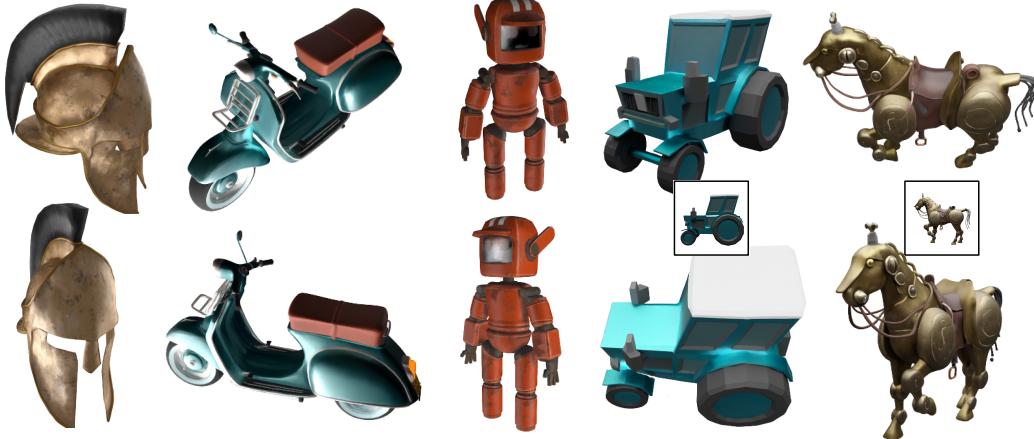


000
001
002
003

LiTo: SURFACE LIGHT FIELD TOKENIZATION

004 Paper under double-blind review
005
006
007

023 Figure 1: LiTo learns to tokenize surface light fields into a latent representation. It models both 3D
024 geometry and view-dependent appearance like specular reflection. The figure shows reconstructed
025 (first 3 columns) and single-image-to-3D (last two columns) surface light fields. **Please see more**
result videos on the supplemental website.

026
027

ABSTRACT

028

029 We propose a 3D latent representation that jointly models object geometry and
030 view-dependent appearance. Most prior works focus on either reconstructing 3D
031 geometry or predicting view-independent diffuse appearance, and thus struggle to
032 capture realistic view-dependent effects. Our approach leverages that RGB-depth
033 images provide samples of a surface light field. By encoding random subsamples
034 of this surface light field into a compact set of latent vectors, our model learns to
035 represent both geometry and appearance within a unified 3D latent space. This
036 representation reproduces view-dependent effects such as specular highlights and
037 Fresnel reflections under complex lighting. We further train a latent flow matching
038 model on this representation to learn its distribution conditioned on a single input
039 image, enabling the generation of 3D objects with appearances consistent with the
040 lighting and materials in the input. Experiments show that our approach achieves
041 higher visual quality and better input fidelity than existing methods.

042
043

1 INTRODUCTION

044

045 The world is filled with objects that vary widely in shape and material. Some are smooth and reflective,
046 while others are rough, detailed or even translucent. Even familiar objects can appear differently
047 from different viewpoints as light creates reflections and subtle color changes across their surfaces.
048 Capturing this richness is important for building generative models of realistic objects. To do so, we
049 need representations that can model both the underlying 3D geometry of real-world objects as well as
050 their view-dependent appearance.

051 However, today in machine learning, most existing 3D representations tackle only part of this problem.
052 Many methods are designed to capture geometry alone (He et al., 2025; Li et al., 2025a; Chang
053 et al., 2024), aiming to recover the overall shape of objects. Other approaches (Xiang et al., 2025)
include appearance information, but treat it as view-independent diffuse color. As a result, these

054 models struggle to represent view-dependent effects such as reflections, highlights, or subtle changes
 055 in shading that are important for realistic appearance.
 056

057 In this work, we aim to model both the 3D geometry and the view-dependent appearances of objects.
 058 We introduce a 3D latent representation that encodes a *surface light field* into a compact set of latent
 059 vectors. In summary, rather than encoding geometry and color only, *e.g.* with an input RGB point
 060 cloud, we additionally input viewing direction along with surface points and color, to capture how
 061 realistic materials change appearance with angle. Because a full surface light field contains highly
 062 dense information, we instead provide a random subsample of the surface light field—captured
 063 from RGB-depth multiview images—and rely on an encoder to interpolate the missing samples.
 064 This approach allows the model to reproduce view-dependent effects such as highlights and Fresnel
 065 reflections, that can be visualized via a decoder that outputs Gaussian splats with higher-order
 066 spherical harmonics (Kerbl et al., 2023). We evaluate our method by comparing its reconstruction
 067 quality against the state-of-the-art 3D latent representations (Xiang et al., 2025; Li et al., 2025a; He
 068 et al., 2025; Chen et al., 2025b; Chang et al., 2024), and find that modeling these view-dependent
 069 effects improve visual quality without significant degradation in geometric accuracy.

070 Building on the proposed representation, we train a latent flow matching model that learns the
 071 distribution of our 3D latent representations conditioned on a single input image. The generative
 072 model learns to infer both geometry and view-dependent appearance from images under different
 073 lighting conditions. Given an input image, the model generates a full 3D object whose shape matches
 074 the object in the image from the input viewpoint and whose appearance reflects the lighting and
 075 view-dependent material properties present in the input. Our approach connects 2D observations to
 076 3D object generation, enabling controllable synthesis of realistic, view-dependent materials from
 077 diverse image inputs.

078 Our work makes the following contributions.

- 079 • We introduce a 3D latent representation that captures both geometry and view-dependent appear-
 080 ances by encoding surface light field information into a compact set of latent vectors.
- 081 • We design a training framework that jointly supervises geometry and appearance using random
 082 subsamples of surface light field data from RGB-depth multiview images, enabling the model to
 083 reproduce view-dependent effects such as highlights and fresnel reflections via Gaussian splats
 084 with higher-order spherical harmonics.
- 085 • We develop a latent flow matching model that learns the distribution of these latent representations
 086 conditioned on images, allowing the generation of full 3D objects whose appearances reflect the
 087 lighting and materials in the input.

088 Together, these components enable more accurate reconstruction and better separation of geometry
 089 and appearance than existing methods. We plan to release our code and pretrained models.
 090

091 2 RELATED WORKS

092 A growing number of recent approaches have explored learning latent 3D representations. In Table S1,
 093 we summarize and compare their properties, including geometry and appearance modeling mech-
 094 anisms, data requirements, latent dimensionality, encoder inputs, and training sets. For clarity, we
 095 review geometry-only approaches and those that jointly model geometry and appearance separately.
 096

097 **Geometry-only latent.** A large body of work focuses on latent representations that model geometry
 098 alone. These approaches differ primarily in the underlying 3D signal they encode. PointFlow (Yang
 099 et al., 2019), ShapeGF (Cai et al., 2020), and ShapeToken (Chang et al., 2024) learn to model 3D
 100 surfaces as 3D distributions. 3DShape2VecSet (Zhang et al., 2023), CLAY (Zhang et al., 2024),
 101 TripoSG (Li et al., 2025a), and Hunyuan3D (Zhao et al., 2025), instead model shapes as occupancy or
 102 signed distance functions (SDF). Direct3D (Wu et al., 2024), XCube (Ren et al., 2024), LT3SD (Meng
 103 et al., 2025), and Make-A-Shape (Hui et al., 2024) embed geometry into dense or sparse voxel grids
 104 containing occupancy or SDF values at vertices. While grid-based methods offer structured latents,
 105 they face inherent trade-offs between spatial resolution and memory efficiency. A common limitation
 106 when relying on occupancy or SDF, however, is the reliance on significant preprocessing of the
 107 training data. Many methods require watertight meshes (Zhang et al., 2023; 2022; 2024), expensive

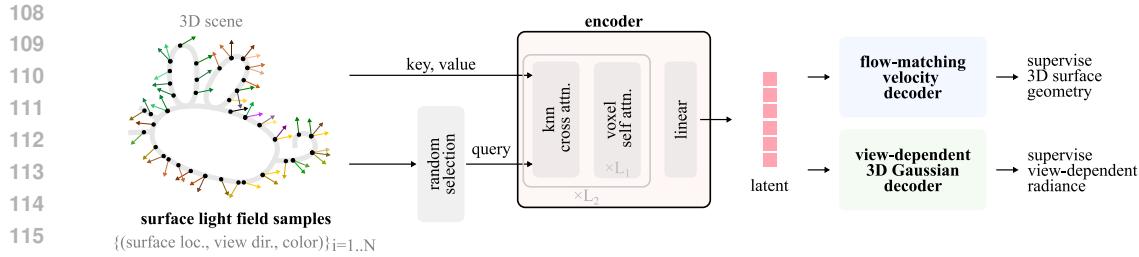


Figure 2: **Overview of the 3D latent representation.** Given samples of the surface light field of the scene, we learn a latent representation that reconstructs the *full* surface light field information. The encoder (pink block) condenses input information into the latent representation. We jointly supervise the latent representation to contain full 3D geometry and view-dependent radiance information beyond the input samples. In the architectures, we design localized attention pattern to improve efficiency and support 1 million input tokens.

mesh-to-field conversions, or optimization-based radiance-field fitting in order to define consistent supervision signals. Moreover, these methods capture only geometry, without appearance, texture, or view-dependent effects.

Geometry and appearance latent. More recently, a smaller set of works has begun to extend latent 3D representations beyond pure geometry to also encode appearance. Two of the most relevant are 3DTopia-XL (Chen et al., 2025b) and TRELLIS (Xiang et al., 2025).

3DTopia-XL introduces the PrimX representation, where each primitive encodes not only geometry through signed distance but also material properties such as RGB color, roughness, and metallicity. This design allows the model to generate textured 3D assets that are ready for physically based rendering. However, PrimX requires an optimization step to construct the primitive representation from meshes before training, making data preparation more demanding.

TRELLIS introduces a Structured LATent (SLAT) representation: a sparse voxel grid fused with dense multiview visual features extracted by a foundation vision model (DINOv2) to provide both geometry and appearance cues. Given the coarse geometry of an object, SLAT is constructed by averaging projected DINOv2 features from all input views. The model decodes SLAT into multiple output 3D formats, including 3D Gaussians, meshes, and radiance fields. To handle the sparsity of SLAT efficiently, TRELLIS employs transformers with windowed attention and sparse 3D convolution, and it is trained at scale on roughly 500K assets from Objaverse-XL and related datasets.

TRELLIS has several limitations relative to our approach. First, SLAT requires coarse occupancy information to be known in advance, so generation is performed in two stages, whereas our latent directly encodes complete object information and supports single-stage generation. Second, TRELLIS encodes only view-independent appearance: multiview features are mean-pooled, discarding angular variation and preventing modeling of view-dependent effects. Finally, TRELLIS generates objects in a canonical coordinate system (*i.e.*, their dataset orientation), which necessitates post-processing to align them with input images if needed. This restriction arises from its reliance on preconstructed axis-aligned voxel grids, which makes coordinate transformations like rotation during training difficult. In contrast, our model takes points as input, which allows us to apply coordinate transformations during training, ensuring generated objects are consistently oriented with respect to the input view.

3 METHOD

3.1 PRELIMINARY AND NOTATION

The surface light field jointly models both the 3D surfaces of a scene as well as the outgoing radiance from each point on the surface toward every viewing direction. In theory, if the surface light field is perfectly represented, any image captured by a camera at any arbitrary location and orientation can be directly reconstructed (Wood et al., 2000). We represent the surface light field as a 5D function $\ell(\mathbf{x}, \hat{\mathbf{d}}) : \mathbb{R}^3 \times \mathbb{S}^2 \rightarrow \mathbb{R}^3$, where $\mathbf{x} \in \partial\Omega$ is any 3D location on surfaces $\partial\Omega$,

162 $\hat{\mathbf{d}} \in S^2 = \{\mathbf{v} \in \mathbb{R}^3, \|\mathbf{v}\| = 1\}$ is the viewing direction, and $\mathbf{c} \in \mathbb{R}^3$ is the color of the outgoing
 163 radiance from \mathbf{x} toward $\hat{\mathbf{d}}$.
 164

165 We use bold lowercase symbols (e.g., \mathbf{v}) to denote vectors, bold lowercase symbols with hats (e.g.,
 166 $\hat{\mathbf{v}}$) for unit-norm directions, capital letters (e.g., A) for matrices or transformations, and calligraphic
 167 symbols (e.g., \mathcal{S}) for sets.

168 **3.2 OVERVIEW**

169 Our goal is to learn a 3D latent representation that models the surface light field of an object-centric
 170 scene with a compact set of latent vectors $\mathbf{s} \in \mathcal{S}$. Fig. 2 shows an overview of our latent representation.
 171 Our encoder E takes N samples of the surface light field defined in the following as input and outputs
 172 a small set of k latent tokens of dimension d :
 173

$$\mathcal{X} = \{(\mathbf{x}_i, \hat{\mathbf{d}}_i, \mathbf{c}_i = \ell(\mathbf{x}_i, \hat{\mathbf{d}}_i))\}_{i=1}^N. \quad (1)$$

174 To learn a meaningful representation of the surface light field, we must supervise both the decoded
 175 3D geometry as well as view-dependent radiance. A trivial solution would utilize an autoencoder
 176 formulation that directly reconstructs the input \mathcal{X} . However, in practice we only have sparse, discrete
 177 samples of the surface light field (e.g., as rendered from multiview images of a training object), and
 178 thus such an approach may not meaningfully represent the entire continuous function ℓ . Thus, rather
 179 than directly supervising with the surface light field, we instead opt for indirect supervision with
 180 carefully-designed loss functions on decoded geometry and view-dependent appearance:
 181

182 **Geometry supervision.** We utilize prior work (Chang et al., 2024), which models 3D surfaces as
 183 a 3D probabilistic density function that is aligned with the actual surfaces via flow matching. This
 184 formulation enables us to model 3D surfaces beyond the input 3D locations. Specifically, the latent \mathbf{s}
 185 is trained to parameterize a 3D distribution $p(\mathbf{x}|\mathbf{s})$ that approximates a dirac delta function lying on
 186 3D surfaces in the scene, i.e., $p(\mathbf{x}|\mathbf{s}) \approx \delta(\mathbf{x} \in \partial\Omega)$. The flow matching formulation also optionally
 187 allows us to sample $p(\mathbf{x}|\mathbf{s})$ and get a point cloud lying on surfaces during inference, and zero-shot
 188 estimate surface normals.
 189

190 The loss function follows that used by Chang et al. (2024):
 191

$$\mathcal{L}_{\text{geo}}(\theta) = \mathbb{E}_{t \sim u(0,1)} \mathbb{E}_{\mathbf{x}} \|V(\mathbf{x}_t; t) - (\mathbf{x} - \epsilon)\|^2 dt, \quad (2)$$

192 where θ is all parameters in the encoder and the decoder, t is the flow-matching time, $u(0, 1)$ is the
 193 uniform distribution between 0 and 1, ϵ is noise sampled from standard normal distribution, $V_\theta(\mathbf{x}_t; t)$
 194 is the flow-matching decoder that estimates the velocity at $\mathbf{x}_t = \mathbf{x} + (1 - t) * \epsilon$, and \mathbf{x} is sampled
 195 from the surface light field.
 196

197 **View-dependent radiance supervision.** The supervision of the view-dependent radiance is through
 198 rendering multi-view images. Specifically, we convert the latent \mathbf{s} into a set of 3D Gaussians, which
 199 models view-dependent color by spherical harmonics, and we render the 3D Gaussians from random
 200 viewpoints and compare with ground-truth images. The loss is
 201

$$\mathcal{L}_{\text{radiance}}(\theta) = \mathbb{E}_{H,E} \|I_{\text{est}} - I_{\text{gt}}\|^2 + \lambda \text{lpips}(I_{\text{est}}, I_{\text{gt}}), \quad (3)$$

202 where $I_{\text{est}} = \text{Render}(D(\mathbf{s}, \mathcal{O}), H, E)$ is the rendered image from 3D Gaussians at camera pose
 203 H and intrinsic E , $I_{\text{gt}} = \text{Render}(\text{object}, H, E)$ is the ground-truth image, D is the Gaussian
 204 decoder that will be detailed below, $D(\mathbf{s}, \mathcal{O})$ are the estimated 3D Gaussians given the latent \mathbf{s} and a
 205 low-resolution sparse occupancy grid \mathcal{O} constructed from the sampled point cloud or an occupancy
 206 estimator, and θ is all parameters in the encoder and the decoder. In all experiments, we use $\lambda = 0.2$.
 207

208 In the rest of this section, we discuss the architectures for our surface light-field encoder, geometry
 209 decoder and Gaussian decoder in more detail.
 210

211 **3.3 ENCODER**

212 We first describe how we sample surface light field to obtain the input to the encoder and the samples
 213 for the empirical mean in Eq. (2). Then we detail our encoder architecture.
 214

216 **Input.** To sample from the surface light field $\ell(\mathbf{x}, \hat{\mathbf{d}})$, we need to sample random surface locations
 217 and view directions. We achieve this by densely rendering multi-view RGBD images. Since we focus
 218 on object-centric scenes, the cameras are placed uniformly on a sphere surrounding the object. The
 219 surface location \mathbf{x} can be obtained by back-projecting the depth map, view direction $\hat{\mathbf{d}}_i$ is derived
 220 from the pinhole camera model, and \mathbf{c}_i from the pixel color¹. This operation densely samples both
 221 the surfaces and viewing directions and returns $\mathcal{X} = \{(\mathbf{x}_i, \hat{\mathbf{d}}_i, \mathbf{c}_i)\}_{i=1}^N$.

222 In our experiments, we box-normalize the scene to $[-1, 1]$, and we render 150 images of resolution
 223 1036×1036 with 40 degree field of view, uniformly on a sphere of radius 3.5. This provides 160
 224 million samples of light field ℓ introduced in Sec. 3.1, of which we randomly sample $N=2^{20}$ as our
 225 input to the encoder and the rest to serve as the ground-truth to supervise Eq. (2).

226 **Architecture.** We use Perceiver IO (Jaegle et al., 2022) as our encoder, which is widely used in
 227 prior latent 3D representations (Chang et al., 2024; Zhang et al., 2023; Li et al., 2025a). The encoder
 228 contains cross and self attention blocks, and the number of the initial queries of the first cross attention
 229 block determines the number of output latent tokens. The output of the Perceiver IO is passed to a
 230 linear layer to reduce the latent dimension to d . Our latent is thus a set of k tokens of d dimension
 231 discussed in Sec. 3.2.

232 To capture enough information from light field ℓ introduced in Sec. 3.1, we use $N = 2^{20}$ (~ 1
 233 million) samples as input. However, the large number of input tokens makes the typical cross
 234 attention in Perceiver IO computationally expensive. To solve the problem, we are inspired by the
 235 non-overlapping patchification in Vision Transformers (Dosovitskiy et al., 2021), which converts
 236 dense pixels into coarse tokens. Instead of using a convolution layer to aggregate information from
 237 individual 16×16 patches into tokens, we use cross attention. However, our inputs are scattered
 238 points on 3D surfaces instead of pixels on a regular grid, and it is non-trivial to patchify 3D surfaces.
 239 We design an approximation of 2D patchification on 3D surfaces with k-nearest neighbor. Specifically, given the input
 240 samples \mathcal{X} in Eq. (1), we first randomly select k samples as the
 241 query \mathcal{Q} to the first cross attention layer, similar to Zhang et al.
 242 (2023). The number of samples is equal to the number of latent
 243 tokens, which is 8192 in our setup. To patchify 3D surface, for
 244 each sample $\mathbf{x} \in \mathcal{X}$ we find its closest point in \mathcal{Q} in terms of
 245 ℓ_2 distance of \mathbf{x} and assign the index of the closest point to the
 246 sample. Finally, during the cross attention, a query only attends
 247 to input samples that have its index. This operation can be
 248 implemented by standard libraries like xformers (Lefauzeux
 249 et al., 2022) or FlashAttention (Dao, 2024).
 250

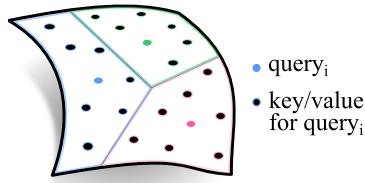
251 An illustration is shown in Fig. 3. Note that this is an approximation because we use ℓ_2 distance of \mathbf{x}
 252 instead of geodesic distance. When there are more than one surface lie in the neighborhood, the query
 253 will attend across surfaces. As ℓ_2 distance is much faster to compute than the geodesic distance, we
 254 think it is a good trade-off.

255 For self attention, we use a voxel-based attention mechanism. Specifically, during self attention,
 256 tokens that lie within a predefined coarse voxel grid attend to each other, and the coarse voxel grid
 257 shifts by a half cell width every layer. Note that unlike TRELLIS (Xiang et al., 2025), whose tokens
 258 lie on a voxel grid, our tokens have continuous coordinates and do not lie on a voxel grid. Overall,
 259 the encoder has 59.2 million parameters. Together with decoders below, the model is trained with
 260 256 batch size for 90k iterations on 64 GPUs for 9 days.

261 3.4 DECODER

262 **Flow-matching velocity decoder.** We utilize the same flow-matching velocity decoder used by
 263 Chang et al. (2024). Specifically, it takes the latent \mathbf{s} , a 3D location, and flow-matching time as input,
 264 and it predicts the flow-matching velocity at the 3D location. To ensure we model a 3D distribution,
 265 *i.e.*, $p(\mathbf{x}|\mathbf{s})$, the decoder processes each 3D point independently (only cross attention and point-wise
 266 operations are used). The decoder has 8.8 million parameters.

267 ¹We assume the depth map measures the distance to the first intersection point of the scene, regardless of
 268 transparency. For example, in blender, this can be achieved by setting the alpha threshold to be 0.



269 Figure 3: 3D patchification

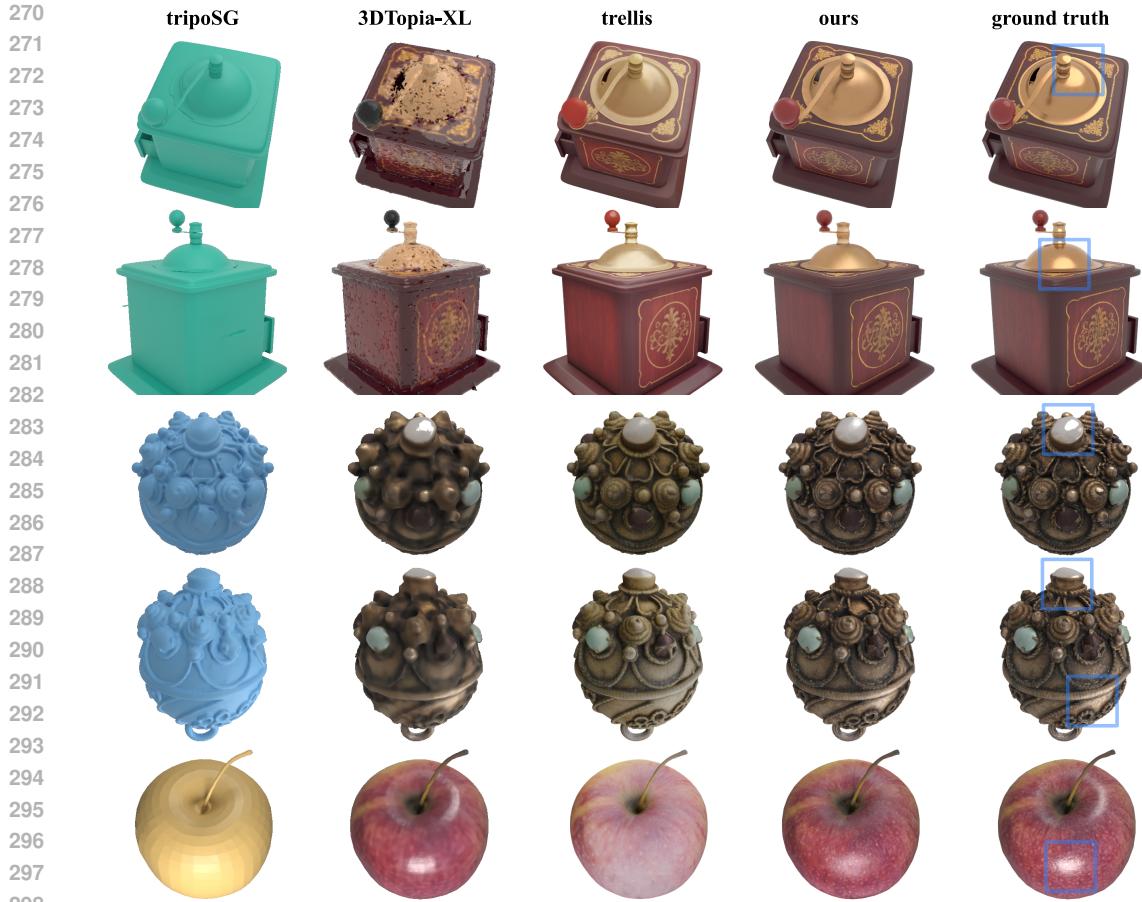


Figure 4: **Reconstruction results on various lighting conditions.** Boxes on ground-truth highlight specular and Fresnel reflection. Please refer to Tab. 1 for quantitative results. Mesh credit: [DigitalSouls \(2019\)](#); [3Dji \(2025b\)](#); [of Małopolska \(2020\)](#).

View-dependent Gaussian decoder. Similar to our encoder, we use a Perceiver IO architecture (Jae-gle et al., 2022) to implement our Gaussian decoder. We use a low-resolution sparse occupancy grid for our initial queries, and cross attend to the predicted latent s . At the output, we use a small MLP to output 64 3D Gaussians for each occupied voxels. Unlike past work that only uses Gaussians with view-independent color (Xiang et al., 2025), our decoder predicts Gaussians of spherical harmonics degree 3 to model view-dependent radiance. The decoder has 77.3 million parameters.

At training time, we use ground-truth occupancy for the decoder queries, like recent work leveraging structured latent representations (Xiang et al., 2025; He et al., 2025; Wu et al., 2025). After learning the representation, we can either use points sampled from the aforementioned flow-matching geometry decoder or alternatively train a downstream occupancy decoder, to directly predict sparse occupied voxels from the encoded latent. Thus, at generation time, our approach does not require a second generative model to predict occupancy unlike structured latent-based approaches (Xiang et al., 2025; He et al., 2025; Wu et al., 2025), simplifying the overall pipeline.

3.5 GENERATIVE MODEL

To demonstrate our latent representation, we train a flow-matching model that generates 3D latents conditioned on an image of an object. We rely on a standard Diffusion Transformer (DiT) architecture (Peebles & Xie, 2022), with a zero-initialized learnable positional encoding for each latent token. The input image is encoded by DINOv2-large image embeddings (Oquab et al., 2024) and a learnable patchification layer. While we originally considered using more explicit camera geometry encoding, *e.g.*, Plucker ray embeddings, we found in practice that such an approach reduced overall performance — please see the supplement for an ablation. In total, the model has 623 million parameters.



Figure 5: **Single image to 3D results.** The input image is shown at the center of each set with black border. The rendering of the generated image at the input view ($+x, 0, 0$) is shown with the input image. Please refer to Tab. 3 for quantitative results. Mesh credit: [Vetech82 \(2021\)](#); [Rigsters \(2017\)](#); [3d coat \(2015\)](#); [3Dji \(2025a\)](#).

4 EXPERIMENTS

Following the typical latent generation pipeline, we first train the latent representation, and once learned, we then train a latent flow-matching model conditioned on an input image. We discuss the training and evaluation of our latent representation in Section 4.1, and our generative image-to-3d model in Section 4.2.

4.1 RECONSTRUCTION

Datasets. We train the encoder-decoder on the 500k high-quality object subset of Objaverse-XL (Deitke et al., 2023) as selected by TRELLIS (Xiang et al., 2025). Unlike TRELLIS, instead of using all 500k objects for training, we divide the data into training, validation, and test sets in

378 Table 1: **Reconstruction on Toys4k.** We provide input needed by individual methods. TRELLIS (Xiang et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours uses RGBD images from 150 evenly distributed views. For appearance evaluation, we render each model’s output from 100 random cameras, varying difficulty by adjusting camera radius. Please refer to Fig. 4 for qualitative results and Sec. C for comprehensive quantitative results. The better one is highlighted.

Method	Simple, Camera Radius [3, 4]			Hard, Camera Radius [1, 3]		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
TRELLIS	31.12±3.39	0.974±0.022	0.034±0.022	27.57±3.38	0.941±0.050	0.090±0.055
Ours	34.16±3.39	0.985±0.016	0.023±0.018	32.36±3.77	0.967±0.040	0.055±0.046

388 Table 2: **Geometric reconstruction evaluation.** We report squared Chamfer distances multiplied by
 389 10⁴ for readability, computed using 100k sampled points each from ground-truth and reconstruction.
 390 As 3DTopia-XL (Chen et al., 2025b) and TripoSG (Li et al., 2025a) can be sensitive to input
 391 geometry, we also list variants with their worst-performing 10% of objects removed. We separate our
 392 tested approaches based on those that require ground-truth coarse geometry for decoding the latent
 393 representation, and those that do not utilize this information. Our method outputs the best geometry
 394 among the approaches in the latter category, and it is competitive with the techniques in the former.
 395 Red highlights the best method in each category.

Method	Appearance	Latent size	PBR-Objaverse	Toys4k	GSO
0 GT	-	-	0.482±0.245	0.422±0.268	0.533±0.273
Requires coarse geometry oracle:					
1 TripoSF (He et al., 2025)	✗	≈ 244k × 11	0.632±0.583	0.557±0.593	0.714±0.738
2 TRELLIS (Xiang et al., 2025)	✓	≈ 20k × 11	0.616±0.277	0.608±0.437	0.737±0.331
3-1 3DTopia-XL (Chen et al., 2025b)	✓	2048 × 64	124.8±720.2	17.52±115.8	0.693±0.434
3-2 (worst 10% removed)	✓	2048 × 64	4.702±13.47	0.895±1.330	0.612±0.331
4 Ours (oracle, mesh decoder)	✓	8192 × 32	0.558±0.316	0.506±0.439	0.654±0.338
Does not utilize coarse geometry oracle:					
5-1 TripoSG (Li et al., 2025a)	✗	2048 × 64	33.43±74.25	36.49±63.83	46.41±88.86
5-2 (worst 10% removed)	✗	2048 × 64	14.88±21.35	20.36±27.33	21.89±39.35
6 Shape Tokens (Chang et al., 2024)	✗	1024 × 16	1.116±0.447	1.062±0.591	1.240±0.482
7-1 Ours (no mesh decoder)	✓	8192 × 32	0.720±0.321	0.668±0.385	0.816±0.396
7-2 Ours (mesh decoder)	✓	8192 × 32	0.569±0.332	0.524±0.484	0.665±0.355

408 an 8:1:1 ratio. For each object, we pair it with 3 lighting conditions: 1) fixed smooth area lighting
 409 (matching TRELLIS)², 2) an all-white environment map, and 3) randomly placed lights. For each
 410 configuration, we render using Blender from 150 viewpoints uniformly distributed on a sphere, to
 411 sample the surface light field as input for our encoder. We render from 100 random viewpoints to
 412 supervise our view-dependent Gaussian decoder.

414 We evaluate the models on Toys4k (Stojanov et al., 2021), GSO (Downs et al., 2022), and Objaverse-
 415 XL (Deitke et al., 2023). For Objaverse-XL, we select a subset of 200 objects with PBR materials,
 416 which we dub PBR-Objaverse.

417 **Qualitative results:** Fig. 4 shows a few objects with view-dependent appearance, including specular
 418 reflections from metallic surfaces and Fresnel reflections when viewed at grazing angles. **Please see**
 419 **our supplemental website for more informative visualizations.**

420 **Quantitative results (appearance):** To evaluate appearance quality, we render the 3DGS from 100
 421 random views on a sphere and measure PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al.,
 422 2018). Tab. 1 shows reconstruction metrics under different zoom-in levels on the Toys4k dataset
 423 rendered with TRELLIS’s training lighting condition. Our surface light-field representation outper-
 424 forms competitor appearance representations across all the tested metrics. More evaluations on other
 425 datasets are described in Sec. C.

426 **Quantitative results (geometry):** To evaluate the quality of reconstructed 3D geometry, we estimate
 427 ground truth point clouds by unprojecting the rendered depth of a target object from 100 uniformly
 428 distributed views on the sphere and randomly selecting 100k reference points. We then compute
 429 Chamfer distance between these ground truth point clouds and reconstructed point clouds from latent

431 ²https://github.com/microsoft/TRELLIS/blob/6b0d64751ad54d9c3/dataset_toolkits/blender_script/render.py#L178-L209

Figure 6: **Fidelity to input view.** Our image-to-3d generative model respects the coordinate system of the input view. In contrast, existing state-of-the-art techniques, *e.g.*, TRELLIS (Xiang et al., 2025), do not. Mesh credit: [of Malopolska \(2016\)](#); [animanyarty \(2022\)](#).

representations. For our method and Chang et al. (2024), we sample 100k points from the flow-matching velocity decoder to produce the output point cloud. For baselines that output meshes (Xiang et al., 2025; Li et al., 2025a; He et al., 2025), similar to the ground truth points, we unproject rendered depth from another set of 100 views on the sphere and select 100k points for the Chamfer calculation.

Table S9 shows geometry evaluation when input is lit with TRELLIS’s training lighting condition. Our method is competitive with recent geometry-only latent representations, despite additionally representing appearance information. Furthermore, our geometry estimates do not utilize additional ground truth coarse geometry information that other state-of-the-art approaches require (Xiang et al., 2025; He et al., 2025).

Table 3: **Single-image-conditioned generation on Toys4k.** KID is reported by $\times 100$. CFG scale for both models are 3.0. The **best** is highlighted. See Fig. 5, 6 and supp. website for qualitative results.

Method	CLIP \uparrow	Conditioning View				Novel View			
		FID \downarrow	KID \downarrow	FID _{dino} \downarrow	KID _{dino} \downarrow	FID \downarrow	KID \downarrow	FID _{dino} \downarrow	KID _{dino} \downarrow
TRELLIS	0.899 \pm 0.045	12.84	0.088	84.692	2.311	7.600	0.100	67.458	3.166
Ours	0.905 \pm 0.041	6.219	0.009	41.621	1.333	6.216	0.058	66.530	3.522

4.2 GENERATION

We train our image-to-3D DiT on the same tokenizer-training set for 280k iterations (effective batch size of 256 on 128 H100 GPUs for 9 days). We evaluate generation results with the same fixed area lighting as TRELLIS to allow a fair comparison. We qualitatively evaluate our model’s performance in Fig. 5. Our model generates complex geometry and view-dependent appearance, despite being trained on other lighting types. **Please see our supplemental website for more informative visualizations.** We also visualize our model’s input view fidelity compared to TRELLIS in Fig. 6.

To quantitatively evaluate the quality of our image-to-3d generative model, we calculate two distribution-wise metrics. First, to evaluate the fidelity of the generative model to the input content, we render the generated 3D asset at the same pose as the conditioning view. As shown in Table 3, our approach produces significantly improved FID and KID scores in this setting compared to TRELLIS. Second, to measure the overall quality of the generated asset, we render from four novel views distributed around the object at a pitch of 30°, following the evaluation setup of TRELLIS (Xiang et al., 2025). As shown in Table 3, despite our model’s increased faithfulness to the input view, the overall generation performance does not significantly degrade.

5 CONCLUSION

We propose an autoencoder that learns a compact latent space for view-dependent 3D assets. In particular, we build an encoding of the surface light field, that can be easily produced via multi-view RGBD rendering. With a flow-matching geometry decoder and a view-dependent Gaussian decoder, our representation can be easily applied with an off-the-shelf DiT for generating view-dependent 3D assets. We validate the performance of our view-dependent 3d representation in both reconstruction and generation.

486 REFERENCES
487488 1812panorama. Drummer of the revel infantry regiment, 2019. URL <https://skfb.ly/6Xq6W>.
489 Licensed under CC0 Public Domain. 16490 3d coat. Robot steampunk 3d-coat 4.5 pbr, 2015. URL <https://skfb.ly/EEIE>. Licensed
491 under Creative Commons Attribution. 7493 3Dji. Mechanical beast, 2025a. URL <https://skfb.ly/pAFoE>. Licensed under Creative
494 Commons Attribution. 7496 3Dji. Coffee grinder, 2025b. URL <https://skfb.ly/pzpn7>. Licensed under Creative Com-
497 mons Attribution. 6498 a108082046. Telephone, 2022. URL <https://skfb.ly/ovDBJ>. Licensed under CC Attribution.
499 16501 AdamJonesCGD. Conrad carriage, 2020. URL <https://skfb.ly/oyy9z>. Licensed under CC
502 Attribution. 16504 Conseil des musées Alienor.org. La grand' goule, 2016. URL <https://skfb.ly/UvvD>. Li-
505 censed under CC Attribution-NonCommercial-NoDerivs. 16506 alzarac. Hypostomus / coroncoro, 2019. URL <https://skfb.ly/6W8Dz>. Licensed under CC
507 Attribution. 16509 animanyarty. Motorcycle, 2022. URL [https://sketchfab.com/3d-models/
510 motorcycle-38404e2077ca4b209cd2f1db30541b94](https://sketchfab.com/3d-models/motorcycle-38404e2077ca4b209cd2f1db30541b94). Licensed under Creative Com-
511 mons Attribution. 9513 Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely, and
514 Bharath Hariharan. Learning gradient fields for shape generation. In *European Conference on
515 Computer Vision (ECCV)*, pp. 364–381. Springer, 2020. 2, 15516 Jen-Hao Rick Chang, Yuyang Wang, Miguel Angel Bautista Martin, Jiatao Gu, Xiaoming Zhao, Josh
517 Susskind, and Oncel Tuzel. 3D Shape Tokenization via Latent Flow Matching. *arXiv preprint
518 arXiv:2412.15618*, 2024. 1, 2, 4, 5, 8, 9, 14, 15, 21520 Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li, Jiarui Liu, Xiu Li, Xiaoxiao Long,
521 Jiashi Feng, and Ping Tan. Dora: Sampling and Benchmarking for 3D Shape Variational Auto-
522 Encoders. In *CVPR*, 2025a. 15523 Zhaoxi Chen, Jiaxiang Tang, Yuhao Dong, Ziang Cao, Fangzhou Hong, Yushi Lan, Tengfei Wang,
524 Haozhe Xie, Tong Wu, Shunsuke Saito, et al. 3DTopia-XL: Scaling high-quality 3d asset generation
525 via primitive diffusion. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
526 pp. 26576–26586, 2025b. 2, 3, 8, 14, 15, 21528 Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-sdf: Conditional generative modeling of signed
529 distance functions. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 2262–2272,
530 2023. 15531 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In
532 *International Conference on Learning Representations (ICLR)*, 2024. 5534 Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
535 Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha Kembhavi,
536 Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi. Objaverse-xl:
537 A universe of 10m+ 3d objects. *arXiv preprint arXiv:2307.05663*, 2023. 7, 8539 DigitalSouls. Delicious red apple, 2019. URL <https://skfb.ly/6RxAt>. Licensed under
Creative Commons Attribution-NonCommercial. 6, 26

540 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 541 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 542 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
 543 In *ICLR*, 2021. 5

544

545 Laura Downs, Anthony Francis, Nate Koenig, Brandon Kinman, Ryan Michael Hickman, Krista
 546 Reymann, Thomas Barlow McHugh, and Vincent Vanhoucke. Google Scanned Objects: A
 547 High-Quality Dataset of 3D Scanned Household Items. 2022. 8

548 Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
 549 one-step generative modeling. *arXiv preprint arXiv:2505.13447*, 2025. 19

550

551 GJ2012. Toaster - kitchenaid artsan, 2013. URL <https://www.blendswap.comblend/>
 552 Licensed under CC0. 16

553

554 Xianglong He, Zi-Xin Zou, Chia-Hao Chen, Yuan-Chen Guo, Ding Liang, Chun Yuan, Wanli Ouyang,
 555 Yan-Pei Cao, and Yangguang Li. SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape
 556 Modeling. *arxiv*, 2025. 1, 2, 6, 8, 9, 14, 15, 21

557

558 Ka-Hei Hui, Aditya Sanghi, Arianna Rampini, Kamal Rahimi Malekshan, Zhengzhe Liu, Hooman
 559 Shayani, and Chi-Wing Fu. Make-a-shape: a ten-million-scale 3d shape model. In *International
 560 Conference on Machine Learning (ICML)*, 2024. 2, 15

561

562 Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
 563 Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver IO: a
 564 General Architecture for Structured Inputs & Outputs. In *ICLR*, 2022. 5, 6

565

566 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3D Gaussian
 567 Splatting for Real-Time Radiance Field Rendering. *TOG*, 2023. 2

568

569 Benjamin Lefauze, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
 570 Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
 Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
 571 modelling library. <https://github.com/facebookresearch/xformers>, 2022. 5

572

573 Yangguang Li, Zi-Xin Zou, Zexiang Liu, Dehu Wang, Yuan Liang, Zhipeng Yu, Xingchao Liu,
 574 Yuan-Chen Guo, Ding Liang, Wanli Ouyang, et al. TripoSG: High-Fidelity 3D Shape Synthesis
 575 using Large-Scale Rectified Flow Models. *arXiv*, 2025a. 1, 2, 5, 8, 9, 15, 21

576

577 Zhihao Li, Yufei Wang, Heliang Zheng, Yihao Luo, and Bihan Wen. Sparc3D: Sparse representation
 578 and construction for high-resolution 3d shapes modeling. *arXiv preprint arXiv:2505.14521*, 2025b.
 579 15

580

581 S. Luo and W. Hu. Diffusion probabilistic models for 3d point cloud generation. In *IEEE Conference
 582 on Computer Vision and Pattern Recognition (CVPR)*, 2021. 15

583

584 Quan Meng, Lei Li, Matthias Nießner, and Angela Dai. LT3SD: Latent trees for 3d scene diffusion.
 585 In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 650–660, 2025. 2,
 586 15

587

588 nastasyas. Gart_220_centaур, 2019. URL <https://skfb.ly/6WR7W>. Licensed under CC
 589 Attribution. 16

590

591 Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-e: A system
 592 for generating 3d point clouds from complex prompts. *arXiv preprint arXiv:2212.08751*, 2022. 15

593

594 Virtual Museums of Małopolska. Black and white “belweder”, 2016. URL <https://skfb.ly/NnEr>. Licensed under Creative Commons 0 Public Domain. 9

595

596 Virtual Museums of Małopolska. Coffee grinder, 2020. URL <https://skfb.ly/6VyBJ>.
 597 Licensed under Creative Commons 0 Public Domain. 6

594 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Q. Vo, Marc Szafraniec, Vasil Khalidov,
 595 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, Mahmoud Assran, Nicolas
 596 Ballas, Wojciech Galuba, Russ Howes, Po-Yao (Bernie) Huang, Shang-Wen Li, Ishan Misra,
 597 Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Huijiao Xu, Hervé Jégou, Julien Mairal,
 598 Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINov2: Learning Robust Visual Features
 599 without Supervision. *TMLR*, 2024. 6

600 William Peebles and Saining Xie. Scalable diffusion models with transformers. *arXiv preprint*
 601 *arXiv:2212.09748*, 2022. 6

602 Xuanchi Ren, Jiahui Huang, Xiaohui Zeng, Ken Museth, Sanja Fidler, and Francis Williams. XCube:
 603 Large-Scale 3D Generative Modeling using Sparse Voxel Hierarchies. In *CVPR*, 2024. 2, 15

604 Rigsters. Lion crushing a serpent, 2017. URL <https://skfb.ly/68s9T>. Licensed under
 605 Creative Commons Attribution. 7

606 Stefan Stojanov, Anh Thai, and James M. Rehg. Using Shape to Categorize: Low-Shot Learning
 607 with an Explicit Shape Bias. In *CVPR*, 2021. 8

608 Zhicong Tang, Shuyang Gu, Chunyu Wang, Ting Zhang, Jianmin Bao, Dong Chen, and Baining Guo.
 609 Volumediffusion: Flexible text-to-3d generation with efficient volumetric encoder. *arXiv preprint*
 610 *arXiv:2312.11459*, 2023. 15

611 Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, Karsten Kreis, et al. Lion:
 612 Latent point diffusion models for 3d shape generation. *Advances in Neural Information Processing*
 613 *Systems (NeurIPS)*, 35:10021–10039, 2022. 15

614 Vetech82. Metal dragon, 2021. URL <https://skfb.ly/o8wB9>. Licensed under Creative
 615 Commons Attribution. 7, 26

616 Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet models
 617 for refraction through rough surfaces. In *Proceedings of the 18th Eurographics Conference on*
 618 *Rendering Techniques*, EGSR’07, pp. 195–206, Goslar, DEU, 2007. Eurographics Association.
 619 ISBN 9783905673524. 22

620 Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun,
 621 Xin Tong, and Jiaolong Yang. Moge-2: Accurate monocular geometry with metric scale and sharp
 622 details, 2025. URL <https://arxiv.org/abs/2507.02546>. 17

623 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
 624 error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612,
 625 2004. 8

626 Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H. Salesin,
 627 and Werner Stuetzle. Surface light fields for 3d photography. In *Proceedings of the 27th Annual*
 628 *Conference on Computer Graphics and Interactive Techniques*, SIGGRAPH ’00, pp. 287–296,
 629 2000. 3

630 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Jingxi Xu, Philip Torr, Xun Cao, and Yao Yao.
 631 Direct3D: Scalable Image-to-3D Generation via 3D Latent Diffusion Transformer. In *NeurIPS*,
 632 2024. 2, 15

633 Shuang Wu, Youtian Lin, Feihu Zhang, Yifei Zeng, Yikang Yang, Yajie Bao, Jiachen Qian, Siyu Zhu,
 634 Xun Cao, Philip Torr, et al. Direct3d-s2: Gigascale 3d generation made easy with spatial sparse
 635 attention. *arXiv preprint arXiv:2505.17412*, 2025. 6, 14, 15

636 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen, Xin
 637 Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation. In *IEEE*
 638 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 21469–21480, 2025. 1, 2, 3,
 639 5, 6, 7, 8, 9, 14, 15, 17, 18, 19, 21

640 Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
 641 PointFlow: 3D point cloud generation with continuous normalizing flows. In *IEEE International*
 642 *Conference on Computer Vision (ICCV)*, 2019. 2, 15

648 Jiayu Yang, Taizhang Shang, Weixuan Sun, Xibin Song, Ziang Chen, Senbo Wang, Shenzhou Chen,
649 Weizhe Liu, Hongdong Li, and Pan Ji. Pandora3D: A Comprehensive Framework for High-Quality
650 3D Shape and Texture Generation. *arXiv*, 2025. 15
651

652 Lior Yariv, Omri Puny, Oran Gafni, and Yaron Lipman. Mosaic-sdf for 3d generative models. In
653 *CVPR*, 2024. 15

654 Biao Zhang, Matthias Nießner, and Peter Wonka. 3DILG: Irregular Latent Grids for 3D Generative
655 Modeling. In *NeurIPS*, 2022. 2, 15

656 Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter Wonka. 3DShape2VecSet: A 3D Shape
657 Representation for Neural Fields and Generative Diffusion Models. *TOG*, 2023. 2, 5, 15

658 Longwen Zhang, Ziyu Wang, Qixuan Zhang, Qiwei Qiu, Anqi Pang, Haoran Jiang, Wei Yang, Lan
659 Xu, and Jingyi Yu. CLAY: A Controllable Large-scale Generative Model for Creating High-quality
660 3D Assets. *TOG*, 2024. 2, 15

661 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The Unreasonable
662 Effectiveness of Deep Features as a Perceptual Metric. *CVPR*, 2018. 8

663 Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang, Pei Cheng, BIN FU, Tao Chen, Gang YU,
664 and Shenghua Gao. Michelangelo: Conditional 3D Shape Generation based on Shape-Image-Text
665 Aligned Latent Representation. In *NeurIPS*, 2023. 15
666

667 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng, Mingxin
668 Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3D 2.0: Scaling Diffusion Models for High
669 Resolution Textured 3D Assets Generation. *arXiv*, 2025. 2, 15
670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX – LiTO: SURFACE LIGHT FIELD TOKENIZATION
703704 This supplement is organized as follows:
705706 1. Sec. A discusses more on related works;
707 2. Sec. B discusses limitations;
708 3. Sec. C provides more comprehensive reconstruction quantitative results;
709 4. Sec. D provides more comprehensive generation quantitative results;
710 5. Sec. E introduces more implementation details;
711 6. Sec. F showcases more studies.
712714 A MORE RELATED WORKS
715717 Tab. S1 provides an overview of related works with respect to 1) how they model the geometry; 2)
718 how they model the appearance; 3) the requirements on the data preparation to enable the model
719 training; 4) the compactness of the latent size; 5) the input to the encoder and the training dataset.
720721 B LIMITATIONS
722723 We utilize 3D Gaussians with spherical harmonics to model surface light field. While we show that
724 the improved reconstruction quality as we increase the degree of the spherical harmonics, we are
725 constraint by the 3DGS implementation that supports up to degree 3, which limits our capability to
726 faithfully reconstruct transparent or high-frequency specularities.
727728 LiTO slightly underperforms some recent work in 3D representation learning in terms of geometric
729 reconstruction accuracy. We hypothesize a few reasons. First, as mentioned in the main paper, many
730 recent approaches (He et al., 2025; Xiang et al., 2025; Wu et al., 2025; Chen et al., 2025b) rely on
731 structured representations and take coarse ground-truth geometry as input. This allows the latent
732 representation to focus on local finegrind geometry as coarse information is provided at decoding that
733 our approach does not utilize. Second, our approach relies on the flow-matching velocity decoder
734 proposed by (Chang et al., 2024) to estimate geometry. While this decoder has many theoretical
735 strengths, e.g., zero-shot normal estimation, it can also produce noise in the geometry estimation
736 thanks to the inherent probabilistic decoding. The small capacity of the velocity decoder limits the
737 frequency of the learned score function and in terms contributes to the noise in the sampled point
738 cloud, resulting in increased Chamfer distance.
739

C COMPREHENSIVE RECONSTRUCTION RESULTS

740 We provide comprehensive quantitative results for reconstruction in Tab. S2, S3, and S4. As discussed
741 in Sec. 4.1, we pair each dataset with three distinct lighting conditions to thoroughly evaluate the
742 appearance modeling capabilities of our method. Unlike previous approaches, which primarily assess
743 performance on zoomed-out views, we additionally evaluate appearance modeling under close-up
744 settings. Close-up views demand greater fidelity in capturing high-frequency details, where all
745 methods face challenges; nevertheless, LiTo consistently demonstrates the most robust performance.
746747 Further, we provide qualitative results for reconstructed mesh in Fig. S1.
748749 C.1 ABLATIONS ON MODEL DESIGNS
750751 As far as we know (see Tab. S1), we are the first to utilize 1) viewing directions in the encoder; and 2)
752 higher order spherical harmonics in the decoder during 3D asset tokenization training. Thus, we are
753 mainly interested in understanding the effects of these design choices.
754755 When examining LPIPS across Tab. S2, S3, and S4, we observe: 1) increasing the degree of spherical
756 harmonics from 0 to 3 improves the capacity consistently, e.g., from row 1-3 to 1-6 (or row 2-3 to
757 2-6, 3-3 to 3-6) in all three tables; and 2) simply adding ray information does not directly enhance
758

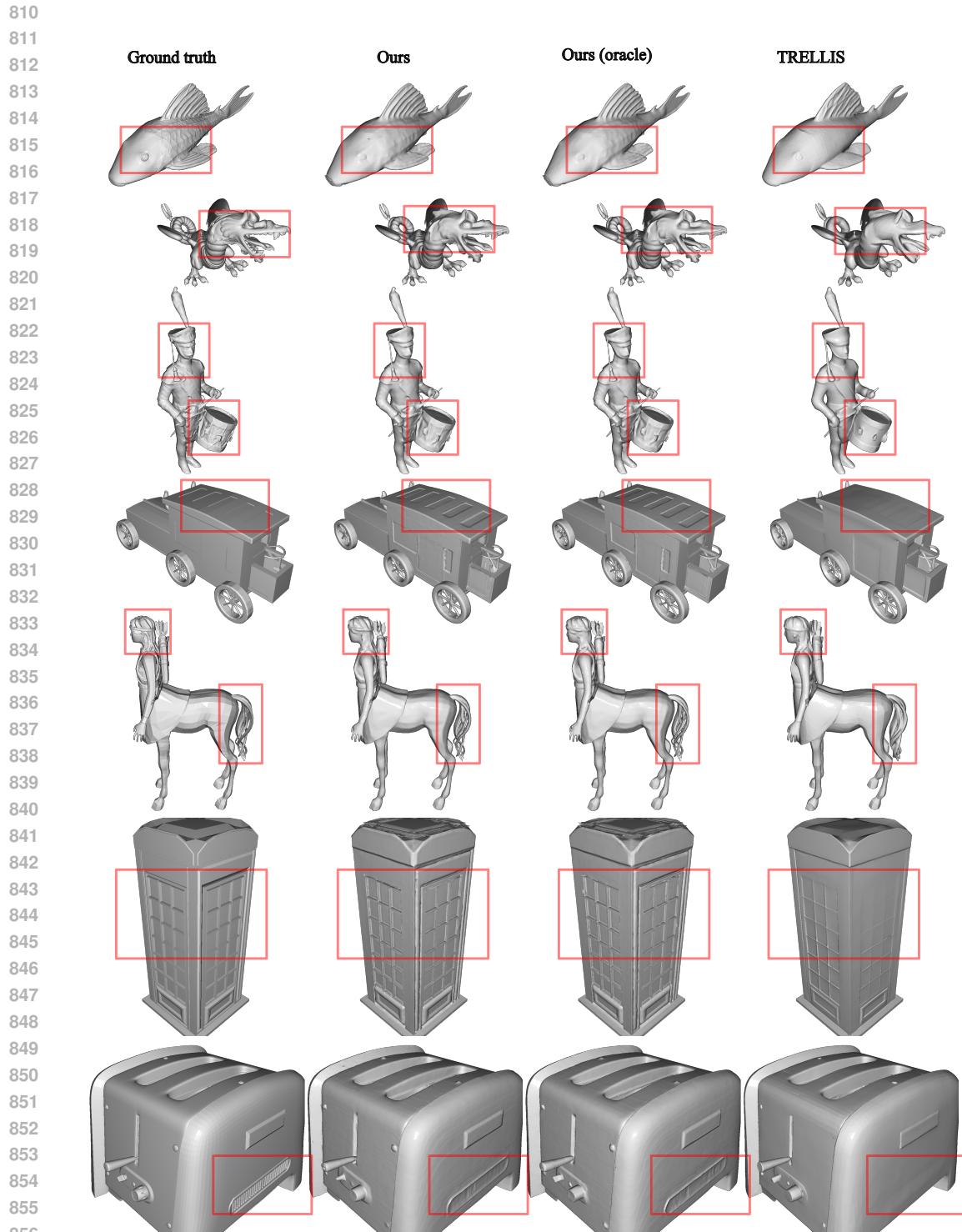
756 **Table S1: Recent latent 3D representations.** The table provides a summary of recent 3D representations and their properties. We compare the properties that are relevant to machine learning applications. *Minimal preprocessing* indicates how easy is it to utilize a 3D dataset (*e.g.*, do we need to convert data to watertight meshes, do we need optimization radiance fields to acquire the actual training dataset). *Continuous latent* indicates whether the 3D representation is fully differentiable (*e.g.*, no graph topology or sparsity patterns). Total latent dimension indicates the total size to represent one scene. Note that there may be multiple variants of the same method with different latent dimensions. We choose the representative one in each paper. * indicates a second generative model is used in the paper to add texture to a texture-less meshes.

name	geometry	appearance	data requirements	total latent dimension	input to encoder	training dataset
DDPM-PointCloud (2021)	p(xyz)	-	point cloud	256	point cloud (\mathbf{x})	ShapeNet
PointFlow (2019)	p(xyz)	-	point cloud	512	point cloud (\mathbf{x})	ShapeNet
ShapeGF (2020)	p(xyz)	-	point cloud	256	point cloud (\mathbf{x})	ShapeNet
Shape Token (2024)	p(xyz)	-	point cloud	1024×16	point cloud (\mathbf{x})	Objaverse
Ours	p(xyz)	view-dep. 3DGS	multiview RGBD	8192×32	surface light field ($\mathbf{x}, \mathbf{e}, \hat{\mathbf{d}}$)	Objaverse, ObjaverseXL
Point-E (2022)	fixed size point set	diffuse RGB	point cloud (\mathbf{x})	-	-	proprietary dataset
LION (2022)	fixed size point set	-	point cloud	$128 + 8192$	point cloud (\mathbf{x})	ShapeNet
3DShape2VecSet (2023)	occupancy field	-	watertight mesh	512×32	point cloud (\mathbf{x})	ShapeNet-watertight
3DILG (2022)	occupancy field	-	watertight mesh	512×2	point cloud (\mathbf{x})	ShapeNet-watertight
Michelangelo (2023)	occupancy field	-	watertight mesh	$512 \times 64 + 768$	point cloud ($\mathbf{x}, \hat{\mathbf{n}}$)	ShapeNet, 3D cartoon monster
CLAY (2024)	occupancy field	-*	watertight mesh	2048×64	point cloud (\mathbf{x})	Objaverse
Dora (2025a)	occupancy field	-	watertight mesh	1280×64	point cloud (\mathbf{x})	Objaverse
Pandora3D (2025)	occupancy field	-*	watertight mesh	2048×64	point cloud ($\mathbf{x}, \hat{\mathbf{n}}$)	Objaverse, ObjaverseXL, ABO, BuildingNet, HSSD, Toy4k, polygon dataset, proprietary
Direct3D (2024)	occupancy grid	-	watertight mesh	$3 \times 32 \times 32 \times 16$	point cloud ($\mathbf{x}, \hat{\mathbf{n}}$)	proprietary dataset
Direct3D-s2 (2025)	SDF grid	-	watertight mesh	$(128^3 \times 16)$	point cloud ($\mathbf{x}, \hat{\mathbf{n}}$)	Objaverse, ObjaverseXL
XCube (2024)	occupancy grid	-	watertight mesh	$16^3 \times 16 + \text{more}$ $(2 \times 1 \times 2) \times (5 + 4^3 \times 4 + 16^3 \times 4)$	occupancy grid	ShapeNet, Objaverse
LT3SD (2025)	UDF grid	-	watertight mesh		UDF grid	3D Front
Diffusion-SDF (2023)	SDF field	-	watertight mesh	768	point cloud (\mathbf{x})	ShapeNet-watertight, YCB
MOSAIC-SDF (2024)	SDF field	-	watertight mesh and optimization	$1024 \times (3+1+7^3)$	-	ShapeNet-watertight, scalable 3D captioning dataset
TripoSG (2025a)	SDF field	-	watertight mesh	2048×64	point cloud ($\mathbf{x}, \hat{\mathbf{n}}$)	Objaverse, ObjaverseXL
Hunyuan3D 2.0 (2025)	SDF field	-*	watertight mesh	3072×64	point cloud (\mathbf{x})	Objaverse, ObjaverseXL, more
Make-A-Shape (2024)	SDF grid	-	watertight mesh	9M	-	18 datasets
3DTopia-XL (2025b)	PrimX (SDF field)	RGB, PBR	PrimX optimization	$2048 \times (3+1+4^3) = 139,264$	PrimX	Objaverse
Sparc3D (2025b)	SDF grid	-	watertight mesh, grid optimization	unknown	SDF grid	
Volume Diffusion (2023)	radiance field	diffuse RGB	run inference network	$32^3 \times 4$	multiview images	Objaverse
TRELLIS (2025)	occupancy grid	diffuse 3DGS	multiview DINOv2	$\sim 20,000 \times 11$ (64^3 grid)	sparse feature grid	Objaverse, ObjaverseXL, ABO, 3D-future, HSSD
TripoSF (2025)	SDF grid	-	multiview depth and normal	$\sim 183,000 \times 11$ (256^3 grid)	point cloud ($\mathbf{x}, \hat{\mathbf{n}}$)	Objaverse, ObjaverseXL

797 appearance modeling performance, *e.g.*, row 1-2 *vs.* 1-3 (or row 2-2 *vs.* 2-3, 3-2 *vs.* 3-3). We
798 hypothesize that this is because zero-degree spherical harmonics cannot capture view-dependent
799 effects, which then becomes a bottleneck, preventing the model from fully leveraging the information
800 contained in the view directions. To verify, we ablate by removing the ray information from our
801 encoder when using 3-degree spherical harmonics. The improvement in row 1-6, which incorporates
802 ray information, from 1-7 (or row 2-6 *vs.* 2-7, 3-6 *vs.* 3-7) corroborates our hypothesis.

803 C.2 ABLATIONS ON NUMBER OF INPUT VIEWS IN INFERENCE

804 We are interested in understanding to what extent our approach is robust to the discrepancies between
805 the number of input views during training and inference. We provide quantitative evaluations
806 in Tab. S5.



857 **Figure S1: Mesh comparisons.** We demonstrate the qualities of our mesh decoder results to TRELLIS. As highlighted, our produced mesh maintains more details. Mesh credit: 1812panorama (2019);
858 alzarc (2019); AdamJonesCGD (2020); a108082046 (2022); nastasyas (2019); Alienor.org (2016);
859 GJ2012 (2013).

860
861
862
863

864 **D COMPREHENSIVE GENERATION RESULTS**
865

866
867 As demonstrated in Fig. 6, we are interested in aligning the generation with the input view faithfully.
868 To achieve this, for each sample used during training, we carefully rotate the world coordinate system
869 such that the input view’s corresponding camera poses are at the identity orientation. This relieves
870 the model from the burden of inferring the orientation of 3D space during training. Further, we
871 consider utilizing the view direction during the generative model training as well to enable the model
872 be aware of 3D orientation. Since we make the orientation identity, ray information essentially
873 means the availability of camera intrinsics. Then, during inference, we use an off-the-shelf intrinsic
874 estimator (Wang et al., 2025) to obtain the intrinsics. However, as shown in row 3 vs. 2 in Tab. S6, it
875 seems like the intrinsic information is unnecessary. Thus we use the generative model trained without
876 any ray information to report our qualitative and quantitative results in the paper.
877

878 Table S2: **Reconstruction on Toys4k.** For 3D assets, we adapt inputs per model. TRELLIS (Xiang
879 et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours uses RGB-D
880 images from 150 evenly distributed views. For appearance evaluation, we render each model’s output
881 from 100 random cameras, varying difficulty by adjusting camera radius. Each model is further
882 evaluated under three distinct lighting conditions. Importantly, no separate models are trained; all
883 evaluations are conducted on the same model. As a result, we conduct evaluations at the scale of over
884 3000 (objects) \times 100 (views) \times 2 (difficulties) \times 3 (lightings) \approx **1.8 million images**. We report in
885 the format of $\text{mean} \pm \text{std}$, where the standard deviation is computed across objects. Note, row 1–9
886 have the same appearance metrics as row 1–8. The same applies to rows 2–9 and 3–9.

887	Method	SH Deg	Enc Ray	Pred Occ	Mesh	Simple, Camera Radius [3, 4]			Hard, Camera Radius [1, 3]			CD (100k) \downarrow
						PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	
Uniform Lighting												
889 1-1	TRELLIS	0	\times	–	✓	28.17 \pm 4.09	0.970 \pm 0.024	0.039 \pm 0.024	24.63 \pm 4.01	0.934 \pm 0.054	0.098 \pm 0.059	0.646 \pm 0.457
890 1-2	Ours	0	\times	\times	\times	34.40 \pm 3.62	0.984 \pm 0.017	0.025 \pm 0.019	32.19 \pm 3.95	0.965 \pm 0.042	0.059 \pm 0.047	0.677 \pm 0.378
891 1-3	Ours	0	✓	\times	\times	34.44 \pm 3.47	0.984 \pm 0.017	0.026 \pm 0.020	32.18 \pm 3.79	0.964 \pm 0.042	0.060 \pm 0.048	0.678 \pm 0.382
892 1-4	Ours	1	✓	\times	\times	35.12 \pm 3.39	0.986 \pm 0.015	0.023 \pm 0.017	33.17 \pm 3.76	0.968 \pm 0.040	0.054 \pm 0.044	0.647 \pm 0.393
893 1-5	Ours	2	✓	\times	\times	35.32 \pm 3.45	0.986 \pm 0.016	0.023 \pm 0.017	33.29 \pm 3.80	0.969 \pm 0.040	0.055 \pm 0.044	0.658 \pm 0.389
894 1-6	Ours	3	✓	\times	\times	35.32 \pm 3.38	0.986 \pm 0.015	0.022 \pm 0.017	33.39 \pm 3.73	0.969 \pm 0.039	0.053 \pm 0.044	0.663 \pm 0.383
895 1-7	Ours	3	\times	\times	\times	35.54 \pm 3.63	0.986 \pm 0.015	0.023 \pm 0.017	33.37 \pm 3.97	0.969 \pm 0.040	0.055 \pm 0.044	0.672 \pm 0.370
896 1-8	Ours	3	✓	✓	\times	35.27 \pm 3.36	0.986 \pm 0.015	0.022 \pm 0.017	33.38 \pm 3.71	0.969 \pm 0.040	0.052 \pm 0.044	0.662 \pm 0.384
897 1-9	Ours	3	✓	✓	✓	35.27 \pm 3.36	0.986 \pm 0.015	0.022 \pm 0.017	33.38 \pm 3.71	0.969 \pm 0.040	0.052 \pm 0.044	0.532 \pm 0.683
898 1-10	Oracle	3	–	–	✓	35.26 \pm 3.34	0.986 \pm 0.015	0.022 \pm 0.017	33.42 \pm 3.69	0.970 \pm 0.039	0.051 \pm 0.043	0.513 \pm 0.639
TRELLIS Lighting												
899 2-1	TRELLIS	0	\times	–	✓	31.12 \pm 3.39	0.974 \pm 0.022	0.034 \pm 0.022	27.57 \pm 3.38	0.941 \pm 0.050	0.090 \pm 0.055	0.608 \pm 0.437
900 2-2	Ours	0	\times	\times	\times	32.47 \pm 3.83	0.980 \pm 0.020	0.029 \pm 0.022	30.21 \pm 4.19	0.958 \pm 0.046	0.067 \pm 0.053	0.675 \pm 0.379
901 2-3	Ours	0	✓	\times	\times	32.47 \pm 3.69	0.980 \pm 0.020	0.029 \pm 0.022	30.21 \pm 4.06	0.957 \pm 0.046	0.068 \pm 0.052	0.677 \pm 0.382
902 2-4	Ours	1	✓	\times	\times	34.00 \pm 3.38	0.984 \pm 0.016	0.025 \pm 0.019	32.03 \pm 3.74	0.965 \pm 0.040	0.059 \pm 0.047	0.648 \pm 0.391
903 2-5	Ours	2	✓	\times	\times	34.06 \pm 3.40	0.984 \pm 0.016	0.024 \pm 0.019	32.12 \pm 3.79	0.966 \pm 0.041	0.058 \pm 0.047	0.655 \pm 0.389
904 2-6	Ours	3	✓	\times	\times	34.19 \pm 3.39	0.985 \pm 0.016	0.024 \pm 0.019	32.36 \pm 3.77	0.967 \pm 0.040	0.056 \pm 0.046	0.668 \pm 0.385
905 2-7	Ours	3	\times	\times	\times	34.16 \pm 3.68	0.985 \pm 0.017	0.025 \pm 0.019	32.11 \pm 4.04	0.966 \pm 0.041	0.058 \pm 0.047	0.669 \pm 0.371
906 2-8	Ours	3	✓	✓	\times	34.16 \pm 3.39	0.985 \pm 0.016	0.023 \pm 0.018	32.36 \pm 3.77	0.967 \pm 0.040	0.055 \pm 0.046	0.668 \pm 0.384
907 2-9	Ours	3	✓	✓	✓	34.16 \pm 3.39	0.985 \pm 0.016	0.023 \pm 0.018	32.36 \pm 3.77	0.967 \pm 0.040	0.055 \pm 0.046	0.524 \pm 0.484
908 2-10	Oracle	3	–	–	✓	34.14 \pm 3.37	0.985 \pm 0.016	0.023 \pm 0.018	32.38 \pm 3.74	0.967 \pm 0.040	0.054 \pm 0.045	0.506 \pm 0.439
Random Lighting												
909 3-1	TRELLIS	0	\times	–	✓	27.94 \pm 3.77	0.966 \pm 0.025	0.038 \pm 0.024	24.37 \pm 3.66	0.927 \pm 0.054	0.098 \pm 0.058	0.631 \pm 0.449
910 3-2	Ours	0	\times	\times	\times	32.12 \pm 3.23	0.981 \pm 0.018	0.026 \pm 0.021	30.08 \pm 3.67	0.961 \pm 0.043	0.062 \pm 0.051	0.675 \pm 0.381
911 3-3	Ours	0	✓	\times	\times	32.18 \pm 3.12	0.981 \pm 0.019	0.026 \pm 0.021	30.11 \pm 3.57	0.960 \pm 0.044	0.063 \pm 0.052	0.680 \pm 0.383
912 3-4	Ours	1	✓	\times	\times	33.02 \pm 2.92	0.984 \pm 0.017	0.023 \pm 0.019	31.20 \pm 3.39	0.965 \pm 0.041	0.057 \pm 0.047	0.652 \pm 0.395
913 3-5	Ours	2	✓	\times	\times	33.13 \pm 2.99	0.984 \pm 0.017	0.023 \pm 0.019	31.34 \pm 3.49	0.966 \pm 0.041	0.058 \pm 0.048	0.664 \pm 0.393
914 3-6	Ours	3	✓	\times	\times	33.22 \pm 2.95	0.984 \pm 0.017	0.023 \pm 0.019	31.50 \pm 3.41	0.966 \pm 0.041	0.056 \pm 0.048	0.669 \pm 0.387
915 3-7	Ours	3	\times	\times	\times	33.23 \pm 3.32	0.984 \pm 0.017	0.024 \pm 0.019	31.30 \pm 3.83	0.965 \pm 0.041	0.058 \pm 0.049	0.675 \pm 0.372
916 3-8	Ours	3	✓	✓	\times	33.18 \pm 2.93	0.984 \pm 0.017	0.022 \pm 0.019	31.49 \pm 3.39	0.966 \pm 0.041	0.055 \pm 0.048	0.669 \pm 0.387
917 3-9	Ours	3	✓	✓	✓	33.18 \pm 2.93	0.984 \pm 0.017	0.022 \pm 0.019	31.49 \pm 3.39	0.966 \pm 0.041	0.055 \pm 0.048	0.541 \pm 0.819
918 3-10	Oracle	3	–	–	✓	33.15 \pm 2.90	0.984 \pm 0.016	0.022 \pm 0.019	31.50 \pm 3.36	0.967 \pm 0.040	0.054 \pm 0.047	0.517 \pm 0.694

918 **Table S3: Reconstruction on GSO.** For 3D assets, we adapt inputs per model. TRELLIS (Xiang
919 et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours uses RGB-D
920 images from 150 evenly distributed views. For appearance evaluation, we render each model’s output
921 from 100 random cameras, varying difficulty by adjusting camera radius. Each model is further
922 evaluated under three distinct lighting conditions. Importantly, no separate models are trained; all
923 evaluations are conducted on the same model. As a result, we conduct evaluations at the scale of over
924 1000 (objects) \times 100 (views) \times 2 (difficulties) \times 3 (lightings) \approx **600 thousand images**. We report in
925 the format of $\text{mean} \pm \text{std}$, where the standard deviation is computed across objects. Note, row 1–9
926 have the same appearance metrics as row 1–8. The same applies to rows 2–9 and 3–9.

927	Method	SH Deg	Enc Ray	Pred Occ	Mesh	Simple, Camera Radius [3, 4]			Hard, Camera Radius [1, 3]			CD (100k) \downarrow
						PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	
Uniform Lighting												
930 1-1	TRELLIS	0	\times	–	✓	27.34 \pm 3.82	0.947 \pm 0.036	0.053 \pm 0.029	23.72 \pm 3.66	0.883 \pm 0.068	0.139 \pm 0.065	0.774 \pm 0.337
931 1-2	Ours	0	\times	\times	\times	34.27 \pm 3.25	0.975 \pm 0.022	0.034 \pm 0.025	31.39 \pm 3.61	0.937 \pm 0.046	0.093 \pm 0.055	0.837 \pm 0.376
932 1-3	Ours	0	✓	\times	\times	34.04 \pm 3.23	0.974 \pm 0.022	0.034 \pm 0.025	31.15 \pm 3.59	0.935 \pm 0.048	0.093 \pm 0.055	0.842 \pm 0.386
933 1-4	Ours	1	✓	\times	\times	34.55 \pm 3.18	0.976 \pm 0.021	0.031 \pm 0.023	31.75 \pm 3.60	0.939 \pm 0.045	0.087 \pm 0.053	0.809 \pm 0.441
934 1-5	Ours	2	✓	\times	\times	34.62 \pm 3.24	0.976 \pm 0.021	0.031 \pm 0.024	31.77 \pm 3.65	0.939 \pm 0.046	0.087 \pm 0.053	0.803 \pm 0.397
935 1-6	Ours	3	✓	\times	\times	34.69 \pm 3.22	0.976 \pm 0.021	0.031 \pm 0.024	31.88 \pm 3.65	0.940 \pm 0.046	0.086 \pm 0.053	0.819 \pm 0.398
936 1-7	Ours	3	\times	\times	\times	34.93 \pm 3.24	0.977 \pm 0.020	0.031 \pm 0.023	32.00 \pm 3.63	0.942 \pm 0.044	0.087 \pm 0.053	0.841 \pm 0.389
937 1-8	Ours	3	✓	✓	\times	34.67 \pm 3.21	0.976 \pm 0.021	0.031 \pm 0.024	31.88 \pm 3.65	0.940 \pm 0.046	0.086 \pm 0.053	0.819 \pm 0.396
938 1-9	Ours	3	✓	✓	✓	34.67 \pm 3.21	0.976 \pm 0.021	0.031 \pm 0.024	31.88 \pm 3.65	0.940 \pm 0.046	0.086 \pm 0.053	0.631 \pm 0.355
939 1-10	Oracle	3	–	–	✓	34.66 \pm 3.20	0.976 \pm 0.021	0.030 \pm 0.023	31.92 \pm 3.65	0.941 \pm 0.045	0.085 \pm 0.053	0.621 \pm 0.342
TRELLIS Lighting												
940 2-1	TRELLIS	0	\times	–	✓	30.81 \pm 2.67	0.958 \pm 0.028	0.047 \pm 0.026	27.21 \pm 2.56	0.907 \pm 0.055	0.126 \pm 0.058	0.737 \pm 0.331
941 2-2	Ours	0	\times	\times	\times	33.99 \pm 2.54	0.978 \pm 0.017	0.033 \pm 0.023	31.65 \pm 2.71	0.948 \pm 0.036	0.089 \pm 0.052	0.832 \pm 0.370
942 2-3	Ours	0	✓	\times	\times	33.71 \pm 2.43	0.978 \pm 0.018	0.033 \pm 0.024	31.40 \pm 2.62	0.947 \pm 0.037	0.088 \pm 0.051	0.838 \pm 0.381
943 2-4	Ours	1	✓	\times	\times	34.75 \pm 2.60	0.980 \pm 0.016	0.030 \pm 0.022	32.50 \pm 2.87	0.952 \pm 0.035	0.080 \pm 0.048	0.803 \pm 0.437
944 2-5	Ours	2	✓	\times	\times	34.87 \pm 2.68	0.980 \pm 0.017	0.030 \pm 0.022	32.58 \pm 2.95	0.952 \pm 0.036	0.081 \pm 0.049	0.795 \pm 0.390
945 2-6	Ours	3	✓	\times	\times	34.91 \pm 2.65	0.980 \pm 0.016	0.029 \pm 0.022	32.67 \pm 2.95	0.952 \pm 0.036	0.080 \pm 0.049	0.816 \pm 0.396
946 2-7	Ours	3	\times	\times	\times	35.19 \pm 2.72	0.981 \pm 0.016	0.030 \pm 0.022	32.79 \pm 2.97	0.953 \pm 0.034	0.081 \pm 0.049	0.834 \pm 0.384
947 2-8	Ours	3	✓	✓	\times	34.89 \pm 2.64	0.980 \pm 0.016	0.029 \pm 0.022	32.68 \pm 2.94	0.952 \pm 0.036	0.079 \pm 0.049	0.815 \pm 0.392
948 2-9	Ours	3	✓	✓	✓	34.89 \pm 2.64	0.980 \pm 0.016	0.029 \pm 0.022	32.68 \pm 2.94	0.952 \pm 0.036	0.079 \pm 0.049	0.665 \pm 0.355
949 2-10	Oracle	3	–	–	✓	34.87 \pm 2.63	0.981 \pm 0.016	0.029 \pm 0.021	32.70 \pm 2.94	0.953 \pm 0.036	0.078 \pm 0.048	0.654 \pm 0.338
Random Lighting												
950 3-1	TRELLIS	0	\times	–	✓	27.66 \pm 3.26	0.948 \pm 0.033	0.050 \pm 0.028	24.11 \pm 3.08	0.886 \pm 0.064	0.133 \pm 0.062	0.767 \pm 0.349
951 3-2	Ours	0	\times	\times	\times	33.09 \pm 2.47	0.977 \pm 0.018	0.031 \pm 0.023	30.97 \pm 2.81	0.945 \pm 0.039	0.086 \pm 0.052	0.831 \pm 0.378
952 3-3	Ours	0	✓	\times	\times	32.97 \pm 2.40	0.976 \pm 0.018	0.031 \pm 0.023	30.82 \pm 2.77	0.943 \pm 0.040	0.087 \pm 0.052	0.835 \pm 0.381
953 3-4	Ours	1	✓	\times	\times	33.46 \pm 2.41	0.978 \pm 0.017	0.028 \pm 0.021	31.41 \pm 2.81	0.947 \pm 0.038	0.080 \pm 0.049	0.810 \pm 0.444
954 3-5	Ours	2	✓	\times	\times	33.61 \pm 2.47	0.978 \pm 0.017	0.029 \pm 0.022	31.55 \pm 2.88	0.947 \pm 0.038	0.081 \pm 0.049	0.802 \pm 0.399
955 3-6	Ours	3	✓	\times	\times	33.67 \pm 2.46	0.979 \pm 0.017	0.028 \pm 0.022	31.65 \pm 2.89	0.948 \pm 0.038	0.080 \pm 0.050	0.818 \pm 0.397
956 3-7	Ours	3	\times	\times	\times	33.98 \pm 2.53	0.980 \pm 0.016	0.028 \pm 0.021	31.84 \pm 2.93	0.949 \pm 0.036	0.081 \pm 0.049	0.840 \pm 0.390
957 3-8	Ours	3	✓	✓	\times	33.64 \pm 2.43	0.979 \pm 0.017	0.028 \pm 0.022	31.64 \pm 2.87	0.948 \pm 0.038	0.080 \pm 0.050	0.818 \pm 0.397
958 3-9	Ours	3	✓	✓	✓	33.64 \pm 2.43	0.979 \pm 0.017	0.028 \pm 0.022	31.64 \pm 2.87	0.948 \pm 0.038	0.080 \pm 0.050	0.631 \pm 0.356
959 3-10	Oracle	3	–	–	✓	33.61 \pm 2.42	0.979 \pm 0.017	0.028 \pm 0.021	31.65 \pm 2.86	0.949 \pm 0.038	0.079 \pm 0.049	0.621 \pm 0.342

D.1 ABLATIONS ON ODE NUMERICAL INTEGRATION

We study the effect of ODE numerical integration used when sampling from our generative model. Specifically, we ablate the algorithms (Euler and Heun), the step size (or equivalently the number of steps) used during the numerical integration, and the numerical precision of the model (`float32` and `bfloat16`) during sampling. We provide quantitative results in Sec. S7. The results suggest our generative model is robust to numerical integration — we observe small change in performance when switching from the second-order method Heun with 100 steps using `float32` (conditioning view FID = 6.6), to a relatively cheaper first-order Euler with 25 steps using `bfloat16` (conditioning view FID = 6.7).

972 Table S4: **Reconstruction on PBR-Objaverse.** For 3D assets, we adapt inputs per model. TREL-
 973 LIS (Xiang et al., 2025) takes the ground-truth mesh and 150 sphere-distributed renderings. Ours
 974 uses RGB-D images from 150 evenly distributed views. For appearance evaluation, we render each
 975 model’s output from 100 random cameras, varying difficulty by adjusting camera radius. Each model
 976 is further evaluated under three distinct lighting conditions. Importantly, no separate models are
 977 trained; all evaluations are conducted on the same model. As a result, we conduct evaluations at the
 978 scale of 200 (objects) \times 100 (views) \times 2 (difficulties) \times 3 (lightings) \approx **120 thousand images**. We
 979 report in the format of $\text{mean} \pm \text{std}$, where the standard deviation is computed across objects. Note,
 980 row 1–9 have the same appearance metrics as row 1–8, so we can ignore them. The same applies to
 981 rows 2–9 and 3–9.

982	Method	SH Deg	Enc Ray	Pred Occ	Mesh	Simple, Camera Radius [3, 4]			Hard, Camera Radius [1, 3]			CD (100k) \downarrow
						PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	
Uniform Lighting												
985 1-1	TRELLIS	0	\times	–	✓	28.63 \pm 3.09	0.955 \pm 0.028	0.046 \pm 0.025	25.06 \pm 2.93	0.902 \pm 0.057	0.121 \pm 0.062	0.657 \pm 0.305
986 1-2	Ours	0	\times	\times	\times	32.95 \pm 2.87	0.974 \pm 0.018	0.033 \pm 0.020	30.07 \pm 3.02	0.939 \pm 0.042	0.087 \pm 0.051	0.727 \pm 0.323
987 1-3	Ours	0	✓	\times	\times	33.14 \pm 2.68	0.974 \pm 0.018	0.034 \pm 0.021	30.21 \pm 2.85	0.937 \pm 0.042	0.089 \pm 0.053	0.724 \pm 0.325
988 1-4	Ours	1	✓	\times	\times	34.35 \pm 2.37	0.978 \pm 0.016	0.028 \pm 0.018	31.67 \pm 2.67	0.947 \pm 0.038	0.076 \pm 0.046	0.702 \pm 0.338
989 1-5	Ours	2	✓	\times	\times	34.47 \pm 2.45	0.978 \pm 0.016	0.028 \pm 0.018	31.74 \pm 2.73	0.947 \pm 0.039	0.077 \pm 0.047	0.709 \pm 0.334
990 1-6	Ours	3	✓	\times	\times	34.62 \pm 2.33	0.979 \pm 0.016	0.028 \pm 0.018	31.98 \pm 2.64	0.948 \pm 0.039	0.075 \pm 0.047	0.705 \pm 0.327
991 1-7	Ours	3	\times	\times	\times	34.66 \pm 2.62	0.979 \pm 0.016	0.029 \pm 0.018	31.83 \pm 2.89	0.948 \pm 0.039	0.077 \pm 0.047	0.730 \pm 0.320
992 1-8	Ours	3	✓	✓	\times	34.63 \pm 2.33	0.979 \pm 0.016	0.027 \pm 0.017	32.01 \pm 2.64	0.948 \pm 0.039	0.074 \pm 0.047	0.704 \pm 0.325
993 1-9	Ours	3	✓	✓	✓	34.63 \pm 2.33	0.979 \pm 0.016	0.027 \pm 0.017	32.01 \pm 2.64	0.948 \pm 0.039	0.074 \pm 0.047	0.556 \pm 0.341
994 1-10	Oracle	3	–	–	✓	34.64 \pm 2.31	0.979 \pm 0.016	0.027 \pm 0.017	32.07 \pm 2.62	0.949 \pm 0.038	0.074 \pm 0.046	0.541 \pm 0.315
TRELLIS Lighting												
995 2-1	TRELLIS	0	\times	–	✓	29.69 \pm 2.59	0.958 \pm 0.025	0.044 \pm 0.023	26.03 \pm 2.50	0.904 \pm 0.053	0.118 \pm 0.058	0.616 \pm 0.277
996 2-2	Ours	0	\times	\times	\times	30.35 \pm 3.01	0.965 \pm 0.023	0.039 \pm 0.023	27.39 \pm 3.18	0.921 \pm 0.049	0.102 \pm 0.056	0.737 \pm 0.316
997 2-3	Ours	0	✓	\times	\times	30.37 \pm 3.04	0.965 \pm 0.023	0.040 \pm 0.023	27.41 \pm 3.21	0.919 \pm 0.050	0.102 \pm 0.056	0.735 \pm 0.320
998 2-4	Ours	1	✓	\times	\times	32.52 \pm 2.45	0.975 \pm 0.017	0.031 \pm 0.019	29.87 \pm 2.70	0.939 \pm 0.042	0.084 \pm 0.049	0.720 \pm 0.342
999 2-5	Ours	2	✓	\times	\times	32.47 \pm 2.45	0.975 \pm 0.018	0.031 \pm 0.019	29.90 \pm 2.73	0.940 \pm 0.042	0.083 \pm 0.049	0.715 \pm 0.323
1000 2-6	Ours	3	✓	\times	\times	32.63 \pm 2.38	0.976 \pm 0.017	0.030 \pm 0.018	30.14 \pm 2.69	0.941 \pm 0.042	0.081 \pm 0.049	0.720 \pm 0.321
1001 2-7	Ours	3	\times	\times	\times	32.56 \pm 2.72	0.975 \pm 0.018	0.031 \pm 0.019	29.89 \pm 2.97	0.939 \pm 0.042	0.084 \pm 0.049	0.731 \pm 0.317
1002 2-8	Ours	3	✓	✓	\times	32.63 \pm 2.37	0.976 \pm 0.017	0.030 \pm 0.018	30.16 \pm 2.69	0.942 \pm 0.042	0.080 \pm 0.049	0.724 \pm 0.323
1003 2-9	Ours	3	✓	✓	✓	32.63 \pm 2.37	0.976 \pm 0.017	0.030 \pm 0.018	30.16 \pm 2.69	0.942 \pm 0.042	0.080 \pm 0.049	0.569 \pm 0.332
1004 2-10	Oracle	3	–	–	✓	32.61 \pm 2.37	0.976 \pm 0.017	0.029 \pm 0.018	30.20 \pm 2.69	0.942 \pm 0.042	0.080 \pm 0.048	0.558 \pm 0.316
Random Lighting												
1005 3-1	TRELLIS	0	\times	–	✓	26.29 \pm 3.56	0.939 \pm 0.038	0.052 \pm 0.030	22.74 \pm 3.37	0.869 \pm 0.075	0.134 \pm 0.070	0.691 \pm 0.365
1006 3-2	Ours	0	\times	\times	\times	28.58 \pm 3.65	0.957 \pm 0.031	0.043 \pm 0.028	25.66 \pm 3.87	0.904 \pm 0.066	0.107 \pm 0.065	0.726 \pm 0.322
1007 3-3	Ours	0	✓	\times	\times	28.88 \pm 3.61	0.956 \pm 0.032	0.043 \pm 0.028	25.93 \pm 3.81	0.903 \pm 0.067	0.109 \pm 0.066	0.732 \pm 0.331
1008 3-4	Ours	1	✓	\times	\times	30.36 \pm 3.15	0.965 \pm 0.027	0.036 \pm 0.024	27.60 \pm 3.43	0.920 \pm 0.059	0.095 \pm 0.058	0.708 \pm 0.338
1009 3-5	Ours	2	✓	\times	\times	30.39 \pm 3.08	0.965 \pm 0.027	0.036 \pm 0.024	27.65 \pm 3.39	0.920 \pm 0.060	0.095 \pm 0.059	0.717 \pm 0.335
1010 3-6	Ours	3	✓	\times	\times	30.59 \pm 3.08	0.966 \pm 0.027	0.036 \pm 0.024	27.92 \pm 3.42	0.922 \pm 0.059	0.093 \pm 0.059	0.713 \pm 0.327
1011 3-7	Ours	3	\times	\times	\times	30.11 \pm 3.48	0.964 \pm 0.027	0.037 \pm 0.024	27.27 \pm 3.75	0.917 \pm 0.060	0.096 \pm 0.059	0.729 \pm 0.325
1012 3-8	Ours	3	✓	✓	\times	30.59 \pm 3.09	0.966 \pm 0.027	0.035 \pm 0.024	27.94 \pm 3.43	0.922 \pm 0.060	0.092 \pm 0.059	0.713 \pm 0.328
1013 3-9	Ours	3	✓	✓	✓	30.59 \pm 3.09	0.966 \pm 0.027	0.035 \pm 0.024	27.94 \pm 3.43	0.922 \pm 0.060	0.092 \pm 0.059	0.552 \pm 0.329
1014 3-10	Oracle	3	–	–	✓	30.59 \pm 3.07	0.966 \pm 0.026	0.035 \pm 0.024	27.97 \pm 3.42	0.922 \pm 0.059	0.092 \pm 0.058	0.541 \pm 0.312
RUNTIME AND MEMORY ANALYSIS												
1015 1018	We analyze the runtime for both TRELLIS and our generative models in Tab. S8. Our model’s latent sampling costs 9.3 seconds on while all decoders’ feedforward passes cost less than 100 milliseconds on a single NVIDIA H100 80GB HBM3 GPU. In comparison, for TRELLIS, sampling SLAT (both coarse voxel and feature) takes 11.8 seconds. Utilizing one-step flow-matching models like MeanFlow (Geng et al., 2025) can further improve the speed of our generative model and is left as future work.											
1016 1019												
1017 1020												
1018 1021												

Table S5: **Ablation on number of input views for reconstruction during inference.** We choose TRELLIS lighting setup on Toys4k dataset. Our model is the same as “ours” in Tab. 1. Both TRELLIS and ours are trained with 150 views. For appearance evaluation, we render each model’s output from 100 random cameras, varying difficulty by adjusting camera radius. We report in the format of $\text{mean} \pm \text{std}$, where the standard deviation is computed across objects. Note, we re-render the evaluation data for this ablation, thus row 1 (row 2) differs slightly from row 2-1 (row 2-9) in Tab. S2.

Method	Simple, Camera Radius [3, 4]			Hard, Camera Radius [1, 3]			CD (100k)↓	
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓		
150 input views								
1	TRELLIS	31.559 \pm 3.509	0.9740 \pm 0.0224	0.0361 \pm 0.0217	27.948 \pm 3.539	0.9408 \pm 0.0508	0.0928 \pm 0.0539	0.589 \pm 0.432
2	Ours	33.909 \pm 3.157	0.9841 \pm 0.0162	0.0260 \pm 0.0189	32.073 \pm 3.521	0.9658 \pm 0.0403	0.0585 \pm 0.0458	0.525 \pm 0.502
120 input views								
3	TRELLIS	31.518 \pm 3.509	0.9738 \pm 0.0225	0.0363 \pm 0.0218	27.912 \pm 3.541	0.9404 \pm 0.0510	0.0932 \pm 0.0541	0.592 \pm 0.431
4	Ours	33.908 \pm 3.158	0.9841 \pm 0.0162	0.0260 \pm 0.0188	32.072 \pm 3.522	0.9658 \pm 0.0403	0.0585 \pm 0.0457	0.524 \pm 0.486
90 input views								
5	TRELLIS	31.431 \pm 3.506	0.9734 \pm 0.0227	0.0366 \pm 0.0221	27.833 \pm 3.540	0.9397 \pm 0.0514	0.0938 \pm 0.0545	0.594 \pm 0.425
6	Ours	33.910 \pm 3.157	0.9841 \pm 0.0162	0.0260 \pm 0.0189	32.074 \pm 3.522	0.9658 \pm 0.0403	0.0585 \pm 0.0457	0.524 \pm 0.492
60 input views								
7	TRELLIS	31.270 \pm 3.496	0.9726 \pm 0.0231	0.0372 \pm 0.0224	27.688 \pm 3.533	0.9383 \pm 0.0520	0.0952 \pm 0.0552	0.603 \pm 0.430
8	Ours	33.909 \pm 3.155	0.9841 \pm 0.0162	0.0260 \pm 0.0188	32.073 \pm 3.519	0.9658 \pm 0.0403	0.0585 \pm 0.0457	0.525 \pm 0.491
30 input views								
9	TRELLIS	30.692 \pm 3.441	0.9699 \pm 0.0244	0.0396 \pm 0.0238	27.159 \pm 3.484	0.9336 \pm 0.0541	0.1002 \pm 0.0576	0.637 \pm 0.443
10	Ours	33.908 \pm 3.157	0.9841 \pm 0.0162	0.0260 \pm 0.0188	32.072 \pm 3.521	0.9658 \pm 0.0403	0.0585 \pm 0.0457	0.527 \pm 0.503

Table S6: **Single-image-conditioned generation on Toys4k with TRELLIS lighting.** KID is reported by $\times 100$. CFG scale is 3.0. The **best** is highlighted.

Method	Train w/ Ray	Infer w/ GT Ray	Train Iters	CLIP↑	Conditioning View				Novel View			
					FID↓	KID↓	FID _{dino} ↓	KID _{dino} ↓	FID↓	KID↓	FID _{dino} ↓	KID _{dino} ↓
1	TRELLIS	✗	-	400k	0.899 \pm 0.045	12.84	0.088	84.692	2.311	7.600	0.100	67.458 3.166
2-1	Ours	✗	-	280k	0.906\pm0.040	8.193	0.012	48.117	0.461	6.648	0.064	75.814 4.321
2-2	Ours	✗	-	400k	0.906\pm0.041	7.741	0.010	44.555 0.392	6.413	0.064	71.436	3.997
2-3	Ours	✗	-	600k	0.905\pm0.041	6.219	0.009	41.621	1.333	6.216	0.058	66.530 3.522
3	Ours	✓	✗	290k	0.900 \pm 0.040	10.78	0.066	65.644	2.281	8.076	0.101	92.915 6.698
4	Ours	✓	✓	290k	0.904 \pm 0.039	10.13	0.053	61.342	1.665	7.831	0.097	86.091 5.826

Table S7: **Ablation on DiT sampler for single-image-conditioned generation.** The experiments are conducted on Toys4k with TRELLIS lighting. The generative model is trained for 600k iterations. Note, row 1 is copied from “ours” in Tab. 3. KID is reported by $\times 100$. CFG scale is 3.0. Our generative model’s performance is robust across various numbers of sampling steps and numerical integration algorithms.

Occ Pred	Data Type	Method	Step	CLIP↑	Conditioning View				Novel View			
					FID↓	KID↓	FID _{dino} ↓	KID _{dino} ↓	FID↓	KID↓	FID _{dino} ↓	KID _{dino} ↓
1	✗	float32	Heun	100	0.905 \pm 0.041	6.219	0.009	41.621	1.333	6.216	0.058	66.530 3.522
2	✓	float32	Heun	100	0.905 \pm 0.041	6.622	0.021	42.197	1.391	6.270	0.064	66.699 3.534
3	✓	bfloat16	Heun	100	0.905 \pm 0.041	6.661	0.020	43.992	1.741	6.270	0.063	68.025 3.906
4	✓	bfloat16	Heun	50	0.905 \pm 0.041	6.659	0.020	45.533	2.105	6.266	0.062	68.319 4.185
5	✓	bfloat16	Heun	25	0.904 \pm 0.041	6.644	0.019	54.231	4.011	6.251	0.060	77.148 5.879
6	✓	bfloat16	Euler	100	0.906 \pm 0.041	6.656	0.022	42.472	1.476	6.365	0.066	67.856 3.848
7	✓	bfloat16	Euler	50	0.905 \pm 0.041	6.688	0.023	42.363	1.430	6.384	0.066	68.987 3.958
8	✓	bfloat16	Euler	25	0.905 \pm 0.041	6.733	0.025	43.034	1.280	6.833	0.074	75.687 4.484

1080 Table S8: **Generative model runtime analysis.** All results are reported with `torch.profiler`
 1081 across three runs. TRELLIS uses 50 Euler steps for both its sparse structure and structured latent
 1082 generations. We use 50 Euler steps for generating the latents, corresponding to row 7 in Tab. S7.

	Cond Proc (ms)	Structure Gen (s)	Latent Gen (s)	Occ Pred (ms)	3DGS Dec (ms)	Mesh Dec (ms)	Total (s)	Memory (GB)
NVIDIA A100-SXM4-80GB								
TRELLIS	68.90 \pm 0.49	4.89 \pm 0.80	7.720 \pm 5.10	–	18.70 \pm 5.46	67.33 \pm 13.98	12.76	12.70
Ours	68.78 \pm 0.41	–	17.32 \pm 1.50	36.07 \pm 3.67	35.32 \pm 14.2	90.78 \pm 29.75	17.55	15.95
NVIDIA H100 80GB HBM3								
TRELLIS	31.01 \pm 0.55	3.95 \pm 1.17	7.868 \pm 4.06	–	15.03 \pm 6.19	46.81 \pm 13.31	11.91	12.69
Ours	22.58 \pm 10.3	–	9.266 \pm 0.38	27.16 \pm 6.87	30.96 \pm 14.3	79.15 \pm 31.71	9.426	15.93

1091 Table S9: **Original Geometric reconstruction evaluation.** We report Chamfer distances multiplied
 1092 by 10^4 for readability, computed using 100k sampled points each from ground-truth and reconstruc-
 1093 tion. As 3DTopia-XL (Chen et al., 2025b) and TripoSG (Li et al., 2025a) can be sensitive to input
 1094 geometry, we also list variants with their worst-performing 10% of objects removed. We separate our
 1095 tested approaches based on those that require ground-truth coarse geometry for decoding the latent
 1096 representation, and those that do not utilize this information. Our method outputs the best geometry
 1097 among the approaches in the latter category, and it is competitive with the techniques in the former.
 1098 Red highlights the best method in each category.

Method	Appearance	Latent size	PBR-Objaverse	Toys4k	GSO
0 GT	–	–	0.479 \pm 0.247	0.445 \pm 0.364	0.531 \pm 0.309
Requires coarse geometry oracle:					
1 TripoSF (He et al., 2025)	✗	$\approx 244k \times 11$	0.621 \pm 0.546	0.595 \pm 0.659	0.697 \pm 0.751
2 TRELLIS (Xiang et al., 2025)	✓	$\approx 20k \times 11$	0.639 \pm 0.405	0.604 \pm 0.486	0.725 \pm 0.293
3-1 3DTopia-XL (Chen et al., 2025b)	✓	2048 \times 64	77.58 \pm 406.5	30.16 \pm 238.4	0.664 \pm 0.321
3-2 (worst 10% removed)	✓	2048 \times 64	3.966 \pm 8.884	0.980 \pm 1.480	0.596 \pm 0.157
Does not utilize coarse geometry oracle:					
4-1 TripoSG (Li et al., 2025a)	✗	2048 \times 64	32.19 \pm 71.07	36.11 \pm 62.42	44.52 \pm 87.03
4-2 (worst 10% removed)	✗	2048 \times 64	13.84 \pm 17.96	19.51 \pm 24.92	18.73 \pm 28.63
5 Shape Tokens (Chang et al., 2024)	✗	1024 \times 16	1.120 \pm 0.447	1.061 \pm 0.565	1.221 \pm 0.433
6 Ours	✓	8192 \times 32	0.935 \pm 0.328	0.890 \pm 0.361	1.007 \pm 0.331

E IMPLEMENTATION DETAILS

E.1 ARCHITECTURES

We provide detailed network architectures in Fig. S2 to S7. These include our encoder (Sec. 3.3) in Fig. S2, velocity decoder and Gaussian decoder (Sec. 3.4) in Fig. S3 and S4, mesh decoder in Fig. S5, occupancy decoder in Fig. S6, and generative model’s DiT (Sec. 3.5) in Fig. S7.

E.2 POSITION ENCODING

We have the following position encoding function applied on *each channel* of the input data:

$$\{\sin(u_0), \dots, \sin(u_{F-1}), \cos(u_0), \dots, \cos(u_{F-1})\}, \quad (\text{S1})$$

$$\text{where } u_i = x \cdot 2^{\left(M_{\min} + i \cdot \frac{M_{\max} - M_{\min}}{F-1}\right)}, \quad (\text{S2})$$

x is the value at the corresponding channel where the position encoding is applied. We use $F = 32$, $M_{\min} = 0$, $M_{\max} = 12, 8$, and 8 in position encoding functions for 3D location \mathbf{x}_i , viewing direction $\hat{\mathbf{d}}_i$, color \mathbf{c}_i in Eq. (1) respectively. For time step t in flow matching (Eq. (2)), we use $F = 16$, $M_{\min} = \log_2 2\pi$, and $M_{\max} = M_{\min} + F - 1$.

E.3 3D GAUSSIAN PREDICTION

In Fig. S4, the output position of 3D Gaussian is predicted with respect to a normalized space centered around the occupied voxel’s world coordinates, and is then translated to the world coordinate system using the voxel’s information. Specifically, we predict 3D Gaussian’s position as $\mathbf{x}_{\text{output}} \in [-1, 1]^3$. Assume the corresponding voxel’s center is located at $\mathbf{x}_{\text{voxel}} \in \mathbb{R}^3$ in the world coordinate system. The

1134 final 3D Gaussian’s position in the world coordinate system is computed as $\mathbf{x}_{3DGS} = \mathbf{x}_{voxel} + s \cdot \mathbf{x}_{output}$,
 1135 where s is a hyperparameter to define the size of the normalized space mentioned above. In our
 1136 experiments, we set $s = 0.05$. Note, $s = 0.05$ is actually larger than the voxel size we consider. This
 1137 is intentional as it provides more flexibility, such that the predicted 3D Gaussian can go across the
 1138 voxel boundaries.

1139

1140 F MORE STUDIES

1141

1142 F.1 STUDYING SPHERICAL HARMONICS DEGREES

1143

1144 Our Gaussian decoder outputs Gaussians with spherical harmonics up to degree three. We study what
 1145 information is captured by individual spherical harmonics degrees. In Fig. S8 and Fig. S9, we render
 1146 the 3D Gaussians from both reconstruction and generation by clipping the degree of the spherical
 1147 harmonics (*i.e.*, we use only the $\ell \leq 3$ degrees during rendering). We observe that zeroth-degree
 1148 renderings are mostly view-independent and have little lighting baked in, whereas higher-degree
 1149 renderings illustrate lighting effects. This is in contrast to TRELLIS’s results whose zeroth-degree
 1150 renderings contain both baked lighting and inaccurate view-dependent appearance produced using
 1151 micro-surface geometry (Walter et al., 2007). The results suggest that our model is able to represent
 1152 view-dependent effects using the higher-degree spherical harmonics, and to use the zeroth-degree
 1153 rendering for view-independent, diffused, appearance. This separation is an interesting finding, and it
 1154 provides potential opportunity for future investigation of relighting using our representation.

1154

1155 F.2 NERF DATASETS

1156

1157 For RefNeRF dataset’s object of car, we visualize the ground-truth mesh as well as unprojected depths
 1158 from all training views as in Sec. S10. As can be seen, the provided depth maps are not accurate.

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

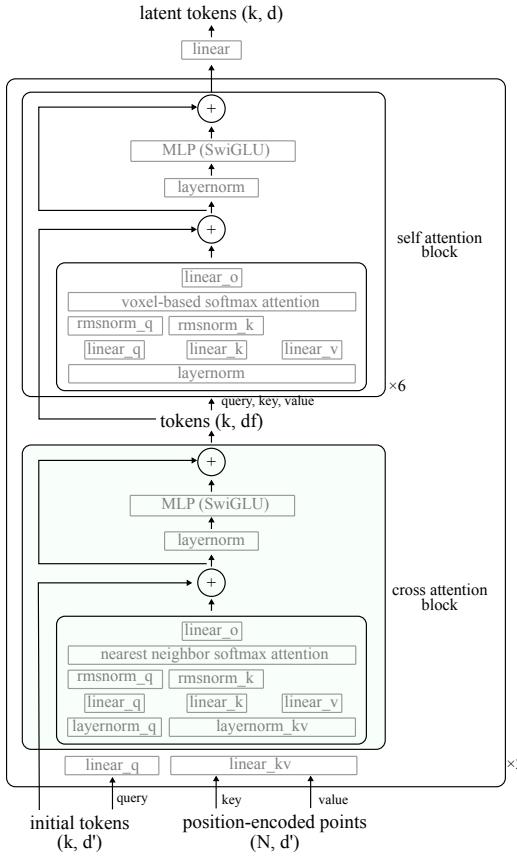


Figure S2: Encoder architecture. The model uses a feature dimension of $df = 512$, while the hidden layer in MLP uses a feature dimension of 2048. The number of heads for cross-attention and self-attention is 16. The input dimension $d' = 396$, which includes 3D location, position-encoded 3D location, RGB, position-encoded RGB, and Plucker coordinates. Our latent has $k = 8192$ and $d = 32$. Please refer to Sec. E for position encoding details.

1234
1235
1236
1237
1238
1239
1240
1241

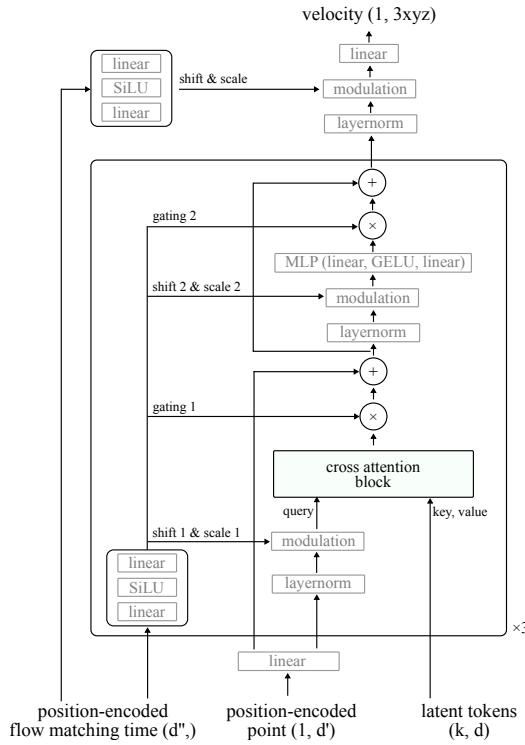


Figure S3: Velocity decoder architecture. The model uses a feature dimension of 512, while the hidden layer in MLP uses a feature dimension of 2048. The number of heads for cross-attention is 8. Our latent has $k = 8192$ and $d = 32$. We have $d' = 195$, which includes 3D location and position-encoded 3D location. Meanwhile, $d'' = 64$, which is obtained by applying a linear layer to time-step position encoding in Eq. (S1). Please refer to Sec. E for position encoding details.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253 position, rotation, scaling SH coeff, opacity
 1254 linear linear
 1255 MLP (SwiGLU) MLP (SwiGLU)
 1256
 1257
 1258
 1259
 1260
 1261 self attention block
 1262 linear_o
 1263 voxel-based softmax attention
 1264 rmsnorm_q rmsnorm_k
 1265 linear_q linear_k linear_v
 1266 layernorm
 1267 tokens (n, df)
 1268
 1269
 1270
 1271 cross attention block
 1272 linear_o
 1273 global softmax attention
 1274 rmsnorm_q rmsnorm_k
 1275 linear_q linear_k linear_v
 1276 layernorm_q layernorm_kv
 1277 layer_kv
 1278 query
 1279 key
 1280 value
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

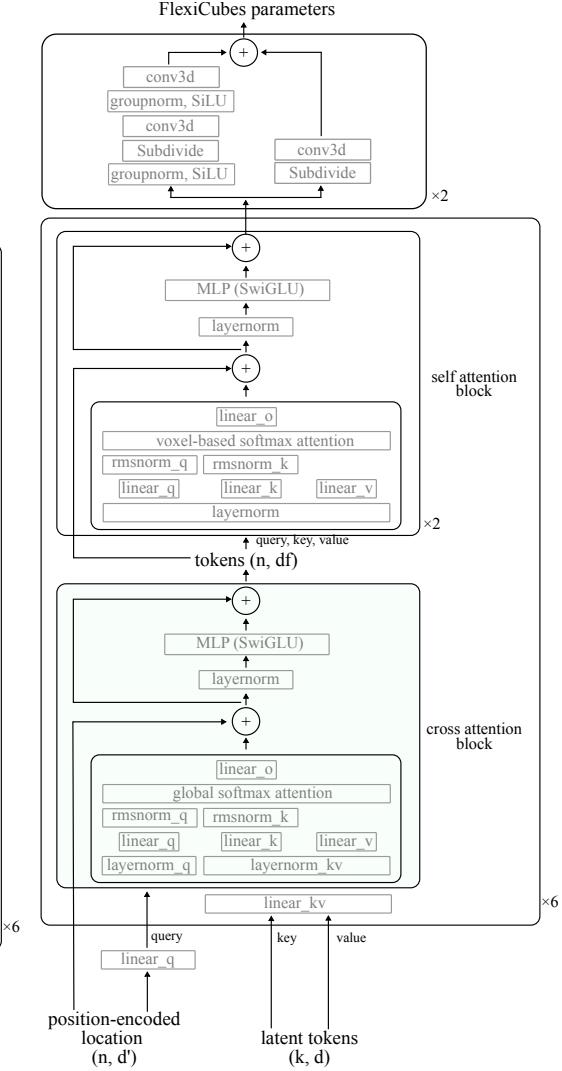
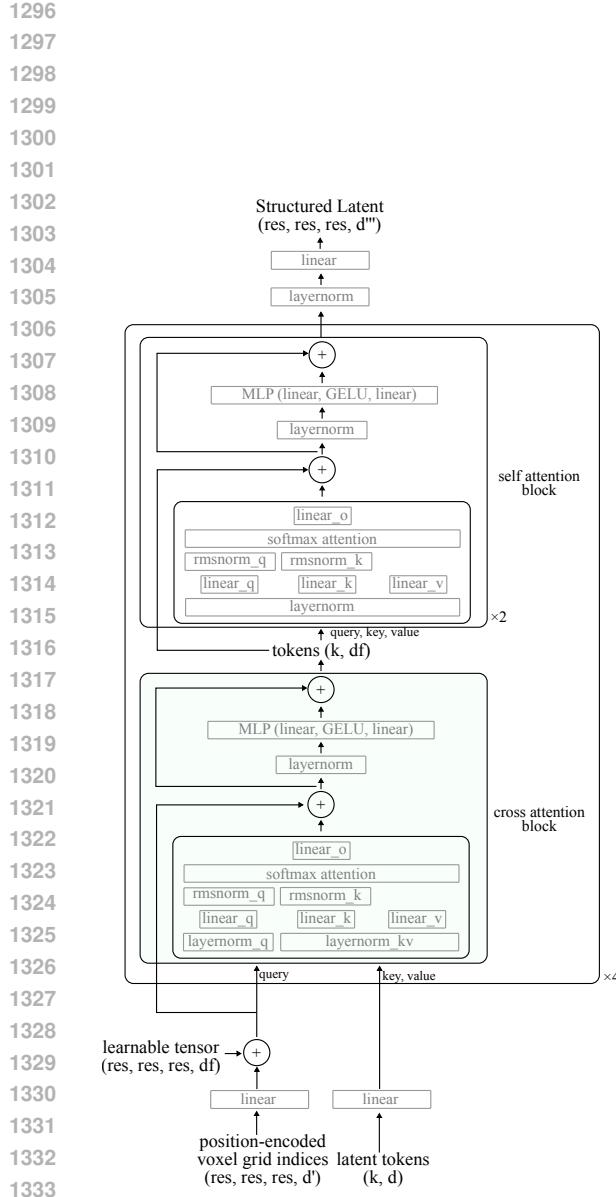
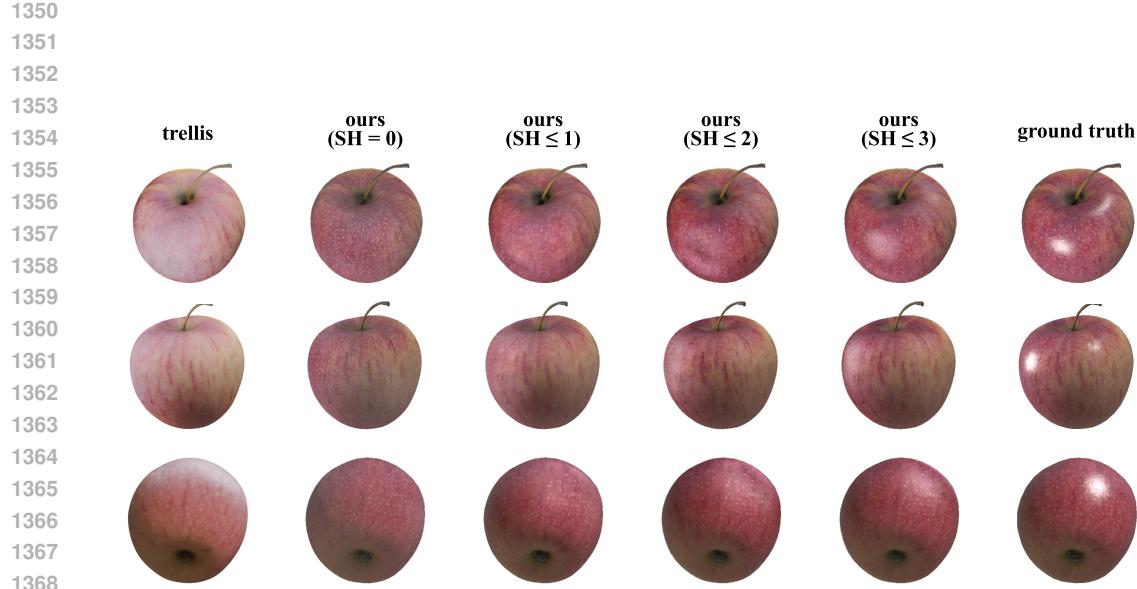


Figure S4: **3D Gaussian decoder architecture.** The model uses a feature dimension of $df = 512$, while the hidden layer in MLP uses a feature dimension of 2048. The number of heads for cross-attention and self-attention is 8. Our latent has $k = 8192$ and $d = 32$. We have $d' = 195$, which includes 3D location and position-encoded 3D location. Please refer to Sec. E for position encoding details.

Figure S5: **Mesh decoder architecture.** The model uses a feature dimension of $df = 512$, while the hidden layer in MLP uses a feature dimension of 2048. Our latent has $k = 8192$ and $d = 32$. The number of heads for cross-attention and self-attention is 16. We have $d' = 195$, which includes 3D location and position-encoded 3D location. Please refer to Sec. E for position encoding details.





1369 **Figure S8: Rendering with various spherical harmonics degrees in reconstruction.** When
1370 restricted to zeroth-order spherical harmonics, our 3D Gaussians produce a view-independent appear-
1371 ance and avoid the over-exposed regions observed in TRELLIS’s renderings. As we progressively
1372 incorporate higher-order spherical harmonics, our method yields increasingly pronounced view-
1373 dependent effects. Mesh credit: [DigitalSouls \(2019\)](#).

1397 **Figure S9: Rendering with various spherical harmonics degrees in generation.** When restricted
1398 to zeroth-order spherical harmonics, our 3D Gaussians produce a view-independent appearance and
1399 avoid the over-exposed regions observed in TRELLIS’s renderings. As we progressively incorporate
1400 higher-order spherical harmonics, our method yields increasingly pronounced view-dependent effects.
1401 Mesh credit: [Vetech82 \(2021\)](#).

1402
1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Figure S10: **RefNeRF dataset issues: inaccurate depths.**