
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LITO: SURFACE LIGHT FIELD TOKENIZATION

Anonymous authors
Paper under double-blind review

Figure 1: LiTo learns to tokenize surface light fields into a latent representation. It models both 3D
geometry and view-dependent appearance like specular reflection. The figure shows reconstructed
(first 3 columns) and single-image-to-3D (last two columns) surface light fields. Please see more
result videos on the supplemental website.

ABSTRACT

We propose a 3D latent representation that jointly models object geometry and
view-dependent appearance. Most prior works focus on either reconstructing 3D
geometry or predicting view-independent diffuse appearance, and thus struggle to
capture realistic view-dependent effects. Our approach leverages that RGB-depth
images provide samples of a surface light field. By encoding random subsamples
of this surface light field into a compact set of latent vectors, our model learns to
represent both geometry and appearance within a unified 3D latent space. This
representation reproduces view-dependent effects such as specular highlights and
Fresnel reflections under complex lighting. We further train a latent flow matching
model on this representation to learn its distribution conditioned on a single input
image, enabling the generation of 3D objects with appearances consistent with the
lighting and materials in the input. Experiments show that our approach achieves
higher visual quality and better input fidelity than existing methods.

1 INTRODUCTION

The world is filled with objects that vary widely in shape and material. Some are smooth and reflective,
while others are rough, detailed or even translucent. Even familiar objects can appear differently
from different viewpoints as light creates reflections and subtle color changes across their surfaces.
Capturing this richness is important for building generative models of realistic objects. To do so, we
need representations that can model both the underlying 3D geometry of real-world objects as well as
their view-dependent appearance.

However, today in machine learning, most existing 3D representations tackle only part of this problem.
Many methods are designed to capture geometry alone (He et al., 2025; Li et al., 2025a; Chang
et al., 2024), aiming to recover the overall shape of objects. Other approaches (Xiang et al., 2025)
include appearance information, but treat it as view-independent diffuse color. As a result, these

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

models struggle to represent view-dependent effects such as reflections, highlights, or subtle changes
in shading that are important for realistic appearance.

In this work, we aim to model both the 3D geometry and the view-dependent appearances of objects.
We introduce a 3D latent representation that encodes a surface light field into a compact set of latent
vectors. In summary, rather than encoding geometry and color only, e.g. with an input RGB point
cloud, we additionally input viewing direction along with surface points and color, to capture how
realistic materials change appearance with angle. Because a full surface light field contains highly
dense information, we instead provide a random subsample of the surface light field—captured
from RGB-depth multiview images—and rely on an encoder to interpolate the missing samples.
This approach allows the model to reproduce view-dependent effects such as highlights and Fresnel
reflections, that can be visualized via a decoder that outputs Gaussian splats with higher-order
spherical harmonics (Kerbl et al., 2023). We evaluate our method by comparing its reconstruction
quality against the state-of-the-art 3D latent representations (Xiang et al., 2025; Li et al., 2025a; He
et al., 2025; Chen et al., 2025b; Chang et al., 2024), and find that modeling these view-dependent
effects improve visual quality without significant degradation in geometric accuracy.

Building on the proposed representation, we train a latent flow matching model that learns the
distribution of our 3D latent representations conditioned on a single input image. The generative
model learns to infer both geometry and view-dependent appearance from images under different
lighting conditions. Given an input image, the model generates a full 3D object whose shape matches
the object in the image from the input viewpoint and whose appearance reflects the lighting and
view-dependent material properties present in the input. Our approach connects 2D observations to
3D object generation, enabling controllable synthesis of realistic, view-dependent materials from
diverse image inputs.

Our work makes the following contributions.

• We introduce a 3D latent representation that captures both geometry and view-dependent appear-
ances by encoding surface light field information into a compact set of latent vectors.

• We design a training framework that jointly supervises geometry and appearance using random
subsamples of surface light field data from RGB-depth multiview images, enabling the model to
reproduce view-dependent effects such as highlights and fresnel reflections via Gaussian splats
with higher-order spherical harmonics.

• We develop a latent flow matching model that learns the distribution of these latent representations
conditioned on images, allowing the generation of full 3D objects whose appearances reflect the
lighting and materials in the input.

Together, these components enable more accurate reconstruction and better separation of geometry
and appearance than existing methods. We plan to release our code and pretrained models.

2 RELATED WORKS

A growing number of recent approaches have explored learning latent 3D representations. In Table S1,
we summarize and compare their properties, including geometry and appearance modeling mech-
anisms, data requirements, latent dimensionality, encoder inputs, and training sets. For clarity, we
review geometry-only approaches and those that jointly model geometry and appearance separately.

Geometry-only latent. A large body of work focuses on latent representations that model geometry
alone. These approaches differ primarily in the underlying 3D signal they encode. PointFlow (Yang
et al., 2019), ShapeGF (Cai et al., 2020), and ShapeToken (Chang et al., 2024) learn to model 3D
surfaces as 3D distributions. 3DShape2VecSet (Zhang et al., 2023), CLAY (Zhang et al., 2024),
TripoSG (Li et al., 2025a), and Hunyuan3D (Zhao et al., 2025), instead model shapes as occupancy or
signed distance functions (SDF). Direct3D (Wu et al., 2024), XCube (Ren et al., 2024), LT3SD (Meng
et al., 2025), and Make-A-Shape (Hui et al., 2024) embed geometry into dense or sparse voxel grids
containing occupancy or SDF values at vertices. While grid-based methods offer structured latents,
they face inherent trade-offs between spatial resolution and memory efficiency. A common limitation
when relying on occupancy or SDF, however, is the reliance on significant preprocessing of the
training data. Many methods require watertight meshes (Zhang et al., 2023; 2022; 2024), expensive

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of the 3D latent representation. Given samples of the surface light field of the
scene, we learn a latent representation that reconstruct the full surface light field information. The
encoder (pink block) condenses input information into the latent representation. We jointly supervise
the latent representation to contain full 3D geometry and view-dependent radiance information
beyond the input samples. In the architectures, we design localized attention pattern to improve
efficiency and support 1 million input tokens.

mesh-to-field conversions, or optimization-based radiance-field fitting in order to define consistent
supervision signals. Moreover, these methods capture only geometry, without appearance, texture, or
view-dependent effects.

Geometry and appearance latent. More recently, a smaller set of works has begun to extend latent
3D representations beyond pure geometry to also encode appearance. Two of the most relevant are
3DTopia-XL (Chen et al., 2025b) and TRELLIS (Xiang et al., 2025).

3DTopia-XL introduces the PrimX representation, where each primitive encodes not only geometry
through signed distance but also material properties such as RGB color, roughness, and metallicity.
This design allows the model to generate textured 3D assets that are ready for physically based
rendering. However, PrimX requires an optimization step to construct the primitive representation
from meshes before training, making data preparation more demanding.

TRELLIS introduces a Structured LATent (SLAT) representation: a sparse voxel grid fused with dense
multiview visual features extracted by a foundation vision model (DINOv2) to provide both geometry
and appearance cues. Given the coarse geometry of an object, SLAT is constructed by averaging
projected DINOv2 features from all input views. The model decodes SLAT into multiple output
3D formats, including 3D Gaussians, meshes, and radiance fields. To handle the sparsity of SLAT
efficiently, TRELLIS employs transformers with windowed attention and sparse 3D convolution, and
it is trained at scale on roughly 500K assets from Objaverse-XL and related datasets.

TRELLIS has several limitations relative to our approach. First, SLAT requires coarse occupancy
information to be known in advance, so generation is performed in two stages, whereas our latent
directly encodes complete object information and supports single-stage generation. Second, TRELLIS
encodes only view-independent appearance: multiview features are mean-pooled, discarding angular
variation and preventing modeling of view-dependent effects. Finally, TRELLIS generates objects in
a canonical coordinate system (i.e., their dataset orientation), which necessitates post-processing to
align them with input images if needed. This restriction arises from its reliance on preconstructed axis-
aligned voxel grids, which makes coordinate transformations like rotation during training difficult. In
contrast, our model takes points as input, which allows us to apply coordinate transformations during
training, ensuring generated objects are consistently oriented with respect to the input view.

3 METHOD

3.1 PRELIMINARY AND NOTATION

The surface light field jointly models both the 3D surfaces of a scene as well as the outgoing
radiance from each point on the surface toward every viewing direction. In theory, if the surface
light field is perfectly represented, any image captured by a camera at any arbitrary location and
orientation can be directly reconstructed (Wood et al., 2000). We represent the surface light field
as a 5D function ℓ(x, d̂) : R3×S2 → R3, where x ∈ ∂Ω is any 3D location on surfaces ∂Ω,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

d̂ ∈ S2 = {v|v ∈ R3, ∥v∥ = 1} is the viewing direction, and c ∈ R3 is the color of the outgoing
radiance from x toward d̂.

We use bold lowercase symbols (e.g., v) to denote vectors, bold lowercase symbols with hats (e.g.,
v̂) for unit-norm directions, capital letters (e.g., A) for matrices or transformations, and calligraphic
symbols (e.g., S) for sets.

3.2 OVERVIEW

Our goal is to learn a 3D latent representation that models the surface light field of an object-centric
scene with a compact set of latent vectors s ∈ S . Fig. 2 shows an overview of our latent representation.
Our encoder E takes N samples of the surface light field defined in the following as input and outputs
a small set of k latent tokens of dimension d:

X = {(xi, d̂i, ci=ℓ(xi, d̂i))}Ni=1. (1)

To learn a meaningful representation of the surface light field, we must supervise both the decoded
3D geometry as well as view-dependent radiance. A trivial solution would utilize an autoencoder
formulation that directly reconstructs the input X . However, in practice we only have sparse, discrete
samples of the surface light field (e.g., as rendered from multiview images of a training object), and
thus such an approach may not meaningfully represent the entire continuous function ℓ. Thus, rather
than directly supervising with the surface light field, we instead opt for indirect supervision with
carefully-designed loss functions on decoded geometry and view-dependent appearance:

Geometry supervision. We utilize prior work (Chang et al., 2024), which models 3D surfaces as
a 3D probabilistic density function that is aligned with the actual surfaces via flow matching. This
formulation enables us to model 3D surfaces beyond the input 3D locations. Specifically, the latent s
is trained to parameterize a 3D distribution p(x|s) that approximates a dirac delta function lying on
3D surfaces in the scene, i.e., p(x|s) ≈ δ(x ∈ ∂Ω). The flow matching formulation also optionally
allows us to sample p(x|s) and get a point cloud lying on surfaces during inference, and zero-shot
estimate surface normals.

The loss function follows that used by Chang et al. (2024):

Lgeo(θ) = Et∼u(0,1)Ex∥V (xt; t)− (x− ϵ)∥2 dt , (2)

where θ is all parameters in the encoder and the decoder, t is the flow-matching time, u(0, 1) is the
uniform distribution between 0 and 1, ϵ is noise sampled from standard normal distribution, Vθ(xt; t)
is the flow-matching decoder that estimates the velocity at xt = x+ (1− t) ∗ ϵ, and x is sampled
from the surface light field.

View-dependent radiance supervision. The supervision of the view-dependent radiance is through
rendering multi-view images. Specifically, we convert the latent s into a set of 3D Gaussians, which
models view-dependent color by spherical harmonics, and we render the 3D Gaussians from random
viewpoints and compare with ground-truth images. The loss is

Lradiance(θ) = EH,E∥Iest − Igt∥2 + λ lpips (Iest, Igt) , (3)

where Iest = Render(D(s,O), H,E) is the rendered image from 3D Gaussians at camera pose
H and intrinsic E, Igt = Render(object, H,E) is the ground-truth image, D is the Gaussian
decoder that will be detailed below, D(s,O) are the estimated 3D Gaussians given the latent s and a
low-resolution sparse occupancy grid O constructed from the sampled point cloud or an occupancy
estimator, and θ is all parameters in the encoder and the decoder. In all experiments, we use λ = 0.2.

In the rest of this section, we discuss the architectures for our surface light-field encoder, geometry
decoder and Gaussian decoder in more detail.

3.3 ENCODER

We first describe how we sample surface light field to obtain the input to the encoder and the samples
for the empirical mean in Eq. (2). Then we detail our encoder architecture.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Input. To sample from the surface light field ℓ(x, d̂), we need to sample random surface locations
and view directions. We achieve this by densely rendering multi-view RGBD images. Since we focus
on object-centric scenes, the cameras are placed uniformly on a sphere surrounding the object. The
surface location x can be obtained by back-projecting the depth map, view direction d̂i is derived
from the pinhole camera model, and ci from the pixel color1. This operation densely samples both
the surfaces and viewing directions and returns X = {(xi, d̂i, ci)}Ni=1.

In our experiments, we box-normalize the scene to [−1, 1], and we render 150 images of resolution
1036×1036 with 40 degree field of view, uniformly on a sphere of radius 3.5. This provides 160
million samples of light field ℓ introduced in Sec. 3.1, of which we randomly sample N=220 as our
input to the encoder and the rest to serve as the ground-truth to supervise Eq. (2).

Architecture. We use Perceiver IO (Jaegle et al., 2022) as our encoder, which is widely used in
prior latent 3D representations (Chang et al., 2024; Zhang et al., 2023; Li et al., 2025a). The encoder
contains cross and self attention blocks, and the number of the initial queries of the first cross attention
block determines the number of output latent tokens. The output of the Perceiver IO is passed to a
linear layer to reduce the latent dimension to d. Our latent is thus a set of k tokens of d dimension
discussed in Sec. 3.2.

To capture enough information from light field ℓ introduced in Sec. 3.1, we use N = 220 (∼1
million) samples as input. However, the large number of input tokens makes the typical cross
attention in Perceiver IO computationally expensive. To solve the problem, we are inspired by the
non-overlapping patchification in Vision Transformers (Dosovitskiy et al., 2021), which converts
dense pixels into coarse tokens. Instead of using a convolution layer to aggregate information from
individual 16 × 16 patches into tokens, we use cross attention. However, our inputs are scattered
points on 3D surfaces instead of pixels on a regular grid, and it is non-trivial to patchify 3D surfaces.

Figure 3: 3D patchification

We design an approximation of 2D patchification on 3D sur-
faces with k-nearest neighbor. Specifically, given the input
samples X in Eq. (1), we first randomly select k samples as the
query Q to the first cross attention layer, similar to Zhang et al.
(2023). The number of samples is equal to the number of latent
tokens, which is 8192 in our setup. To patchify 3D surface, for
each sample x ∈ X we find its closest point in Q in terms of
ℓ2 distance of x and assign the index of the closest point to the
sample. Finally, during the cross attention, a query only attends
to input samples that have its index. This operation can be
implemented by standard libraries like xformers (Lefaudeux
et al., 2022) or FlashAttention (Dao, 2024).

An illustration is shown in Fig. 3. Note that this is an approximation because we use ℓ2 distance of x
instead of geodesic distance. When there are more than one surface lie in the neighborhood, the query
will attend across surfaces. As ℓ2 distance is much faster to compute than the geodesic distance, we
think it is a good trade-off.

For self attention, we use a voxel-based attention mechanism. Specifically, during self attention,
tokens that lie within a predefined coarse voxel grid attend to each other, and the coarse voxel grid
shifts by a half cell width every layer. Note that unlike TRELLIS (Xiang et al., 2025), whose tokens
lie on a voxel grid, our tokens have continuous coordinates and do not lie on a voxel grid. Overall,
the encoder has 59.2 million parameters. Together with decoders below, the model is trained with
256 batch size for 90k iterations on 64 GPUs for 9 days.

3.4 DECODER

Flow-matching velocity decoder. We utilize the same flow-matching velocity decoder used by
Chang et al. (2024). Specifically, it takes the latent s, a 3D location, and flow-matching time as input,
and it predicts the flow-matching velocity at the 3D location. To ensure we model a 3D distribution,
i.e., p(x|s), the decoder processes each 3D point independently (only cross attention and point-wise
operations are used). The decoder has 8.8 million parameters.

1We assume the depth map measures the distance to the first intersection point of the scene, regardless of
transparency. For example, in blender, this can be achieved by setting the alpha threshold to be 0.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Reconstruction results on various lighting conditions. Boxes on ground-truth highlight
specular and Fresnel reflection. Please refer to Tab. 1 for quantitative results. Mesh credit: Digital-
Souls (2019); 3Dji (2025b); of Małopolska (2020).

View-dependent Gaussian decoder. Similar to our encoder, we use a Perceiver IO architecture (Jae-
gle et al., 2022) to implement our Gaussian decoder. We use a low-resolution sparse occupancy grid
for our initial queries, and cross attend to the predicted latent s. At the output, we use a small MLP to
output 64 3D Gaussians for each occupied voxels. Unlike past work that only uses Gaussians with
view-independent color (Xiang et al., 2025), our decoder predicts Gaussians of spherical harmonics
degree 3 to model view-dependent radiance. The decoder has 77.3 million parameters.

At training time, we use ground-truth occupancy for the decoder queries, like recent work leveraging
structured latent representations (Xiang et al., 2025; He et al., 2025; Wu et al., 2025). After learning
the representation, we can either use points sampled from the aforementioned flow-matching geometry
decoder or alternatively train a downstream occupancy decoder, to directly predict sparse occupied
voxels from the encoded latent. Thus, at generation time, our approach does not require a second
generative model to predict occupancy unlike structured latent-based approaches (Xiang et al., 2025;
He et al., 2025; Wu et al., 2025), simplifying the overall pipeline.

3.5 GENERATIVE MODEL

To demonstrate our latent representation, we train a flow-matching model that generates 3D latents
conditioned on an image of an object. We rely on a standard Diffusion Transformer (DiT) architec-
ture (Peebles & Xie, 2022), with a zero-initialized learnable positional encoding for each latent token.
The input image is encoded by DINOv2-large image embeddings (Oquab et al., 2024) and a learnable
patchification layer. While we originally considered using more explicit camera geometry encoding,
e.g., Plucker ray embeddings, we found in practice that such an approach reduced overall performance
— please see the supplement for an ablation. In total, the model has 623 million parameters.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Single image to 3D results. The input image is shown at the center of each set with black
border. The rendering of the generated image at the input view (+x, 0, 0) is shown with the input
image. Please refer to Tab. 3 for quantitative results. Mesh credit: Vetech82 (2021); Rigsters (2017);
3d coat (2015); 3Dji (2025a).

4 EXPERIMENTS

Following the typical latent generation pipeline, we first train the latent representation, and once
learned, we then train a latent flow-matching model conditioned on an input image. We discuss the
training and evaluation of our latent representation in Section 4.1, and our generative image-to-3d
model in Section 4.2.

4.1 RECONSTRUCTION

Datasets. We train the encoder-decoder on the 500k high-quality object subset of Objaverse-
XL (Deitke et al., 2023) as selected by TRELLIS (Xiang et al., 2025). Unlike TRELLIS, instead
of using all 500k objects for training, we divide the data into training, validation, and test sets in

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Reconstruction on Toys4k. We provide input needed by individual methods. TRELLIS (Xi-
ang et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours uses RGBD
images from 150 evenly distributed views. For appearance evaluation, we render each model’s output
from 100 random cameras, varying difficulty by adjusting camera radius. Please refer to Fig. 4 for
qualitative results and Sec. C for comprehensive quantitative results. The better one is highlighted.

Method
Simple, Camera Radius [3, 4] Hard, Camera Radius [1, 3]

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TRELLIS 31.12±3.39 0.974±0.022 0.034±0.022 27.57±3.38 0.941±0.050 0.090±0.055

Ours 34.16±3.39 0.985±0.016 0.023±0.018 32.36±3.77 0.967±0.040 0.055±0.046

Table 2: Geometric reconstruction evaluation. We report squared Chamfer distances multiplied by
104 for readability, computed using 100k sampled points each from ground-truth and reconstruction.
As 3DTopia-XL (Chen et al., 2025b) and TripoSG (Li et al., 2025a) can be sensitive to input
geometry, we also list variants with their worst-performing 10% of objects removed. We separate our
tested approaches based on those that require ground-truth coarse geometry for decoding the latent
representation, and those that do not utilize this information. Our method outputs the best geometry
among the approaches in the latter category, and it is competitive with the techniques in the former.
Red highlights the best method in each category.

Method Appearance Latent size PBR-Objaverse Toys4k GSO
0 GT - - 0.482±0.245 0.422±0.268 0.533±0.273

Requires coarse geometry oracle:
1 TripoSF (He et al., 2025) ✗ ≈ 244k × 11 0.632±0.583 0.557±0.593 0.714±0.738
2 TRELLIS (Xiang et al., 2025) ✓ ≈ 20k × 11 0.616±0.277 0.608±0.437 0.737±0.331
3-1 3DTopia-XL (Chen et al., 2025b) ✓ 2048 × 64 124.8±720.2 17.52±115.8 0.693±0.434
3-2 (worst 10% removed) ✓ 2048 × 64 4.702±13.47 0.895±1.330 0.612±0.331
4 Ours (oracle, mesh decoder) ✓ 8192 × 32 0.558±0.316 0.506±0.439 0.654±0.338

Does not utilize coarse geometry oracle:
5-1 TripoSG (Li et al., 2025a) ✗ 2048 × 64 33.43±74.25 36.49±63.83 46.41±88.86
5-2 (worst 10% removed) ✗ 2048 × 64 14.88±21.35 20.36±27.33 21.89±39.35
6 Shape Tokens (Chang et al., 2024) ✗ 1024 × 16 1.116±0.447 1.062±0.591 1.240±0.482
7-1 Ours (no mesh decoder) ✓ 8192 × 32 0.720±0.321 0.668±0.385 0.816±0.396
7-2 Ours (mesh decoder) ✓ 8192 × 32 0.569±0.332 0.524±0.484 0.665±0.355

an 8:1:1 ratio. For each object, we pair it with 3 lighting conditions: 1) fixed smooth area lighting
(matching TRELLIS)2, 2) an all-white environment map, and 3) randomly placed lights. For each
configuration, we render using Blender from 150 viewpoints uniformly distributed on a sphere, to
sample the surface light field as input for our encoder. We render from 100 random viewpoints to
supervise our view-dependent Gaussian decoder.

We evaluate the models on Toys4k (Stojanov et al., 2021), GSO (Downs et al., 2022), and Objaverse-
XL (Deitke et al., 2023). For Objaverse-XL, we select a subset of 200 objects with PBR materials,
which we dub PBR-Objaverse.

Qualitative results: Fig. 4 shows a few objects with view-dependent appearance, including specular
reflections from metallic surfaces and Fresnel reflections when viewed at grazing angles. Please see
our supplemental website for more informative visualizations.

Quantitative results (appearance): To evaluate appearance quality, we render the 3DGS from 100
random views on a sphere and measure PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al.,
2018). Tab. 1 shows reconstruction metrics under different zoom-in levels on the Toys4k dataset
rendered with TRELLIS’s training lighting condition. Our surface light-field representation outper-
forms competitor appearance representations across all the tested metrics. More evaluations on other
datasets are described in Sec. C.

Quantitative results (geometry): To evaluate the quality of reconstructed 3D geometry, we estimate
ground truth point clouds by unprojecting the rendered depth of a target object from 100 uniformly
distributed views on the sphere and randomly selecting 100k reference points. We then compute
Chamfer distance between these ground truth point clouds and reconstructed point clouds from latent

2https://github.com/microsoft/TRELLIS/blob/6b0d64751ad54d9c3/dataset_
toolkits/blender_script/render.py#L178-L209

8

https://github.com/microsoft/TRELLIS/blob/6b0d64751ad54d9c3/dataset_toolkits/blender_script/render.py#L178-L209
https://github.com/microsoft/TRELLIS/blob/6b0d64751ad54d9c3/dataset_toolkits/blender_script/render.py#L178-L209


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: Fidelity to input view. Our image-to-3d generative model respects the coordinate system
of the input view. In contrast, existing state-of-the-art techniques, e.g., TRELLIS (Xiang et al., 2025),
do not. Mesh credit: of Małopolska (2016); animanyarty (2022).

representations. For our method and Chang et al. (2024), we sample 100k points from the flow-
matching velocity decoder to produce the output point cloud. For baselines that output meshes (Xiang
et al., 2025; Li et al., 2025a; He et al., 2025), similar to the ground truth points, we unproject rendered
depth from another set of 100 views on the sphere and select 100k points for the Chamfer calculation.

Table S9 shows geometry evaluation when input is lit with TRELLIS’s training lighting condition.
Our method is competitive with recent geometry-only latent representations, despite additionally
representing appearance information. Furthermore, our geometry estimates do not utilize additional
ground truth coarse geometry information that other state-of-the-art approaches require (Xiang et al.,
2025; He et al., 2025).

Table 3: Single-image-conditioned generation on Toys4k. KID is reported by ×100. CFG scale for
both models are 3.0. The best is highlighted. See Fig. 5, 6 and supp. website for qualitative results.

Method CLIP↑ Conditioning View Novel View
FID↓ KID↓ FIDdino↓ KIDdino↓ FID↓ KID↓ FIDdino↓ KIDdino↓

TRELLIS 0.899±0.045 12.84 0.088 84.692 2.311 7.600 0.100 67.458 3.166
Ours 0.905±0.041 6.219 0.009 41.621 1.333 6.216 0.058 66.530 3.522

4.2 GENERATION

We train our image-to-3D DiT on the same tokenizer-training set for 280k iterations (effective batch
size of 256 on 128 H100 GPUs for 9 days). We evaluate generation results with the same fixed area
lighting as TRELLIS to allow a fair comparison. We qualitatively evaluate our model’s performance in
Fig. 5. Our model generates complex geometry and view-dependent appearance, despite being trained
on other lighting types. Please see our supplemental website for more informative visualizations.
We also visualize our model’s input view fidelity compared to TRELLIS in Fig. 6.

To quantitatively evaluate the quality of our image-to-3d generative model, we calculate two
distribution-wise metrics. First, to evaluate the fidelity of the generative model to the input content,
we render the generated 3D asset at the same pose as the conditioning view. As shown in Table 3, our
approach produces significantly improved FID and KID scores in this setting compared to TRELLIS.
Second, to measure the overall quality of the generated asset, we render from four novel views
distributed around the object at a pitch of 30◦, following the evaluation setup of TRELLIS (Xiang
et al., 2025). As shown in Table 3, despite our model’s increased faithfulness to the input view, the
overall generation performance does not significantly degrade.

5 CONCLUSION

We propose an autoencoder that learns a compact latent space for view-dependent 3D assets. In
particular, we build an encoding of the surface light field, that can be easily produced via multi-view
RGBD rendering. With a flow-matching geometry decoder and a view-dependent Gaussian decoder,
our representation can be easily applied with an off-the-shelf DiT for generating view-dependent 3D
assets. We validate the performance of our view-dependent 3d representation in both reconstruction
and generation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

1812panorama. Drummer of the revel infantry regiment, 2019. URL https://skfb.ly/6Xq6W.
Licensed under CC0 Public Domain. 16

3d coat. Robot steampunk 3d-coat 4.5 pbr, 2015. URL https://skfb.ly/EEIE. Licensed
under Creative Commons Attribution. 7

3Dji. Mechanical beast, 2025a. URL https://skfb.ly/pAFoE. Licensed under Creative
Commons Attribution. 7

3Dji. Coffee grinder, 2025b. URL https://skfb.ly/pzpn7. Licensed under Creative Com-
mons Attribution. 6

a108082046. Telephone, 2022. URL https://skfb.ly/ovDBJ. Licensed under CC Attribution.
16

AdamJonesCGD. Conrad carriage, 2020. URL https://skfb.ly/oyy9z. Licensed under CC
Attribution. 16

Conseil des musées Alienor.org. La grand’ goule, 2016. URL https://skfb.ly/UvvD. Li-
censed under CC Attribution-NonCommercial-NoDerivs. 16

alzarac. Hypostomus / coroncoro, 2019. URL https://skfb.ly/6W8Dz. Licensed under CC
Attribution. 16

animanyarty. Motorcycle, 2022. URL https://sketchfab.com/3d-models/
motorcycle-38404e2077ca4b209cd2f1db30541b94. Licensed under Creative Com-
mons Attribution. 9

Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, and
Bharath Hariharan. Learning gradient fields for shape generation. In European Conference on
Computer Vision (ECCV), pp. 364–381. Springer, 2020. 2, 15

Jen-Hao Rick Chang, Yuyang Wang, Miguel Angel Bautista Martin, Jiatao Gu, Xiaoming Zhao, Josh
Susskind, and Oncel Tuzel. 3D Shape Tokenization via Latent Flow Matching. arXiv preprint
arXiv:2412.15618, 2024. 1, 2, 4, 5, 8, 9, 14, 15, 21

Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao Long,
Jiashi Feng, and Ping Tan. Dora: Sampling and Benchmarking for 3D Shape Variational Auto-
Encoders. In CVPR, 2025a. 15

Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao, Fangzhou Hong, Yushi Lan, Tengfei Wang,
Haozhe Xie, Tong Wu, Shunsuke Saito, et al. 3DTopia-XL: Scaling high-quality 3d asset generation
via primitive diffusion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 26576–26586, 2025b. 2, 3, 8, 14, 15, 21

Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed
distance functions. In IEEE International Conference on Computer Vision (ICCV), pp. 2262–2272,
2023. 15

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), 2024. 5

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi,
Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl:
A universe of 10m+ 3d objects. arXiv preprint arXiv:2307.05663, 2023. 7, 8

DigitalSouls. Delicious red apple, 2019. URL https://skfb.ly/6RxAt. Licensed under
Creative Commons Attribution-NonCommercial. 6, 26

10

https://skfb.ly/6Xq6W
https://skfb.ly/EEIE
https://skfb.ly/pAFoE
https://skfb.ly/pzpn7
https://skfb.ly/ovDBJ
https://skfb.ly/oyy9z
https://skfb.ly/UvvD
https://skfb.ly/6W8Dz
https://sketchfab.com/3d-models/motorcycle-38404e2077ca4b209cd2f1db30541b94
https://sketchfab.com/3d-models/motorcycle-38404e2077ca4b209cd2f1db30541b94
https://skfb.ly/6RxAt


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
In ICLR, 2021. 5

Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Michael Hickman, Krista
Reymann, Thomas Barlow McHugh, and Vincent Vanhoucke. Google Scanned Objects: A
High-Quality Dataset of 3D Scanned Household Items. 2022. 8

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025. 19

GJ2012. Toaster - kitchenaid artsan, 2013. URL https://www.blendswap.com/blend/
8552. Licensed under CC0. 16

Xianglong He, Zi-Xin Zou, Chia-Hao Chen, Yuan-Chen Guo, Ding Liang, Chun Yuan, Wanli Ouyang,
Yan-Pei Cao, and Yangguang Li. SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape
Modeling. arxiv, 2025. 1, 2, 6, 8, 9, 14, 15, 21

Ka-Hei Hui, Aditya Sanghi, Arianna Rampini, Kamal Rahimi Malekshan, Zhengzhe Liu, Hooman
Shayani, and Chi-Wing Fu. Make-a-shape: a ten-million-scale 3d shape model. In International
Conference on Machine Learning (ICML), 2024. 2, 15

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver IO: a
General Architecture for Structured Inputs & Outputs. In ICLR, 2022. 5, 6

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3D Gaussian
Splatting for Real-Time Radiance Field Rendering. TOG, 2023. 2

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers, 2022. 5

Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. TripoSG: High-Fidelity 3D Shape Synthesis
using Large-Scale Rectified Flow Models. arXiv, 2025a. 1, 2, 5, 8, 9, 15, 21

Zhihao Li, Yufei Wang, Heliang Zheng, Yihao Luo, and Bihan Wen. Sparc3D: Sparse representation
and construction for high-resolution 3d shapes modeling. arXiv preprint arXiv:2505.14521, 2025b.
15

S. Luo and W. Hu. Diffusion probabilistic models for 3d point cloud generation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021. 15

Quan Meng, Lei Li, Matthias Nießner, and Angela Dai. LT3SD: Latent trees for 3d scene diffusion.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 650–660, 2025. 2,
15

nastasyas. Gart_220_centaur, 2019. URL https://skfb.ly/6WR7W. Licensed under CC
Attribution. 16

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system
for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751, 2022. 15

Virtual Museums of Małopolska. Black and white “belweder”, 2016. URL https://skfb.ly/
NnEr. Licensed under Creative Commons 0 Public Domain. 9

Virtual Museums of Małopolska. Coffee grinder, 2020. URL https://skfb.ly/6VyBJ.
Licensed under Creative Commons 0 Public Domain. 6

11

https://www.blendswap.com/blend/8552
https://www.blendswap.com/blend/8552
https://github.com/facebookresearch/xformers
https://skfb.ly/6WR7W
https://skfb.ly/NnEr
https://skfb.ly/NnEr
https://skfb.ly/6VyBJ


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas
Ballas, Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li, Ishan Misra,
Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou, Julien Mairal,
Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning Robust Visual Features
without Supervision. TMLR, 2024. 6

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022. 6

Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. XCube:
Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies. In CVPR, 2024. 2, 15

Rigsters. Lion crushing a serpent, 2017. URL https://skfb.ly/68s9T. Licensed under
Creative Commons Attribution. 7

Stefan Stojanov, Anh Thai, and James M. Rehg. Using Shape to Categorize: Low-Shot Learning
with an Explicit Shape Bias. In CVPR, 2021. 8

Zhicong Tang, Shuyang Gu, Chunyu Wang, Ting Zhang, Jianmin Bao, Dong Chen, and Baining Guo.
Volumediffusion: Flexible text-to-3d generation with efficient volumetric encoder. arXiv preprint
arXiv:2312.11459, 2023. 15

Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. Lion:
Latent point diffusion models for 3d shape generation. Advances in Neural Information Processing
Systems (NeurIPS), 35:10021–10039, 2022. 15

Vetech82. Metal dragon, 2021. URL https://skfb.ly/o8wB9. Licensed under Creative
Commons Attribution. 7, 26

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet models
for refraction through rough surfaces. In Proceedings of the 18th Eurographics Conference on
Rendering Techniques, EGSR’07, pp. 195–206, Goslar, DEU, 2007. Eurographics Association.
ISBN 9783905673524. 22

Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun,
Xin Tong, and Jiaolong Yang. Moge-2: Accurate monocular geometry with metric scale and sharp
details, 2025. URL https://arxiv.org/abs/2507.02546. 17

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004. 8

Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H. Salesin,
and Werner Stuetzle. Surface light fields for 3d photography. In Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 287–296,
2000. 3

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer. In NeurIPS,
2024. 2, 15

Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Yikang Yang, Yajie Bao, Jiachen Qian, Siyu Zhu,
Xun Cao, Philip Torr, et al. Direct3d-s2: Gigascale 3d generation made easy with spatial sparse
attention. arXiv preprint arXiv:2505.17412, 2025. 6, 14, 15

Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21469–21480, 2025. 1, 2, 3,
5, 6, 7, 8, 9, 14, 15, 17, 18, 19, 21

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
PointFlow: 3D point cloud generation with continuous normalizing flows. In IEEE International
Conference on Computer Vision (ICCV), 2019. 2, 15

12

https://skfb.ly/68s9T
https://skfb.ly/o8wB9
https://arxiv.org/abs/2507.02546


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiayu Yang, Taizhang Shang, Weixuan Sun, Xibin Song, Ziang Chen, Senbo Wang, Shenzhou Chen,
Weizhe Liu, Hongdong Li, and Pan Ji. Pandora3D: A Comprehensive Framework for High-Quality
3D Shape and Texture Generation. arXiv, 2025. 15

Lior Yariv, Omri Puny, Oran Gafni, and Yaron Lipman. Mosaic-sdf for 3d generative models. In
CVPR, 2024. 15

Biao Zhang, Matthias Nießner, and Peter Wonka. 3DILG: Irregular Latent Grids for 3D Generative
Modeling. In NeurIPS, 2022. 2, 15

Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3DShape2VecSet: A 3D Shape
Representation for Neural Fields and Generative Diffusion Models. TOG, 2023. 2, 5, 15

Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
Xu, and Jingyi Yu. CLAY: A Controllable Large-scale Generative Model for Creating High-quality
3D Assets. TOG, 2024. 2, 15

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. CVPR, 2018. 8

Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, BIN FU, Tao Chen, Gang YU,
and Shenghua Gao. Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text
Aligned Latent Representation. In NeurIPS, 2023. 15

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng, Mingxin
Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3D 2.0: Scaling Diffusion Models for High
Resolution Textured 3D Assets Generation. arXiv, 2025. 2, 15

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX – LITO: SURFACE LIGHT FIELD TOKENIZATION

This supplement is organized as follows:

1. Sec. A discusses more on related works;
2. Sec. B discusses limitations;
3. Sec. C provides more comprehensive reconstruction quantitative results;
4. Sec. D provides more comprehensive generation quantitative results;
5. Sec. E introduces more implementation details;
6. Sec. F showcases more studies.

A MORE RELATED WORKS

Tab. S1 provides an overview of related works with respect to 1) how they model the geometry; 2)
how they model the appearance; 3) the requirements on the data preparation to enable the model
training; 4) the compactness of the latent size; 5) the input to the encoder and the training dataset.

B LIMITATIONS

We utilize 3D Gaussians with spherical harmonics to model surface light field. While we show that
the improved reconstruction quality as we increase the degree of the spherical harmonics, we are
constraint by the 3DGS implementation that supports up to degree 3, which limits our capability to
faithfully reconstruct transparent or high-frequency specularities.

LiTO slightly underperforms some recent work in 3D representation learning in terms of geometric
reconstruction accuracy. We hypothesize a few reasons. First, as mentioned in the main paper, many
recent approaches (He et al., 2025; Xiang et al., 2025; Wu et al., 2025; Chen et al., 2025b) rely on
structured representations and take coarse ground-truth geometry as input. This allows the latent
representation to focus on local finegrind geometry as coarse information is provided at decoding that
our approach does not utilize. Second, our approach relies on the flow-matching velocity decoder
proposed by (Chang et al., 2024) to estimate geometry. While this decoder has many theoretical
strengths, e.g., zero-shot normal estimation, it can also produce noise in the geometry estimation
thanks to the inherent probabilistic decoding. The small capacity of the velocity decoder limits the
frequency of the learned score function and in terms contributes to the noise in the sampled point
cloud, resulting in increased Chamfer distance.

C COMPREHENSIVE RECONSTRUCTION RESULTS

We provide comprehensive quantitative results for reconstruction in Tab. S2, S3, and S4. As discussed
in Sec. 4.1, we pair each dataset with three distinct lighting conditions to thoroughly evaluate the
appearance modeling capabilities of our method. Unlike previous approaches, which primarily assess
performance on zoomed-out views, we additionally evaluate appearance modeling under close-up
settings. Close-up views demand greater fidelity in capturing high-frequency details, where all
methods face challenges; nevertheless, LiTo consistently demonstrates the most robust performance.

Further, we provide qualitative results for reconstructed mesh in Fig. S1.

C.1 ABLATIONS ON MODEL DESIGNS

As far as we know (see Tab. S1), we are the first to utilize 1) viewing directions in the encoder; and 2)
higher order spherical harmonics in the decoder during 3D asset tokenization training. Thus, we are
mainly interested in understanding the effects of these design choices.

When examining LPIPS across Tab. S2, S3, and S4, we observe: 1) increasing the degree of spherical
harmonics from 0 to 3 improves the capacity consistently, e.g., from row 1-3 to 1-6 (or row 2-3 to
2-6, 3-3 to 3-6) in all three tables; and 2) simply adding ray information does not directly enhance

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table S1: Recent latent 3D representations. The table provides a summary of recent 3D repre-
sentations and their properties. We compare the properties that are relevant to machine learning
applications. Minimal preprocessing indicates how easy is it to utilize a 3D dataset (e.g., do we need
to convert data to watertight meshes, do we need optimization radiance fields to acquire the actual
training dataset). Continuous latent indicates whether the 3D representation is fully differentiable
(e.g., no graph topology or sparsity patterns). Total latent dimension indicates the total size to
represent one scene. Note that there may be multiple variants of the same method with different latent
dimensions. We choose the representative one in each paper. * indicates a second generative model is
used in the paper to add texture to a texture-less meshes.

name geometry appearance data requirements total latent dimension input to encoder training dataset

DDPM-PointCloud (2021) p(xyz) - point cloud 256 point cloud (x) ShapeNet

PointFlow (2019) p(xyz) - point cloud 512 point cloud (x) ShapeNet

ShapeGF (2020) p(xyz) - point cloud 256 point cloud (x) ShapeNet

Shape Token (2024) p(xyz) - point cloud 1024 × 16 point cloud (x) Objaverse

Ours p(xyz) view-dep.
3DGS

multiview RGBD 8192 × 32
surface light field
(x, c, d̂)

Objaverse, ObjaverseXL

Point-E (2022) fixed size point set diffuse RGB point cloud (x) - - proprietary dataset

LION (2022) fixed size point set - point cloud 128 + 8192 point cloud (x) ShapeNet

3DShape2VecSet (2023) occupancy field - watertight mesh 512 × 32 point cloud (x) ShapeNet-watertight

3DILG (2022) occupancy field - watertight mesh 512 × 2 point cloud (x) ShapeNet-watertight

Michelangelo (2023) occupancy field - watertight mesh 512 × 64 + 768 point cloud (x, n̂) ShapeNet, 3D cartoon monster

CLAY (2024) occupancy field -* watertight mesh 2048 × 64 point cloud (x) Objaverse

Dora (2025a) occupancy field - watertight mesh 1280 × 64 point cloud (x) Objaverse

Pandora3D (2025) occupancy field -* watertight mesh 2048 × 64 point cloud (x, n̂) Objaverse, ObjaverseXL,
ABO, BuildingNet,
HSSD, Toy4k,
polygone dataset, proprietary

Direct3D (2024) occupancy grid - watertight mesh 3 × 32 × 32 × 16 point cloud (x, n̂) proprietary dataset

Direct3D-s2 (2025) SDF grid - watertight mesh (1283 × 16) point cloud (x, n̂) Objaverse, ObjaverseXL

XCube (2024) occupancy grid - watertight mesh 163 × 16 + more occupancy grid ShapeNet, Objaverse

LT3SD (2025) UDF grid - watertight mesh (2×1×2)×
(5+43×4 + 163×4)

UDF grid 3D Front

Diffusion-SDF (2023) SDF field - watertight mesh 768 point cloud (x) ShapeNet-watertight, YCB

MOSAIC-SDF (2024) SDF field - watertight mesh
and optimization

1024 × (3+1+73) - ShapeNet-watertight,
scalable 3D captioning dataset

TripoSG (2025a) SDF field - watertight mesh 2048 × 64 point cloud (x, n̂) Objaverse, ObjaverseXL

Hunyuan3D 2.0 (2025) SDF field -* watertight mesh 3072 × 64 point cloud (x) Objaverse, ObjaverseXL, more

Make-A-Shape (2024) SDF grid - watertight mesh 9M - 18 datasets

3DTopia-XL (2025b) PrimX (SDF field) RGB, PBR PrimX optimization 2048×(3+1+43)
= 139, 264

PrimX Objaverse

Sparc3D (2025b) SDF grid - watertight mesh,
grid optimization

unknown SDF grid

Volume Diffusion (2023) radiance field diffuse RGB run inference network 323 × 4 multiview images Objaverse

TRELLIS (2025) occupancy grid diffuse 3DGS multiview DINOv2 ∼20,000 × 11
(643 grid) sparse feature grid Objaverse, ObjaverseXL,

ABO, 3D-future, HSSD

TripoSF (2025) SDF grid - multiview depth and normal ∼183,000 × 11
(2563 grid) point cloud (x, n̂) Objaverse, ObjaverseXL

appearance modeling performance, e.g., row 1-2 vs. 1-3 (or row 2-2 vs. 2-3, 3-2 vs. 3-3). We
hypothesize that this is because zero-degree spherical harmonics cannot capture view-dependent
effects, which then becomes a bottleneck, preventing the model from fully leveraging the information
contained in the view directions. To verify, we ablate by removing the ray information from our
encoder when using 3-degree spherical harmonics. The improvement in row 1-6, which incorporates
ray information, from 1-7 (or row 2-6 vs. 2-7, 3-6 vs. 3-7) corroborates our hypothesis.

C.2 ABLATIONS ON NUMBER OF INPUT VIEWS IN INFERENCE

We are interested in understanding to what extent our approach is robust to the discrepancies between
the number of input views during training and inference. We provide quantitative evaluations
in Tab. S5.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Ground truth Ours Ours (oracle) TRELLIS

Figure S1: Mesh comparisons. We demonstrate the qualities of our mesh decoder results to TREL-
LIS. As highlighted, our produced mesh maintains more details. Mesh credit: 1812panorama (2019);
alzarac (2019); AdamJonesCGD (2020); a108082046 (2022); nastasyas (2019); Alienor.org (2016);
GJ2012 (2013).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D COMPREHENSIVE GENERATION RESULTS

As demonstrated in Fig. 6, we are interested in aligning the generation with the input view faithfully.
To achieve this, for each sample used during training, we carefully rotate the world coordinate system
such that the input view’s corresponding camera poses are at the identity orientation. This relieves
the model from the burden of inferring the orientation of 3D space during training. Further, we
consider utilizing the view direction during the generative model training as well to enable the model
be aware of 3D orientation. Since we make the orientation identity, ray information essentially
means the availability of camera intrinsics. Then, during inference, we use an off-the-shelf intrinsic
estimator (Wang et al., 2025) to obtain the intrinsics. However, as shown in row 3 vs. 2 in Tab. S6, it
seems like the intrinsic information is unnecessary. Thus we use the generative model trained without
any ray information to report our qualitative and quantitative results in the paper.

Table S2: Reconstruction on Toys4k. For 3D assets, we adapt inputs per model. TRELLIS (Xiang
et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours uses RGB-D
images from 150 evenly distributed views. For appearance evaluation, we render each model’s output
from 100 random cameras, varying difficulty by adjusting camera radius. Each model is further
evaluated under three distinct lighting conditions. Importantly, no separate models are trained; all
evaluations are conducted on the same model. As a result, we conduct evaluations at the scale of over
3000 (objects) × 100 (views) × 2 (difficulties) × 3 (lightings) ≈ 1.8 million images. We report in
the format of mean±std, where the standard deviation is computed across objects. Note, row 1–9
have the same appearance metrics as row 1–8. The same applies to rows 2–9 and 3–9.

Method SH
Deg

Enc
Ray

Pred
Occ Mesh

Simple, Camera Radius [3, 4] Hard, Camera Radius [1, 3]
CD (100k)↓

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Uniform Lighting

1-1 TRELLIS 0 ✗ – ✓ 28.17±4.09 0.970±0.024 0.039±0.024 24.63±4.01 0.934±0.054 0.098±0.059 0.646±0.457

1-2 Ours 0 ✗ ✗ ✗ 34.40±3.62 0.984±0.017 0.025±0.019 32.19±3.95 0.965±0.042 0.059±0.047 0.677±0.378

1-3 Ours 0 ✓ ✗ ✗ 34.44±3.47 0.984±0.017 0.026±0.020 32.18±3.79 0.964±0.042 0.060±0.048 0.678±0.382

1-4 Ours 1 ✓ ✗ ✗ 35.12±3.39 0.986±0.015 0.023±0.017 33.17±3.76 0.968±0.040 0.054±0.044 0.647±0.393

1-5 Ours 2 ✓ ✗ ✗ 35.32±3.45 0.986±0.016 0.023±0.017 33.29±3.80 0.969±0.040 0.055±0.044 0.658±0.389

1-6 Ours 3 ✓ ✗ ✗ 35.32±3.38 0.986±0.015 0.022±0.017 33.39±3.73 0.969±0.039 0.053±0.044 0.663±0.383

1-7 Ours 3 ✗ ✗ ✗ 35.54±3.63 0.986±0.015 0.023±0.017 33.37±3.97 0.969±0.040 0.055±0.044 0.672±0.370

1-8 Ours 3 ✓ ✓ ✗ 35.27±3.36 0.986±0.015 0.022±0.017 33.38±3.71 0.969±0.040 0.052±0.044 0.662±0.384

1-9 Ours 3 ✓ ✓ ✓ 35.27±3.36 0.986±0.015 0.022±0.017 33.38±3.71 0.969±0.040 0.052±0.044 0.532±0.683

1-10 Oracle 3 – – ✓ 35.26±3.34 0.986±0.015 0.022±0.017 33.42±3.69 0.970±0.039 0.051±0.043 0.513±0.639

TRELLIS Lighting
2-1 TRELLIS 0 ✗ – ✓ 31.12±3.39 0.974±0.022 0.034±0.022 27.57±3.38 0.941±0.050 0.090±0.055 0.608±0.437

2-2 Ours 0 ✗ ✗ ✗ 32.47±3.83 0.980±0.020 0.029±0.022 30.21±4.19 0.958±0.046 0.067±0.053 0.675±0.379

2-3 Ours 0 ✓ ✗ ✗ 32.47±3.69 0.980±0.020 0.029±0.022 30.21±4.06 0.957±0.046 0.068±0.052 0.677±0.382

2-4 Ours 1 ✓ ✗ ✗ 34.00±3.38 0.984±0.016 0.025±0.019 32.03±3.74 0.965±0.040 0.059±0.047 0.648±0.391

2-5 Ours 2 ✓ ✗ ✗ 34.06±3.40 0.984±0.016 0.024±0.019 32.12±3.79 0.966±0.041 0.058±0.047 0.655±0.389

2-6 Ours 3 ✓ ✗ ✗ 34.19±3.39 0.985±0.016 0.024±0.019 32.36±3.77 0.967±0.040 0.056±0.046 0.668±0.385

2-7 Ours 3 ✗ ✗ ✗ 34.16±3.68 0.985±0.017 0.025±0.019 32.11±4.04 0.966±0.041 0.058±0.047 0.669±0.371

2-8 Ours 3 ✓ ✓ ✗ 34.16±3.39 0.985±0.016 0.023±0.018 32.36±3.77 0.967±0.040 0.055±0.046 0.668±0.384

2-9 Ours 3 ✓ ✓ ✓ 34.16±3.39 0.985±0.016 0.023±0.018 32.36±3.77 0.967±0.040 0.055±0.046 0.524±0.484

2-10 Oracle 3 – – ✓ 34.14±3.37 0.985±0.016 0.023±0.018 32.38±3.74 0.967±0.040 0.054±0.045 0.506±0.439

Random Lighting
3-1 TRELLIS 0 ✗ – ✓ 27.94±3.77 0.966±0.025 0.038±0.024 24.37±3.66 0.927±0.054 0.098±0.058 0.631±0.449

3-2 Ours 0 ✗ ✗ ✗ 32.12±3.23 0.981±0.018 0.026±0.021 30.08±3.67 0.961±0.043 0.062±0.051 0.675±0.381

3-3 Ours 0 ✓ ✗ ✗ 32.18±3.12 0.981±0.019 0.026±0.021 30.11±3.57 0.960±0.044 0.063±0.052 0.680±0.383

3-4 Ours 1 ✓ ✗ ✗ 33.02±2.92 0.984±0.017 0.023±0.019 31.20±3.39 0.965±0.041 0.057±0.047 0.652±0.395

3-5 Ours 2 ✓ ✗ ✗ 33.13±2.99 0.984±0.017 0.023±0.019 31.34±3.49 0.966±0.041 0.058±0.048 0.664±0.393

3-6 Ours 3 ✓ ✗ ✗ 33.22±2.95 0.984±0.017 0.023±0.019 31.50±3.41 0.966±0.041 0.056±0.048 0.669±0.387

3-7 Ours 3 ✗ ✗ ✗ 33.23±3.32 0.984±0.017 0.024±0.019 31.30±3.83 0.965±0.041 0.058±0.049 0.675±0.372

3-8 Ours 3 ✓ ✓ ✗ 33.18±2.93 0.984±0.017 0.022±0.019 31.49±3.39 0.966±0.041 0.055±0.048 0.669±0.387

3-9 Ours 3 ✓ ✓ ✓ 33.18±2.93 0.984±0.017 0.022±0.019 31.49±3.39 0.966±0.041 0.055±0.048 0.541±0.819

3-10 Oracle 3 – – ✓ 33.15±2.90 0.984±0.016 0.022±0.019 31.50±3.36 0.967±0.040 0.054±0.047 0.517±0.694

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table S3: Reconstruction on GSO. For 3D assets, we adapt inputs per model. TRELLIS (Xiang
et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours uses RGB-D
images from 150 evenly distributed views. For appearance evaluation, we render each model’s output
from 100 random cameras, varying difficulty by adjusting camera radius. Each model is further
evaluated under three distinct lighting conditions. Importantly, no separate models are trained; all
evaluations are conducted on the same model. As a result, we conduct evaluations at the scale of over
1000 (objects) × 100 (views) × 2 (difficulties) × 3 (lightings) ≈ 600 thousand images. We report in
the format of mean±std, where the standard deviation is computed across objects. Note, row 1–9
have the same appearance metrics as row 1–8. The same applies to rows 2–9 and 3–9.

Method SH
Deg

Enc
Ray

Pred
Occ Mesh

Simple, Camera Radius [3, 4] Hard, Camera Radius [1, 3]
CD (100k)↓

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Uniform Lighting

1-1 TRELLIS 0 ✗ – ✓ 27.34±3.82 0.947±0.036 0.053±0.029 23.72±3.66 0.883±0.068 0.139±0.065 0.774±0.337

1-2 Ours 0 ✗ ✗ ✗ 34.27±3.25 0.975±0.022 0.034±0.025 31.39±3.61 0.937±0.046 0.093±0.055 0.837±0.376

1-3 Ours 0 ✓ ✗ ✗ 34.04±3.23 0.974±0.022 0.034±0.025 31.15±3.59 0.935±0.048 0.093±0.055 0.842±0.386

1-4 Ours 1 ✓ ✗ ✗ 34.55±3.18 0.976±0.021 0.031±0.023 31.75±3.60 0.939±0.045 0.087±0.053 0.809±0.441

1-5 Ours 2 ✓ ✗ ✗ 34.62±3.24 0.976±0.021 0.031±0.024 31.77±3.65 0.939±0.046 0.087±0.053 0.803±0.397

1-6 Ours 3 ✓ ✗ ✗ 34.69±3.22 0.976±0.021 0.031±0.024 31.88±3.65 0.940±0.046 0.086±0.053 0.819±0.398

1-7 Ours 3 ✗ ✗ ✗ 34.93±3.24 0.977±0.020 0.031±0.023 32.00±3.63 0.942±0.044 0.087±0.053 0.841±0.389

1-8 Ours 3 ✓ ✓ ✗ 34.67±3.21 0.976±0.021 0.031±0.024 31.88±3.65 0.940±0.046 0.086±0.053 0.819±0.396

1-9 Ours 3 ✓ ✓ ✓ 34.67±3.21 0.976±0.021 0.031±0.024 31.88±3.65 0.940±0.046 0.086±0.053 0.631±0.355

1-10 Oracle 3 – – ✓ 34.66±3.20 0.976±0.021 0.030±0.023 31.92±3.65 0.941±0.045 0.085±0.053 0.621±0.342

TRELLIS Lighting
2-1 TRELLIS 0 ✗ – ✓ 30.81±2.67 0.958±0.028 0.047±0.026 27.21±2.56 0.907±0.055 0.126±0.058 0.737±0.331

2-2 Ours 0 ✗ ✗ ✗ 33.99±2.54 0.978±0.017 0.033±0.023 31.65±2.71 0.948±0.036 0.089±0.052 0.832±0.370

2-3 Ours 0 ✓ ✗ ✗ 33.71±2.43 0.978±0.018 0.033±0.024 31.40±2.62 0.947±0.037 0.088±0.051 0.838±0.381

2-4 Ours 1 ✓ ✗ ✗ 34.75±2.60 0.980±0.016 0.030±0.022 32.50±2.87 0.952±0.035 0.080±0.048 0.803±0.437

2-5 Ours 2 ✓ ✗ ✗ 34.87±2.68 0.980±0.017 0.030±0.022 32.58±2.95 0.952±0.036 0.081±0.049 0.795±0.390

2-6 Ours 3 ✓ ✗ ✗ 34.91±2.65 0.980±0.016 0.029±0.022 32.67±2.95 0.952±0.036 0.080±0.049 0.816±0.396

2-7 Ours 3 ✗ ✗ ✗ 35.19±2.72 0.981±0.016 0.030±0.022 32.79±2.97 0.953±0.034 0.081±0.049 0.834±0.384

2-8 Ours 3 ✓ ✓ ✗ 34.89±2.64 0.980±0.016 0.029±0.022 32.68±2.94 0.952±0.036 0.079±0.049 0.815±0.392

2-9 Ours 3 ✓ ✓ ✓ 34.89±2.64 0.980±0.016 0.029±0.022 32.68±2.94 0.952±0.036 0.079±0.049 0.665±0.355

2-10 Oracle 3 – – ✓ 34.87±2.63 0.981±0.016 0.029±0.021 32.70±2.94 0.953±0.036 0.078±0.048 0.654±0.338

Random Lighting
3-1 TRELLIS 0 ✗ – ✓ 27.66±3.26 0.948±0.033 0.050±0.028 24.11±3.08 0.886±0.064 0.133±0.062 0.767±0.349

3-2 Ours 0 ✗ ✗ ✗ 33.09±2.47 0.977±0.018 0.031±0.023 30.97±2.81 0.945±0.039 0.086±0.052 0.831±0.378

3-3 Ours 0 ✓ ✗ ✗ 32.97±2.40 0.976±0.018 0.031±0.023 30.82±2.77 0.943±0.040 0.087±0.052 0.835±0.381

3-4 Ours 1 ✓ ✗ ✗ 33.46±2.41 0.978±0.017 0.028±0.021 31.41±2.81 0.947±0.038 0.080±0.049 0.810±0.444

3-5 Ours 2 ✓ ✗ ✗ 33.61±2.47 0.978±0.017 0.029±0.022 31.55±2.88 0.947±0.038 0.081±0.049 0.802±0.399

3-6 Ours 3 ✓ ✗ ✗ 33.67±2.46 0.979±0.017 0.028±0.022 31.65±2.89 0.948±0.038 0.080±0.050 0.818±0.397

3-7 Ours 3 ✗ ✗ ✗ 33.98±2.53 0.980±0.016 0.028±0.021 31.84±2.93 0.949±0.036 0.081±0.049 0.840±0.390

3-8 Ours 3 ✓ ✓ ✗ 33.64±2.43 0.979±0.017 0.028±0.022 31.64±2.87 0.948±0.038 0.080±0.050 0.818±0.397

3-9 Ours 3 ✓ ✓ ✓ 33.64±2.43 0.979±0.017 0.028±0.022 31.64±2.87 0.948±0.038 0.080±0.050 0.631±0.356

3-10 Oracle 3 – – ✓ 33.61±2.42 0.979±0.017 0.028±0.021 31.65±2.86 0.949±0.038 0.079±0.049 0.621±0.342

D.1 ABLATIONS ON ODE NUMERICAL INTEGRATION

We study the effect of ODE numerical integration used when sampling from our generative model.
Specifically, we ablate the algorithms (Euler and Heun), the step size (or equivalently the number of
steps) used during the numerical integration, and the numerical precision of the model (float32
and bfloat16) during sampling. We provide quantitative results in Sec. S7. The results suggest our
generative model is robust to numerical integration — we observe small change in performance when
switching from the second-order method Heun with 100 steps using float32 (conditioning view
FID = 6.6), to a relatively cheaper first-order Euler with 25 steps using bfloat16 (conditioning
view FID = 6.7).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table S4: Reconstruction on PBR-Objaverse. For 3D assets, we adapt inputs per model. TREL-
LIS (Xiang et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours
uses RGB-D images from 150 evenly distributed views. For appearance evaluation, we render each
model’s output from 100 random cameras, varying difficulty by adjusting camera radius. Each model
is further evaluated under three distinct lighting conditions. Importantly, no separate models are
trained; all evaluations are conducted on the same model. As a result, we conduct evaluations at the
scale of 200 (objects) × 100 (views) × 2 (difficulties) × 3 (lightings) ≈ 120 thousand images. We
report in the format of mean±std, where the standard deviation is computed across objects. Note,
row 1–9 have the same appearance metrics as row 1–8, so we can ignore them. The same applies to
rows 2–9 and 3–9.

Method SH
Deg

Enc
Ray

Pred
Occ Mesh

Simple, Camera Radius [3, 4] Hard, Camera Radius [1, 3]
CD (100k)↓

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Uniform Lighting

1-1 TRELLIS 0 ✗ – ✓ 28.63±3.09 0.955±0.028 0.046±0.025 25.06±2.93 0.902±0.057 0.121±0.062 0.657±0.305

1-2 Ours 0 ✗ ✗ ✗ 32.95±2.87 0.974±0.018 0.033±0.020 30.07±3.02 0.939±0.042 0.087±0.051 0.727±0.323

1-3 Ours 0 ✓ ✗ ✗ 33.14±2.68 0.974±0.018 0.034±0.021 30.21±2.85 0.937±0.042 0.089±0.053 0.724±0.325

1-4 Ours 1 ✓ ✗ ✗ 34.35±2.37 0.978±0.016 0.028±0.018 31.67±2.67 0.947±0.038 0.076±0.046 0.702±0.338

1-5 Ours 2 ✓ ✗ ✗ 34.47±2.45 0.978±0.016 0.028±0.018 31.74±2.73 0.947±0.039 0.077±0.047 0.709±0.334

1-6 Ours 3 ✓ ✗ ✗ 34.62±2.33 0.979±0.016 0.028±0.018 31.98±2.64 0.948±0.039 0.075±0.047 0.705±0.327

1-7 Ours 3 ✗ ✗ ✗ 34.66±2.62 0.979±0.016 0.029±0.018 31.83±2.89 0.948±0.039 0.077±0.047 0.730±0.320

1-8 Ours 3 ✓ ✓ ✗ 34.63±2.33 0.979±0.016 0.027±0.017 32.01±2.64 0.948±0.039 0.074±0.047 0.704±0.325

1-9 Ours 3 ✓ ✓ ✓ 34.63±2.33 0.979±0.016 0.027±0.017 32.01±2.64 0.948±0.039 0.074±0.047 0.556±0.341

1-10 Oracle 3 – – ✓ 34.64±2.31 0.979±0.016 0.027±0.017 32.07±2.62 0.949±0.038 0.074±0.046 0.541±0.315

TRELLIS Lighting
2-1 TRELLIS 0 ✗ – ✓ 29.69±2.59 0.958±0.025 0.044±0.023 26.03±2.50 0.904±0.053 0.118±0.058 0.616±0.277

2-2 Ours 0 ✗ ✗ ✗ 30.35±3.01 0.965±0.023 0.039±0.023 27.39±3.18 0.921±0.049 0.102±0.056 0.737±0.316

2-3 Ours 0 ✓ ✗ ✗ 30.37±3.04 0.965±0.023 0.040±0.023 27.41±3.21 0.919±0.050 0.102±0.056 0.735±0.320

2-4 Ours 1 ✓ ✗ ✗ 32.52±2.45 0.975±0.017 0.031±0.019 29.87±2.70 0.939±0.042 0.084±0.049 0.720±0.342

2-5 Ours 2 ✓ ✗ ✗ 32.47±2.45 0.975±0.018 0.031±0.019 29.90±2.73 0.940±0.042 0.083±0.049 0.715±0.323

2-6 Ours 3 ✓ ✗ ✗ 32.63±2.38 0.976±0.017 0.030±0.018 30.14±2.69 0.941±0.042 0.081±0.049 0.720±0.321

2-7 Ours 3 ✗ ✗ ✗ 32.56±2.72 0.975±0.018 0.031±0.019 29.89±2.97 0.939±0.042 0.084±0.049 0.731±0.317

2-8 Ours 3 ✓ ✓ ✗ 32.63±2.37 0.976±0.017 0.030±0.018 30.16±2.69 0.942±0.042 0.080±0.049 0.724±0.323

2-9 Ours 3 ✓ ✓ ✓ 32.63±2.37 0.976±0.017 0.030±0.018 30.16±2.69 0.942±0.042 0.080±0.049 0.569±0.332

2-10 Oracle 3 – – ✓ 32.61±2.37 0.976±0.017 0.029±0.018 30.20±2.69 0.942±0.042 0.080±0.048 0.558±0.316

Random Lighting
3-1 TRELLIS 0 ✗ – ✓ 26.29±3.56 0.939±0.038 0.052±0.030 22.74±3.37 0.869±0.075 0.134±0.070 0.691±0.365

3-2 Ours 0 ✗ ✗ ✗ 28.58±3.65 0.957±0.031 0.043±0.028 25.66±3.87 0.904±0.066 0.107±0.065 0.726±0.322

3-3 Ours 0 ✓ ✗ ✗ 28.88±3.61 0.956±0.032 0.043±0.028 25.93±3.81 0.903±0.067 0.109±0.066 0.732±0.331

3-4 Ours 1 ✓ ✗ ✗ 30.36±3.15 0.965±0.027 0.036±0.024 27.60±3.43 0.920±0.059 0.095±0.058 0.708±0.338

3-5 Ours 2 ✓ ✗ ✗ 30.39±3.08 0.965±0.027 0.036±0.024 27.65±3.39 0.920±0.060 0.095±0.059 0.717±0.335

3-6 Ours 3 ✓ ✗ ✗ 30.59±3.08 0.966±0.027 0.036±0.024 27.92±3.42 0.922±0.059 0.093±0.059 0.713±0.327

3-7 Ours 3 ✗ ✗ ✗ 30.11±3.48 0.964±0.027 0.037±0.024 27.27±3.75 0.917±0.060 0.096±0.059 0.729±0.325

3-8 Ours 3 ✓ ✓ ✗ 30.59±3.09 0.966±0.027 0.035±0.024 27.94±3.43 0.922±0.060 0.092±0.059 0.713±0.328

3-9 Ours 3 ✓ ✓ ✓ 30.59±3.09 0.966±0.027 0.035±0.024 27.94±3.43 0.922±0.060 0.092±0.059 0.552±0.329

3-10 Oracle 3 – – ✓ 30.59±3.07 0.966±0.026 0.035±0.024 27.97±3.42 0.922±0.059 0.092±0.058 0.541±0.312

D.2 RUNTIME AND MEMORY ANALYSIS

We analyze the runtime for both TRELLIS and our generative models in Tab. S8. Our model’s
latent sampling costs 9.3 seconds on while all decoders’ feedforward passes cost less than 100
milliseconds on a single NVIDIA H100 80GB HBM3 GPU. In comparison, for TRELLIS, sampling
SLAT (both coarse voxel and feature) takes 11.8 seconds. Utilizing one-step flow-matching models
like MeanFlow (Geng et al., 2025) can further improve the speed of our generative model and is left
as future work.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table S5: Ablation on number of input views for reconstruction during inference. We choose
TRELLIS lighting setup on Toys4k dataset. Our model is the same as “ours” in Tab. 1. Both TRELLIS
and ours are trained with 150 views. For appearance evaluation, we render each model’s output
from 100 random cameras, varying difficulty by adjusting camera radius. We report in the format
of mean±std, where the standard deviation is computed across objects. Note, we re-render the
evaluation data for this ablation, thus row 1 (row 2) differs slightly from row 2-1 (row 2-9) in Tab. S2.

Method
Simple, Camera Radius [3, 4] Hard, Camera Radius [1, 3]

CD (100k)↓
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

150 input views
1 TRELLIS 31.559±3.509 0.9740±0.0224 0.0361±0.0217 27.948±3.539 0.9408±0.0508 0.0928±0.0539 0.589±0.432

2 Ours 33.909±3.157 0.9841±0.0162 0.0260±0.0189 32.073±3.521 0.9658±0.0403 0.0585±0.0458 0.525±0.502

120 input views
3 TRELLIS 31.518±3.509 0.9738±0.0225 0.0363±0.0218 27.912±3.541 0.9404±0.0510 0.0932±0.0541 0.592±0.431

4 Ours 33.908±3.158 0.9841±0.0162 0.0260±0.0188 32.072±3.522 0.9658±0.0403 0.0585±0.0457 0.524±0.486

90 input views
5 TRELLIS 31.431±3.506 0.9734±0.0227 0.0366±0.0221 27.833±3.540 0.9397±0.0514 0.0938±0.0545 0.594±0.425

6 Ours 33.910±3.157 0.9841±0.0162 0.0260±0.0189 32.074±3.522 0.9658±0.0403 0.0585±0.0457 0.524±0.492

60 input views
7 TRELLIS 31.270±3.496 0.9726±0.0231 0.0372±0.0224 27.688±3.533 0.9383±0.0520 0.0952±0.0552 0.603±0.430

8 Ours 33.909±3.155 0.9841±0.0162 0.0260±0.0188 32.073±3.519 0.9658±0.0403 0.0585±0.0457 0.525±0.491

30 input views
9 TRELLIS 30.692±3.441 0.9699±0.0244 0.0396±0.0238 27.159±3.484 0.9336±0.0541 0.1002±0.0576 0.637±0.443

10 Ours 33.908±3.157 0.9841±0.0162 0.0260±0.0188 32.072±3.521 0.9658±0.0403 0.0585±0.0457 0.527±0.503

Table S6: Single-image-conditioned generation on Toys4k with TRELLIS lighting. KID is
reported by ×100. CFG scale is 3.0. The best is highlighted.

Method Train
w/ Ray

Infer w/
GT Ray

Train
Iters CLIP↑ Conditioning View Novel View

FID↓ KID↓ FIDdino↓ KIDdino↓ FID↓ KID↓ FIDdino↓ KIDdino↓
1 TRELLIS ✗ - 400k 0.899±0.045 12.84 0.088 84.692 2.311 7.600 0.100 67.458 3.166

2-1 Ours ✗ - 280k 0.906±0.040 8.193 0.012 48.117 0.461 6.648 0.064 75.814 4.321
2-2 Ours ✗ - 400k 0.906±0.041 7.741 0.010 44.555 0.392 6.413 0.064 71.436 3.997
2-3 Ours ✗ - 600k 0.905±0.041 6.219 0.009 41.621 1.333 6.216 0.058 66.530 3.522

3 Ours ✓ ✗ 290k 0.900±0.040 10.78 0.066 65.644 2.281 8.076 0.101 92.915 6.698
4 Ours ✓ ✓ 290k 0.904±0.039 10.13 0.053 61.342 1.665 7.831 0.097 86.091 5.826

Table S7: Ablation on DiT sampler for single-image-conditioned generation. The experiments
are conducted on Toys4k with TRELLIS lighting. The generative model is trained for 600k iterations.
Note, row 1 is copied from ”ours” in Tab. 3 . KID is reported by ×100. CFG scale is 3.0. Our
generative model’s performance is robust across various numbers of sampling steps and numerical
integration algorithms.

Occ
Pred Data Type Method Step CLIP↑ Conditioning View Novel View

FID↓ KID↓ FIDdino↓ KIDdino↓ FID↓ KID↓ FIDdino↓ KIDdino↓
1 ✗ float32 Heun 100 0.905±0.041 6.219 0.009 41.621 1.333 6.216 0.058 66.530 3.522

2 ✓ float32 Heun 100 0.905±0.041 6.622 0.021 42.197 1.391 6.270 0.064 66.699 3.534

3 ✓ bfloat16 Heun 100 0.905±0.041 6.661 0.020 43.992 1.741 6.270 0.063 68.025 3.906
4 ✓ bfloat16 Heun 50 0.905±0.041 6.659 0.020 45.533 2.105 6.266 0.062 68.319 4.185
5 ✓ bfloat16 Heun 25 0.904±0.041 6.644 0.019 54.231 4.011 6.251 0.060 77.148 5.879

6 ✓ bfloat16 Euler 100 0.906±0.041 6.656 0.022 42.472 1.476 6.365 0.066 67.856 3.848
7 ✓ bfloat16 Euler 50 0.905±0.041 6.688 0.023 42.363 1.430 6.384 0.066 68.987 3.958
8 ✓ bfloat16 Euler 25 0.905±0.041 6.733 0.025 43.034 1.280 6.833 0.074 75.687 4.484

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table S8: Generative model runtime analysis. All results are reported with torch.profiler
across three runs. TRELLIS uses 50 Euler steps for both its sparse structure and structured latent
generations. We use 50 Euler steps for generating the latents, corresponding to row 7 in Tab. S7.

Cond Proc (ms) Structure Gen (s) Latent Gen (s) Occ Pred (ms) 3DGS Dec (ms) Mesh Dec (ms) Total (s) Memory (GB)

NVIDIA A100-SXM4-80GB
TRELLIS 68.90±0.49 4.89±0.80 7.720±5.10 – 18.70±5.46 67.33±13.98 12.76 12.70
Ours 68.78±0.41 – 17.32±1.50 36.07±3.67 35.32±14.2 90.78±29.75 17.55 15.95

NVIDIA H100 80GB HBM3
TRELLIS 31.01±0.55 3.95±1.17 7.868±4.06 – 15.03±6.19 46.81±13.31 11.91 12.69
Ours 22.58±10.3 – 9.266±0.38 27.16±6.87 30.96±14.3 79.15±31.71 9.426 15.93

Table S9: Original Geometric reconstruction evaluation. We report Chamfer distances multiplied
by 104 for readability, computed using 100k sampled points each from ground-truth and reconstruc-
tion. As 3DTopia-XL (Chen et al., 2025b) and TripoSG (Li et al., 2025a) can be sensitive to input
geometry, we also list variants with their worst-performing 10% of objects removed. We separate our
tested approaches based on those that require ground-truth coarse geometry for decoding the latent
representation, and those that do not utilize this information. Our method outputs the best geometry
among the approaches in the latter category, and it is competitive with the techniques in the former.
Red highlights the best method in each category.

Method Appearance Latent size PBR-Objaverse Toys4k GSO
0 GT - - 0.479±0.247 0.445±0.364 0.531±0.309

Requires coarse geometry oracle:
1 TripoSF (He et al., 2025) ✗ ≈ 244k × 11 0.621±0.546 0.595±0.659 0.697±0.751
2 TRELLIS (Xiang et al., 2025) ✓ ≈ 20k × 11 0.639±0.405 0.604±0.486 0.725±0.293
3-1 3DTopia-XL (Chen et al., 2025b) ✓ 2048 × 64 77.58±406.5 30.16±238.4 0.664±0.321
3-2 (worst 10% removed) ✓ 2048 × 64 3.966±8.884 0.980±1.480 0.596±0.157
Does not utilize coarse geometry oracle:
4-1 TripoSG (Li et al., 2025a) ✗ 2048 × 64 32.19±71.07 36.11±62.42 44.52±87.03
4-2 (worst 10% removed) ✗ 2048 × 64 13.84±17.96 19.51±24.92 18.73±28.63
5 Shape Tokens (Chang et al., 2024) ✗ 1024 × 16 1.120±0.447 1.061±0.565 1.221±0.433
6 Ours ✓ 8192 × 32 0.935±0.328 0.890±0.361 1.007±0.331

E IMPLEMENTATION DETAILS

E.1 ARCHITECTURES

We provide detailed network architectures in Fig. S2 to S7. These include our encoder (Sec. 3.3) in
Fig. S2, velocity decoder and Gaussian decoder (Sec. 3.4) in Fig. S3 and S4, mesh decoder in Fig. S5,
occupancy decoder in Fig. S6, and generative model’s DiT (Sec. 3.5) in Fig. S7.

E.2 POSITION ENCODING

We have the following position encoding function applied on each channel of the input data:

{sin(u0), . . . , sin(uF−1), cos(u0), . . . , cos(uF−1)}, (S1)

where ui = x · 2
(
Mmin+i·Mmax−Mmin

F−1

)
, (S2)

x is the value at the corresponding channel where the position encoding is applied. We use F = 32,
Mmin = 0, Mmax = 12, 8, and 8 in position encoding functions for 3D location xi, viewing direction
d̂i, color ci in Eq. (1) respectively. For time step t in flow matching (Eq. (2)), we use F = 16,
Mmin = log2 2π, and Mmax = Mmin + F − 1.

E.3 3D GAUSSIAN PREDICTION

In Fig. S4, the output position of 3D Gaussian is predicted with respect to a normalized space centered
around the occupied voxel’s world coordinates, and is then translated to the world coordinate system
using the voxel’s information. Specifically, we predict 3D Gaussian’s position as xoutput ∈ [−1, 1]3.
Assume the corresponding voxel’s center is located at xvoxel ∈ R3 in the world coordinate system. The

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

final 3D Gaussian’s position in the world coordinate system is computed as x3DGS = xvoxel+s ·xoutput,
where s is a hyperparameter to define the size of the normalized space mentioned above. In our
experiments, we set s = 0.05. Note, s = 0.05 is actually larger than the voxel size we consider. This
is intentional as it provides more flexibility, such that the predicted 3D Gaussian can go across the
voxel boundaries.

F MORE STUDIES

F.1 STUDYING SPHERICAL HARMONICS DEGREES

Our Gaussian decoder outputs Gaussians with spherical harmonics up to degree three. We study what
information is captured by individual spherical harmonics degrees. In Fig. S8 and Fig. S9, we render
the 3D Gaussians from both reconstruction and generation by clipping the degree of the spherical
harmonics (i.e., we use only the ℓ ≤ 3 degrees during rendering). We observe that zeroth-degree
renderings are mostly view-independent and have little lighting baked in, whereas higher-degree
renderings illustrate lighting effects. This is in contrast to TRELLIS’s results whose zeroth-degree
renderings contain both baked lighting and inaccurate view-dependent appearance produced using
micro-surface geometry (Walter et al., 2007). The results suggest that our model is able to represent
view-dependent effects using the higher-degree spherical harmonics, and to use the zeroth-degree
rendering for view-independent, diffused, appearance. This separation is an interesting finding, and it
provides potential opportunity for future investigation of relighting using our representation.

F.2 NERF DATASETS

For RefNeRF dataset’s object of car, we visualize the ground-truth mesh as well as unprojected depths
from all training views as in Sec. S10. As can be seen, the provided depth maps are not accurate.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

initial tokens
(k, d')

tokens (k, df)

latent tokens (k, d)

position-encoded points
(N, d')

query

query, key, value

key value

layernorm_q

layernorm

MLP (SwiGLU)

layernorm_kv

linear_kv

linear_k

linear_o

linear_vlinear_q

rmsnorm_q rmsnorm_k

nearest neighbor softmax attention

cross attention
block

layernorm

linear_k

linear_o

linear

linear_vlinear_q

rmsnorm_q rmsnorm_k
voxel-based softmax attention

self attention
block

+

+

layernorm

+

+

×6

×2

MLP (SwiGLU)

linear_q

Figure S2: Encoder architecture. The model
uses a feature dimension of df = 512, while the
hidden layer in MLP uses a feature dimension of
2048. The number of heads for cross-attention
and self-attention is 16. The input dimension
d′ = 396, which includes 3D location, position-
encoded 3D location, RGB, position-encoded
RGB, and Plucker coordinates. Our latent has
k = 8192 and d = 32. Please refer to Sec. E for
position encoding details.

shift 1 & scale 1

shift 2 & scale 2

gating 1

gating 2

key, value

MLP (linear, GELU, linear) 

position-encoded
point (1, d')

velocity (1, 3xyz)

linear

latent tokens
(k, d)

position-encoded
flow matching time (d'',)

linear

linear

SiLU

×

+

×

+

×3

layernorm

modulation

cross attention
block

query

layernorm

modulation

linear

linear

linear

SiLU
shift & scale

layernorm

modulation

Figure S3: Velocity decoder architecture. The
model uses a feature dimension of 512, while the
hidden layer in MLP uses a feature dimension of
2048. The number of heads for cross-attention
is 8. Our latent has k = 8192 and d = 32. We
have d′ = 195, which includes 3D location and
position-encoded 3D location. Meanwhile, d′′ =
64, which is obtained by applying a linear layer
to time-step position encoding in Eq. (S1). Please
refer to Sec. E for position encoding details.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

position-encoded
locaiton
(n, d')

tokens (n, df)

position, rotation, scaling SH coeff, opacity

latent tokens
(k, d)

query

query, key, value

key value

layernorm_q

layernorm

MLP (SwiGLU)

layernorm_kv

linear_kv

linear_k

linear_o

linear_vlinear_q

rmsnorm_q rmsnorm_k

global softmax attention

cross attention
block

layernorm

linear_k

linear_o

linear linear

linear_vlinear_q

rmsnorm_q rmsnorm_k
voxel-based softmax attention

self attention
block

+

+

layernorm

+

+

×2

×6

MLP (SwiGLU)

MLP (SwiGLU) MLP (SwiGLU)

linear_q

Figure S4: 3D Gaussian decoder architecture.
The model uses a feature dimension of df = 512,
while the hidden layer in MLP uses a feature di-
mension of 2048. The number of heads for cross-
attention and self-attention is 8. Our latent has
k = 8192 and d = 32. We have d′ = 195, which
includes 3D location and position-encoded 3D
location. Please refer to Sec. E for position encod-
ing details.

position-encoded
location 

(n, d')

tokens (n, df)

FlexiCubes parameters

latent tokens
(k, d)

query

query, key, value

key value

layernorm_q

layernorm

MLP (SwiGLU)

layernorm_kv

linear_kv

linear_k

linear_o

linear_vlinear_q

rmsnorm_q rmsnorm_k

global softmax attention

cross attention
block

layernorm

linear_k

linear_o

linear_vlinear_q

rmsnorm_q rmsnorm_k
voxel-based softmax attention

self attention
block

+

+

layernorm

+

+

+

×2

×6

MLP (SwiGLU)

groupnorm, SiLU

groupnorm, SiLU

conv3d

conv3d

conv3d

Subdivide
Subdivide

×2

linear_q

Figure S5: Mesh decoder architecture. The
model uses a feature dimension of df = 512,
while the hidden layer in MLP uses a feature di-
mension of 2048. Our latent has k = 8192 and
d = 32. The number of heads for cross-attention
and self-attention is 16. We have d′ = 195, which
includes 3D location and position-encoded 3D
location. Please refer to Sec. E for position encod-
ing details.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Structured Latent
(res, res, res, d''')

latent tokens
(k, d)

position-encoded
voxel grid indices
(res, res, res, d')

learnable tensor
(res, res, res, df)

linearlinear

+

tokens (k, df)

query

query, key, value

key, value

layernorm_q

layernorm

MLP (linear, GELU, linear) 

layernorm_kv

linear_k

linear_o

linear_vlinear_q

rmsnorm_q rmsnorm_k
softmax attention

cross attention
block

self attention
block

+

+

×2

×4

layernorm

linear_k

linear_o

linear_vlinear_q

rmsnorm_q rmsnorm_k
softmax attention

layernorm

+

+

MLP (linear, GELU, linear) 

layernorm

linear

Figure S6: Occupancy decoder architecture.
The model uses a feature dimension of df = 512,
while the feature dimension for QKV in cross/self-
attention is 1024. The hidden layer in MLP uses
a feature dimension of 2048. Our latent has
k = 8192 and d = 32. The number of heads
for cross-attention and self-attention is 8. We
have d′ = 771, with Mmin = 0, Mmax = 5, and
F = 128 in Eq. (S1) for encoding 3D location.
We use resolution of 16, i.e., res = 16. Please
refer to Sec. E for position encoding details.

learnable
shift 1 & scale 1

learnable gating 1

key, value

MLP (linear, GELU, linear) 

noised latent tokens
(k, d)

velocity (k, d)

linear

conditioned image feature
(1, d')

learnable
embedding

(k, df)

position-encoded
flow matching time (d'',)

×

+

+

+

×28

layernorm

modulation

self attention
block

query

layernorm

linear

linear

linear

SiLU
shift & scale

query, key, value

cross attention block

learnable
shift 2 & scale 2

modulation

learnable gating 2

×

+

+

+

+

+

MLP (linear, GELU, linear) 

layernorm

modulation

Figure S7: Generative model DiT architecture.
The model uses a feature dimension of df = 1152,
while the hidden layer in MLP uses a feature di-
mension of 4608. Our latent has k = 8192 and
d = 32. The number of heads for self-attention
and cross-attention is 16. The feature dimension
for conditioning image d′ = 2048. We have
d′′ = 64, with Mmin = 0, Mmax = 12, and
F = 32 in Eq. (S1) for encoding flow match-
ing time step. Please refer to Sec. E for position
encoding details.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure S8: Rendering with various spherical harmonics degrees in reconstruction. When
restricted to zeroth-order spherical harmonics, our 3D Gaussians produce a view-independent appear-
ance and avoid the over-exposed regions observed in TRELLIS’s renderings. As we progressively
incorporate higher-order spherical harmonics, our method yields increasingly pronounced view-
dependent effects. Mesh credit: DigitalSouls (2019).

Figure S9: Rendering with various spherical harmonics degrees in generation. When restricted
to zeroth-order spherical harmonics, our 3D Gaussians produce a view-independent appearance and
avoid the over-exposed regions observed in TRELLIS’s renderings. As we progressively incorporate
higher-order spherical harmonics, our method yields increasingly pronounced view-dependent effects.
Mesh credit: Vetech82 (2021).

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure S10: RefNeRF dataset issues: inaccurate depths.

27


	Introduction
	Related Works
	Method
	Preliminary and notation
	Overview
	Encoder
	Decoder
	Generative Model

	Experiments
	Reconstruction
	Generation

	Conclusion
	More Related Works
	Limitations
	Comprehensive Reconstruction Results
	Ablations on Model Designs
	Ablations on Number of Input Views in Inference

	Comprehensive Generation Results
	Ablations on ODE Numerical Integration
	Runtime and Memory Analysis

	Implementation Details
	Architectures
	Position Encoding
	3D Gaussian Prediction

	More Studies
	Studying Spherical Harmonics Degrees
	NeRF Datasets


