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ABSTRACT

Recent advances in fair graph learning observe that graph neural networks (GNNs)
further amplify prediction bias compared with multilayer perception (MLP), while
the reason behind this is unknown. In this paper, we conduct a theoretical analysis
of the bias amplification mechanism in GNNs. This is a challenging task since
GNNs are difficult to be interpreted, and real-world networks are complex. To
bridge the gap, we theoretically and experimentally demonstrate that aggregation
operation in representative GNNs accumulates bias in node representation due
to topology bias induced by graph topology. We provide a sufficient condition
identifying the statistical information of graph data, so that graph aggregation
enhances prediction bias in GNNs. Motivated by this data-centric finding, we
propose a fair graph refinement algorithm, named FairGR, to rewire graph topology
to reduce sensitive homophily coefficient while preserving useful graph topology.
Experiments on node classification tasks demonstrate that FairGR can mitigate
the prediction bias with comparable performance on three real-world datasets.
Additionally, FairGR is compatible with many state-of-the-art methods, such as
adding regularization, adversarial debiasing, and Fair mixup via refining graph
topology. Therefore, FairGR is a plug-in fairness method and can be adapted to
improve existing fair graph learning strategies.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2017; Veličković et al., 2018; Wu et al., 2019) are
widely adopted in various domains, such as social media mining (Hamilton et al., 2017), knowledge
graph (Hamaguchi et al., 2017) and recommender system (Ying et al., 2018), due to remarkable
performance in learning representations. Graph learning, a topic with growing popularity, aims to
learn node representation containing both topological and attribute information in a given graph.
Despite the outstanding performance in various tasks, GNNs still inherit or even amplify societal
bias from input graph data (Dai & Wang, 2021). The biased node representation largely limits the
application of GNNs in many high-stake tasks, such as job hunting (Mehrabi et al., 2021) and crime
ratio prediction (Suresh & Guttag, 2019). Hence, bias mitigation that facilitates the research on fair
GNNs is in urgent need.

In many real-world graphs, nodes with the same sensitive attribute (e.g., ages) are more likely to
connect. For example, young people mainly make friends with people of similar ages (Dong et al.,
2016). We call this phenomenon “topology bias”. Even worse, in GNNs, the representation of
each node is learned by aggregating the representations of its neighbors. Thus, nodes with the
same sensitive attributes will be more similar after the aggregation. To get a sense, we visualize the
topology bias for three real-world datasets (Pokec-n, Pokec-z, and NBA) in Figure 1, where different
edge types are highlighted with different colors for the top-3 largest connected components in original
graphs. Such topology bias leads to more similar node representation for those nodes with the same
sensitive attribute, which is a major source of the graph representation bias.

Existing bias mitigation work for GNNs is empirical via adding regularization, adversarial debiasing,
or contrastive learning. These works are motivated by the fact that graph neural networks trained
on graphs may inherit the societal bias in data, and the topology of graphs and the message passing
in GNNs could even magnify the bias compared with multilayer perception (MLP) (Dai & Wang,
2021). However, even though fair prediction in GNN can be achieved via a fair training strategy, a
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Pokec_n Pokec_z NBA

Figure 1: Visualization of topology bias in three real-world datasets, where black edges and red
edges represent the edge with the same or different sensitive attributes for the connected node
pair, respectively. We visualize the largest three connected components for each dataset. It is obvious
that the sensitive homophily coefficients (the ratio of homo edges) are high in practice, i.e., 95.30%,
95.06%, and 72.37% for Pokec-n, Pokec-z, and NBA dataset, respectively.

fundamental understanding of why large topology bias and message passing algorithm amplifying
the bias happens is still missing. A natural question is raised:

Can we theoretically understand why large topology bias and message passing algorithm
amplify the bias from a graph data perspective?

In this work, we move the first step to understand why large topology bias and message passing
algorithm amplify the bias. Specifically, we first define the sensitive homophily coefficient to describe
how likely the connected nodes are with the same sensitive attributes. Subsequently, we theoretically
prove that the GCN-like aggregation in message passing inevitably accumulates representation bias for
graphs with large sensitive homophily coefficients. Second, motivated by our theoretical analysis, we
develop a fair graph refinement algorithm, named FairGR, to achieve fair GNN prediction via revising
graph topology. More importantly, FairGR is a plug-in data refinement method and compatible with
many fair training strategies, such as regularization, adversarial debiasing, and Fair mixup. In short,
the contributions can be summarized as follows:

• To the best of our knowledge, it is the first paper to theoretically investigate why the GCN-like
message passing scheme amplifies representation bias for large topology bias. Specifically, we
provide a sufficient condition of graph data to show that GCN-like message passing amplifies
representation bias.

• Motivated by our theoretical analysis, we propose a graph topology refinement method, named
FairGR, to achieve fair prediction.

• We empirically show that the prediction bias of GNNs is larger than that of MLP on real-world
datasets. Additionally, the effectiveness of FairGR is experimentally evaluated on three real-world
datasets. The results show that compared to the state-of-the-art, our FairGR exhibits a superior
trade-off between prediction performance and fairness, and is compatible with many fair training
strategies, such as regularization, adversarial debiasing, and Fair mixup.

2 PRELIMINARIES

2.1 NOTATIONS

We adopt bold upper-case letters to denote matrices such as X, bold lower-case letters such as x to
denote vectors or random variables, and calligraphic font such as X to denote set. Given a matrix
X ∈ Rn×d, the i-th row and j-th column are denoted as Xi and X·,j , and the element in i-th row
and j-th column is Xi,j . We use l1 norm of matrix X as ||X||1 =

∑
ij |Xij |. Let G = {V, E}

be a graph with the node set V = {v1, · · · , vn} and the undirected edge set E = {e1, · · · , em},
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where n,m represent the number of node and edge, respectively. The graph structure G can be
represented as an adjacent matrix A ∈ Rn×n, where Aij = 1 if existing edge between node vi and
node vj . N (i) denotes the neighbors of node vi and Ñ (i) = N (i) ∪ {vi} denotes the self-inclusive
neighbors. Suppose that each node is associated with a d-dimensional feature vector and a (binary)
sensitive attribute, the feature for all nodes and sensitive attribute is denoted as Xori = Rn×d and
s ∈ {−1, 1}n. I(s,X) represents the mutual information between the sensitive attribute and node
features. A⊙B represents Hadamard product for matrix element-wise multiplication.

2.2 LABEL AND SENSITIVE HOMOPHILY COEFFICIENT IN GRAPHS

The behaviors of graph neural networks have been investigated in the context of label homophily for
connected node pairs in graphs (Ma et al., 2021). Label homophily in graphs is typically defined
to characterize the similarity of connected node labels in graphs. Here, similar node pair means
that the connected nodes share the same label. From the perspective of fairness, we also define the
sensitive homophily coefficient to represent the sensitive attribute similarity among connected node
pairs. Informally, the coefficients for label homophily and sensitive homophily are defined as the
fraction of the edges connecting the nodes of the same class label and sensitive attributes in a graph
(Zhu et al., 2020; Ma et al., 2021). We also provide the formal definition as follows:

Definition 1 (Label and Sensitive Homophily Coefficient) Given a graph G = {V, E} with node
label vector y, node sensitive attribute vector s, the label and sensitive attribute homophily coefficients
are defined as the fraction of edges that connect nodes with the same labels or sensitive attributes
ϵlabel(G,y) = 1

|E|
∑

(i,j)∈E 1(yi = yj), and ϵsens(G, s) = 1
|E|

∑
(i,j)∈E 1(si = sj), where |E| is

the number of edges and 1(·) is the indicator function.

Recent works (Ma et al., 2021; Chien et al., 2021; Zhu et al., 2020) aim to understand the relation
between the message passing in GNNs and label homophily from the interactions between GNNs
(model) and graph topology (data). For graph data with a high label homophily coefficient, existing
works (Ma et al., 2021; Tang et al., 2020) have demonstrated, either provably or empirically, that the
nodes with higher node degree obtain more prediction benefits in GCN, compared to the benefits
that peripheral nodes obtain. As for graph data with a low label homophily coefficient, GNNs do
not necessarily lead to better prediction performance compared with MLP since the node features of
neighbors with different labels contaminate the node features during feature aggregation. However,
although work (Dai & Wang, 2021) empirically points out that graph data with a large sensitive
homophily coefficient may enhance bias in GNNs, the fundamental understanding of message passing
and graph data properties, such as sensitive homophily coefficient, is still missing. We provide the
theoretical analysis in Section 4.

3 RELATED WORK

We briefly review the existing work on graph neural networks and fairness-aware learning on
graphs. (Please refer to Appendix D for a more comprehensive discussion.). Existing GNNs can be
roughly divided into spectral-based and spatial-based GNNs. Spectral-based GNNs provide graph
convolution definition based on graph theory (Bruna et al., 2013; Defferrard et al., 2016; Henaff et al.,
2015). Spatial-based GNNs variant are popular due to explicit neighbors’ information aggregation,
including Graph convolutional networks (GCN) (Kipf & Welling, 2017), graph attention network
(GAT) (Veličković et al., 2018). As for fairness in graph data, many works have been developed
to achieve fairness in machine learning community (Chuang & Mroueh, 2020), including fair walk
(Rahman et al., 2019), adversarial debiasing (Dai & Wang, 2021), Bayesian approach (Buyl & De Bie,
2020), and contrastive learning (Agarwal et al., 2021). Much literature empirically shows that GNN
or message passing may enhance prediction bias compared with MLP. However, the theoretical
understanding of why such a phenomenon happens is still unclear. In this work, we take an initial
step toward theoretically understanding why message passing enhances bias from a data perspective.
Based on this understanding, we develop a simple yet effective fair graph refinement method to
achieve better tradeoff performance. More importantly, the proposed FairGR is compatible with many
fair training strategies.

3



Under review as a conference paper at ICLR 2023

4 TOPOLOGY ENHANCES BIAS IN GNNS AGGREGATION

For each node, GNNs aggregate their neighbors’ features to learn their representation. In real-world
datasets, we observe a high sensitive homophily coefficient (which is even higher than the label
homophily coefficient). However, existing message-passing schemes tend to aggregate the node
features from their neighbors with the same sensitive attributes. Thus, the common belief is that
the message passing renders node representations with the same sensitive attribute more similar.
However, this common belief is heuristic and the quantifiable relationship between the topology
bias and representation bias is still missing. In this section, (1) we rectify such common belief
and quantitatively reveal that only sufficient high sensitive homophily coefficient would lead to
bias enhancement; (2) we analyze the influence of other graphs statistical information, such as the
number of nodes n, the edge density ρd, and sensitive group ratio c, in term of bias enhancement.

4.1 SYNTHETIC GRAPH

we consider the synthetic random graph generation using contextual stochastic block model (CSBM)
(Fortunato & Hric, 2016), including graph topology and node features generation with Gaussian
mixture distribution. As a pilot study, we choose the most common-used graph topology with
stochastic block model (SBM) and node feature with Gaussian mixture distributions in the analysis.
The rationale for the choice is due to the fact that SBM is widely used to model and analyze
most complex networks (e.g., social networks, World Wide Web, and biological networks) (Van
Der Hofstad, 2016). 1

Graph Topology Throughout our analysis, we mainly focus on 4 characteristics of graph topology:
the number of nodes n, the edge density ρd, sensitive homophily coefficient ϵsens, and sensitive group
ratio c. Specifically, we consider the synthetic random graph generation, including graph topology
and node features generation as follows:

Definition 2 ((n, ρd, ϵsens, c)-graph) The synthetic random graph G sampled from (n, ρd, ϵsens, c)-
graph satisfies the following properties: 1) the graph node number is n; 2) the adjacency matrix
A satisfies Aij ∈ {0, 1} and Eij [P(Aij = 1)] = ρd; 3) given connected node pair Aij = 1, the
probability of connected nodes with the same sensitive attribute satisfies P(si = sj |Aij = 1) = ϵsens;
4) the binary sensitive attribute si ∈ {−1, 1} satisfies Ei[P(si = 1)] = c; 5) independent edge
generation.

Node Features. We assume that node attributes in synthetic graph follow Gaussian Mixture Model
GMM(c, µ1,Σ1, µ2,Σ2). For the node with sensitive attribute si = −1 (si = 1), the node attributes
Xi follow Gaussian distribution P1 = N (µ1,Σ1) (P2 = N (µ2,Σ2)), where the node attributes
with the same sensitive attribute are independent and identically distributed, and µi,Σi (i = 1, 2)
represent the mean vector and covariance matrix.

4.2 REPRESENTATION BIAS MEASUREMENT

To measure the node representations bias, we adopt the mutual information between sensitive attribute
and node attributes I(s,X). Note that the exact mutual information I(s,X) is intractable to estimate,
an upper bound on the exact mutual information is developed as a surrogate metric in the following
Theorem 1:

Theorem 1 Suppose the synthetic graph node attribute X is generated based on Gaussian Mixture
Model GMM(c, µ1,Σ1, µ2,Σ2), i.e., the probability density function of node attributes for the nodes

of different sensitive attribute s = {−1, 1} follows fX(Xi = x|si = −1) ∼ N (µ1,Σ1)
△
= P1 and

fX(Xi = x|si = 1) ∼ N (µ2,Σ2)
△
= P2, and the sensitive attribute ratio satisfies Ei[P(si = 1)] = c,

then the mutual information between sensitive attribute and node attributes I(s,X) satisfies

I(s,X) ≤ −(1− c) ln
[
(1− c) + c exp

(
−DKL(P1||P2)

)]
−c ln

[
c+ (1− c) exp

(
−DKL(P2||P1)

)] △
= Bias(s,X).

1We leave the analysis of other random graph models or feature distributions in future work.
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Based on Theorem 1, we can observe that lower distribution distance DKL(P1||P2) or DKL(P2||P1)
is beneficial for reducing Bias(s,X) and I(s,X) since the sensitive attribute is less distinguishable
based on node representations.

4.3 WHEN AGGREGATION ENHANCES THE BIAS?

We focus on the role of message passing in terms of fairness. Suppose the graph adjacency matrix A
is sampled for (n, ρd, ϵsens, c)-graph and we adopt the GCN-like message passing X̃ = ÃX, where
Ã is normalized adjacency matrix with self-loop. We define the bias difference for such message
passing as ∆Bias = Bias(s, X̃)−Bias(s,X) to measure the role of graph topology. Subsequently,
we derive intra-connect and inter-connect probability in Lemma 1.

Lemma 1 Suppose the synthetic graph is generated from (n, ρd, ϵsens, c)-graph, then we obtain the
intra-connect and inter-connect probability as follows:

pconn =
ρdϵsens

c2 + (1− c)2
, qconn =

ρd(1− ϵsens)

2c(1− c)
.

Subsequently, we provide a sufficient condition to specify the case that graph topology enhances bias
in Theorem 2.

Theorem 2 Suppose the synthetic graph node attribute X is generated based on Gaussian Mixture
Model GMM(c, µ1,Σ, µ2,Σ), and the graph adjacency matrix A is generated from (n, ρd, ϵsens, c)-
graph. If adopting GCN-like message passing X̃ = ÃX, bias will be enhanced, i.e., ∆Bias > 0 if
the bias-enhance condition holds: (ν1 − ν2)

2 min{ζ1, ζ2} > 1, where ν1 − ν2 < 1 represents the
reduction coefficient of the distance between the mean node attributes of the two sensitive attributes
groups, ζ1, ζ2 mean the connection degree of two sensitive groups; the mathematical formulation is
given by

ν1 =
(n1 − 1)pconn + 1

ζ1
, ν2 =

(n1 − 1)qconn
ζ2

, (1)

where ζ1 = n−1qconn + (n1 − 1)pconn + 1, ζ2 = n−1pconn + (n1 − 1)qconn + 1, the node
number with the same sensitive attribute n−1 = n(1 − c), n1 = nc, intra-connect probability
pconn = Eij [P(Aij |si = sj)], and inter-connect probability qconn = Eij [P(Aij |sisj = −1)].

Based on Theorem 2, we can provide more discussion on the influence of 4 graph data in-formation
of graph:the number of nodes n, the edge density ρd, sensitive homophily coefficient ϵsens, and
sensitive group ratio c for bias enhancement as follows:

• Node representation bias is enhanced by message passing for sufficient large sensitive ho-
mophily ϵsens. According to Lemma 1, for large sensitive homophily coefficient ϵsens → 1, the
inter-connect probability qconn → 0 and intra-connect probability pconn keeps the maximal value. In
this case, based on Theorem 2, it is easy to obtain that ν1 = 1, ν2 = 0 and the distance for the mean
aggregated node representation will keep the same, i.e., µ̃1 − µ̃2 = (ν1 − ν2)(µ1 − µ2) = µ1 − µ2.
Additionally, the covariance will be diminished after aggregation since ζ1 and ζ2 are strictly larger
than 1. Therefore, for sufficient large sensitive homophily coefficient ϵsens, the bias-enhance
condition (ν1 − ν2)

2 min{ζ1, ζ2} > 1 holds.
• The bias enhancement implicitly depends on node representation geometric differentiation, in-

cluding the distance between the mean node representation within the same sensitive attribute
and the scale covariance matrix. Theorem 1 implies that low mean representation distance and
concentrated representation (low covariance matrix) lead to fair representation. However, GCN-like
message passing renders the mean node representation distance reduction ν1 − ν2 and concentrated
for each sensitive attribute group, which is an “adversarial" effect for fairness and the mean distance
and covariance reduction is controlled by sensitive homophily coefficient.

• The bias is enlarged as node number n being increased. For large node number n, the mean
distance almost keeps constant since ν1 ≈ cpconn

(1−c)qconn+cpconn
, ν2 ≈ cqconn

(1−c)pconn+cqconn
, and ζ1, ζ2

are almost proportional to node number n. Therefore, the bias-enhancement condition can be more
easily satisfied and ∆Bias would be higher for large graph data. The intuition is that, given graph
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Figure 2: The difference of demographic parity for message passing. Left: DP difference for different
graph connection density ρd with sensitive attribute ratio c = 0.5 and number of nodes n = 104;
Middle: DP difference for different number of nodes n with sensitive attribute ratio c = 0.5 and
graph connection density ρd = 10−3; Right: DP difference for different sensitive attribute ratio c
with graph connection density ρd = 10−3 and number of nodes n = 104;

density ratio, large graph data represents a higher average degree node. Hence, each aggregated
node representation adopts more neighbor’s information with the same sensitive attribute, and thus
leads to a lower covariance matrix value and higher representation bias.

• The bias is enlarged as graph connection density ρ being increased. Based on Lemma 1, inter-
connection probability and inter-connection probability are both proportional to graph connection
density ρd. Therefore, ν1 and ν2 almost keep constant and the distance of mean node representation
is constant as well. As for the covariance matrix, message passing leads to more concentrated node
representation since ζ1 and ζ2 are larger for higher graph connection density ρd. The rationale
is similar to the graph node number: given node number, higher graph connection density ρd
means higher average node degree and each aggregated node representation adopts more neighbor’s
information with the same sensitive attribute.

• When the sensitive attribute is more balanced (i.e.,) the bias will be enlarged. Based on
Lemma 1, it is easy to obtain that, given graph connection density ρd and graph node number
n, the intra-connection probability pconn would be high, while being low for inter-connection
probability qconn, if the balanced sensitive attribute. In other words, intra-connection probability
pconn (inter-connection probability qconn) monotonically decreases (increases) with respect to
|c− 1

2 |.

5 LEARNING FAIR GRAPH TOPOLOGY

The above section provides a data-centric perspective (graph topology) to understanding why message
passing may enhance representation bias. In other words, graph topology refinement may assist GNNs
model in achieving fair and accurate prediction. However, searching for the optimal graph topology
for GNNs is a non-trivial problem due to large-scale discrete optimization. In this section, motivated
by the theoretical analysis, we propose Fair Graph Refinement method, named FairGR, to achieve
fair prediction via learning the optimal graph topology. Specifically, we formulate the objective
functions into three parts, including low sensitive homophily coefficient, high label homophily
coefficient, and small topology perturbation. In this way, FairGR can explicitly reduce the topology
bias while preserving useful topology information for prediction.

Problem Formulation. Considering binary sensitive attribute si ∈ {−1, 1} and binary classifica-
tion task with label yi ∈ {−1, 1} for i-th node, we aim to modify the graph topology to achieve low
sensitive homophily coefficient ϵsens, high label homophily coefficient ϵlabel, and small topology
perturbation. For sensitive homophily coefficient with the binary sensitive attribute, the determination
of any two nodes with the same sensitive attribute can be obtained via H(ssT ), where H(·) is
Heaviside (unit) step function, sensitive attribute vector s ∈ {−1, 1}n×1. Based on Definition 1,
It is easy to rewrite sensitive homophily coefficient as ϵsens = ||H(ssT )⊙A||

||A||1 , where ⊙ represents
Hadamard product, and || · ||1 denotes the entry-wise l1 norms (i.e., the summation over all absolute
value of elements). Similarly, label homophily coefficient as ϵlabel =

||H(yyT )⊙A||
||A||1 . As for graph

topology perturbation, we can use the entry-wise l1 norms of the difference as the measurement. In a
nutshell, the objective function to reconstruct graph connections given sensitive attribute s, label y,
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and graph topology A can be formulated as:

L(Â|s,y,A) =
||H(ssT )⊙ Â||

||Â||1
− α

||H(yyT )⊙ Â||
||Â||1

+ β||Â−A||1, (2)

Therefore, the rewired graph topology can be obtained via a constrained optimization problem
min
Â

L(Â|s,y,A)s.t.Âij ∈ {0, 1}, where α and β are the hyperparameters for label homophily

coefficient and graph topology perturbation. Considering the formulated problem is a large-scale
discrete optimization problem, we employ a heuristic optimization method to obtain the modified
graph topology.

Optimization Strategy. To optimize the formulated problem with constraint, we adopt Proximal
Gradient Descent (PGD). Specifically, we first adopt gradient descent to update the graph topology
using gradient ∂L(Â|s,y,A)

∂Â
. Subsequently, we clip the graph topology Â within {0, 1} in the

projection operation of PGD. Such operation will conduct multiple times to obtain the final graph
topology. In practice, considering only the sensitive attribute and label for the training set are
available, we actually only modify the graph topology within the training nodes. In other words, the
three objectives, including sensitive homophily coefficient, label homophily coefficient, and graph
topology perturbation, are calculated for the subgraph of training nodes. In this way, we can avoid
information leakage from the test set and reduce the complexity of the optimization problem.

Evaluation and Computation Complexity Analysis. For algorithmic evaluation of pre-processing
FairGR, we compared the prediction performance (including accuracy and fairness) using original
graph topology and rewired graph topology across multiple GNN backbones. Denote the number of
training nodes and update iterations as N and T , respectively. Then the computation complexity for
gradient computation and projection of PGD are both O(n2

train). The total computation complexity
to obtain the final rewired graph topology is given by O(Tn2

train). The memory consumption is
O(n2

train) due to the storage of graph topology gradient.

Table 1: The performance on Node Classification (GR represents graph topology rewire).

Models
Pokec-z Pokec-n NBA

Acc (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓ Acc (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓ Acc (%) ↑ ∆DP (%) ↓ ∆EO (%) ↓
MLP 70.48 ± 0.77 1.61 ± 1.29 2.22 ± 1.01 72.48 ± 0.26 1.53 ± 0.89 3.39 ± 2.37 65.56 ± 1.62 22.37 ± 1.87 18.00 ± 3.52
GAT 69.76 ± 1.30 2.39 ± 0.62 2.91 ± 0.97 71.00 ± 0.48 3.71 ± 2.15 7.50 ± 2.88 57.78 ± 10.65 20.12 ± 16.18 13.00 ± 13.37

GAT-GR 56.75 ± 6.32 1.04 ± 0.80 1.14 ± 1.02 61.27 ± 9.34 0.54 ± 0.51 2.27 ± 1.55 53.65 ± 10.31 4.16 ± 5.13 3.67 ± 3.23
GCN 71.78 ± 0.37 3.25 ± 2.35 2.36 ± 2.09 73.09 ± 0.28 3.48 ± 0.47 5.16 ± 1.38 61.90 ± 1.00 23.70 ± 2.74 17.50 ± 2.63

GCN-GR 71.68 ± 0.58 1.94 ± 1.59 1.27 ± 0.71 72.68 ± 0.44 0.47 ± 0.39 0.82 ± 0.78 61.59 ± 1.85 20.24 ± 4.41 9.50 ± 2.77
SGC 71.24 ± 0.46 4.81 ± 0.30 4.79 ± 2.27 71.46 ± 0.41 2.22 ± 0.29 3.85 ± 1.63 63.17 ± 0.63 22.56 ± 3.94 14.33± 2.16

SGC-GR 70.95 ± 0.91 3.32 ± 1.31 3.20 ± 1.90 71.91 ± 0.52 0.71 ± 0.65 2.39 ± 0.69 62.54 ± 1.62 18.56 ± 2.81 2.50 ± 1.66

6 EXPERIMENTS

In this section, we conduct experiments to validate the effectiveness (see Apppendix G for more de-
tails.) of the proposed FairGR. We firstly validate that GCN-like aggregation enhances representation
bias for the graph data with large sensitive homophily via synthetic experiments. For real-world
datasets, we conduct experiments to show that the prediction bias of GNN is larger than that of MLP.
Moreover, we introduce the experimental settings and then evaluate our proposed FairGR compared
with several baselines in terms of prediction performance and fairness metrics on real-world datasets.

6.1 SYNTHETIC EXPERIMENTS

In the synthetic experiments, we demonstrate the relation between DP difference across GCN-like
message passing operation and sensitive homophily coefficient 2. Specifically, we investigate the

2Note that we only do a theoretical study in GCN-like message passing operation as a pilot study. The
investigation of other GNN aggregation operations (such as GraghSAGE-like operation) and GNN models may
require different techniques and can be further conducted in future work.
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influence of graph node number n, graph connection density ρd, sensitive homophily ϵsens, and
sensitive attribute ration c for bias enhancement of GCN-like message passing. For evaluation
metric, we adopt the demographic parity (DP) difference during message passing to measure the
bias enhancement. For node attribute generation, we first generate node attribute with Gaussian
distribution N (µ1,Σ) and N (µ2,Σ) for node with binary sensitive attribute, respectively, where

µ1 = [0, 1], µ1 = [1, 0] and Σ =

[
1 0
0 1

]
. For adjacency matrix generation, we randomly

generate edges via a stochastic block model based on the intra-connection and inter-connection
probability.

Figure 2 shows the DP difference during message passing with respect to the sensitive homophily
coefficient. We observe that a higher sensitive homophily coefficient generally leads to larger bias
enhancement. Additionally, higher graph connection density ρd, larger node number n, and balanced
sensitive attribute ratio c correspond to higher bias enhancement, which is consistent with our
theoretical analysis in Theorem 2.

6.2 EXPERIMENTS ON REAL-WORLD DATASETS

6.2.1 EXPERIMENTAL SETTINGS

Datasets. The experiments are conducted on three real-world datasets, including Pokec-z, Pokec-n,
and NBA (Dai & Wang, 2021). Pokec-z and Pokec-n are sampled from a larger social network Pokec
(Takac & Zabovsky, 2012) based on the province in Slovakia. We choose region information and
the working field of the users as the sensitive attribute and the predicted label, respectively. NBA
dataset includes around 400 NBA basketball players and is collected from a Kaggle dataset 3 and
Twitter. The information of players includes age, nationality, and salary in the 2016-2017 season.
We choose nationality (U.S. and overseas player) as the binary sensitive attribute, and the prediction
label is whether the salary is higher than the median.

Evaluation Metrics. For the node classification task, we adopt accuracy to evaluate the classifica-
tion performance. As for fairness metric, we adopt two most common-used group fairness metrics,
including demographic parity and equal opportunity, to measure the prediction bias (Louizos et al.,
2015; Beutel et al., 2017). Specifically, demographic parity is defined as the average prediction dif-
ference over different sensitive attribute groups, i.e., ∆DP = |P(ŷ = 1|s = −1)− P(ŷ = 1|s = 1)|.
Similarly, equal opportunity is given by ∆EO = |P(ŷ = 1|s = −1, y = 1)−P(ŷ = 1|s = 1, y = 1)|,
where y and ŷ represent the ground-truth label and predicted label, respectively.

Baselines. Considering that the proposed FairGR is a pre-processing method, we show that our
proposed FairGR can improve many representative GNNs, such as GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), SGC (Wu et al., 2019), in many fairness training strategies, such
adding regularization, adversarial debiasing. For all models, we train 2 layers of neural networks
with 64 hidden units for 300 epochs.

Implementation Details. For each experiment, we run 5 times and report the average performance
for each method. We adopt Adam optimizer with 0.001 learning rate and 1e−5 weight decay for
all models training. In adversarial debiasing setting, we train the classifier and adversary head
with 70 and 30 epochs, respectively. The hyperparameters for adversary debiasing are tuned in
{0.0, 0.5, 1.0, 2.0, 5.0, 8.0, 10.0, 50.0, 100.0}. For adding regularization, we adopt the hyperparame-
ter set {0.0, 1.0, 1.5, 2.0, 5.0, 8.0, 10.0, 15.0, 25.0, 50.0, 80.0, 100.0}.

6.2.2 DOES GNNS HAVE A LARGER PREDICTION BIAS THAN MLP?

To validate the effect of bias enhancement of GNNs, we compare the performance of many represen-
tative GNNs over MLP on various real-world datasets and summarize the results in Table 1. From
these results, we make the following observations:

• Many representative GNNs have a higher prediction bias compared with MLP model on all three
datasets in terms of demographic parity and equal opportunities. For demographic parity, the

3https://www.kaggle.com/noahgift/social-power-nba
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Pokec_n Pokec_z NBA

Reg

Adv

Figure 3: DP and Acc trade-off performance on three real-world datasets compared with adding
regularization (Top) and adversarial debiasing (Bottom). The trade-off curve closer to the right
bottom corner represents better trade-off performance.

prediction bias of MLP is lower than that of GAT, GCN, and SGC by 32.64%, 50.46%, 66.53%
and 58.72% on Pokec-z dataset. The higher prediction bias comes from the aggregation within the
same-sensitive attribute nodes and topology bias in graph data.

• FairGR can mitigate bias for GCN and SGC backbone via rewiring graph topology in these three
datasets. For GAT backbone, although the bias can be mitigated, the accuracy drop is significant
due to the fact that GAT is more sensitive to graph topology rewire.

6.2.3 DOES FAIRGR ACHIEVE BETTER TRADEOFF PERFORMANCE IN VARIOUS SETTINGS?

Comparison with adversarial debiasing and regularization. To validate that the proposed
FairGR is compatible with many fairness training strategies, we also show the prediction performance
and fairness metric trade-off compared with adversarial debiasing (Fisher et al., 2020) and add
demographic parity regularization (Chuang & Mroueh, 2020). In adversarial debiasing (Louppe et al.,
2017), the output of GNNs is the input of the adversary, and the goal of the adversary is to predict
the node sensitive attribute. For these two fair training strategies, we adopt GCN, GAT, and SGC
as backbones. We randomly split 50%/25%/25% for training, validation, and test dataset. Figure 3
shows the Pareto optimality curve for all methods, where the right-bottom corner point represents the
ideal performance (100% accuracy and 0% prediction bias). From the results, we list the following
observations as follows:

• For both adversarial debiasing and adding regularization training strategies, our proposed FairGR
can achieve a better DP-Acc trade-off compared with that without any graph data refinement for
many GNNs. In other words, FairGR can effectively reduce training bias and is compatible with
many existing fairness training strategies.

• Topology does matter in GNNs. For adding regularization or adversarial debiasing, FairGS embrace
different tradeoff performance gain on top of different GNNs. Such observation implies that there is
a complicated interaction between graph topology and message passing algorithms. Additionally,
FairGS provide the most tradeoff performance benefit in GAT compared with GCN and SGC. The
high capacity of GAT may energize the message passing algorithm to learn from data. Therefore, the
tradeoff performance improvement is the highest in adding regularization and adversarial debiasing.

7 CONCLUSION

In this work, we theoretically demonstrate that the message passing amplifies node representation
bias under the graph data with a large sensitive homophily coefficient, and reveal the role of other
graphs statistical information in terms of bias amplification. Additionally, motivated by theoretical
understanding, we develop a simple yet effective graph refinement method, named FairGR, to reduce
the sensitive homophily while preserving useful information. We conduct synthetic experiments to
validate theoretical findings. Experimental results on real-world datasets demonstrate the effectiveness
of FairGR in many fair training strategies and GNNs backbones in node classification tasks.
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A PROOF OF THEOREM 1

We provide a more general proof for categorical sensitive attribute s ∈ {1, 2, · · · ,K} and the prior
probability is given by P(s = i) = ci. Suppose the conditional node attribute x distribution given

node sensitive attribute s = i satisfies normal distribution Pi(x)
△
= N (µi,Σi), the distribution of

node sensitive attribute is the mixed Gaussian distribution f(x) =
∑K

i=1 ciPi(x). Based on the
definition of mutual information, we have

I(s,x) = H(x)−
K∑
i=1

ciH(x|s = i); (3)

where H(·) represents Shannon entropy for random variable. Subsequently, we focus on the entropy
of the mixed Gaussian distribution H(x). We show that such entropy can be upper bounded by the
pairwise Kullback-Leibler (KL) divergence as follows:

I(s,x) = −
K∑
i=1

ciEPi

[
ln

K∑
j=1

cjPj(x)
]
−

K∑
i=1

ciH(x|s = i)

(a)

≤ −
K∑
i=1

ci
[
ln

K∑
j=1

cje
EPi

[lnPj(x)]
]
−

K∑
i=1

ciH(x|s = i)

= −
K∑
i=1

ci
[
ln

K∑
j=1

cje
−H(Pi||Pj)

]
−

K∑
i=1

ciH(x|s = i)

(b)
= −

K∑
i=1

ci
[
ln

K∑
j=1

cje
−H(Pi)−DKL(Pi||Pj)

]
−

K∑
i=1

ciH(x|s = i)

= −
K∑
i=1

ci
[
ln

K∑
j=1

cje
−DKL(Pi||Pj)

]
+

K∑
i=1

ciH(Pi)−
K∑
i=1

ciH(x|s = i),

= −
K∑
i=1

ci
[
ln

K∑
j=1

cje
−DKL(Pi||Pj)

]
,

where KL divergence DKL(Pi||Pj)
△
=

∫
Pi(x) ln

Pi(x)
Pj(x)

dx and cross entropy H(Pi||Pj) =

−
∫
Pi(x) lnPj(x)dx. The inequality (a) holds based on the variational lower bound on the expec-

tation of a log-sum inequality E
[
ln
∑

i Zi

]
≥ ln

[∑
i e

E[lnZi]
]

(Kullback, 1997), and quality (2)
holds based on H(Pi||Pj) = H(Pi) +DKL(Pi||Pj). As a special case for binary sensitive attribute,
it is easy to obtain the following results:

I(s,X) ≤ −(1− c) ln
[
(1− c) + c exp

(
−DKL(P1||P2)

)]
− c ln

[
c+ (1− c) exp

(
−DKL(P2||P1)

)]
.

B PROOF OF THEOREM 2

Before going deeper for our proof, we first introduce two useful lemmas on KL divergence and
statistical information of graph.

Lemma 2 For two d-dimensional Gaussian distributions P = N (µp,Σp) and Q = N (µq,Σq), the
KL divergence DKL(P ||Q) is given by

DKL(P ||Q) =
1

2

[
ln

|Σq|
|Σp|

− d+ (µp − µq)
⊤Σ−1

q (µp − µq) + Tr(Σ−1
q Σp)

]
(4)

where ⊤ is matrix transpose operation and Tr(·) is trace of a square matrix.
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Proof: Note that the probability density function of multivariate Normal distribution is given by:

P (x) =
1

(2π)d/2|Σp|1/2
exp

(
− 1

2
(x− µp)

⊤Σ−1
p (x− µp)

)
,

the KL divergence between distributions P and Q can be given by

DKL(P ||Q) = EP [ln(P )− ln(Q)]

= EP

[1
2
ln

|Σq|
|Σp|

− 1

2
(x− µp)

⊤Σ−1
p (x− µp) +

1

2
(x− µq)

⊤Σ−1
q (x− µq)

]
=

1

2
ln

|Σq|
|Σp|

− 1

2
EP

[
(x− µp)

⊤Σ−1
p (x− µp)

]
︸ ︷︷ ︸

I1

+
1

2
EP

[
(x− µq)

⊤Σ−1
q (x− µq)

]
︸ ︷︷ ︸

I2

.

Using the commutative property of the trace operation, we have

I1 =
1

2
EP

[
(x− µp)

⊤Σ−1
p (x− µp)

]
=

1

2
Tr

(
EP

[
(x− µp)

⊤(x− µp)Σ
−1
p

])
=

1

2
Tr

(
EP

[
(x− µp)

⊤(x− µp)
]
Σ−1

p

)
=

1

2
Tr

(
ΣpΣ

−1
p

)
=

d

2
, (5)

As for the term I2, note that x − µq = (x − EP [x]) + (EP [x] − µq), we can obtain the following
equation:

I2 =
1

2
EP

[
(x− µq)

⊤Σ−1
q (x− µq)

]
=

1

2

[
(µp − µq)

⊤Σ−1
q (µp − µq) + Tr(Σ−1

q Σp)
]
, (6)

Therefore, the KL divergence DKL(P ||Q) is given by

DKL(P ||Q) =
1

2

[
ln

|Σq|
|Σp|

− d+ (µp − µq)
⊤Σ−1

q (µp − µq) + Tr(Σ−1
q Σp)

]
. (7)

□

Lemma 3 Suppose the synthetic graph is generated from (n, ρd, ϵsens, c)-graph, then we obtain the
intra-connect and inter-connect probability as follows:

pconn =
ρdϵsens

c2 + (1− c)2
, qconn =

ρd(1− ϵsens)

2c(1− c)
.

Proof: Based on Bayes’ rule, we have the intra-connect and inter-connect probability as follows

pconn = P(Aij = 1|si = sj) =
P(Aij = 1)P(si = sj |Aij = 1)

P(si = sj)
=

ρdϵsens
c2 + (1− c)2

,

qconn = P(Aij = 1|sisj = −1) =
P(Aij = 1)P(sisj = −1|Aij = 1)

P(sisj) = −1
=

ρd(1− ϵsens)

2c(1− c)
. (8)

□

Note that the synthetic graph is generated from (n, ρd, ϵsens, c)-graph. The sensitive attribute s
is generated to with ratio c, i.e., the number of node sensitive attribute s = −1 and s = 1 are
n−1 = n(1− c) and n1 = nc. Based on the determined sensitive attribute s, we randomly generate
the edge based on parameters ρd and ϵsens and Lemma 1, i.e., the edges within and cross the
same group are randomly generated based on intra-connect probability and inter-connect probability.
Therefore, the adjacency matrix Aij is independent on node attribute Xi and Xj given sensitive
attributes si and sj , i.e., Aij ⊥⊥ (Xi,Xj)|(si, sj). Similarly, the different node attributes and
edges are also dependent on each other given sensitive attributes, i.e., Aij ⊥⊥ Aij |(si, sj , sk) and
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Xi ⊥⊥ Xj |(si, sj). Therefore, considering GCN-like message passing X̃i =
∑n

j=1 ÃijXj , we have
the aggregated node attributes expectation given sensitive attribute as follows:

µ̃1 = EX̃i
[X̃i|si = −1] =

n∑
j=1

EÃij ,Xj
[ÃijXj |si = −1]

=

n∑
j=1

EÃij
[Ãij |si = −1]EXj

[Xj |si = −1]

= (n−1 − 1)EÃij
[Ãij |si = −1, sj = −1]EXj

[X̃j |si = −1, sj = −1]

+EÃij
[Ãij |si = −1, i = j]EXj

[Xj |si = −1]

+n1EÃij
[Ãij |si = −1, sj = 1]EXj

[Xj |si = −1, sj = 1]

=
[(n−1 − 1)pconn + 1]µ1 + n1qconnµ2

(n−1 − 1)pconn + 1 + n1qconn

△
= ν1µ1 + (1− ν1)µ2. (9)

where ν1 = (n−1−1)pconn+1
(n−1−1)pconn+1+n1qconn

. Similarly, for the node with sensitive attribute 1, we have

µ̃2 = EX̃i
[X̃i|si = 1] =

n∑
j=1

EÃij ,Xj
[ÃijXj |si = 1]

=

n∑
j=1

EÃij
[Ãij |si = 1]EXj [Xj |si = 1]

= n−1EÃij
[Ãij |si = 1, sj = −1]EXj

[Xj |si = 1, sj = −1]

+EÃij
[Ãij |si = 1, i = j]EXj

[Xj |si = 1]

+(n1 − 1)EÃij
[Ãij |si = 1, sj = 1]EXj

[Xj |si = 1, sj = 1]

=
n−1qconnµ1 + [(n1 − 1)pconn + 1]µ2

n−1qconn + (n1 − 1)pconn + 1

△
= ν2µ1 + (1− ν2)µ2. (10)

where ν2 = (n−1−1)qconn

n−1qconn+1+(n1−1)pconn
. As for the covariance matrix of aggregated node attributes X̃

given node sensitive attribute s = −1 and original sensitive attribute, note that we can obtain

Σ̃1 = DX̃i
[X̃i|si = −1] =

n∑
j=1

DÃij ,Xj
[ÃijXj |si = −1]

=

n∑
j=1

EÃij
[Ã2

ij |si = −1]DX̃j
[X̃j |si = −1]

=
(n−1 − 1)pconnΣ+Σ+ n1qconnΣ

[(n−1 − 1)pconn + 1 + n1qconn]2

=
Σ

(n−1 − 1)pconn + 1 + n1qconn

△
= ζ−1

1 Σ, (11)

where ζ1 = (n−1 − 1)pconn + 1 + n1qconn. Similarly, given node sensitive attribute s = 1,

we have Σ̃2 = DX̃i
[X̃i|si = 1] = Σ

n−1qconn+1+(n1−1)pconn

△
= ζ−1

2 Σ, where ζ2 = n−1qconn +

1 + (n1 − 1)pconn. In other words, the covariance matrix of the aggregated node attributes is
lower than the original one since the “average" operation will make node representation more
concentrated. Note that the summation over several Gaussian random variables is still Gaussian, we
define the node attributes distribution for sensitive attribute s = −1 and s = 1 as P1 = N (µ1,Σ),
P2 = N (µ2,Σ), respectively. Similarly, the aggregated node representation distribution follows for
sensitive attribute s = −1 and s = 1 as P̃1 = N (µ̃1, Σ̃1), P̃2 = N (µ̃2, Σ̃2). Note that the sensitive
attribute ratio keeps the same after the aggregation and larger KL divergence for these two sensitive
attributes group distribution, the bias enhances ∆Bias > 0 if DKL(P̃1||P̃2) > DKL(P1||P2) and
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DKL(P̃2||P̃1) > DKL(P2||P1). Therefore, we only focus on the KL divergence. According to
Lemma 2, it is easy to obtain KL divergence for original distribution as follows:

DKL(P1||P2) =
1

2

[
ln

|Σ|
|Σ|

− d+ (µ1 − µ2)
⊤Σ−1(µ1 − µ2) + Tr(Σ−1Σ)

]
=

1

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2), (12)

As for KL divergence for aggregated distribution, similarly, we have

DKL(P̃1||P̃2) =
1

2

[
ln

|Σ̃2|
|Σ̃1|

− d+ (µ̃1 − µ̃2)
⊤Σ̃−1

2 (µ̃1 − µ̃2) + Tr(Σ̃−1
2 Σ̃1)

]
=

1

2

[
d ln

ζ1
ζ2

− d+ (ν1 − ν2)
2ζ2(µ1 − µ2)

⊤Σ−1(µ1 − µ2) +
ζ2
ζ1

Tr(Id)
]

(c)

≥ 1

2
(ν1 − ν2)

2ζ2(µ1 − µ2)
⊤Σ−1(µ1 − µ2), (13)

where inequality (c) holds since lnx ≤ x − 1 for any x > 0. Compared with equations (12) and
(13), it is seen that DKL(P̃1||P̃2) > DKL(P1||P2) if (ν1 − ν2)

2ζ2 > 1. Similarly, we can have
DKL(P̃2||P̃1) > DKL(P2||P1) if (ν1 − ν2)

2ζ1 > 1. In a nutshell, the bias enhances ∆Bias > 0
after message passing if (ν1 − ν2)

2 min{ζ1, ζ2} > 1.

C TOPOLOGY AMPLIFIES BIAS IN ONE-LAYER GCN

Section 4 demonstrates that GCN-like aggregation operation amplifies node representation bias for
graph data with large topology bias. However, it is still unclear whether such observation holds
for general GNNs or not. Generally speaking, this problem is quite fundamental and challenging
to understand the role of topology in fair graph learning. In this section, we try to move a step
toward this problem by considering one-layer GCN. Prior to comparing the prediction for one-layer
GCN and one-layer MLP, we first provide the connection between demographic parity and mutual
information of sensitive attributes and predictions. Then, we theoretically compare the prediction
bias of one-layer GCN and one-layer MLP through the lens of mutual information.

C.1 PREDICTION BIAS AND MUTUAL INFORMATION

Here, we only consider binary sensitive attributes s ∈ {−1, 1} and binary labels y ∈ {−1, 1}.
Similarly, we can define ŷ ∈ {−1, 1} as the binary model predictions. In the fairness community,
demographic parity, defined as the average prediction difference among different sensitive attribute
groups, is the most commonly used fairness metric, i.e., ∆DP = |P(ŷ|s = 1)−P(ŷ|s = −1)|. From
the mutual information perspective, the correlation between sensitive attributes s and prediction ŷ can
be measured by I(s; ŷ). In this subsection, we provide an inherent connection between demographic
parity ∆DP and mutual information I(s; ŷ) as follows:

Theorem 3 For binary sensitive attributes s ∈ {−1, 1} and binary prediction ŷ ∈ {−1, 1}, demo-
graphic parity ∆DP and mutual information I(s; ŷ) satisfies I(s; ŷ) ≤ 2∆DP

Proof: For simplicity, we defined the joint probability as αi∪j = P(ŷ = i, s = j) and condition
probability as αi|j = P(ŷ = i|s = j). Considering the log ratio between joint distribution and
margin product probability, we have

log
P(ŷ = i, s = j)

P(ŷ = i)P(s = j)
= log

αi|j∑
j αi|jP(s = j)

= log
(
1 +

(αi|j − αi|−j)P(s = −j)∑
j αi|jP(s = j)

)
(d)

≤ (αi|j − αi|−j)
P(s = −j)∑
j αi|jP(s = j)

≤ ∆DP
P(s = −j)∑
j αi|jP(s = j)

. (14)
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where inequality (d) holds due to log(1 + x) ≤ x for any x > −1. According to the definition of
mutual information, we have

I(s; ŷ) =
∑
i,j

P(ŷ = i, s = j) log
P(ŷ = i, s = j)

P(ŷ = i)P(s = j)
=

∑
i,j

αi∪j log
αi|j∑

j αi|jP(s = j)

≤ ∆DP
∑
i,j

αi∪j
P(s = −j)∑
j αi|jP(s = j)

= ∆DP
∑
i,j

P(s = −j)P(s = j)|ŷ = i)

(f)

≤ ∆DP
∑
i

[∑
j

P(s = −j)
][∑

j

P(s = j|ŷ = i)
]
= 2∆DP (15)

where inequality (f) holds due to
∑

i aibi ≤
∑

i ai
∑

i bi for non-negative ai and bi. □

Theorem 3 shows there is a strong connection between demographic parity and mutual information
for binary sensitive attributes and binary labels, i.e., the mutual information is upper bounded by
demographic parity multiplied by 2.

C.2 PREDICTION BIAS COMPARISON BETWEEN ONE-LAYER GCN AND ONE-LAYER MLP

Considering the strong connection between mutual information and demographic parity, we inves-
tigate prediction bias comparison between one-layer GCN and one-layer MLP through the lens of
mutual information. For one-layer MLP model, the prediction is given by ŷMLP = σ(XWMLP ),
where WMLP is trainable parameter for MLP. Similarly, for one-layer GCN, the prediction is given
by ŷGCN = σ(ÃXWGCN ), where WGCN is the trainable parameters for GCN. Define X̃ = ÃX,
it is easy to see that one-layer MLP model and one-layer GCN model are almost the same except
with different node features. Based on Theorem 2, the aggregated node features X̃ embrace higher
presentation bias than that of X. In other words, the bias of input data for one-layer GCN is higher
than that of one-layer MLP.

For the prediction bias, note that sensitive attributes s, node features X, and prediction ŷ form a
Markov chain X → X → ŷ since P (ŷ|s,X) = P (ŷ|X) for the model with vanilla training. Based
on data processing inequality, it is easy to obtain

I(s; ŷMLP ) = I(s;X)− I(s;X|ŷMLP ),

I(s; ŷGCN ) = I(s; X̃)− I(s; X̃|ŷGCN ). (16)

In other words, when I(s;X|ŷMLP ) = I(s; X̃|ŷGCN ), the higher input data bias will lead to higher
prediction bias. For one-layer MLP and one-layer GCN, if the condition in Theorem 2 are satisfied,
the prediction bias of one-layer GCN is also larger than that of MLP.

C.3 COMPARISON WITH CONCENTRATION PROPERTY IN GNN AND PERSISTENT HOMOLOGY

GNN’s concentration property represents all node presentation convergence after stacking of aggrega-
tions (Nt & Maehara, 2019; Ma et al., 2022; Baranwal et al., 2021). There are differences between
bias enhancement and concentration property in GNN:

• Definition. Concentration property means that the node representation of all nodes convergence
after GNN aggregation. Bias enhancement represents the node representation for different sensitive
groups that are more distinguished. In fact, such two properties are somehow contrary since perfect
concentration leads to zero bias.

• Aggregation. For concentration property, only the normal features and topology are involved in the
analysis. The high-level interpretation of concentration is that aggregation acts like a low-frequency
filter and such an “average" effect leads to node representation convergence. In the sensitive
homophily coefficient, we would like to clarify that the sensitive attributes are not included for node
feature aggregation due to law restrictions. Even though the sensitive attribute is included in GNN
aggregation, and all node representations are the same, it does not represent the bias enhancement
(actually zero bias.). The bias in GNN represents the highly different node representations or
predictions among different sensitive groups (defined by sensitive attributes).
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• Comparison. We also provide the connection between concentration property and bias enhancement
in GNN. The intuition of why GNN enhances the bias, high sensitive homophily represents that
the nodes with the same sensitive attributes are connected with high probability. Considering
concentration property, the node representation for the same sensitive attribute is more similar after
aggregation, therefore leading to highly different representations for different sensitive attribute
groups. Notice that such behavior only happens for high sensitive homophily coefficients and
shallow GNN. When the node with different sensitive attribute groups is connected randomly, the
bias enhancement would not happen or be insignificant due to random concentration. When adopting
deep GNNs, all node representations converge and have no bias enhancement. Unfortunately, due to
concentration property, shallow GNNs are mainly used in practice. As for high sensitive homophily
coefficient, such a condition is usually satisfied in practice due to natural graph data property.

Additionally, there are several differences between our proposed optimization scheme and work
(Carriere et al., 2021), including definition, dependence, and optimization:

• Definition: Persistent homology is a method for calculating the importance of topological features
in the simplicial complex. For example, giving a set of points in a point cloud corresponding to a
chair, the task is to detect the object from the points. In this case, there is no connection between
any pair of points. Persistent homology is a tool to identify the topological feature (or connection
patterns) via gradually building up the connection between points. However, for graphs, they
are 1-simplex with explicit connection patterns defined by the set of edges, thus many properties
from persistent homology will degenerate to the field of graph theory. For example, applying the
persistent homology on the graph is equivalent to building maximum spanning trees (MSTs) using
Kruskal algorithm (Kleinberg & Tardos, 2006), which is irrelevant to our proposed optimization
scheme.

• Dependence. Persistent homology is generally related to sample features, as shown in the example
Point cloud optimization of (Carriere et al., 2021). In other words, persistent homology somehow
represents the topological features of all samples. Differentially, in the graph data we focused
on, there are node normal attributes, sensitive attributes, and adjacency matrix (graph topology).
Based on the definition, the sensitive homophily coefficient is related to sensitive attributes and the
adjacency matrix. However, the optimized adjacency matrix is generally dependent on sensitive
attributes.

• Optimization. The main challenge for persistent homology-based optimization is generally undiffer-
entiable except in some special cases. (Carriere et al., 2021) develops a general framework to study
the differentiability of the persistence of parametrized families of filtrations. In this way, under
mild assumptions, stochastic subgradient descent algorithms can be applied to such functions to
converge almost surely to a critical point. For our problem (2), the gradient of loss over topology is
differentiable in general. The challenge falls in the constraint of an element value. In our solution,
we use a gradient-based method to update the adjacency matrix via variables relaxation and then
adopt project operation to satisfy such constraint.

D RELATED WORKS

Graph neural networks. GNNs achieve state-of-the-art performance for various real-world applica-
tions. There are two categories in GNNs model backbones, including spectral-based and spatial-based
GNNs. Spectral-based GNNs provide graph convolution operation together with feature transfor-
mation (Bruna et al., 2013; Defferrard et al., 2016; Henaff et al., 2015). Many spatial-based GNNs
are also proposed to aggregate the neighbors’ information, including graph attention network (GAT)
(Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), SGC (Wu et al., 2019), APPNP
(Klicpera et al., 2019), et al (Gao et al., 2018; Monti et al., 2017).

Fairness-aware learning on graphs. Fairness in machine learning has attracted many research
efforts to mitigate prediction bias (Chuang & Mroueh, 2020; Zhang et al., 2018; Du et al., 2021;
Yurochkin & Sun, 2020; Jiang et al., 2022; Creager et al., 2019; Feldman et al., 2015). Fair walk
(Rahman et al., 2019) is a fair version of random walk to learn fair node representation via revising
neighborhood sampling. From the bias mitigation perspective, adversarial debiasing and contrastive
learning are also developed for graph data. For example, works (Dai & Wang, 2021; Bose &
Hamilton, 2019; Fisher et al., 2020) also adopt the adversary to predict the sensitive attribute
given the node representation. fairness-aware representation learning is also developed via node
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feature masking, graph topology rewires (Agarwal et al., 2021; Köse & Shen, 2021) for node
classification or link prediction tasks (Laclau et al., 2021; Li et al., 2021). However, the inherent
reason behind the observation that GNNs show higher prediction bias than MLP is still missing. In
this work, we theoretically and experimentally reveal that many GNNs aggregation schemes boost
node representation bias under topology bias. Furthermore, we develop a simple yet effective graph
refinement method, named FairGR, to achieve fair prediction.

E DATASET STATISTICS

The data statistical information on three real-world datasets, including Pokec-n, Pokec-z, and NBA,
are provided in Table 2. It is seen that the sensitive homophily is even higher than label homophily
coefficient among three real-world datasets, which validates that real-world datasets are usually with
large topology bias.

Table 2: Statistical Information on Datasets

Dataset # Nodes # Node Features # Edges # Training Labels # Training Sens Label Homop Sens Homop

Pokec-n 66569 265 1034094 4398 500 73.23% 95.30%
Pokec-z 67796 276 1235916 5131 500 71.16% 95.06%

NBA 403 95 21242 156 246 39.22% 72.37%

F TRAINING ALGORITHMS

We summarize the training algorithm for FairGR and provide the pseudo codes in Algorithm 1.

Algorithm 1: FairGR Algorithm
Input :Graph topology A, label y, and sensitive attribute s; The total epochs T ;

Hyperparameters α and β.
Output :The fair graph topology Ã.

1 for epoch from 1 to T do
2 Calculate the gradient ∂L(Â|s,y,A)

∂Â
;

3 Update graph topology Ã using gradient descent;
4 Project graph topology Ã into a feasible region;
5 end

G MORE EXPERIMENTAL RESULTS

G.1 MORE SYNTHETIC EXPERIMENTAL RESULTS

In this subsection, we provide more experimental results on different covariance matrix. Although
our theory is only derived for the same covariance matrix, we still observe similar results for the
case of different covariance matrix. For node attribute generation, we generate node attribute with
Gaussian distribution N (µ1,Σ) and N (µ2,Σ) for node with binary sensitive attribute, respectively,

where µ1 = [0, 1], µ1 = [1, 0] and Σ =

[
1 0
0 2

]
. We adopt the same evaluation metric and

adjacency matrix generation scheme in Section 6.1

Figure 4 shows the DP difference during message passing with respect to sensitive homophily
coefficient for different initial covariance matrices. We observe that a higher sensitive homophily
coefficient generally leads to larger bias enhancement. Additionally, higher graph connection
density ρd, larger node number n, and balanced sensitive attribute ratio c correspond to higher bias
enhancement, which is consistent with our theoretical analysis in Theorem 2.
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Figure 4: The difference of demographic parity for message passing with different initial covariance
matrices. Left: DP difference for different graph connection density ρd with sensitive attribute ratio
c = 0.5 and number of nodes n = 104; Middle: DP difference for different number of nodes n with
sensitive attribute ratio c = 0.5 and graph connection density ρd = 10−3; Right: DP difference for
different sensitive attribute ratio c with graph connection density ρd = 10−3 and number of nodes
n = 104.

Pokec_n Pokec_z NBA

Figure 5: Ablation study on hyperparameter α in terms of DP and Acc across different GNN
backbones on three real-world datasets.

G.2 ABLATION STUDY FOR FAIRGR

For investigating the effect of hyperparameters α and β, we conduct experiments with different hy-
perparameters chosen from α = {0.0, 0.1, 0.5, 1.0, 5.0, 10.0} and β = {0.0, 0.1, 0.5, 1.0, 5.0, 10.0}
while the other one is selected as default. The default value for hyperparameters α and β are 0.1 and
0.5, respectively. The results of hyperparamter study with respect to α and β are shown in Figures 5
and 6, respectively. From these results, we can obtain the following observations:

• Hyprparameter α and β demonstrate different influences on GNN backbone. For example, for
Pokec-n dataset, hyperparameter α only shows a negligible influence on the accuracy of GCN and
GAT, while significant for GAT. As for DP, the bias metric is more sensitive to α compared with
accuracy.

• Hyprparameter α and β demonstrate different influences on graph dataset. For example, GAT
achieves the best accuracy and lowest DP with α = 0.1 in NBA dataset, while achieving the
lowest accuracy and highest DP in Pokec-n dataset. Such observation indicates the importance of
hyperparameter tuning for different datasets.

G.3 VANILLA TRAINING BEHAVIORS FOR GNNS AND MLP

For vanilla training across different GNN backbones, we plot the training curve with respect to
epochs to investigate the training behaviors for GNNs and MLP. For the training behavior, GNNs,
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Pokec_n Pokec_z NBA

Figure 6: Ablation study on hyperparameter β in terms of DP and Acc across different GNN
backbones on three real-world datasets.

Pokec_n Pokec_z NBA

Figure 7: Accuracy (top) and DP (bottom) training curve w.r.t. epochs for different backbones,
including GAT, GCN, SGC, and MLP, on three real-world datasets.

and MLP models both converge in terms of accuracy for the high label homophily dataset Pokec-n
and Pokec-z dataset. For high sensitive homophily Pokec-n and Pokec-z dataset, GNNs demonstrate
higher prediction than that MLP, while the prediction bias difference is relatively small for the
low-sensitive-homophily dataset NBA.

G.4 FAIRGR RESULTS ON VANILLA TRAINING

For vanilla training, Figure 8 shows the test accuracy and demographic parity curve during training
for different GNNs backbones and whether FairGR is adopted for graph topology rewire. From these
results, we can obtain the following observations:

• Different GNNs demonstrate different accuracy and demographic parity performance. For example,
for Pokec-n dataset, GCN has the highest accuracy performance and lowest demographic parity,
which implies that message passing also matters even for the same graph topology.

• Our proposed FairGR consistently achieves lower demographic parity and comparable accuracy
performance on all datasets and backbones.

21



Under review as a conference paper at ICLR 2023

Pokec_n Pokec_z NBA

Figure 8: Accuracy (top) and DP (bottom) training curve w.r.t. epochs for different backbones,
including GAT, GCN, SGC, and MLP, on three real-world datasets.

Pokec_n Pokec_z NBA

Figure 9: DP and Accuracy trade-off performance on three real-world datasets, including Poken-n,
Pokec-z, and NBA, in (manifold) Fair Mixup setting.

G.5 TRADEOFF PERFORMANCE ON FAIR MIXUP

We also demonstrate that FairGR can achieve better tradeoff performance for different GNN back-
bones with Fair mixup (Chuang & Mroueh, 2021) in Figure 9. Specifically, since input fair mixup
requires calculating model prediction for mixed input batch, it is non-trivial to adopt input fair mixup
in our experiments on the node classification task. This is because, for GNN aggregations of neigh-
borhoods’ information, the neighborhood information for the mixed input batch is missing. Instead,
we adopt manifold fair mixup for the logit layer in our experiments. Experimental results show that
FairGR can achieve better accuracy-fairness tradeoff performance for many GNNs backbones on
three datasets.

H FUTURE WORK

There are two lines of follow-up research directions. Firstly, The generalization of the theoretical
analysis on why aggregation enhances bias in GNN can be further extended. As a pilot study, we
theoretically investigate why this phenomenon happens for GCN-like aggregation under random
graph topology generated by stochastic block model and Gaussian mixture feature distribution. The
more general analysis of other aggregation operations, random graph models, and other feature
distributions can be extended. The other line focuses on the graph topology rewire algorithmic
perspective, including improving the efficiency of FairGR and effectiveness via designing different
objectives for graph topology rewire.
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