonacci sequence.↪→

Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)

= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a

return a list of the↪→

first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""

Example 2 - Redefinition: This problem typically defines or redefines a new concept called Tribonacci
sequence.

def starts_one_ends(n):
"""
Given a positive integer n, return the count of the numbers of

n-digit↪→

positive integers that start or end with 1.
"""

Example 3 - Shortcut: A shortcut to this problem does exist (number of 1s equals to 18 * (10 ** (n -
2)) when n is larger or equals to 2), by using a formula, this problem can be more easily solved.

def car_race_collision(n: int):
"""

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Imagine a road that's a perfectly straight infinitely long
line.↪→

n cars are driving left to right; simultaneously, a different
set of n cars↪→

are driving right to left. The two sets of cars start out
being very far from↪→

each other. All cars move in the same speed. Two cars are
said to collide↪→

when a car that's moving left to right hits a car that's
moving right to left.↪→

However, the cars are infinitely sturdy and strong; as a
result, they continue moving↪→

in their trajectory as if they did not collide.

This function outputs the number of such collisions.
"""

Example 4 - Commonsense: The problem requires the model to understand the concept of collisions
and spatial concepts.

from typing import List

def intersperse(numbers: List[int], delimeter: int) -> List[int]:
""" Insert a number 'delimeter' between every two consecutive

elements of input list `numbers'↪→

>>> intersperse([], 4)
[]
>>> intersperse([1, 2, 3], 4)
[1, 4, 2, 4, 3]
"""

Example 5 - Cornercase: The problem has a corner case which is that the numbers are an empty list,
the solution is expected to have a single control branch to handle this case.

def unique_digits(x):
"""Given a list of positive integers x. return a sorted list

of all↪→

elements that hasn't any even digit.

Note: Returned list should be sorted in increasing order.

For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""

Example 6 - Complex: There are many constraints in this problem.

def solve(N):
"""Given a positive integer N, return the total sum of its

digits in binary.↪→

Example

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

For N = 1000, the sum of digits will be 1 the output
should be "1".↪→

For N = 150, the sum of digits will be 6 the output should
be "110".↪→

For N = 147, the sum of digits will be 12 the output
should be "1100".↪→

Variables:
@N integer

Constraints: 0 <= N <= 10000.
Output:

a string of binary number
"""

Example 7 - Codesense: The model needs to know the knowledge of binary operators.

K ERROR ANALYSIS ON MHPP

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def least_goods_number(n: int) -> int:
"""Given a list of products where the first column represents the product name and the second column
represents the product price. You have n dollers, please calculate and return the minimum number of

products↪→
required to spend the total amount exactly. If no combination of products can add up to the total amount,
return -1. You can assume that the quantity of each product is unlimited.
+---------------+---------------+
Milk	2
Soap	3
---------------	---------------
Batteries	5
---------------	---------------
Eggs	1
+---------------+---------------+
>>> least_goods_number(11)
3
>>> least_goods_number(5)
1
"""

RESPONSE:

return None

def is_valid_parentheses(p: str) -> bool:
"""Given a string p consisting only of '(' and ')', return true if every opening parenthesis is closed in

the↪→
right order. Otherwise, return false.
+--------------+--------------+
Example 1	Example 2
'()'	'(]'
+--------------+--------------+
>>> is_valid_parentheses('()')
True
>>> is_valid_parentheses('(]')
False
"""
return None

def is_perfect(num: int) -> bool:
"""Given an integer, return True if the integer is a perfect number or False otherwise.
A perfect number is a positive integer that is equal to the sum of its positive divisors excluding the

number↪→
itself.
+--+-----------------------------+
| Numbers | Perfect Numbers |

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

|--|-----------------------------|
6	6
28	496
--	-----------------------------
496	8128
+--+-----------------------------+
>>> is_perfect(6)
True
>>> is_perfect(28)
True
>>> is_perfect(496)
True
"""
return False

def is_pangram(sentence: str) -> bool:
"""Given a sentence, return True if the sentence is a pangram or False otherwise.
A pangram is a sentence that contains all the alphabetic characters from the alphabet.
+---+
| Sentence | Pangram | Not Pangram | Pangram |
|--|
| "The quick brown fox jumps | False | True | True |
|--|
| "The quick brown fox jumped | False | True | True |
+--+
>>> is_pangram('The quick brown fox jumps over the lazy dog')
True
>>> is_pangram('The quick brown fox jumped over the lazy dog')
True
"""
return False

def grid_search(matrix: list, pattern: list) -> list:
"""Given a matrix of size m x n, where each cell has a character, and a pattern, find all occurrences of

the↪→
pattern in the matrix by moving left to right, top to bottom. Return a list of all occurrences of the

pattern↪→
in the form of [row, column] (0-based indexing).
+--+
| Matrix | Pattern | Occurrences |
|--|
| [|
| 'A', 'B', 'C', 'E', 'E', 'F', 'G', 'G', 'H', 'I', 'I', 'J', 'K', 'L', 'M', 'O', 'O', |
| 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' |
]
'C', 'G', 'G', 'G', 'C', 'C', 'C'
--
[2, 6], [2, 7], [2, 8]
+--+
>>> grid_search(['ABCD', 'EFGH', 'IJKL', 'MNOP'], ['CD', 'EF', 'IJK', 'OP'])
[[3, 1], [3, 2]]
"""
return None

Example 1 - Distraction: By introducing a table in the question to distract the model’s focus,
the strategy was indeed effective, leading the model to produce a series of table-based problems,
completely deviating from solving the original question properly.

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

from typing import List

def max_balance_factor(weights: List[int]) -> int:
"""Write a function to find the maximum balance factor of

object weights.↪→

The maximum balance factor refers to the size of the sum that
results↪→

from extracting some or all elements from weights, dividing
them into two↪→

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

parts, and ensuring that the sums of these two parts are
equal.↪→

If such a maximum balance factor does not exist. return 0
>>> max_balance_factor([4, 2, 3, 9])
9
>>> max_balance_factor([7, 1, 9])
0
"""

RESPONSE:
To solve this problem, we can use dynamic programming. We will

first calculate the total sum of the weights and then try to
find if there is a subset of weights that sums up to half of
the total sum. The maximum balance factor would be half of the
total sum if such a subset exists.

↪→

↪→

↪→

↪→

Here's the function:

```python

from typing import List

def max_balance_factor(weights: List[int]) -> int:
"""Return the maximum balance factor of a list of weights."""
total_weight = sum(weights)
# The balance factor can only exist if the total weight is

even.↪→

if total_weight % 2 != 0:
return 0

half_weight = total_weight // 2
# Dynamic programming array to track the possible sums with

subsets.↪→

possible_sums = [False] * (half_weight + 1)
possible_sums[0] = True # zero is always possible

for weight in weights:
# Update the possible sums in reverse order to avoid using

the same weight multiple times.↪→

for j in range(half_weight, weight - 1, -1):
if possible_sums[j - weight]:

possible_sums[j] = True

# Check if half_weight is possible as a sum of a subset of
weights.↪→

if possible_sums[half_weight]:
return half_weight

else:
return 0

# Examples
print(max_balance_factor([4, 2, 3, 9])) # Output: 9
print(max_balance_factor([7, 1, 9])) # Output: 0

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

```

The function first checks if the total sum is even, because if
it's not, there is no way to divide it into two parts with
equal sums. Then, it initializes a list of boolean values
(`possible_sums`) that will help to track which sums are
possible with the given subset of weights. Each weight is
processed to update the `possible_sums`, and after processing
all weights, the function checks whether `half_weight` is a
possible sum, which would be the maximum balance factor if it
exists. If `half_weight` is indeed possible, it returns
`half_weight`; otherwise, it returns 0.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Example 2 - Redefinition: The model did not grasp the concept of redefinition; it misunderstood that
the balance factor is only applicable if the total weight is even.

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def counting_game(n: int) -> int:
"""In a playful counting game, children start counting from 1

but they skip any number that contains the digit 9,↪→

considering it to be unlucky. This results in a sequence that
avoids the number 9 entirely,↪→

such as 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and so forth.

Given an integer n, return the nth number in this new integer
sequence where the indexing begins at 1.↪→

>>> counting_game(4)
4
>>> counting_game(10)
11
"""

RESPONSE:

Below is the Python function that implements the counting game
logic described in the docstring:↪→

Here's the function:
```python

def counting_game(n: int) -> int:
"""
In a playful counting game, children start counting from 1 but

they skip any number that contains↪→

the digit 9, considering it to be unlucky. This results in a
sequence that avoids the number 9 entirely,↪→

such as 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, and so forth.

Given an integer n, return the nth number in this new integer
sequence where the indexing begins at 1.↪→

"""
count = 0 # Initialize the count for the number of valid

numbers found↪→

current_number = 1 # Start counting from 1

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

while True:
if '9' in str(current_number):

# Skip the number if it contains the digit 9
current_number += 1
continue

else:
# Increment the count since this number doesn't

contain the digit 9↪→

count += 1
if count == n:

# If the count matches the desired position,
return the current number↪→

return current_number
# Move to the next number to check
current_number += 1

# Example usage:
print(counting_game(4)) # Output: 4
print(counting_game(10)) # Output: 11

```

This function iterates through the natural numbers starting from 1
and increases a counter each time it finds a number that does
not contain the digit 9. When the counter matches the input
`n`, the function returns the current number.

↪→

↪→

↪→

Example 3 - Shortcut: It resulted in a timeout due to not knowing the shortcut.

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def morning_commute(a: int, b: int, c: int, d: int):
"""There are two companies located at both ends of a straight

road, with two towns in the middle.↪→

Every morning, 'a' people from the left town commute to work
at the left company and 'b' people commute↪→

to the right company. From the right town, 'c' people commute
to the left company and 'd' people commute↪→

to the right company. Everyone walks at the same pace. Please
calculate how many encounters occur in total on their
commute to work each morning.

↪→

↪→

>>> morning_commute(7,3,4,6)
12
>>> morning_commute(17,31,13,40)
403
"""

RESPONSE:

Here's the Python function implementation for the problem
described in the docstring:↪→

```python

def morning_commute(a: int, b: int, c: int, d: int) -> int:
"""

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

The number of encounters is determined by the pairings of
commuters going in opposite directions.↪→

For each person commuting to the left company from the left
town (group a),↪→

they will encounter all people commuting to the right company
from the right town (group d).↪→

Similarly, for each person commuting to the right company from
the left town (group b),↪→

they will encounter all people commuting to the left company
from the right town (group c).↪→

Therefore, the total encounters can be calculated as the
product of a and d plus the product of b and c.↪→

"""
return a * d + b * c

# Example usage:
print(morning_commute(7, 3, 4, 6)) # Expected output: 12
print(morning_commute(17, 31, 13, 40)) # Expected output: 403

```

Let's go through the function `morning_commute` step by step:
1. The function takes four arguments `a`, `b`, `c`, and `d`,

representing the number of people commuting.↪→

2. The encounters are calculated based on the fact that a person
from group `a` (left town to left company) will encounter all
`d` people (right town to right company), and similarly, a
person from group `b` (left town to right company) will
encounter all `c` people (right town to left company).

↪→

↪→

↪→

↪→

3. The total number of encounters is the sum of the products `a*d`
and `b*c`.↪→

4. The function returns the total number of encounters.

Example 4 - Commonsense: There is a complete lack of understanding of spatial awareness for
LLMs; those moving left from the right side won’t meet those moving right from the left side.

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def is_isosceles_triangle(x1, y1, x2, y2, x3, y3):
"""Given the coordinates of three points in a two-dimensional

plane, tell whether the figure formed↪→

by connecting these three points is an isosceles triangle
(which is a triangle that has at least two↪→

sides of equal length).
>>> is_isosceles_triangle(0, 0, 1, 0, 1, 1)
True
>>> is_isosceles_triangle(0, 0, 2, 0, 2, 1)
False
"""

RESPONSE:

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Here is a Python function that implements the logic described in
the docstring. It calculates the distances between each pair
of points and checks if at least two distances are equal,
indicating an isosceles triangle.

↪→

↪→

↪→

```python

import math

def is_isosceles_triangle(x1, y1, x2, y2, x3, y3):
"""Given the coordinates of three points in a two-dimensional

plane, tell whether the figure formed↪→

by connecting these three points is an isosceles triangle
(which is a triangle that has at least two↪→

sides of equal length).

>>> is_isosceles_triangle(0, 0, 1, 0, 1, 1)
True
>>> is_isosceles_triangle(0, 0, 2, 0, 2, 1)
False
"""

def distance(px1, py1, px2, py2):
"""Calculate the distance between two points."""
return math.sqrt((px1 - px2) ** 2 + (py1 - py2) ** 2)

# Calculate the distances between all three points
d1 = distance(x1, y1, x2, y2)
d2 = distance(x2, y2, x3, y3)
d3 = distance(x3, y3, x1, y1)

# Check if at least two sides are equal
return d1 == d2 or d2 == d3 or d3 == d1

# Example usage:
print(is_isosceles_triangle(0, 0, 1, 0, 1, 1)) # Should return

True↪→

print(is_isosceles_triangle(0, 0, 2, 0, 2, 1)) # Should return
False↪→

```

This function uses a nested helper function `distance()` to
calculate the Euclidean distance between two points. It then
checks if any two of the three side lengths are equal, which
would mean the triangle is isosceles.

↪→

↪→

↪→

Example 5 - Cornercase: LLMs truly did not check for the boundary condition of being a triangle.

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

from typing import List

def is_new_year(numbers: List[int]):
"""

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Given a list containing four numbers. First, calculate the
square of the first number.↪→

For the second number, check if it is divisible by 3. If it
is, add it to the result, otherwise subtract it.↪→

Multiply the resulting value by the third number three times.
For the fourth number, calculate the sum of its digits↪→

and compare it with the first number. If the sum is greater,
add the fourth number to the result,↪→

otherwise keep the result unchanged. If the final result
equals 2024, return the string "Happy New Year",↪→

otherwise return "Whoops".
>>> is_new_year([2, 0, 2, 4])
"Whoops"
>>> is_new_year([3, 5, 6, 1160])
"Happy New Year"
"""

RESPONSE:
Here is the Python function that follows the description provided

in the docstring:↪→

```python

from typing import List

def is_new_year(numbers: List[int]) -> str:
"""
Given a list containing four numbers. First, calculate the

square of the first number.↪→

For the second number, check if it is divisible by 3. If it
is, add it to the result, otherwise subtract it.↪→

Multiply the resulting value by the third number three times.
For the fourth number, calculate the sum of its digits↪→

and compare it with the first number. If the sum is greater,
add the fourth number to the result,↪→

otherwise keep the result unchanged. If the final result
equals 2024, return the string "Happy New Year",↪→

otherwise return "Whoops".
"""
# Calculate the square of the first number
result = numbers[0] ** 2

# Check if the second number is divisible by 3 and
add/subtract accordingly↪→

if numbers[1] % 3 == 0:
result += numbers[1]

else:
result -= numbers[1]

# Multiply the resulting value by the third number three times
result *= numbers[2] ** 3

# Calculate the sum of the digits of the fourth number
sum_of_digits = sum(int(digit) for digit in str(numbers[3]))

# Compare the sum of the digits with the first number and add
the fourth number if the sum is greater↪→

if sum_of_digits > numbers[0]:
result += numbers[4]

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

# Return "Happy New Year" if the final result equals 2024,
otherwise "Whoops"↪→

return "Happy New Year" if result == 2024 else "Whoops"

# Example calls to the function
print(is_new_year([2, 0, 2, 4])) # Output should be "Whoops"
print(is_new_year([3, 5, 6, 1160])) # Output should be "Happy New

Year"↪→

```

This Python function follows the steps described in the problem
statement and uses conditional logic to manipulate the result
according to the given instructions.

↪→

↪→

Example 6 - Complex: The model knows that it should use index 3 to retrieve the fourth number
from a Python array in early lines. However, even though the model claims in the comments that it
will operate on the fourth number, it still uses 4 as the index. As the number of constraints increases,
the model commits errors that would not occur under fewer constraints.

PROMPT:

Write a Python function according to the function name and the
problem description in the docstring below.↪→

def custom_sort(dictionary):
"""Given a dictionary with non-negative integers as keys, sort

the key-value pairs in the↪→

dictionary where the values are strings. Arrange these
key-value pairs in descending order↪→

based on the count of ones in the ternary representation of
the keys. In case of equal↪→

counts of ones, arrange them in ascending order based on the
alphabetical order of the values.↪→

Return the sorted list.
>>> custom_sort({1: 'apple', 2: 123, 3: 'banana', 4: 'orange',

5: 456, 6: 'cherry'})↪→

[(4, 'orange'), (1, 'apple'), (3, 'banana'), (6, 'cherry')]
"""

RESPONSE:
To implement the `custom_sort` function, we need to follow these

steps:↪→

1. Convert the keys to their ternary representation.
2. Count the number of ones in the ternary representation of each

key.↪→

3. Sort the key-value pairs first by the count of ones in
descending order, and then by the value in ascending
alphabetical order if there's a tie in the count of ones.

↪→

↪→

4. Return the sorted list of key-value pairs.

Here's the implementation of the function:

```python
def count_ones_in_ternary(n):

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

"""Helper function to count the number of ones in the ternary
representation of an integer."""↪→

return bin(n).count('1')

def custom_sort(dictionary):
"""Given a dictionary with non-negative integers as keys, sort

the key-value pairs in the↪→

dictionary where the values are strings. Arrange these
key-value pairs in descending order↪→

based on the count of ones in the ternary representation of
the keys. In case of equal↪→

counts of ones, arrange them in ascending order based on the
alphabetical order of the values.↪→

Return the sorted list.
"""
# Filter out non-string values
filtered_dict = {k: v for k, v in dictionary.items() if

isinstance(v, str)}↪→

# Sort the dictionary by the count of ones in the ternary
representation of the keys↪→

# and then by the values in case of a tie
sorted_items = sorted(filtered_dict.items(), key=lambda item:

(-count_ones_in_ternary(item[0]), item[1]))↪→

return sorted_items

# Example usage:
print(custom_sort({1: 'apple', 2: '123', 3: 'banana', 4: 'orange',

5: '456', 6: 'cherry'}))↪→

```

Please note that the example provided in the docstring contains
non-string values (123 and 456), which are not considered in
the sorting process as per the problem description. The
function filters out these non-string values before sorting.

↪→

↪→

↪→

Also, the helper function `count_ones_in_ternary` is incorrectly
named since it counts the number of ones in the binary
representation, not ternary. However, the example provided
does not require ternary representation, so the function works
for the given example. If ternary representation is needed,
the helper function should be modified accordingly.

↪→

↪→

↪→

↪→

↪→

```

When you run the `custom_sort` function with the example provided
in the docstring, it should return the sorted list as follows:↪→

```
[(4, 'orange'), (1, 'apple'), (3, 'banana'), (6, 'cherry')]
```

Please note that Python uses zero-based indexing, so the keys in
the example (1, 2, 3, 4, 5, 6) are not directly related to the
ternary representation but rather arbitrary non-negative
integer keys as stated in the problem description.

↪→

↪→

↪→

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Example 7 - Codesense: Despite understanding ternary, the model mistakenly used a binary function,
indicating a weakness in utilizing external functions.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Figure 8: The variable name in the generated function didn’t match that in the MHPP but was the
same as in the training corpus.

42


	Introduction
	Dataset Analysis
	MBPP
	HumanEval

	Benchmark Construction
	Challenge-Specific Annotation
	Quality Assurance
	Dataset Statistics

	Experiment
	Setup
	Main Results
	Results on Different Types of Challenges
	Correlation between MHPP and HumanEval

	Analysis
	Confidence Intervals
	Case Review

	Related Work
	LLMs for Code
	Code Generation Benchmarks

	Conclusion
	Related Works for Other Code Generation Taks
	Data Contamination
	Generalization Beyond Challenge of HumanEval
	JAVA and C++ Results on MHPP
	LLMs’ Performance on MHPP Using Greedy Search Decoding
	Potential Strategies for Improving LLMs on MHPP
	Limitations of MHPP
	Pass@k vs k for Models on MHPP
	Error Analysis on MBPP
	Error Analysis on HumanEval
	Error Analysis on MHPP

