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ABSTRACT

Recently, diffusion- and flow-based generative models of protein structures have
emerged as a powerful tool for de novo protein design. Here, we develop Proteı́na,
a new large-scale flow-based protein backbone generator that utilizes hierarchical
fold class labels for conditioning and relies on a tailored scalable transformer ar-
chitecture with up to 5× as many parameters as previous models. To meaningfully
quantify performance, we introduce a new set of metrics that directly measure the
distributional similarity of generated proteins with reference sets, complementing
existing metrics. We further explore scaling training data to millions of synthetic
protein structures and explore improved training and sampling recipes adapted
to protein backbone generation. This includes fine-tuning strategies like LoRA
for protein backbones, new guidance methods like classifier-free guidance and
autoguidance for protein backbones, and new adjusted training objectives. Proteı́na
achieves state-of-the-art performance on de novo protein backbone design and
produces diverse and designable proteins at unprecedented length, up to 800
residues. The hierarchical conditioning offers novel control, enabling high-level
secondary-structure guidance as well as low-level fold-specific generation.

1 INTRODUCTION

De novo protein design, the rational design of new proteins from scratch with specific functions
and properties, is a grand challenge in molecular biology (Richardson & Richardson, 1989; Huang
et al., 2016; Kuhlman & Bradley, 2019). Recently, deep generative models emerged as a novel data-
driven tool for protein design. Since a protein’s function is mediated through its structure, a popular
approach is to directly model the distribution of three-dimensional protein structures (Ingraham
et al., 2023; Watson et al., 2023; Yim et al., 2023b; Bose et al., 2024; Lin & Alquraishi, 2023),
typically with diffusion- or flow-based methods (Ho et al., 2020; Lipman et al., 2023). Such protein
structure generators usually synthesize backbones only, without sequence or side chains, in contrast to
protein language models, which often model sequences instead (Elnaggar et al., 2022; Lin et al., 2023;
Alamdari et al., 2023), and sequence-to-structure folding models like AlphaFold (Jumper et al., 2021).

Previous unconditional protein structure generative models have only been trained on small datasets,
consisting of no more than half a million structures at maximum (Lin et al., 2024). Moreover, their
neural networks do not offer any control during synthesis and are usually small, compared to modern
generative AI systems in domains such as natural language, image or video generation. There, we
have witnessed major breakthroughs thanks to scalable neural network architectures, large training
datasets, and fine semantic control (Esser et al., 2024; Brooks et al., 2024; OpenAI, 2024). This begs
the question: can we similarly scale and control protein structure diffusion and flow models, taking
lessons from the recent successes of generative models in computer vision and natural language?

Here, we set out to scale protein structure generation and develop a new flow matching-based protein
backbone generative model called Proteı́na. In vision and language modeling, generative models
are typically prompted through semantic text or class inputs, offering enhanced controllability. Anal-
ogously, we enrich our training data with hierarchical fold class labels following the CATH Protein
Structure Classification scheme (Dawson et al., 2016). Our novel hierarchical fold class conditioning
offers both high-level control, for instance over secondary structure content, as well as low-level guid-
ance with respect to specific fold classes. This can be leveraged, for instance, to dramatically increase
the number of β-sheets in generated proteins. We also explore scaling the training data and train on
up to 21 million protein structures, a 35× increase of training data compared to previous work.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="e8RMvERn9omi2ZOC/PXym5wnRpI=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgKeyKr2PQi8cI5gHJEmYns8mY2ZllplcIS/7BiwdFvPo/3vwbJ8keNLGgoajqprsrTAQ36HnfTmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQN5ChYO9GMxKFgrXB0O/VbT0wbruQDjhMWxGQgecQpQSs1u4nhPeyVK17Vm8FdJn5OKpCj3it/dfuKpjGTSAUxpuN7CQYZ0cipYJNSNzUsIXREBqxjqSQxM0E2u3binlil70ZK25LoztTfExmJjRnHoe2MCQ7NojcV//M6KUbXQcZlkiKTdL4oSoWLyp2+7va5ZhTF2BJCNbe3unRINKFoAyrZEPzFl5dJ86zqX1Yv7s8rtZs8jiIcwTGcgg9XUIM7qEMDKDzCM7zCm6OcF+fd+Zi3Fpx85hD+wPn8AbTfjzs=</latexit>

 tFlow

<latexit sha1_base64="vcxNROIaa7ihfFh/qxDHF04X2eQ=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiTiayMU3bisYB/QhjKZTtqhk0mYmRRLyJ+4caGIW//EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VaWV1b3yhvVra2d3b37P2DlooSSWiTRDySHR8rypmgTc00p51YUhz6nLb98V3utydUKhaJRz2NqRfioWABI1gbqW/bvRDrkR+kT1k/1TdO1rerTs2ZAS0TtyBVKNDo21+9QUSSkApNOFaq6zqx9lIsNSOcZpVeomiMyRgPaddQgUOqvHSWPEMnRhmgIJLmCY1m6u+NFIdKTUPfTOY51aKXi/953UQH117KRJxoKsj8UJBwpCOU14AGTFKi+dQQTCQzWREZYYmJNmVVTAnu4peXSeus5l7WLh7Oq/Xboo4yHMExnIILV1CHe2hAEwhM4Ble4c1KrRfr3fqYj5asYucQ/sD6/AHSm5PL</latexit>xt=0
<latexit sha1_base64="agXmQSMFzeyzqAC7C7UHLtXZ+Hc=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiTiayMU3bisYB/QhjKZTtqhk0mYmRRLyJ+4caGIW//EnX/jpM1CWw8MHM65l3vm+DFnSjvOt1VaWV1b3yhvVra2d3b37P2DlooSSWiTRDySHR8rypmgTc00p51YUhz6nLb98V3utydUKhaJRz2NqRfioWABI1gbqW/bvRDrkR+kT1k/1Tdu1rerTs2ZAS0TtyBVKNDo21+9QUSSkApNOFaq6zqx9lIsNSOcZpVeomiMyRgPaddQgUOqvHSWPEMnRhmgIJLmCY1m6u+NFIdKTUPfTOY51aKXi/953UQH117KRJxoKsj8UJBwpCOU14AGTFKi+dQQTCQzWREZYYmJNmVVTAnu4peXSeus5l7WLh7Oq/Xboo4yHMExnIILV1CHe2hAEwhM4Ble4c1KrRfr3fqYj5asYucQ/sD6/AHUIJPM</latexit>xt=1

<latexit sha1_base64="zULdAFk9+SPHWwvdmOtS76ZKR4A=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiTia9FF0Y3LCvYBbQiT6aQdOpmEmYm0hPyKGxeKuPVH3Pk3TtostPXAwOGce7lnjh8zKpVtfxultfWNza3ydmVnd2//wDysdmSUCEzaOGKR6PlIEkY5aSuqGOnFgqDQZ6TrT+5yv/tEhKQRf1SzmLghGnEaUIyUljyzOgiRGvtBOs281G6ohpN5Zs2u23NYq8QpSA0KtDzzazCMcBISrjBDUvYdO1ZuioSimJGsMkgkiRGeoBHpa8pRSKSbzrNn1qlWhlYQCf24subq740UhVLOQl9P5knlspeL/3n9RAU3bkp5nCjC8eJQkDBLRVZehDWkgmDFZpogLKjOauExEggrXVdFl+Asf3mVdM7rzlX98uGi1rwt6ijDMZzAGThwDU24hxa0AcMUnuEV3ozMeDHejY/FaMkodo7gD4zPH8ytlEs=</latexit>x0<t<1

Noisy intermediate <latexit sha1_base64="im1e/4T9eS0sJniQeODaVSCpcus=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUATymQ6aYdOHszciCX0N9y4UMStP+POv3HSZqGtBwYO59zLPXP8RAqNtv1tlVZW19Y3ypuVre2d3b3q/kFbx6livMViGauuTzWXIuItFCh5N1Gchr7kHX98m/udR660iKMHnCTcC+kwEoFgFI3kuiHFkR9kT9M+9qs1u27PQJaJU5AaFGj2q1/uIGZpyCNkkmrdc+wEvYwqFEzyacVNNU8oG9Mh7xka0ZBrL5tlnpITowxIECvzIiQz9fdGRkOtJ6FvJvOMetHLxf+8XorBtZeJKEmRR2x+KEglwZjkBZCBUJyhnBhCmRImK2EjqihDU1PFlOAsfnmZtM/qzmX94v681rgp6ijDERzDKThwBQ24gya0gEECz/AKb1ZqvVjv1sd8tGQVO4fwB9bnD5Mskg0=</latexit>xt

(Optional) fold class label

Protein Backbone 
Transformer

Flow vector 
field  d

<latexit sha1_base64="4FY7Wmd8Ppi7FqmubrLkBaUyniE=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSiK+lkU3LivYBzQxTKaTduhkEmZuCiHUX3HjQhG3fog7/8ZJm4W2Hhg4nHMv98wJEs4U2Pa3sbK6tr6xWdmqbu/s7u2bB4cdFaeS0DaJeSx7AVaUM0HbwIDTXiIpjgJOu8H4tvC7EyoVi8UDZAn1IjwULGQEg5Z8s+ZGGEZBmE+mPjy6MKKAfbNuN+wZrGXilKSOSrR888sdxCSNqADCsVJ9x07Ay7EERjidVt1U0QSTMR7SvqYCR1R5+Sz81DrRysAKY6mfAGum/t7IcaRUFgV6soiqFr1C/M/rpxBeezkTSQpUkPmhMOUWxFbRhDVgkhLgmSaYSKazWmSEJSag+6rqEpzFLy+TzlnDuWxc3J/XmzdlHRV0hI7RKXLQFWqiO9RCbURQhp7RK3oznowX4934mI+uGOVODf2B8fkDepiVUg==</latexit>

v✓
t

Figure 1: Proteı́na. We
use flow-matching and learn
a flow to transform a Gaus-
sian distribution over ini-
tial protein backbone coordi-
nates (residues’ Cα atoms)
into realistic protein struc-
tures. Proteı́na relies on
a scalable transformer-based
architecture and can be con-
ditioned on hierarchical fold
class labels for improved con-
trollability and complex pro-
tein structure design tasks.

Next, we develop a scalable transformer architecture. We opt for a non-equivariant design inspired
by recent diffusion transformers in vision (Peebles & Xie, 2023; Ma et al., 2024). For boosted per-
formance, we optionally include triangle layers, a powerful albeit computationally expensive network
component common in the protein literature (Jumper et al., 2021). Crucially, though, our models also
achieves top performance without any triangle layer-based pair representation updates. This allows us
to train on very large proteins and generate backbones of up to 800 residues, while maintaining des-
ignability and diversity, significantly outperforming all previous works. Further, while non-equivariant
diffusion models have recently been used as part of AlphaFold3 (Abramson et al., 2024), equivariant
methods have been dominant in the unconditional protein structure generation literature. We show that
large-scale non-equivariant flow models also succeed on unconditional protein structure generation.
We train versions of Proteı́na with more than 400M parameters, more than 5× larger than RFDiffu-
sion (Watson et al., 2023), to the best of our knowledge the largest existing protein backbone generator.

Protein structure generators are typically evaluated based on their generated proteins’ diversity, novelty
and designability (see Sec. 3.5). However, none of these metrics rigorously scores models at the
distribution level, although the task of generative modeling is to learn a model of a data distribution.
Hence, we introduce new metrics that directly score the learnt distribution instead of individual
samples. Similar to the Fréchet Inception Distance in image generation (Heusel et al., 2017), we
compare sets of generated samples against reference distributions in a non-linear feature space. Since
our feature extractor is based on a fold class predictor, we further quantify models’ diversity over fold
classes as well as the similarity of the generated class distribution compared to reference data’s classes.

Further, we adjust the flow matching objective to protein structure generation and explore stage-wise
training strategies. For instance, using low-rank adaptation (LoRA, Hu et al. (2022)) we fine-tune
Proteı́na models on natural, designable proteins. We also develop novel guidance schemes for
hierarchical fold class conditioning and successfully showcase autoguidance (Karras et al., 2024) to
enhance protein designability. Experimentally, Proteı́na achieves state-of-the-art protein backbone
generation performance, vastly outperforming all baselines especially in long chain synthesis, and we
demonstrate superior control compared to previous models through our novel fold class conditioning.

Main contributions: (i) We present Proteı́na, a novel flow-based generative protein structure founda-
tion model using a new scalable non-equivariant transformer architecture, which we scale to more than
400M parameters. (ii) We incorporate hierarchical fold class conditioning into Proteı́na and develop
tailored training algorithms and guidance schemes, leading to unprecedented semantic controllability
over protein structure generation. In particular, we showcase fold-specific synthesis as well as a con-
trolled enhancement of β-sheets in generated structures. (iii) We introduce several new protein struc-
ture generation metrics to complement existing metrics and to better analyze and compare existing
models. (iv) We scale training data to almost 21M high-quality synthetic protein structures, and show
successful training of models with very high designability on such large data. (v) We achieve state-of-
the-art designable and diverse protein backbone generation performance and, thanks to our efficient
transformer architecture, scale to an unprecedented length of 800 residues, still producing diverse
and designable proteins, vastly outperforming previous works. (vi) For the first time, we demonstrate
LoRA-based fine-tuning and autoguidance for flow-based protein structure generative models.

2 BACKGROUND AND RELATED WORK

Proteı́na relies on flow-matching (Lipman et al., 2023; Liu et al., 2023; Albergo & Vanden-Eijnden,
2023), which models a probability density path pt(xt) that gradually transforms an analytically
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Figure 2: Proteı́na Samples. Designable backbones generated unconditionally by MFS model (<250 residues).
tractable noise distribution (pt=0) into a data distribution (pt=1), following a time variable t ∈ [0, 1].
Formally, the path pt(xt) corresponds to a flow ψt that pushes samples from p0 to pt via pt = [ψ]t∗p0,
where ∗ denotes the push-forward. In practice, the flow is modelled via an ordinary differential
equation (ODE) dxt = vθ

t (xt, t)dt, defined through a learnable vector field vθ
t (xt, t) with parameters

θ. Initialized from noise x0 ∼ p0(x0), this ODE simulates the flow and transforms noise into approxi-
mate data distribution samples. The probability density path pt(xt) and the (intractable) ground-truth
vector field ut(xt) are related via the continuity equation ∂pt(xt)/∂t = −∇xt · (pt(xt)ut(xt)).

To learn vθ
t (xt, t) one can employ conditional flow matching (CFM). In CFM, conditioned on

data samples x1 ∼ p1(x1), we construct conditional probability paths pt(xt|x1) for which the
corresponding ground-truth conditional vector field ut(xt|x1) is analytically tractable for simple
distributions p0(x0), like Gaussian noise. The CFM objective then corresponds to regressing the
neural network-defined approximate vector field vθ

t (xt, t) against ut(xt|x1), where the intermediate
samples xt are drawn from the tractable conditional probability path pt(xt|x1) and we marginalize
over data x1 via Monte Carlo sampling. Since in expectation the CFM objective results in the same
gradients as directly regressing against the intractable marginal ground-truth vector field ut(xt),
vθ
t (xt, t) learns an approximation of the ground-truth ut(xt).

In practice, the conditional probability paths are defined through an interpolant that connects noise x0

and data samples x1 and constructs intermediate xt via interpolation. We rely on the rectified flow (Liu
et al., 2023) (also known as conditional optimal transport (Lipman et al., 2023)) formulation, using
a linear interpolant xt = tx1 + (1− t)x0 and the regression target dψt(x0|x1)/dt = x1 − x0. See
Sec. 3.2 for our exact instantiation of the CFM objective. Flow-matching is related to diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021), see App. N; for Gaussian flows the
frameworks become equivalent up to reparametrizations (Kingma & Gao, 2023; Albergo et al., 2023).

Related Work. Two seminal works on protein backbone generation with diffusion models are
Chroma (Ingraham et al., 2023) and RFDiffusion (Watson et al., 2023), the latter fine-tuning
RoseTTAFold (Baek et al., 2021). FrameDiff (Yim et al., 2023b) performs frame-based (Jumper
et al., 2021) Riemannian manifold diffusion (Huang et al., 2022; Bortoli et al., 2022) to model residue
rotations. These works were followed by FoldFlow (Bose et al., 2024) and FrameFlow (Yim et al.,
2023a), leveraging Riemanning flow matching (Chen & Lipman, 2024). Meanwhile, Genie (Lin &
Alquraishi, 2023) and others (Trippe et al., 2023) generate protein backbones diffusing only residues’
Cα coordinates. Proteus (Wang et al., 2024) builds on top of FrameDiff, introducing efficient triangle
layers. Recently, FoldFlow2 (Huguet et al., 2024) and Genie2 (Lin et al., 2024) extended training
data to the AFDB, although with significantly less data than Proteı́na. MultiFlow (Campbell et al.,
2024), building on FrameFlow, jointly generates sequence and structure. Related, Protpardelle (Chu
et al., 2024) and the concurrent Pallatom (Qu et al., 2024) generate fully atomistic proteins. The latter
uses a similar non-equivariant transformer architecture like AlphaFold3 (Abramson et al., 2024), also
related to Proteı́na’s architecture. Meanwhile, masked language models have been trained on structure
tokens, with ESM3 (Hayes et al., 2024) being the most recent and prominent model. Chroma showed
classifier-based guidance with respect to fold classes. In contrast, we, for the first time, leverage
classifier-free guidance using large fold class annotations, and perform thorough quantitative analyses.

3 PROTEÍNA

3.1 SCALING PROTEIN STRUCTURE TRAINING DATA WITH FOLD CLASSES

Most protein structure generators have been trained on natural proteins, using filtered subsets of the
PDB (Berman et al., 2000), resulting in training set sizes in the order of 20k. Recently, some works
(Lin et al., 2024; Huguet et al., 2024; Qu et al., 2024) relied on the AFDB (Varadi et al., 2021) and in-
cluded synthetic AlphaFold2 structures (Jumper et al., 2021). Genie2 (Lin et al., 2024) used the largest
dataset, i.e. ≈0.6M synthetic structures. Inspired by the data scaling success of generative models in
areas such as image and video generation and natural language synthesis (Brooks et al., 2024; Esser
et al., 2024; OpenAI, 2024), we explore scaling protein structure training data even further. The entire
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Figure 3: Dataset Statistics.
(a) Dataset size comparisons.
(b) Sunburst plot for the hier-
archical fold-class labels in our
largest dataset D21M, depicting
the hierarchical label structure
and the relative sizes of the
three hierarchical fold class cat-
egories C, A, and T.

AFDB extends to ≈214M structures, orders of magnitude larger than its small subsets used in previous
works. However, not all of these structures are useful for training protein structure generators, as they
contain low-quality predictions and other unsuitable data. Our main Proteı́na models are trained on
two datasets, denoted as DFS and D21M, the latter newly created (data processing details in App. B):

1. Foldseek AFDB clusters DFS: This dataset corresponds to the exact data that was also used by
Genie2, based on sequential filtering and clustering of the AFDB with the sequence-based MMseqs2
and the structure-based Foldseek (van Kempen et al., 2024; Barrio-Hernandez et al., 2023). This data
uses cluster representatives only, i.e. only one structure per cluster. Like Genie2, we use protein
lengths between 32 and 256 residues in our main models, leading to 588,571 structures in total.

2. High-quality filtered AFDB subset D21M: We filtered all ≈214M AFDB structures for proteins
with max. residue length 256, min. average pLDDT of 85, max. pLDDT standard deviation of 15, max.
coil percentage of 50%, and max. radius of gyration of 3nm. This led to 20,874,485 structures. We
further clustered the data with MMseqs2 (Steinegger & Söding, 2017) using a 50% sequence similarity
threshold. During training, we sample clusters uniformly, and draw random structures within.

We use DFS, as, to the best of our knowledge, it represents the largest training dataset used in any
previous flow- or diffusion-based structure generators. With D21M we are pushing the frontier of
training data scale for protein structure generation. In fact, D21M is 35× larger than DFS (see Fig. 3).

Hierarchical fold class annotations. Large-scale generative models in the visual domain typically
rely on semantic class- or text-conditioning to offer control or to effectively break down the generative
modeling task into a set of simpler conditional tasks (Bao et al., 2022). However, existing protein
structure diffusion or flow models are either trained unconditionally, or condition only on partially
given local structures, for instance in motif scaffolding tasks (Yim et al., 2024; Lin et al., 2024).

We propose, for the first time, to instead leverage fold class annotations that globally describe protein
structures, akin to semantic class or text labels of images. We use The Encyclopedia of Domains (TED)
data, which consists of structural domain assignments to proteins in the AFDB (Lau et al., 2024b;a).
TED uses the CATH structural hierarchy (Dawson et al., 2016) to assign labels, where C (“class”)
describes the overall secondary-structure content of a domain, A (“architecture”) groups domains with
high structural similarity, T (“topology/fold”) further refines the structure groupings, and H (“homol-
ogous superfamily”) labels are only shared between domains with evolutionary relationships. Since
we are strictly interested in structural modeling, we discard the H level and leverage only C, A, and T
level labels. We assign labels to the proteins in all datasets, but since TED annotated not all of AFDB,

Figure 4: Long Proteı́na Samples. Chain lengths in (a)-(g): [300, 400, 500, 600, 700, 800, 800]. (a) “Mixed
α/β”-guided. (b) “Mainly β”-guided. (e) “Mixed α/β”-guided. Others unconditional. All samples designable.
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some structures lack CAT labels. Moreover, some labels are less common than others (see Fig. 3); we
only consider the main “mainly α”, “mainly β”, and “mixed α/β” C classes. See App. B for details.

3.2 TRAINING OBJECTIVE

We model protein backbones’ residue locations through their Cα atom coordinates, similar to Lin &
Alquraishi (2023); Lin et al. (2024). Note that many works instead leverage so-called frames (Jumper
et al., 2021), additionally capturing residue rotations. However, this requires modeling a generative
process over Riemannian rotation manifolds as well as ad hoc modifications to the rotation generation
schedule during inference, which are not well understood (Yim et al., 2023a; Bose et al., 2024; Huguet
et al., 2024). We purposedly avoid such representations to not make the framework unnecessarily
complicated, and prioritize simplicity and scalability, relying purely on Cα backbone coordinates.

Consider the vector of a protein backbone’s 3D Cα coordinates x ∈ R3L, where L is the number of
residues. Denote the protein’s fold class labels as {Cx, Ax, Tx}CAT, and the binned pairwise distance
between residues i and j as Db,ij(x). Using xt = tx+ (1− t)ϵ, Proteı́na’s objective then is

min
θ

Ex∼pD(x),ϵ∼N (0,I),t∼p(t)

[
1

L
||vθ

t (xt, t, x̂(xt), {Cx, Ax, Tx}CAT)− (x− ϵ)||22︸ ︷︷ ︸
Main conditional flow-matching loss, see Sec. 2.

− 1(t ≥ 0.3)

L2

∑
i,j

64∑
b=1

Db,ij(x) log p
θ
b,ij(xt, t, x̂(xt), {Cx, Ax, Tx}CAT)︸ ︷︷ ︸

Optional auxiliary binned distogram loss.

]
.

(1)

Similar to Abramson et al. (2024); Qu et al. (2024), we optionally include a cross entropy-based
distogram loss, which discretizes pairwise residue distances into 64 bins. The distogram is predicted
via a prediction head attached to our architecture’s pair representation and only used if this pair
representation is updated (see Sec. 3.3). This loss is generally used only for t ≥ 0.3. We also train
for self-conditioning, conditioning the model on its own clean data prediction x̂(xt) = xt + (1−
t)vθ

t (xt, t, ∅, {Cx, Ax, Tx}CAT) with probability 0.5. Furthermore, we design a novel t-sampling
distribution tailored to flow matching for protein backbone generation (motivation and discussion in
App. G, visualization in Fig. 13, and ablation studies can be found in App. J),

p(t) = 0.02U(0, 1) + 0.98B(1.9, 1.0). (2)

Fold-class conditioning. Our fold class labels describe protein structures at different levels of detail,
and we seek the ability to both condition on varying levels of the hierarchy, and to also run the model
unconditionally. To this end, we propose to hierarchically drop out different label combinations during
training. Specifically, with p = 0.5 we drop all labels ({∅, ∅, ∅}CAT), with p = 0.1 we only show the
C label ({Cx, ∅, ∅}CAT), with p = 0.15 we drop only the T label ({Cx, Ax, ∅}CAT) and with p = 0.25
we give the model all labels ({Cx, Ax, Tx}CAT). The drop probabilities are chosen such that, on the
one hand, we learn a strong unconditional model without any labels. On the other hand, the number of
categories increases along the hierarchy, such that we focus training more on the increasingly fine A
and T classes, as opposed to conditioning only on the coarser C labels (Fig. 3). Moreover, our approach
enables classifier-free guidance (Ho & Salimans, 2021) for all possible levels during inference,
combining the unconditional model prediction with any of the label-conditioned predictions (guidance
weight ω, see App. F). Note that, while most training proteins have only a single label, if a protein has
multiple domains and corresponding hierarchical labels, we randomly feed one of them to the model.

3.3 A SCALABLE PROTEIN STRUCTURE TRANSFORMER ARCHITECTURE

While previous protein structure generators typically use small equivariant neural networks, we take
inspiration from language and image generation (Peebles & Xie, 2023; Ma et al., 2024; Esser et al.,
2024) and design a new streamlined non-equivariant transformer, see Fig. 5. It constructs residue chain
and pair representations from the (noisy) protein coordinates, the residue indices, the sequence sepa-
ration between residues and the (optional) self-conditioning input. The residue chain representation is
processed by a stack of conditioned and biased multi-head self-attention layers (Vaswani et al., 2017),
using a pair bias via the pair representation, which can be optionally updated, too. At the end, the up-
dated sequence representation is decoded into the vector field prediction vθ

t to model Proteı́na’s flow.

A related architecture has recently been introduced by AlphaFold3 (Abramson et al., 2024), and is used
concurrently in Pallatom (Qu et al., 2024). Our design features some additional components: (i) As

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="im1e/4T9eS0sJniQeODaVSCpcus=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUATymQ6aYdOHszciCX0N9y4UMStP+POv3HSZqGtBwYO59zLPXP8RAqNtv1tlVZW19Y3ypuVre2d3b3q/kFbx6livMViGauuTzWXIuItFCh5N1Gchr7kHX98m/udR660iKMHnCTcC+kwEoFgFI3kuiHFkR9kT9M+9qs1u27PQJaJU5AaFGj2q1/uIGZpyCNkkmrdc+wEvYwqFEzyacVNNU8oG9Mh7xka0ZBrL5tlnpITowxIECvzIiQz9fdGRkOtJ6FvJvOMetHLxf+8XorBtZeJKEmRR2x+KEglwZjkBZCBUJyhnBhCmRImK2EjqihDU1PFlOAsfnmZtM/qzmX94v681rgp6ijDERzDKThwBQ24gya0gEECz/AKb1ZqvVjv1sd8tGQVO4fwB9bnD5Mskg0=</latexit>xt

Linear Sin. Enc. Sin. Enc.Linear

<latexit sha1_base64="EBYHGnKFEvsz7HOSHPYTZqwNqWQ=">AAACB3icbZDLSsNAFIYn9VbrLepSkGAR6qYk4m1ZdOOygr1AE8JkOmmHTi7MnIglZOfGV3HjQhG3voI738ZJG1Bbfxj4+M85zDm/F3MmwTS/tNLC4tLySnm1sra+sbmlb++0ZZQIQlsk4pHoelhSzkLaAgacdmNBceBx2vFGV3m9c0eFZFF4C+OYOgEehMxnBIOyXH3fHmJI7QDD0PPT+yyr/bALR65eNevmRMY8WAVUUaGmq3/a/YgkAQ2BcCxlzzJjcFIsgBFOs4qdSBpjMsID2lMY4oBKJ53ckRmHyukbfiTUC8GYuL8nUhxIOQ481ZkvKWdruflfrZeAf+GkLIwToCGZfuQn3IDIyEMx+kxQAnysABPB1K4GGWKBCajoKioEa/bkeWgf162z+unNSbVxWcRRRnvoANWQhc5RA12jJmohgh7QE3pBr9qj9qy9ae/T1pJWzOyiP9I+vgEMb5oS</latexit>

x̂(xt)
<latexit sha1_base64="2TyYox69prPZKG28G7NCoWz8v3M=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNnJbDJmdnaZ6RXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR3dRvPXFtRKwecJxwP6IDJULBKFqpjr1S2a24M5Bl4uWkDDlqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9mh07IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzxM6GSFLli80VhKgnGZPo16QvNGcqxJZRpYW8lbEg1ZWizKdoQvMWXl0nzvOJdVS7rF+XqbR5HAY7hBM7Ag2uowj3UoAEMODzDK7w5j86L8+58zFtXnHzmCP7A+fwB42mNAg==</latexit>

tSeq. Idx.
<latexit sha1_base64="PVb5OIsIEtUxG5TZ/cdvLcyZc4k=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUR8LYvduKxgH9CEMplO2qGTSZiHWEJ/w40LRdz6M+78GydtFtp6YOBwzr3cMydMOVPadb+dldW19Y3N0lZ5e2d3b79ycNhWiZGEtkjCE9kNsaKcCdrSTHPaTSXFcchpJxw3cr/zSKViiXjQk5QGMR4KFjGCtZX8Rt+PsR6FUfY07Veqbs2dAS0TryBVKNDsV778QUJMTIUmHCvV89xUBxmWmhFOp2XfKJpiMsZD2rNU4JiqIJtlnqJTqwxQlEj7hEYz9fdGhmOlJnFoJ/OEatHLxf+8ntHRTZAxkRpNBZkfigxHOkF5AWjAJCWaTyzBRDKbFZERlphoW1PZluAtfnmZtM9r3lXt8v6iWr8t6ijBMZzAGXhwDXW4gya0gEAKz/AKb45xXpx352M+uuIUO0fwB87nD0akkdw=</latexit>

Cx

<latexit sha1_base64="I7f5CrzINAN7BTXgoMOFCcMoJac=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XVjcsK9gGdoWTSTBuaZIYkI5ahv+HGhSJu/Rl3/o2ZdhZaPRA4nHMv9+SECWfauO6XU1paXlldK69XNja3tnequ3ttHaeK0BaJeay6IdaUM0lbhhlOu4miWIScdsLxTe53HqjSLJb3ZpLQQOChZBEj2FjJv+r7AptRGGWP03615tbdGdBf4hWkBgWa/eqnP4hJKqg0hGOte56bmCDDyjDC6bTip5ommIzxkPYslVhQHWSzzFN0ZJUBimJlnzRopv7cyLDQeiJCO5kn1IteLv7n9VITXQYZk0lqqCTzQ1HKkYlRXgAaMEWJ4RNLMFHMZkVkhBUmxtZUsSV4i1/+S9onde+8fnZ3WmtcF3WU4QAO4Rg8uIAG3EITWkAggSd4gVcndZ6dN+d9Plpyip19+AXn4xtDhpHa</latexit>

Ax

<latexit sha1_base64="Alspv/IgbKmJDdClWlEw8frhr8A=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclUR8LYtuXFboC5pQJtNJO3QyCfMQS+hvuHGhiFt/xp1/46TNQlsPDBzOuZd75oQpZ0q77rezsrq2vrFZ2ipv7+zu7VcODtsqMZLQFkl4IrshVpQzQVuaaU67qaQ4DjnthOO73O88UqlYIpp6ktIgxkPBIkawtpLf7Psx1qMwyp6m/UrVrbkzoGXiFaQKBRr9ypc/SIiJqdCEY6V6npvqIMNSM8LptOwbRVNMxnhIe5YKHFMVZLPMU3RqlQGKEmmf0Gim/t7IcKzUJA7tZJ5QLXq5+J/XMzq6CTImUqOpIPNDkeFIJygvAA2YpETziSWYSGazIjLCEhNtayrbErzFLy+T9nnNu6pdPlxU67dFHSU4hhM4Aw+uoQ730IAWEEjhGV7hzTHOi/PufMxHV5xi5wj+wPn8AWEjke0=</latexit>

Tx

Linear

MLP

Concat.

Linear

Concat.

<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+

Sequence Repr. Sequence Cond.

Sequence Repr. Sequence Cond.

Registers Zero Pad.

Concat. Concat.

Pair Repr.

Pair Repr.

Zero Pad.

Concat.

<latexit sha1_base64="im1e/4T9eS0sJniQeODaVSCpcus=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiTia1l047KCfUATymQ6aYdOHszciCX0N9y4UMStP+POv3HSZqGtBwYO59zLPXP8RAqNtv1tlVZW19Y3ypuVre2d3b3q/kFbx6livMViGauuTzWXIuItFCh5N1Gchr7kHX98m/udR660iKMHnCTcC+kwEoFgFI3kuiHFkR9kT9M+9qs1u27PQJaJU5AaFGj2q1/uIGZpyCNkkmrdc+wEvYwqFEzyacVNNU8oG9Mh7xka0ZBrL5tlnpITowxIECvzIiQz9fdGRkOtJ6FvJvOMetHLxf+8XorBtZeJKEmRR2x+KEglwZjkBZCBUJyhnBhCmRImK2EjqihDU1PFlOAsfnmZtM/qzmX94v681rgp6ijDERzDKThwBQ24gya0gEECz/AKb1ZqvVjv1sd8tGQVO4fwB9bnD5Mskg0=</latexit>xt

<latexit sha1_base64="EBYHGnKFEvsz7HOSHPYTZqwNqWQ=">AAACB3icbZDLSsNAFIYn9VbrLepSkGAR6qYk4m1ZdOOygr1AE8JkOmmHTi7MnIglZOfGV3HjQhG3voI738ZJG1Bbfxj4+M85zDm/F3MmwTS/tNLC4tLySnm1sra+sbmlb++0ZZQIQlsk4pHoelhSzkLaAgacdmNBceBx2vFGV3m9c0eFZFF4C+OYOgEehMxnBIOyXH3fHmJI7QDD0PPT+yyr/bALR65eNevmRMY8WAVUUaGmq3/a/YgkAQ2BcCxlzzJjcFIsgBFOs4qdSBpjMsID2lMY4oBKJ53ckRmHyukbfiTUC8GYuL8nUhxIOQ481ZkvKWdruflfrZeAf+GkLIwToCGZfuQn3IDIyEMx+kxQAnysABPB1K4GGWKBCajoKioEa/bkeWgf162z+unNSbVxWcRRRnvoANWQhc5RA12jJmohgh7QE3pBr9qj9qy9ae/T1pJWzOyiP9I+vgEMb5oS</latexit>

x̂(xt) Seq. Idx.

Sin. Enc.

<latexit sha1_base64="2TyYox69prPZKG28G7NCoWz8v3M=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNnJbDJmdnaZ6RXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR3dRvPXFtRKwecJxwP6IDJULBKFqpjr1S2a24M5Bl4uWkDDlqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9mh07IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzxM6GSFLli80VhKgnGZPo16QvNGcqxJZRpYW8lbEg1ZWizKdoQvMWXl0nzvOJdVS7rF+XqbR5HAY7hBM7Ag2uowj3UoAEMODzDK7w5j86L8+58zFtXnHzmCP7A+fwB42mNAg==</latexit>

t

Linear + LNAdaptive LN

Concat.

Pair Dists. Pair Dists. Seq. Dists.

(a) Create Sequence Representation (b) Create Sequence Conditioning (c) Create Pair Representation (d) Neural Network Processing Stack

Sequence Repr. Sequence Cond. Pair Repr.

Sequence Repr. Pair Repr.

Linear Linear

Vector field Pairwise distances (optional)

Adaptive Biased 
Multi-Head Attention

+
Adaptive Transition 

Triangle Layer 
Pair Update 
(optional)

# Sequential Layers

<latexit sha1_base64="wwHa80aoge6FHDhZEgG6grw7cbc=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAiuSiK+lkU3LivYBzQxTKaTduhkEmZuCiHUX3HjQhG3fog7/8ZJm4W2Hhg4nHMv98wJEs4U2Pa3sbK6tr6xWdmqbu/s7u2bB4cdFaeS0DaJeSx7AVaUM0HbwIDTXiIpjgJOu8H4tvC7EyoVi8UDZAn1IjwULGQEg5Z8s+ZGGEZBmE+mjy6MKGAffLNuN+wZrGXilKSOSrR888sdxCSNqADCsVJ9x07Ay7EERjidVt1U0QSTMR7SvqYCR1R5+Sz81DrRysAKY6mfAGum/t7IcaRUFgV6soiqFr1C/M/rpxBeezkTSQpUkPmhMOUWxFbRhDVgkhLgmSaYSKazWmSEJSag+6rqEpzFLy+TzlnDuWxc3J/XmzdlHRV0hI7RKXLQFWqiO9RCbURQhp7RK3oznowX4934mI+uGOVODf2B8fkDenOVUg==</latexit>

v✓
t

(e) Adaptive Biased Multi-Head Attention and Adaptive Transition

Sequence Repr.

Sequence Cond.

Pair Repr.

Adaptive
LN

Linear 
+ LN

Linear 
+ LN

Linear

Q

KT

V

<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+

LN + 
Linear

<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>+ Scale 
<latexit sha1_base64="AMh1qX0NxhwDGC7dxLPr2orGTXA=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GSyCq5KIr2XRjeCmgn1AE8JkOmmHTh7O3Ag1BH/FjQtF3Pof7vwbp20W2nrgwuGce7n3Hj8RXIFlfRulhcWl5ZXyamVtfWNzy9zeaak4lZQ1aSxi2fGJYoJHrAkcBOskkpHQF6ztD6/GfvuBScXj6A5GCXND0o94wCkBLXnmnhNIQjM7zxx1LyHreTd57plVq2ZNgOeJXZAqKtDwzC+nF9M0ZBFQQZTq2lYCbkYkcCpYXnFSxRJCh6TPuppGJGTKzSbX5/hQKz0cxFJXBHii/p7ISKjUKPR1Z0hgoGa9sfif100huHAzHiUpsIhOFwWpwBDjcRS4xyWjIEaaECq5vhXTAdFxgA6sokOwZ1+eJ63jmn1WO709qdYvizjKaB8doCNko3NUR9eogZqIokf0jF7Rm/FkvBjvxse0tWQUM7voD4zPH0CilcI=</latexit>

1p
dK

Softmax

# Parallel Attention Heads

<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>+Split

Split

Split

Concat. 
+ Linear

Adaptive 
Scale

<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+ Adaptive
LN

Linear + 
SwiGLU

Adaptive 
Scale

<latexit sha1_base64="Age47FzHBvUqYGPEEfH8g0BXt4k=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXfB2DXjwmYB6QhDA76U3GzM4uM7NCWPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dfiy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUy6caBZdYN9wIbMUKaegLbPqju6nffEKleSQfzDjGbkgHkgecUWOl2lmvWHLL7gxkmXgZKUGGaq/41elHLAlRGiao1m3PjU03pcpwJnBS6CQaY8pGdIBtSyUNUXfT2aETcmKVPgkiZUsaMlN/T6Q01Hoc+rYzpGaoF72p+J/XTkxw0025jBODks0XBYkgJiLTr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfHmZNM7L3lX5snZRqtxmceThCI7hFDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnOymUP4A+fzB3TFjLk=</latexit>

+ Sequence 
Repr.

cond.

cond.

cond.

cond.

cond.

Figure 5: Proteı́na’s transformer architecture. (a)-(c) We first create a sequence representation, sequence
conditioning features, and a pair representation. (d) They are processed by conditioned and biased (through the
pair representation) multi-head attention layers, described in (e). We use a variant of QK normalization, applying
LayerNorm (LN) to the Q and K inputs to the attention operation, before the multi-head split. Optionally, the
pair representation can be updated. See App. C for the Pair Update, Adaptive LN, and Adaptive Scale modules.

discussed, we condition on hierarchical fold class labels. They are fed to the model through concate-
nated learnable embeddings, injected into the attention stack via adaptive layer norms, together with
the t embedding. (ii) Following best practices from language and vision, we extend our sequence rep-
resentation with auxiliary tokens, known as registers (Darcet et al., 2024), which can capture global in-
formation or act as attention sinks (Xiao et al., 2024) and streamline the sequence processing. (iii) We
use a variant of QK normalization (Dehghani et al., 2023) to avoid uncontrolled attention logit growth.
While our models are smaller than the large models in vision and language, we train with relatively
small batch sizes and high learning rates, where similar instabilities can occur (Wortsman et al., 2024).
(iv) All our attention layers feature residual connections—without, we were not able to train stably
(AlphaFold3 is ambiguous regarding their use of such residuals). (v) We use triangle multiplicative lay-
ers (Jumper et al., 2021) as optional add-on only to update the pair representation. While triangle lay-
ers have been shown to boost performance (Jumper et al., 2021; Lin et al., 2024; Huguet et al., 2024),
they are highly compute and memory intensive, limiting scalability. Hence, in Proteı́na we avoid their
usage as the driving model component and carry out most processing with the main transformer stack.

AlphaFold3 showed that non-equivariant diffusion models can succeed in protein folding, but they rely
on expressive amino acid sequence and MSA embeddings. We instead learn the distribution of protein
structures without sequence inputs. For this task, to the best of our knowledge, almost all related
works used equivariant architectures, aside from the concurrent Pallatom (Qu et al., 2024) and Prot-
pardelle (Chu et al., 2024). To nonetheless learn equivariance, we center training proteins and augment
with random rotations; in App. H we show that our model learns an approximately SO(3)-equivariant
vector field. We train models with up to ≈400M parameters in the transformer and ≈17M in the
triangle layers, which, we believe, represents the largest protein structure flow or diffusion model.

3.4 SAMPLING

New protein backbones can be generated with Proteı́na by simulating the learnt flow’s ODE, see
Sec. 2. Since our flow is Gaussian, there exists a connection between the learnt vector field and the
corresponding score s(xt) := ∇xt log pt(xt) (Albergo et al., 2023; Ma et al., 2024),

sθt (xt, c̃) =
tvθ

t (xt, c̃)− xt

1− t
, (3)

where we use c̃ as abbreviation for all conditioning inputs (see Sec. 3.2). This allows us to construct a
stochastic differential equation (SDE) that can be used as a stochastic alternative to sample Proteı́na,

dxt = vθ
t (xt, c̃)dt+ g(t)sθt (xt, c̃)dt+

√
2g(t)γ dWt, (4)
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Figure 6: Fold class-conditional Generation with Mcond
FS model (Sec. 4.3). All samples are designable and

correctly re-classified (App. I). The used C.A.T fold class conditioning codes are given below fold names.

where Wt is a Wiener process and g(t) scales the additional score and noise terms, which corresponds
to Langevin dynamics (Karras et al., 2022). Crucially, we have introduced a noise scaling parameter
γ. For γ=1, the SDE has the same marginals and hence samples from the same distribution as
the ODE (Karras et al., 2022; Ma et al., 2024). However, it is common in the protein structure
generation literature to reduce the noise scale in stochastic sampling (Ingraham et al., 2023; Wang
et al., 2024; Lin et al., 2024). This is not a principled way to reduce the temperature of the sampled
distribution (Du et al., 2023), but can be beneficial empirically, often improving designability at the
cost of diversity. Fold label conditioning is done via classifier-free guidance (CFG) (Ho & Salimans,
2021), and we also explore autoguidance (Karras et al., 2024), where a model is guided using a “bad”
version of itself. In a unifying formulation, we can write the guided vector field as

vθ,guided
t (xt, c̃) = ω vθ

t (xt, c̃) + (1− ω)
[
(1− α)vθ

t (xt, ∅) + αvθ,bad
t (xt, c̃)

]
(5)

where ω ≥ 0 defines the overall guidance weight and α ∈ [0, 1] interpolates between CFG and
autoguidance. An analogous equation holds for the scores sθt (xt, c̃). To the best of our knowledge, no
previous works explore CFG or autoguidance for protein structure generation. More details in App. F.

3.5 PROBABILISTIC METRICS FOR PROTEIN STRUCTURE GENERATIVE MODELS

Protein structure generators are scored based on their samples’ designability, diversity and novelty
(see App. D). However, designability relies on auxiliary models, ProteinMPNN (Dauparas et al.,
2022) and ESMFold (Lin et al., 2023), with their own biases. Moreover, we cannot necessarily expect
to maximize designability by learning a better generative model, because not even all training proteins
are designable (Lin et al., 2024). Next, diversity and novelty are usually only computed among
designable samples, which makes them dependent on the complex designability metric, and diversity
and novelty do otherwise not depend on quality. Therefore, we propose new probabilistic metrics
that offer complementary insights. We suggest to more directly quantify how well a model matches a
relevant reference distribution. Specifically, we first train a fold class predictor pϕ(·|x) with features
ϕ(x) for all CAT hierarchy levels (Sec. 3.1). Leveraging this classifier, we propose three new metrics:

Fréchet Protein Structure Distance (FPSD). Inspired by the FID score (Heusel et al., 2017), we
embed generated and reference structures into the feature space of the fold class predictor and measure
the Wasserstein distance between the feature distributions, modeling them as Gaussians. Defining the
generated and the reference set of protein structures as {x}gen and {x}ref, respectively, we have

FPSD({x}gen, {x}ref) := ||µ{ϕ(x)}gen−µ{ϕ(x)}ref ||
2
2+tr

(
Σ{ϕ(x)}gen +Σ{ϕ(x)}ref − 2(Σ{ϕ(x)}genΣ{ϕ(x)}ref)

1
2

)
.

An accurate fold class predictor must learn an expressive feature representation of protein structures.
Hence, we argue that these feature embeddings must be well-suited for fine-grained reasoning about
protein structure distributions, making a fold class predictor an ideal choice as embedding model.

Fold Jensen Shannon Divergence (fJSD). We also directly compare the marginal predicted categori-
cal fold class distributions of generated and reference structures via the Jensen Shannon Divergence,

fJSD({x}gen, {x}ref) := 10× JSD(Ex∼{x}genpϕ(·|x)||Ex∼{x}refpϕ(·|x)).
Note that we can evaluate this fJSD metric at all levels of the predicted CAT fold class hierarchy,
allowing us to measure distributional fold class similarity at different levels of granularity. In practice,
in this work we report the average over all levels in the interest of conciseness.

Fold Score (fS). Inspired by the Inception Score (Salimans et al., 2016), we propose a Fold Score

fS({x}gen) := exp
(
Ex∼{x}gen

[
DKL

(
pϕ(·|x)∥Ex∼{x}genpϕ(·|x)

)])
.
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Table 1: Proteı́na’s unconditional backbone generation performance compared to baselines. All models and
baselines tuned for designability via noise scaling or inference rotation annealing, not sampling full distribution.
For metric evaluation details see App. D and App. E. Best scores bold, second best underlined.

Model Design- Diversity Novelty vs. FPSD vs. fS fJSD vs. Sec. Struct. %
ability (%)↑ Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C / A / T)↑ PDB↓ AFDB↓ (α / β )

Unconditional generation. Mj
i denotes the Proteı́na model variant, and γ is the noise scale for Proteı́na.

FrameDiff 65.4 0.39 (126) 0.40 0.73 0.75 194.2 258.1 2.46 / 5.78 / 23.35 1.04 1.42 64.9 / 11.2
FoldFlow (base) 96.6 0.20 (98) 0.45 0.75 0.79 601.5 566.2 1.06 / 1.79 / 9.72 3.18 3.10 87.5 / 0.4
FoldFlow (stoc.) 97.0 0.25 (121) 0.44 0.74 0.78 543.6 520.4 1.21 / 2.09 / 11.59 3.69 2.71 86.1 / 1.2
FoldFlow (OT) 97.2 0.37 (178) 0.41 0.71 0.75 431.4 414.1 1.35 / 3.10 / 13.62 2.90 2.32 82.7 / 2.0
FrameFlow 88.6 0.53 (236) 0.36 0.69 0.73 129.9 159.9 2.52 / 5.88 / 27.00 0.68 0.91 55.7 / 18.4
ESM3 22.0 0.58 (64) 0.42 0.85 0.87 933.9 855.4 3.19 / 6.71 / 17.73 1.53 0.98 64.5 / 8.5
Chroma 74.8 0.51 (190) 0.38 0.69 0.74 189.0 184.1 2.34 / 4.95 / 18.15 1.00 1.08 69.0 / 12.5
RFDiffusion 94.4 0.46 (217) 0.42 0.71 0.77 253.7 252.4 2.25 / 5.06 / 19.83 1.21 1.13 64.3 / 17.2
Proteus 94.2 0.22 (103) 0.45 0.74 0.76 225.7 226.2 2.26 / 5.46 / 16.22 1.41 1.37 73.1 / 9.1
Genie2 95.2 0.59 (281) 0.38 0.63 0.69 350.0 313.8 1.55 / 3.66 / 11.65 2.21 1.70 72.7 / 4.8

MFS, γ=0.35 98.2 0.49 (239) 0.37 0.71 0.77 411.2 392.1 1.93 / 5.16 / 16.79 1.96 1.53 71.6 / 5.8
MFS, γ=0.45 96.4 0.63 (305) 0.36 0.69 0.75 388.0 368.2 2.06 / 5.32 / 19.05 1.65 1.23 68.1 / 6.9
MFS, γ=0.5 91.4 0.71 (323) 0.35 0.69 0.75 380.1 359.8 2.10 / 5.18 / 19.07 1.55 1.13 67.0 / 7.2

Mno-tri
FS , γ=0.45 93.8 0.62 (292) 0.36 0.69 0.76 322.2 306.2 1.80 / 4.72 / 18.59 1.84 1.36 71.3 / 5.5

M21M, γ=0.3 99.0 0.30 (150) 0.39 0.81 0.84 280.7 319.9 2.05 / 5.90 / 19.65 1.66 1.81 62.2 / 9.9
M21M, γ=0.6 84.6 0.59 (294) 0.35 0.72 0.77 280.7 301.8 2.31 / 5.76 / 30.11 0.89 0.95 58.7 / 12.0

MLoRA, γ=0.5 96.6 0.43 (208) 0.38 0.75 0.78 274.1 336.0 2.40 / 6.26 / 26.93 0.79 0.93 54.3 / 13.0

A higher score is desired. The fS is maximized when individual sample’s class predictions pϕ(·|x)
are sharp, while the marginal distribution Ex∼{x}genpϕ(·|x) has high entropy and covers many classes.
Hence, this score encourages diverse generation, while individual samples should be of high quality
to enable confident predictions under the classifier. The fS can also be evaluated for all CAT levels.

Our new metrics are probabilistic and directly score generated proteins at the distribution level, offer-
ing additional insights. They can help model development, but are not meant as optimization targets
to rank models. A protein designer in practice still cares primarily about designable, diverse and novel
proteins. Therefore, we did not indicate bold/underlined scores for these metrics in the evaluation ta-
bles in Sec. 4. The new metrics are evaluated with 5,000 samples in practice. In App. E, we provide de-
tails and extensively validate the new metrics on benchmarks, to establish their validity and sensitivity.

4 EXPERIMENTS

We trained three main Proteı́na models (M), all with the possibility for conditional and unconditional
generation (Sec. 3.2): (i) Model MFS is trained on DFS with a 200M parameter transformer and 15M
parameters in triangle layers. (ii) The more efficient Mno-tri

FS is trained on DFS with a 200M parameter
transformer without any triangle layers nor pair representation updates. (iii) M21M is trained on
D21M with a 400M parameter transformer and 15M parameters in triangle layers. Details in App. K.

4.1 PROTEIN BACKBONE GENERATION BENCHMARK

In Tab. 1, we compare our models’ performance with baselines for protein backbone generation
(see Sec. 2). We select all appropriate baselines for which code was available, as we require to
generate samples to fairly evaluate metrics and follow a consistent evaluation protocol (described
in detail in Apps. D and E). We did not evaluate Genie, as it is outdated since Genie2, and we were
not able to compare to the recent FoldFlow2, as no code is available. We also evaluated ESM3
as a state-of-the-art masked language model that can also produce structures. Baseline evaluation
and experiment details in Apps. K and L. All models and baselines in Tab. 1 are adjusted for high
designability via rotation annealing or reduction of the noise scale during inference. Tab. 1 findings:

Unconditional generation. (i) MFS can be tuned during inference for different designability,
diversity and novelty trade-offs (varying γ). It outperforms all baselines in designability and diversity,
while performing competitively on novelty, only behind Genie2 and FrameFlow for AFDB novelty
(model samples in Fig. 2). (ii) Mno-tri

FS still reaches 93.8% designability and outperforms all baselines
on diversity, despite not using any expensive triangle layers and no pair track updates—in contrast

Table 2: Proteı́na’s and Chroma’s fold class-conditional backbone generation performance.
Model Design- Diversity Novelty vs. FPSD vs. fS fJSD vs. Sec. Struct. %

ability (%)↑ Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C / A / T)↑ PDB↓ AFDB↓ (α / β )

Fold class-conditional generation with Proteı́na model Mcond
FS and CFG with guidance weight ω and noise scale γ = 0.4.

Chroma 57.0 0.65 (186) 0.37 0.68 0.73 157.8 131.0 2.36 / 5.11 / 19.82 0.84 0.77 70.2 / 11.1
Mcond

FS , ω=1.0 91.4 0.57 (262) 0.34 0.77 0.81 121.1 127.6 2.50 / 6.93 / 31.31 0.58 0.52 57.1 / 13.7
Mcond

FS , ω=1.5 89.2 0.57 (252) 0.33 0.77 0.81 106.1 113.5 2.58 / 7.36 / 32.72 0.49 0.47 56.0 / 14.6
Mcond

FS , ω=2.0 83.8 0.54 (225) 0.33 0.78 0.82 103.0 108.3 2.62 / 7.55 / 33.74 0.45 0.43 54.5 / 15.7
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Table 3: Proteı́na’s and GENIE2’s backbone generation performance when evaluated to sample full distribution,
i.e. no noise or temperature reduction. Metric details in Apps. D and E. Best scores bold, second best underlined.

Model Design- Diversity Novelty vs. FPSD vs. fS fJSD vs. Sec. Struct. %
ability (%)↑ Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C / A / T)↑ PDB↓ AFDB↓ (α / β)

Unconditional generation. Mj
i denotes Proteı́na model variant. Sampling for Proteı́na performed using generative ODE (App. F), for GENIE with their approach.

Genie2 19.0 0.81 (77) 0.33 0.66 0.72 104.7 29.94 2.24 / 4.49 / 22.83 0.75 0.16 65.0 / 7.5
MFS 19.6 0.93 (91) 0.32 0.66 0.74 85.39 21.41 2.51 / 5.65 / 27.35 0.59 0.09 48.2 / 13.2
M21M 35.4 0.65 (115) 0.34 0.74 0.79 50.14 44.98 2.51 / 6.46 / 39.65 0.32 0.23 55.7 / 11.8
MLoRA 44.2 0.58 (129) 0.35 0.73 0.75 68.56 138.6 2.61 / 7.19 / 38.64 0.31 0.82 47.2 / 13.4

Fold class-conditional generation with Proteı́na model Mcond
FS and CFG with guidance weight ω. Sampling is performed using generative ODE (App. F).

Mcond
FS , ω=1.0 24.2 0.74 (90) 0.29 0.73 0.79 71.46 19.45 2.64 / 6.75 / 26.64 0.40 0.12 48.7 / 14.7

to all existing models. (iii) M21M achieves state-of-the-art 99.0% designability, while generating
less diverse structures. This is expected, as it is trained on the very large, yet strongly filtered D21M.
Models trained on DFS exhibit higher diversity, because no radius of gyration or secondary structure
filtering was used during data curation. With D21M we were able to prove that one can create high-
quality datasets, much larger than DFS, from fully synthetic structures that can be used for training
generative models producing almost entirely designable structures. Furthermore, our discussed
findings represent an important proof that non-equivariant architectures can achieve state-of-the-art
performance on protein backbone generation. All baselines use fully equivariant networks.

PDB-LoRA MLoRA. We used LoRA (Hu et al., 2022) to fine-tune MFS on a small dataset of only des-
ignable proteins from the PDB (App. B.1). As expected, designability improves, diversity decreases,
FPSD and fJSD with respect to PDB decrease, and FPSD and fJSD with respect to AFDB increase.
This experiment showcases how a model that is trained only on synthetic data can be successfully fine-
tuned on natural proteins, and the metrics validate that the generated samples indeed are closer to the
PDB in distribution. Moreover, the amount of β-sheets doubles, an important aspect, due to the under-
representation of β-sheets in many protein design models. To the best of our knowledge, this is the first
time that such LoRA fine-tuning has been demonstrated for protein structure flow or diffusion models.

Fold-Class conditional generation and new metrics. Next, we evaluate our fold class-conditional
model Mcond

FS as well as Chroma, the only baseline that also supports class-conditional sampling
(see Tab. 2). We feed the labels from the empirical label distribution of DFS to the models. This
enforces diversity across different fold structures, which is reflected in the metrics. Compared to
unconditional generation, our conditional model achieves state-of-the-art TM-Score diversity, while
also reaching the best FPSD, fS and fJSD scores, thereby demonstrating fold structure diversity
(fS) and a better match in distribution to the references (FPSD, fJSD). Moreover, this is achieved
while maintaining very high designability. Further, the effect is enhanced by classifier-free guidance
(ω ≥ 1.0). Fold class-conditioning also significantly improves the β-sheet content of the generated
backbones. Note that, however, the model does not improve novelty. Novelty can be at odds with
learning a better model of the training distribution—the goal of any generative model—as it rewards
samples completely outside the training distribution. That motivates our new metrics, which are
complementary, as clearly shown in the class-conditioning case. Chroma has very poor designability
and is outperformed in TM-score diversity and the number of designable cluster. Moreover, we show
in App. I.1 that, in contrast to Proteı́na, Chroma fails to perform accurate fold class-specific generation
by analyzing whether generated proteins correspond to the correct conditioning fold classes.
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Figure 7: Designability of M21M
ODE samples with autoguidance.

Full distribution modeling. Most models use temperature
and noise scale reduction or rotation schedule annealing during
inference to increase designability at the cost of diversity. In
Tab. 3, we analyze performance when sampling the entire
distribution instead, comparing to Genie2 also sampled at full
temperature. Genie2 produces the least designable samples.
MFS performs overall on-par with or better than Genie2, but
M21M has much higher designability and LoRA fine-tuning also
gives a big boost. Moreover, almost all new distribution metrics
(FPSD, fS, fJSD) are significantly improved over Tab. 1, as we
now sample the entire distribution. This is only fully captured by our new metrics.

Autoguidance. In Fig. 7, we show a case-study of autoguidance (Karras et al. (2024), see App. F) for
protein backbone generation with our M21M model in full distribution mode (ODE), using an early
training checkpoint as “bad” guidance checkpoint. We can significantly boost designability, up to
70% in conditional generation, far surpassing the results in Tab. 3. To the best of our knowledge, this
is the first proof of principle of autoguidance in the context of protein structure generation.
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4.2 LONG CHAIN GENERATION

While our main models are trained on proteins of up to 256 residues, we fine-tune the Mno-tri
FS

model on proteins of up to 768 residues (App. K for details). In Fig. 8, we show our model’s
performance on long protein backbone generation of up to 800 residues (samples in Fig. 4.).
While Genie2 exhibits superior diversity at 300 residues, beyond that Proteı́na significantly out-
performs all baselines by a large margin, achieving state-of-the-art results. At very long lengths,
all baselines collapse and cannot produce diverse designable proteins anymore. In contrast, for
our model most generated backbones are designable even at length 800 and we still generate many
diverse proteins, as measured by the number of designable clusters. To the best of our knowl-
edge, no previous protein backbone generators successfully trained on proteins up to that length.
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Figure 8: Proteı́na long backbone generation performance (also App. K.5).

It is possible for us because
Mno-tri

FS does not use any expen-
sive triangle layers and no pair
track updates, relying only on
our novel efficient transformer,
whose scalability this experi-
ment validates. We envision
that such long protein back-
bone generation unlocks new
large-scale protein design tasks.
Note that long length genera-
tion can be combined with our novel fold class conditioning, too, offering additional control (Fig. 4).

4.3 FOLD CLASS-SPECIFIC GUIDANCE AND INCREASED β-SHEETS

A problem that has plagued protein structure generators for a long time is that they typically produce
much more α-helices than β-sheets (Tabs. 1 and 3). Our fold class conditioning offers a new tool to
address this without the need for fine-tuning (Huguet et al., 2024). In Tab. 4, we guide the Mcond

FS
model with respect to the main high-level C level classes that determine secondary structure content
(details App. K). When guiding into the “mixed α/β” and especially “mainly β” classes, β-sheets
increase dramatically in contrast to unconditional or “mainly α” generation and also compared to all
baselines in Tab. 1. Importantly, the samples remain designable. As we restrict generation to specific
classes, diversity slightly decreases as expected, but we still generate diverse samples.

Table 4: Guiding Proteı́na into the C-level classes.
Class Design- Diversity Novelty vs. Sec. Struct. %

ability % ↑ Foldseek↑ TM-Sc.↓ PDB↓ AFDB↓ α β coil

Unconditional 96.4 0.63 (305) 0.36 0.69 0.75 68.1 6.9 25.0
“Mainly α” 96.6 0.37 (179) 0.42 0.77 0.82 82.5 0.6 16.9
“Mainly β” 90.0 0.48 (215) 0.37 0.75 0.82 14.9 33.3 51.8
“Mixed α/β” 97.8 0.42 (207) 0.37 0.73 0.78 44.1 20.5 35.4

Aside from C-level guidance to achieve
controlled secondary structure diversity,
we can also guide with respect to inter-
esting or relevant A- and T-level classes.
In Fig. 6, we show examples of guidance
into different fold classes from the CAT
hierarchy, demonstrating that Proteı́na offers unprecedented control over protein backbone generation.
We would also like to point to App. I, where we extensively validate that our novel fold class condi-
tioning correctly works by re-classifying generated conditional samples with our fold class predictor.
Yet more experiments and ablations in Apps. H and J and further Proteı́na samples shown in App. A.

5 CONCLUSIONS

We have presented Proteı́na, a foundation model for protein backbone generation. Proteı́na features
novel fold class conditioning, offering unprecedented control over the synthesized protein structures.
In comprehensive benchmarks, Proteı́na achieves state-of-the-art performance. Our driving neural
network component is a scalable non-equivariant transformer, which allows us to scale Proteı́na
to synthesize designable and diverse backbones that are up to 800 residues long. We also curate
a 21M-sized high-quality dataset from the AFDB and, scaling Proteı́na to over 400M parameters,
we show that highly designable protein generation is achievable even when training on synthetic
data at such unprecedented scale. For the first time, we demonstrate not only classifier-free but
also autoguidance as well as LoRA-based fine-tuning in protein structure flow models. Finally, we
introduce new distributional metrics that offer novel insights into the behaviors of protein structure
generators. We hope that Proteı́na unlocks new large-scale protein design tasks while offering
increased control. One limitation of our model is that it only generates backbones. It would be
exciting to further scale Proteı́na and enable it to also synthesize sequences in a co-design framework.
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REPRODUCIBILITY STATEMENT

We ensure that our data processing, network architecture design, inference-time sampling, sample
evaluations, and baseline comparisons are reproducible. Our Appendix offers all necessary details
and provides comprehensive explanations with respect to all aspects of this work.

In addition to Sec. 3.1, in App. B we describe in detail how our DFS and D21M datasets are created,
processed, filtered and clustered, which includes the hierarchical CAT fold class labels that we
use. Dataset statistics are given in Fig. 3, which can serve as reference. Additional tools that we
use during data processing and evaluation, such as MMseqs2 (Steinegger & Söding, 2017) and
Foldseek (van Kempen et al., 2024; Barrio-Hernandez et al., 2023), are publicly available and
we cite them accordingly. Hence, our data processing pipeline is fully reproducible. Next, our
new transformer architecture is explained in detail in Sec. 3.3 and App. C, with detailed module
visualizations in Figs. 5 and 10 and network hyperparameters in App. K. Inference time sampling
is described in Sec. 3.4 with additional algorithmic details in App. F. The corresponding sampling
hyperparameters are provided in App. K. Furthermore, how we evaluate the traditional protein
structure generation metrics is explained in detail in App. D and App. D.1, while our newly proposed
metrics (Sec. 3.5) are validated and explained in-depth in App. E. Moreover, to ensure our extensive
baseline comparisons are also reproducible, the corresponding details are described in App. L.

ETHICS STATEMENT

Protein design has been a grand challenge of molecular biology with many promising applications
benefiting humanity. For instance, novel protein-based therapeutics, vaccines and antibodies created
by generative models hold the potential to unlock new therapies against disease. Moreover, carefully
engineered enzymes may find broad industrial applications and serve, for example, as biocatalysts
for green chemistry and in manufacturing. Novel protein structures may also yield new biomaterials
with applications in materials science. Beyond that, deep generative models encoding a general
understanding of protein structures may improve our understanding of protein biology itself. However,
it is important to be also aware of potentially harmful applications of generative models for de novo
protein design, for instance related to biosecurity. Therefore, protein generative models generally
need to be applied with an abundance of caution.
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A ADDITIONAL PROTEÍNA SAMPLES

In Fig. 9, we show additional protein backbones generated by Proteı́na, covering the entire chain
length spectrum of our model.

B DATA PROCESSING

B.1 PDB PROCESSING, FILTERING AND CLUSTERING

For PDB datasets, we use metadata from the PDB directly to filter for single chains with lengths
50-256, resolution below 5Å and structures that do not contain non-standard residues. We also include
chains from oligomeric proteins. We include structure-based filters, namely a max. coil proportion of
0.5 and a max. radius of gyration of 3.0nm. Together, this leads to 114,076 protein chains.

For LoRA-based fine-tuning, we prepare a subset of the dataset above with only designable structures.
For this, we feed all 114,076 chains from the first dataset through the designability pipeline (Protein-
MPNN, ESMFold), only keeping chains that have a scRMSD below 2Å. With this, we reduce the
dataset size to 90423 proteins, indicating that 79.26% of the samples from the original PDB dataset
described above were designable.

B.2 ALPHAFOLD DATABASE PROCESSING, FILTERING AND CLUSTERING

Processing the full AFDB-Uniprot dataset takes more than 20TB in disk space and includes around
214M individual file objects, both of which make it hard to work with this data. To remedy that, we
leverage FoldComp (Kim et al., 2023) as a tool to enable efficient storage and fast access. FoldComp
leverages NeRF (Natural Extension Reference Frame) to encode structure information in 13 bytes per
residue and allow a fast compression/decompression scheme with minimal reconstruction loss.

Combined with FoldComp we use the mmseqs2 database format (Steinegger & Söding, 2017) to filter
the AFDB-UniProt database into custom databases based on our filters and allow fast random-access
and on-the-fly decompression at training time. These filters include sequence length, pLDDT values
(mean and variance over the sequence), secondary structure content and radius of gyration.

In addition, we want to avoid random sampling of these databases since, after filtering, these datasets
tend to be biased towards certain fold families. We therefore either utilise pre-computed clustering
of the AFDB such as the AFDB-Foldseek clusters (Barrio-Hernandez et al., 2023), or cluster the
databases via mmseqs2 at 30% or 50% sequence similarity. We then use the mapping from cluster
representative to cluster members to define a PyTorch Sampler that iterates over all clusters during
one epoche, picking random representatives for each cluster.

Via this data processing pipeline, we prepare the different datasets that are described in the main
section of the paper:

1. High-quality filtered AFDB subset, size ≈21M, D21M: We filtered all ≈214M AFDB structures
for a max. length of 256 residues, min. average pLDDT of 85, max. pLDDT standard deviation
of 15, max. coil percentage of 50%, and max. radius of gyration of 3nm. After additional
random subsampling, this led to 20,874,485 structures. We further clustered the data with
MMseqs2 (Steinegger & Söding, 2017) using a 50% sequence similarity threshold. During training,
we sample clusters uniformly and draw random structures within.

2. Foldseek AFDB clusters, only representatives, size ≈0.6M, DFS: This dataset corresponds
to the exact data that was also used by Genie2, based on sequential filtering and clustering of the
AFDB with the sequence-based MMseqs2 and the structure-based Foldseek (van Kempen et al., 2024;
Barrio-Hernandez et al., 2023). This data uses cluster representatives only, i.e. only one structure per
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Figure 9: Proteı́na Samples. The numbers below the proteins denote the generated proteins’ number of
residues. All shown proteins are designable.

cluster. Like Genie2, we use a length cutoff at 256 residues, leading to 588,571 structures in total.
We also use a minimum length cutoff of 32 residues, which filters out less than 500 samples.

During long-length fine-tuning, we extend DFS by progressively increasing the maximum length
considered, up to a maximum of 768 structures.
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B.3 CATH LABEL ANNOTATIONS FOR PDB AND AFDB

In order to make our model more controllable via methods like Classifier-Free Guidance (CFG),
we leverage hierarchical CATH fold class labels (Dawson et al., 2016) for both experimental and
predicted structures. These labels come in multiple different hierarchies:

Class (C): describes the overall secondary structure content of the protein domain, similar to SCOPe
class (Lo Conte et al., 2000).

Architecture (A): describes how secondary structure elements are arranged in space (for example
sandwiches, rolls and barrels).

Topology (T): describes how secondary structure elements are arranged and connected to each other.

Homologous superfamily (H): describes how likely these domains are evolutionarily related, often
supported by sequence information.

Since we are mostly interested in structural features for guidance, we focus on the CAT levels of the
hierarchy. In addition, we focus mostly on the three major C classes (“mostly alpha”, “mostly beta”
and “alpha/beta”) and ignore the smaller special classes (“few secondary structure”, “special”).

PDB CATH labels: To obtain CATH labels for the individual PDB chains that we use as data points,
we leverage the SIFTS resource (Structure Integration with Function, Taxonomy and Sequences
resource) (Velankar et al., 2012), which is regularly updated and provides residue-level mappings
between UniProt, PDB and other data resources such as CATH (Dana et al., 2019). For each of
our samples, we map from the PDB ID and chain ID to the corresponding UniProt ID via the
pdb_chain_uniprot.tsv.gz mapping, and from there to the corresponding CATH IDs and
CATH codes via the pdb_chain_cath_uniprot.tsv.gz mapping. Some chains have more
than one domain and then also more than one CATH code. For these, we use all CATH codes
available. We then truncate the labels to remove the H level and end up with CAT labels only.

AFDB CATH labels: To obtain CATH labels for the individual AFDB chains that we use as data
points, we leverage the TED resource (The Encyclopedia of Domains) (Lau et al., 2024b) to map
from the AFDB UniProt identifier to the corresponding CAT/CATH codes. Again we use all available
CATH codes and remove the H-level information is if present.

C ADDITIONAL NEURAL NETWORK ARCHITECTURE DETAILS

Visualizations of the additional Pair Update, Adaptive LayerNorm (LN), and Adaptive Scale modules
are shown in Fig. 10.

When creating the pair representation (see Fig. 5 (c)), the pair and sequence distances created from
the inputs xt, x̂(xt) and the sequence indices are discretized and encoded into one-hot encodings.
Specifically, for the pair distances from xt we use 64 bins of equal size between 1Å and 30Å
with the first bin being <1Å and the last one being >30Å, for the pair distances from x̂(xt) we
use 128 bins of equal size between 1Å and 30Å with the first bin being <1Å and the last one
being >30Å, and for the sequence separation distances we use 127 bins for sequence separations
[<−63,−63,−62,−61, ..., 61, 62, 63, >63]. As shown in Fig. 5 this pair representation can be
(optionally) updated throughout the network using pair updates layers. These feed the sequence
representation through linear layers to update the pair representation, which is additionally updated
using triangular multiplicative updates (Jumper et al., 2021), as shown in Fig. 10. While powerful,
these triangular layers are computationally expensive, so we limit their use in our three main models.
In fact, as shown in Tab. 7, our Mno-tri

FS model completely avoids the use of these layers (leading to a
much more scalable model), while MFS and M21M use 5 and 4 triangular multiplicative update layers,
respectively. In this work we did not explore the use of triangular attention layers (Jumper et al.,
2021), as these are more memory and computationally expensive, limiting the models’ scalability.

We generally use 10 register tokens in all models when constructing the sequence representation.
Sequence conditioning and pair representation are zero-padded accordingly.

The MLP used when creating the sequence conditioning (see Fig. 5 (b)) corresponds to a Linear–
SwiGLU–Linear–SwiGLU–Linear architecture (Shazeer, 2020).
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Figure 10: Additional modules of Proteı́na’s transformer architecture. (a) Pair Update. (b) Our adaptive
LayerNorm (c) Adaptive Scale.

Specific architecture hyperparameters like the number of layers, attention heads and embedding sizes
used during training of different Proteı́na models can be found in App. K.

D DESIGNABILITY, DIVERSITY, NOVELTY AND SECONDARY STRUCTURE
METRICS

We evaluate models using a set of metrics previously established in the literature, including des-
ignability, diversity, novelty, and secondary structure content. These metrics are computed across 500
samples, which include 100 proteins at each of the following lengths: 50, 100, 150, 200, and 250.

Designability. A protein backbone is considered designable if there exists an amino acid sequence
which folds into that structure. Our evaluation of designability follows the methodology outlined
by Yim et al. (2023b). For each backbone generated by a model, we produce eight sequences using
ProteinMPNN (Dauparas et al., 2022) with a sampling temperature of 0.1. We then predict a structure
for each sequence using ESMFold (Lin et al., 2023) and calculate the root mean square deviation
(RMSD) between each predicted structure and the model’s original structure. A sample is classified as
designable if its lowest RMSD—referred to as the self-consistency RMSD (scRMSD)—is under 2Å.
The overall designability of a model is computed as the fraction of samples that meet this criterion.

Diversity (TM-score). We evaluate diversity in two different ways. The first measure of diversity
we report follows the methodology from Bose et al. (2024). For each protein length specified above,
we compute the average pairwise TM-score among designable samples, and then aggregate these
averages across lengths. Since TM-scores range from zero to one, where higher scores indicate
greater similarity, lower scores are preferable for this metric.

Diversity (Cluster). The second measure of diversity follows the methodology from Yim et al.
(2023b). The designable backbones are clustered based on a TM-score threshold of 0.5. Diversity is
then computed by dividing the total number of clusters by the number of designable samples, that
is, (number of designable clusters) / (number of designable samples). We perform clustering using
Foldseek (van Kempen et al., 2024). Detailed commands for this process are provided in App. D.1.
Since more diverse samples implies more clusters, higher scores are preferable for this metric.

Novelty. This metric assesses a model’s ability to generate structures that are distinct from those in
a predefined reference set. For every designable structure we compute its TM-score against each
structure in the reference set, tracking the maximum score obtained. We then report the average of
these maximum TM-scores (lower is better). In this work we consider two reference sets: the PDB,
and DFS (Sec. 3.1), the AlphaFold DB subset used by Lin et al. (2024) to train Genie2. These metrics
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measure how well can a model produce samples that lack close analogs within the reference sets. We
use Foldseek (van Kempen et al., 2024) to evaluate the TM-score of a backbone against these two
databases. Detailed commands for this process are provided in App. D.1.

Secondary structure content. We use Biotite’s (Kunzmann & Hamacher, 2018) implementation of
the P-SEA algorithm (Labesse et al., 1997) to analyze the secondary structure content of designable
backbones. Specifically, we calculate the proportions of alpha helices (α), beta sheets (β), and coils
(c) in each sample. The results are reported as normalized values: α/(α+ β + c) for alpha helices,
β/(α+ β + c) for beta sheets, and c/(α+ β + c) for coils. In the main paper, we sometimes only
report the α and β percentages in the interest of brevity.

D.1 FOLDSEEK COMMANDS FOR CLUSTER DIVERSITY AND NOVELTY CALCULATIONS

Diversity (Cluster). As mentioned above we use Foldseek to cluster sets of desigbale backbones.
The command used is

foldseek easy-cluster <path_samples> <path_tmp>/res <path_tmp>
--alignment-type 1 --cov-mode 0 --min-seq-id 0
--tmscore-threshold 0.5

where <path_samples> is a directory with all designable samples stored in PDB format and
<path_tmp> is a directory for temporary files during computation.

Novelty. We use Foldseek to evalaute the TM-score of a protein backbone against a reference set. We
store the reference sets as foldseek databases. For the PDB we use Foldseek’s precomputed database,
and create our own for DFS. We use the following Foldseek command to compute max TM-scores

foldseek easy-search <path_sample> <database_path> <out_file>
<tmp_path> --alignment-type 1 --exhaustive-search
--tmscore-threshold 0.0 --max-seqs 10000000000
--format-output query,target,alntmscore,lddt

where <path_sample> is the path of the generated structure as a PDB file, <database_path>
is the path to the Foldseek database, and <out_file> and <tmp_path> specify the output file
and directory for temporary files.

E FPSD, FS AND FJSD

E.1 MOTIVATION

Protein structure generators are typically evaluated based on designability, diversity and novelty.
Designability measures whether the generated structures can be realistically designed, though with
biases inherent in folding and inverse-folding models. While generating diverse and novel proteins
is important, these metrics may overlook the quality of the samples - specifically, how closely they
resemble realistic proteins. Besides, none of these metrics directly evaluates models at the distribution
level, failing to measure how well a model aligns with a reference / target distribution.

To address these limitations, we propose three new metrics that score the learnt distribution rather
than individual samples. First, we introduce the Fréchet Protein Structure Distance (FPSD), which
compares sets of generated samples to a reference distribution in a non-linear feature space, drawing
inspiration from the Fréchet Inception Distance (FID) used in image generation (Heusel et al., 2017).
Second, we define the Fold Score (fS), similar to the Inception Score (Salimans et al., 2016), which
evaluates both the quality and diversity of generated samples using a trained fold classifier. Finally, we
present the Fold Jensen-Shannon Divergence (fJSD) to quantify the similarity of generated samples
to reference distributions across predicted fold classes. All these metrics are defined in detail in
App. E.2. They all rely on a fold classifier for protein backbones, pϕ(· |x), described in App. E.3.

E.2 METRIC DEFINITION

Fréchet Protein Structure Distance (FPSD). The Fréchet Protein Structure Distance (FPSD)
measures the distance between two distributions over protein backbones, the one defined by a
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generative model and a target reference distribution, leveraging a non-linear feature extractor ϕ(x)
(in practice, last layer of a fold classifier pϕ(·|x), see App. E.3).

Let {x}gen and {x}ref denote two distributions over protein backbones, defined by a generative model
and a reference distribution, respectively. We compute the FPSD between these distributions by mea-
suring the Fréchet Distance between the two Gaussian densities defined as N (µ{ϕ(x)}gen ,Σ{ϕ(x)}gen)
and N (µ{ϕ(x)}ref ,Σ{ϕ(x)}ref). In practice this metric is computed following a two-step process:

1. Compute the mean and covariance over features ϕ(x) for the generative and reference distributions

µ{ϕ(x)}gen = Ex∼{x}gen [ϕ(x)], Σ{ϕ(x)}gen = Ex∼{x}gen [(ϕ(x)− µ{ϕ(x)}gen)(ϕ(x)− µ{ϕ(x)}gen)
⊤]

µ{ϕ(x)}ref = Ex∼{x}ref [ϕ(x)], Σ{ϕ(x)}ref = Ex∼{x}ref [(ϕ(x)− µ{ϕ(x)}ref)(ϕ(x)− µ{ϕ(x)}ref)
⊤],

2. Measure the Fréchet Distance between the two resulting Gaussian distributions

FPSD({x}gen, {x}ref) := ∥µ{ϕ(x)}gen−µ{ϕ(x)}ref∥
2
2+tr

(
Σ{ϕ(x)}gen +Σ{ϕ(x)}ref − 2(Σ{ϕ(x)}genΣ{ϕ(x)}ref)

1
2

)
.

Here, ∥µ{ϕ(x)}gen−µ{ϕ(x)}ref∥2 represents the distance between the mean feature vectors, and the trace
term captures the differences in covariance matrices. The FPSD reflects how closely the generated
structures resemble the reference distribution, with lower values indicating greater similarity.

Protein Fold Score (fS). The Protein Fold Score (fS) measures the quality and diversity of generated
structures by evaluating how well they align with known fold classes.

Let {x}gen represent the distribution of generated structures, and let pϕ(·|x) denote the predicted
probability distribution over fold classes for a structure x. The fS is computed in two steps:

1. Compute the marginal distribution over fold classes pϕ(·) = Ex∼{x}gen [pϕ(·|x)],
2. Calculate the Protein Fold Score

fS({x}gen) = exp
(
Ex∼{x}gen [DKL(pϕ(·|x)∥pϕ(·))]

)
,

where DKL represents the Kullback-Leibler divergence. This score captures the average diver-
gence between the label distribution of each generated sample and the marginal distribution
over labels, reflecting both quality and diversity.

A higher fS indicates that the generated protein structures are not only of high quality but also exhibit
a diverse range of fold classes, capturing the richness of the generated distribution.

Protein Fold Jensen-Shannon Divergence (fJSD). The Protein Fold Jensen-Shannon Divergence
(fJSD) quantifies the similarity between the predicted label distribution of generated protein structures
and that of a reference set, both derived from the same fold classifier.

Let {x}gen and {x}ref represent the distributions of generated and reference structures, respectively,
and let pϕ(·|x) denote the predicted probability distribution over fold classes for a structure x. The
fJSD metric is computed in two steps:

1. Compute the marginal predicted distribution over fold classes for the generative and reference
distributions

pgen(·) = Ex∼{x}gen [pϕ(·|x)] and pref(·) = Ex∼{x}ref [pϕ(·|x)],

2. Calculate the Protein Fold Jensen-Shannon Divergence

fJSD({x}gen, {x}ref) = 10×DJS(pgen(·)∥pref(·)), (6)

where DJS denotes the Jensen-Shannon divergence, defined as

DJS(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M), (7)

with M = 1
2 (P +Q). In our case, P represents the distribution pgen(·) and Q represents the

distribution for the reference set pref(·). Since the Jensen-Shannon divergence is upper bounded
by 1, we multiply it by a factor of 10 for easier reporting of the results.
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Lower values of fJSD indicate that the predicted label distribution of generated proteins closely
aligns with that from the reference set, reflecting higher fidelity to the expected fold classes. As we
empirically find that fJSD values calculated at the C, A, and T-level label distributions yield the same
ranking across different methods, we decide to report the final metric values as the average of the
fJSD scores at the C, A, and T-levels. We note, however, that this metrics can be reported separately
for each of the C, A, and T-levels.

Reference Datasets. To evaluate FPSD and fJSD, we construct two reference datasets, one for the
PDB and another one for the AFDB. For the PDB reference set, we curate a high-quality single-chain
dataset by applying several filters to the PDB: a minimum residue length of 50, a maximum residue
length of 256, a resolution threshold of 5.0 Å, a maximum coil proportion of 0.5, and a maximum
radius of gyration of 3.0 nm. We then cluster the dataset based on a sequence identity of 50% and
select the cluster representatives, resulting in 15,357 samples. For the AFDB reference set, we
directly use the Foldseek AFDB clusters, denoted by DFS in the main text.

These metrics are evaluated independently of existing metrics based on a different set of generated
samples. We randomly sample 125 proteins at each length from 60 to 255 residues, with a step size
of 5. We use all the 5,000 produced samples, without any designability filter, for evaluation.

E.3 FOLD CLASSIFIER TRAINING

A crucial aspect of defining the new metrics is developing an accurate fold classifier pϕ(·|x) which
embeds alpha-carbon-only structures into the latent space ϕ(x). In this subsection we give details
behind the classifier we use, including the dataset it is trained on and its architecture.

E.3.1 DATASET PROCESSING

For training such a classifier, CATH structural labels are utilized for protein domain annotation (Daw-
son et al., 2016) which includes C (class), A (architecture), and T (topology/fold) labels. We exclude
H (homologous superfamily) labels to ensure that our classification is based solely on structures.

We extract chains from the PDB dataset, with structures filtered to include a minimum length of
50 residues, a maximum length of 1000 residues, and a maximum oligomeric state of 10. We also
discard proteins with a resolution worse than 5Å and those lacking CATH labels. This results in
a total of 214,564 structures, categorized into 5 C classes, 43 A classes, and 1,336 T classes. The
dataset is randomly divided into training, validation, and test sets at a ratio of 8:1:1, ensuring that
at least one protein from each class is included in the test set whenever possible. While the paper
primarily focuses on the three main C-level classes, as they are the most interesting and relevant to
our study, we still train the classifier on all C-level classes. This ensures the metrics are universally
applicable and can be used for future analyses involving any of the C-level classes.

Given that the CATH database annotates protein domains, some proteins may have multiple domains,
thus multiple CATH labels. For these proteins, we randomly sample one domain label as the ground
truth during training and encourage the model to predict equal probabilities for the labels of all
domains. During testing, predicting any of the correct labels is considered a good prediction.

E.3.2 GEARNET-BASED FOLD CLASSIFIER

To build the fold classifier pϕ(·|x), we utilize an SE(3)-invariant network, GearNet (Zhang et al.,
2023), as our feature extractor ϕ(x). GearNet is a geometric relational graph convolutional network
specifically designed for protein structure modeling, making it ideal for tasks such as protein classi-
fication and fold prediction. While the original GearNet architecture processes both structural and
sequential data, we modify it to focus solely on predicting fold classes based on structure. The model
components are detailed as follows:

1. Input and Embedding Layer: Each Cα atom is treated as a node, and the node features are
constructed by concatenating a 256-dimensional atom type embedding with a 256-dimensional
sinusoidal positional embedding based on sequence indices.

2. Graph Construction: A multi-relation graph is built using both sequential and spatial information.
Sequential relations are established by connecting neighboring atoms within a relative sequence
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Setting Distribution Expected Results Results

Protein Fold Score (fS)

Balanced dataset Diverse and balanced label distribution High fS Fig. 11 (blue)
Homogeneous dataset Homogeneous label distribution Low fS Fig. 11 (red)
Imbalanced dataset Diverse but imbalanced label distribution Medium fS Fig. 11 (green)
Imbalanced noisy dataset Noisy and imbalanced distribution Decreasing fS Fig. 11 (green)
Unseen noisy dataset Noisy distribution with unseen samples Decreasing fS Fig. 11 (orange)

Fréchet Protein Structure Distance (FPSD) and Protein Fold Jensen-Shannon Divergence (fJSD)

Disjoint split dataset Different structure distribution High FPSD and fJSD Fig. 12 (blue)
Random split dataset Similar structure distribution Low FPSD and fJSD Fig. 12 (green)
Random noisy dataset Noisy distribution with seen samples Increasing FPSD and fJSD Fig. 12 (green)
Unseen noisy dataset Noisy distribution with unseen samples Increasing FPSD and fJSD Fig. 12 (orange)

Table 5: Summary of metric validation experiments.
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Figure 11: Fold Scores (C/A/T) metrics on balanced, homogeneous, imbalanced and unseen subsets
of the PDB dataset, with varying levels of Gaussian noise (0.0 to 0.4Å) applied on the latter two.

distance between -2 an 2, with each relative distance treated as a distinct relation type. Spatial
relations connect atoms within a Euclidean distance of 10Å. In total, the graph uses five sequential
relation types and one spatial relation type, allowing the model to capture diverse interaction
patterns between residues based on both sequence proximity and spatial context.

3. Edge and Message Passing: Edge features are generated using a radial basis function (RBF) to
capture spatial distance-based relationships, along with relative sequential positional encoding
between atoms. Both features are 128-dimensional. Additionally, we incorporate clockwise
angular features to break reflection symmetries.

4. Relational Graph Convolution Layers: The model includes 8 layers of Geometric Relational
Graph Convolution, each aggregating information from neighboring atoms using the node and
edge features. These layers employ MLPs to process inputs and update node representations,
ensuring that the model captures different types of relational patterns between atoms.

5. Output and Prediction: After the convolutional layers, the atom features are aggregated using
sum pooling to create a global protein representation. This global feature is further refined through
an MLP layer. For classification, the model includes separate output heads for predicting three
levels of CATH labels: T, A, and C, with output sizes of 1336, 43, and 5 classes, respectively.

Throughout the model, a dropout rate of 0.2 is applied to prevent overfitting, and leaky ReLU
activation functions with a slope of 0.1 are used. The model is trained using the Adam optimizer with
a learning rate of 0.0001, distributed across 8 GPUs with a batch size of 8 and a gradient accumulation
step of 2. Training is run over 70,000 parameter update steps. On the test set, the model achieves a
Micro Accuracy of 97.8% at the T-level, 98.1% at the A-level, and 99.2% at the C-level. Given the
highly imbalanced nature of the CATH classes, we also report Macro Accuracy, achieving 94.0%
at the T-level, 97.5% at the A-level, and 95.6% at the C-level. These results demonstrate that the
classifier is highly effective in accurately predicting the fold labels of protein structures.

E.4 METRIC VALIDATION

To validate the effectiveness of our metrics, we create two sets of experiments to observe the behavior
of fS and FPSD, fJSD under different settings. We summarize these experiments, together with their
expected results, in Tab. 5.
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Figure 12: FPSD and fJSD metrics on the fold-disjoint and random splits of the PDB training set,
and random splits of the unseen PDB set, with Gaussian noise (0.0 to 0.4Å) applied to the latter two.

Protein Fold Score (fS) Validation. Using the PDB training dataset, we create three subsets to assess
the behavior of the Protein Fold Score. All experiments are repeated with 20 different random seeds.

1. Fold Class-Balanced Subset: We randomly sample 300 T-level classes and then randomly sample
approximately 16 proteins per class (with replacement) to create a total of 5,000 samples. This
subset tests whether fS rewards a diverse, realistic, and class-balanced structure distribution.

2. Homogeneous Subset: We randomly sample 4 T-level classes and 1,250 proteins per class. This
subset is designed to test whether fS penalizes distributions lacking fold diversity.

3. Fold Class-Imbalanced Subset: We randomly sample 5,000 proteins from the PDB dataset. Given
PDB’s inherent class imbalance (Fig. 3), this random sampling leads to a diverse but imbalanced
distribution, so we expect this to lead to “intermediate” values for the metric.

Results for these three subsets are shown in Fig. 11. The results show exactly the expeted behavior
for the fS metric, with the Fold Class-Balanced Subset obtaining the highest score, the Homogeneous
Subset the lowest, and the Fold Class-Imbalanced Subset standing in between these two extremes.

We additionally assess whether our metric is robust to noisy structures and structures unseen in the
classifier’s training dataset. For the former, we continue using the previously defined Fold Class-
Imbalanced Subset and gradually add Gaussian noise to all structures, with the noise scale increasing
from 0.0 to 0.4Å. We expect the fS score to decrease as the scale of the noise increases. For unseen
structures, we randomly sample 5,000 structures from the full PDB dataset, without applying the
CATH label filter, and apply Gaussian noise in the same manner.

We evaluate the Fold Score C/A/T on these noisy datasets, with the results shown in Fig. 11 (green and
orange curves). As expected, as the noise scale increases, the quality of protein structures declines,
leading to reduced classifier confidence and a corresponding gradual decrease in the Fold Score.

Overall, we find the Protein Fold Score is able to effectively measures the realism, diversity, and
balance of distribution over protein strictures, and remains robust to unseen and noisy samples.

Fréchet Protein Structure Distance (FPSD) and Protein Fold Jensen-Shannon Divergence (fJSD)
Validation. Similar to the fS validation, we curate two dataset splits based on the PDB training set,
and measure FPSD and fJSD for the two splits.

1. Fold Class-Disjoint Split: We randomly draw 5,000 samples for each split, ensuring no overlap at
A-level classes between the two splits. This setup tests whether FPSD and fJSD can distinguish
different distributions. We exclude T-level classes here, as they are too fine-grained to produce
sufficiently distinct distributions. We expect this split to yeild large values for both metrics.

2. Random Split: We randomly sample 5,000 proteins for each split from the PDB dataset. Since no
constraints are applied during the split, both datasets are expected to follow the same distribution,
and thus we expect low values for both metrics for this split.

We show results in Fig. 12, where we can observe that the metrics behave as expected for both
splits. Specifically, the Fold Class-Disjoint Split yields a FPSD of 452.44 and fJSD of 4.21, while the
Random Split yields significantly lower values for both metrics; ≈ 10 for FPSD and ≈ 0 for fJSD.
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Additionally, we apply the same process used in the fS validation to create noisy and unseen dataset
splits for testing the FPSD and fJSD metrics, computing them between the noisy and original datasets.
The results in Fig. 12 (green and orange) indicate that as the noise scale increases, protein structure
quality deteriorates, leading to increasignly higher FPSD and fJSD values.

In summary, FPSD and fJSD effectively recognize similarities and differences between structure
distributions and remain robust to unseen and noisy samples.

F SAMPLING, AUTOGUIDANCE AND HIERARCHICAL FOLD CLASS GUIDANCE

Here, we provide more details about Proteı́na’s inference-time sampling as well as our new hierarchi-
cal fold class guidance and autoguidance.

F.1 ODE AND SDE SAMPLING

Generally, flow-matching (Lipman et al., 2023; Albergo & Vanden-Eijnden, 2023; Liu et al., 2023;
Albergo et al., 2023) models like Proteı́na rely on a vector field ut(xt) that describes the probability
flow between noise and data (see Sec. 2). The default way to generate samples is to solve the flow’s
ODE

dxt = ut(xt)dt (8)

from t = 0 to t = 1, initialized from random noise. In our case, the noise corresponds to a standard
Gaussian prior with unit variance over the 3D Cα coordinates of the protein backbone. As discussed
in Sec. 2, the flow’s intermediate states xt are in practice constructed through an interpolant between
data x1 ∼ p(x1) and the Gaussian random noise distribution ϵ ∼ N (0, I), which takes the general
form

xt = αtx1 + σtϵ (9)

for the time-dependent scaling and standard deviation coefficients αt and σt, respectively. In our work,
we rely on the rectified flow (Liu et al., 2023) (also known as conditional optimal transport (Lipman
et al., 2023)) formulation, corresponding to a linear interpolant

xt = tx1 + (1− t)ϵ (10)

between noise ϵ and data samples x1. This leads to the corresponding marginal vector field at
intermediate xt

ut(xt) =
∂

∂t
(E[tx1|xt] + E[(1− t)ϵ|xt]) = E[x1|xt]− E[ϵ|xt]. (11)

Further, we have that (see, e.g., proof in Ma et al. (2024))

st(xt) := ∇xt
log pt(xt) = − 1

1− t
E[ϵ|xt]. (12)

This allows one to derive a relation between ut(xt) and st(xt):

ut(xt) = E[x1|xt]− E[ϵ|xt]

=
xt − (1− t)E[ϵ|xt]

t
− E[ϵ|xt]

=
xt

t
− 1

t
E[ϵ|xt]

=
xt

t
+

1− t

t
st(xt),

(13)

or

st(xt) =
tut(xt)− xt

1− t
. (14)

Furthermore, given the score of the probability path pt(xt), we can now obtain the Langevin dynamics
SDE

dxt = st(xt)dt+
√
2 dWt, (15)
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with the Wiener process Wt. This SDE, when simulated, in principle samples from pt(xt) at any
fixed t. We can combine this with the flow’s ODE (Eq. (8)) to obtain the SDE

dxt = ut(xt)dt+ g(t)st(xt)dt+
√
2g(t) dWt, (16)

which, for any g(t) ≥ 0, now simulates the stochastic flow along the marginal probability path pt(xt)
from t = 0 to t = 1 with the stochastic paths due to the Langevin dynamics component.

In practice, we model ut(xt) by the learnt neural network vθ
t (xt, c̃) with parameters θ, which we can

use to obtain the corresponding learnt score sθt (xt, c̃), using Eq. (14) above. As in the main paper, c̃
represents all conditioning information we may use in practice. Hence,

dxt = vθ
t (xt, c̃)dt+ g(t)sθt (xt, c̃)dt+

√
2g(t) dWt, (17)

Importantly, in practice the velocity and score are neural network-based approximations with respect
to their ground truths, and the SDE is numerically discretized. Therefore, different choices of g(t),
which scales the stochastic Langevin component, can lead to different results in practice. For g(t) = 0,
we recover the default flow ODE.

Moreover, we introduce a noise scale γ, as is common in generative models of protein structures, and
in practice use the generative SDE

dxt = vθ
t (xt, c̃)dt+ g(t)sθt (xt, c̃)dt+

√
2g(t)γ dWt. (18)

For γ = 1, we simulate the “proper” marginal probability path, while lowering the noise scale often
reduces the diversity of the generated results, oversampling the model’s main modes. Although
not principled, this can be empirically beneficial in protein structure generation, as the tails of the
distribution can consist of undesired samples that, for instance, may not be designable. In the main
paper, we typically either use the default ODE for generation (corresponding to g(t) = 0) or the SDE
with a reduced noise scale γ < 1 and some stochasticity schedule g(t) > 0. Moreover, in practice it
can be sensible to only simulate with g(t) > 0 up to some cutoff time t < 1, due to the diverging
denominator in Eq. (14), required to calculate the score from the vector field when using g(t) > 0.

F.2 CLASSIFIER-FREE GUIDANCE AND AUTOGUIDANCE

As mentioned in the main text, we are leveraging both classifier-free guidance (CFG) (Ho & Salimans,
2021) and autoguidance (Karras et al., 2024) in selected experiments in this paper. To the best of
our knowledge, neither of the two methods have been explored in flow- or diffusion-based protein
structure generation. In both approaches, different scores are combined to obtain a “higher quality”
score that leads to improved samples.

Let us assume we have access to the densities pAt (xt) and pBt (xt). Now let us define the “guided”
score (Karras et al., 2024)

sguided
t (xt) := ∇xt

log pωt (xt) := ∇xt
log

(
pBt (xt)

[
pAt (xt)

pBt (xt)

]ω)
, (19)

where ω ≥ 0 denotes the guidance weight. In practice, pAt (xt) corresponds to the density we are
primarily interested in and for ω = 1 we recover sguided

t (xt) = ∇xt log p
A
t (xt). But if we now choose

a density pBt (xt) that is more spread out than pAt (xt), then, for ω > 1, the term[
pAt (xt)

pBt (xt)

]ω
(20)

is typically > 1 for xt ∼ pAt (xt) and the overall score is essentially scaled according to the ratio
between pAt (xt) and pBt (xt). This can be leveraged to construct a guided sguided

t (xt) that emphasizes
the difference between pAt (xt) and pBt (xt), as we now explain (see Karras et al. (2024) for details).

In classifier-free guidance (Ho & Salimans, 2021), pAt (xt) corresponds to a conditional density and
pBt (xt) to an unconditional one and ω > 1 emphasizes the conditioning information, leading to
samples that are more characteristic for the given class, and often also improving quality. Autoguid-
ance (Karras et al., 2024) disentangles the effects of improved class adherence and improved quality
and instead uses for pBt (xt) a “bad” version of pAt (xt) that is trained for fewer steps or uses a smaller,
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less expressive network. Due to the maximum likelihood-like objectives of diffusion and flow models
their learnt densities generally tend to be mode covering and can be somewhat broader than the ideal
target density. Hence, even the “good” pAt (xt) will usually not be a “perfect” model that models the
distribution of interest perfectly and the “bad” pBt (xt) will make the same errors like pAt (xt), but
stronger and the density will be even broader. Guidance with ω > 1 then emphasizes the quality
difference between pAt (xt) and pBt (xt) and can result in sharper outputs, essentially extrapolating
beyond pAt (xt) towards the true desired distribution of interest.

CFG also often improves quality because a similar effect happens there, just entangled with the
conditioning: The unconditional density used in CFG also represents a broader density than the
conditional one, which means the guided score does not only emphasize the class conditioning, but
also pushes samples towards modes, which often correspond to less diverse, but high-quality samples.
Note that autoguidance is general and can be used both for conditional and unconditional generation,
whereas classifier-free guidance contrasts a conditional and an unconditional model and hence is only
applicable when such a conditional model is available.

Let us now derive the exact guidance equation used in our work. Decomposing the logarithm term in
Eq. (19) yields

sguided
t (xt) := ω∇xt log p

A
t (xt) + (1− ω)∇xt log p

B
t (xt), (21)

or short
sguided
t (xt) := ω sAt (xt) + (1− ω)sBt (xt). (22)

Inserting Eq. (14) that relates the score and the vector field, we find that the vector fields obey the
analogous equation

uguided
t (xt) := ω uA

t (xt) + (1− ω)uB
t (xt). (23)

In practice, we use learnt conditional models. And in that case, we can now introduce the interpolation
parameter α ∈ [0, 1] that interpolates between classifier-free guidance and autoguidance in a unified
formulation (analogous to Karras et al. (2024) in their Appendix B.2). We get

vθ,guided
t (xt, c̃) = ω vθ

t (xt, c̃) + (1− ω)
[
(1− α)vθ

t (xt, ∅) + αvθ,bad
t (xt, c̃)

]
, (24)

where vθ
t (xt, c̃) is the main model with conditioning c̃, vθ

t (xt, ∅) corresponds to the unconditional
version, and vθ,bad

t (xt, c̃) denotes the “bad” model required for autoguidance. For α = 0, we get
regular classifier-free guidance, while for α = 1, we get regular autoguidance. In that case, setting
c̃ = ∅, i.e. autoguidance for unconditional modeling, is still applicable. In this paper, we do not use
any intermediate α, but only explore either pure CFG or pure autoguidance, though. An analogous
formula can be written for the scores,

sθ,guided
t (xt, c̃) = ω sθt (xt, c̃) + (1− ω)

[
(1− α)sθt (xt, ∅) + α sθ,bad

t (xt, c̃)
]
, (25)

required in the generative SDE in Eq. (18).

Note that when we apply self-conditioning (Sec. 3.2) during sampling we generally feed the same
clean data prediction

x̂(xt) = xt + (1− t)vθ
t (xt, c̃) (26)

as conditioning to all different models of the guidance equations (Eqs. (24) and (25)). Self-
conditioning is optional, though, since we train with the self-conditioning input in only 50% of
the training iterations. Proteı́na can be used both with and without self-conditioning.

F.3 GUIDANCE WITH HIERARCHICAL FOLD CLASS LABELS

In order to be able to apply classifier-free guidance during inference, one typically learns a model
that can be used both as a conditional and an unconditional one, by randomly dropping out the condi-
tioning labels during training and feeding a corresponding ∅-embedding that indicates unconditional
generation. As discussed in detail in Sec. 3.2, we drop out our hierarchical fold class labels in a
hierarchical manner, thereby enabling guidance with respect to all different levels of the hierarchy.

Here, we summarize the corresponding guidance equations. Note that we do not explicity indicate
the time step t conditioning as well as the self-guidance conditioning, to keep the equations short and
readable.
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T-level guidance. If we guide with respect to the finest fold class T, we use

vθ,guided
t (xt, {Cx, Ax, Tx}CAT) = ω vθ

t (xt, {Cx, Ax, Tx}CAT)

+ (1− ω)
[
(1− α)vθ

t (xt, {∅, ∅, ∅}CAT) + αvθ,bad
t (xt, {Cx, Ax, Tx}CAT)

]
,

(27)

and correspondingly for the score sθ,guided
t (xt, {Cx, Ax, Tx}CAT). As mentioned above, ω is the

guidance strength. For autoguidance, we have α = 1, and for CFG we have α = 0. Note that we also
feed the “coarser” C- and A-level labels that are the parents of the T-level label in the hierarchy.

A-level guidance. If we guide with respect to the fold class A, we use

vθ,guided
t (xt, {Cx, Ax, ∅}CAT) = ω vθ

t (xt, {Cx, Ax, ∅}CAT)

+ (1− ω)
[
(1− α)vθ

t (xt, {∅, ∅, ∅}CAT) + αvθ,bad
t (xt, {Cx, Ax, ∅}CAT)

]
,

(28)

and correspondingly for the score sθ,guided
t (xt, {Cx, Ax, ∅}CAT).

C-level guidance. If we guide with respect to the fold class C, we use

vθ,guided
t (xt, {Cx, ∅, ∅}CAT) = ω vθ

t (xt, {Cx, ∅, ∅}CAT)

+ (1− ω)
[
(1− α)vθ

t (xt, {∅, ∅, ∅}CAT) + αvθ,bad
t (xt, {Cx, ∅, ∅}CAT)

]
,

(29)

and correspondingly for the score sθ,guided
t (xt, {Cx, ∅, ∅}CAT).

No fold class guidance. If we do not guide with respect to a fold class, but we still want to apply
autoguidance in its unconditional setting, we have α = 1 and

vθ,autoguided
t (xt, {∅, ∅, ∅}CAT) = ω vθ

t (xt, {∅, ∅, ∅}CAT) + (1− ω)vθ,bad
t (xt, {∅, ∅, ∅}CAT), (30)

and correspondingly for the score sθ,autoguided
t (xt, {∅, ∅, ∅}CAT).

In practice, for the “bad” models required for autoguidance, we use early training checkpoints of our
main models. We do not train separate, smaller dedicated models just for the purpose of autoguidance,
but this would be an interesting future endeavor.

F.4 STEP SIZE AND STOCHASTICITY SCHEDULES

Sampling Proteı́na involves simulating the SDE

dxt = vθ
t (xt, c̃)dt+ g(t)sθt (xt, c̃)dt+

√
2g(t)γ dWt (31)

from t = 0 to t = 1. This is exactly Eq. (4) in the main text, repeated here for convenience. We
simulate this SDE using the Euler-Maruyama method detailed in Algorithm 1. For all our experiments,
we use N = 400 discretization steps and g(t) = 1/(t + 0.01) for t ∈ [0, 0.99] and g(t) = 0 for
t ∈ (0.99, 1) (we empirically observed that numerically simulating the SDE may lead to unstable
simulation for t close to 1. We avoid this by switching to the ODE, setting g(t) = 0, for the last
few steps.) We explore multiple values for the noise scaling parameter γ, which leads to different
trade-offs between metrics (see Tabs. 1 and 3). We discretize the unit interval using logarithmically
spaced points. More precisely, in PyTorch code (Paszke et al., 2019), we get [t0, t1, ..., tN ] by the
following three steps

t = 1.0 - torch.logspace(-2, 0, nsteps + 1).flip(0)
t = t - torch.min(t)
t = t / torch.max(t),

where the last two operations ensure that t0 = 0 and t1 = 1.
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Figure 13: t-sampling distributions. We show our novel t-sampling distribution from Eq. (2) that mixes a
Beta and a uniform distribution, a naive uniform distribution, and the logit-normal distribution that recently
achieved state-of-the-art image synthesis in a similar rectified flow objective (Esser et al., 2024).

Algorithm 1 Euler-Maruyama numerical simulation scheme

Input: Number of steps N
Input: Discretization of the unit interval 0 = t0 < t1 < t2 < ... < tN = 1
Input: Stochasticity schedule g(t)
Input: Noise scaling parameter γ
Input: Conditioning variables c̃

x0 ∼ N (0, I)
for n = 1 to N − 1 do
ϵn ∼ N (0, I)
δn = tn − tn−1

xtn = xtn−1
+
[
vθ
tn−1

(xtn−1
, c̃) + g(tn−1) s

θ
tn−1

(xtn−1
, c̃)

]
δn +

√
2δng(tn)γ ϵn

end for
Output: x1

G NEW TIME t SAMPLING DISTRIBUTION

A crucial parameter in diffusion and flow matching models is the t sampling distribution p(t), which
effectively weighs the objective (Eq. (1) for Proteı́na). Enhanced sampling of t closer to t = 1
encourages the model to focus capacity on synthesizing accurate local details, which are generated at
the end of the generative process, while sampling more at smaller t can improve larger-scale features.
In image generation it is common to increase sampling at intermediate t (Karras et al., 2022; Esser
et al., 2024), but this is not necessarily a good choice for protein structures—even slightly perturbing
a structure could lead to unphysical residue arrangements and bond lengths. Hence, we designed a
new t sampling function focusing more on large t (Eq. (2), reproduced here for reference),

p(t) = 0.02U(0, 1) + 0.98B(1.9, 1.0),

where B(·, ·) is the Beta distribution, to encourage accurate local details. We mix in uniform sampling
to avoid zero sampling density when t → 0. In Fig. 13, we show our novel distribution, a naive
uniform distribution, and the logit-normal distribution that recently achieved state-of-the-art image
synthesis in a similar rectified flow objective (Esser et al., 2024). Ablations can be found in App. J.
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H EQUIVARIANCE ANALYSIS

In this section we study whether our transformer architecture learns a rotationally equivariant vector
field. Since the optimal vector field is known to be rotationally equivariant,1 studying this may yield
insights on our method’s performance and behavior. We study this empirically for our MFS model in
the unconditional sampling setting by comparing clean-sample predictions on rotated versions of a
noisy/diffused backbone xt. More specifically, we compute three metrics. The first one is given by

Er(t) = E
x∼pdata

xt∼p(xt |x)
R∼Unif(SO(3))

[
RMSD

(
x̂(xt), R x̂(R⊤xt)

) ]
, (32)

where x̂(xt) = xt + (1 − t)vθ
t (xt, ∅) is the clean sample prediction (since we use the velocity

parameterization). This metric compares the outputs of our model with two inputs (noisy backbones)
that are the same up to a rotationR. A perfectly equivariant model is guaranteed to achieve Er(t) = 0,
as the two outputs would also be equal up to the same rotation R. For a non equivariant model,
however, we would have Er(t) > 0, with greater values corresponding to “less equivariant” models.

The second metric we consider is given by

Eu(t) = E
[
RMSD

(
x̂(xt), U x̂(R⊤xt)

) ]
, (33)

where U in Eq. (33) is the rotation that optimally aligns x̂(xt) and x̂(R⊤xt), that is, U =
argminA∈SO(3) ∥x̂(xt)−Ax̂(R⊤xt)∥2. This metric has two interesting properties. First, a perfectly
equivariant model satisfies U = R and Eu(t) = 0. And second, Eu(t) ≤ Er(t), with the two metrics
being close when the optimal rotation U ≈ R. Approximately equivariant models should achieve low
values for this metric. Additionally, for approximately equivariant models the gap in Eu(t) ≤ Er(t)
should be small.

Finally, the third metric is given by

E(t) = E
[
RMSD

(
x̂(xt), x̂(R

⊤xt)
) ]
. (34)

In contrast to the first two metrics, E(t) is minimized by rotationally invariant models (in fact,
E(t) = 0 only for such models). In contrast, equivariant or approximately equivariant models should
produce larger values for this metric. Intuitively, approximately equivariant models should satisfy
Er(t) ≪ E(t).
Results for all three metrics as a function of t are shown in Fig. 14. It can be observed that, while
greater than zero, our model achieves Eu(t) ≈ Er(t) < 0.5Å for all t. This confirms that while our
model does not learn a perfectly equivariant vector field, it is approxiamtely equivariant, thanks to the
random rotation augmentations applied to clean samples during training. Additionally, as expected
for approximately equivariant models, E(t) is considerably higher than the other two metrics.

It may also be informative to consider the notion of designability (see App. D), which (broadly)
deems a backbone designable if there exists a sequence that folds into a structure withing 2Å (RMSD)
of the original backbone. The metric Er shows that rotating our model predictions accordingly (on
rotated inputs) yields RMSDs values below 0.5Å, significantly below the “similarity” threshold used
to measure designability.

I VALIDATING FOLD CLASS CONDITIONING VIA RE-CLASSIFICATION

To analyze whether our fold class conditioning correctly works, we now re-classify generated
conditional samples with our fold class predictor and validate whether the generated samples correctly
correspond to their conditioning classes in Tab. 6. We use classifier-free guidance on the model
Mcond

21M with a noise scale of γ = 0.3, which yields the best re-classification probabilities. We guide
the model to generate 100 samples for each C-level class, 30 samples for each A-level class, and 2

1A fact leveraged by many existing methods, which rely on rotationally equivariant architectures (Yim et al.,
2023b;a; Lin & Alquraishi, 2023; Lin et al., 2024; Bose et al., 2024).
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Figure 14: Equivariance analysis. E , Er and Eu from the captions measure different types of errors,
and are formally defined in Eqs. (32), (33) and (34). For a perfectly equivariant model, the green
(Er) and orange (Eu) lines would be exactly zero for all t. Approximately equivariant models achieve
low values for Er and Eu, and large values for E . Our model, despite not being equivariant by
construction, follows such a trend.

Table 6: Fold class-conditioned generation: We report the generated proteins’ re-classification probabilities of
the correct fold class label that was used during conditioning.

Setup C A T
α β α/β Common Regular Rare Common Regular Rare

Classifier-free guidance (α = 0.0), guidance weight ω (Proteı́na model Mcond
21M , γ = 0.3).

Proteı́na, ω=0.0 0.585 0.017 0.450 0.128 0.014 0.000 0.032 0.002 0.000
Proteı́na, ω=0.5 0.914 0.479 0.784 0.437 0.204 0.119 0.336 0.114 0.006
Proteı́na, ω=1.0 0.986 0.887 0.961 0.701 0.334 0.226 0.570 0.209 0.010
Proteı́na, ω=1.5 0.993 0.962 0.977 0.772 0.363 0.242 0.611 0.225 0.012
Proteı́na, ω=2.0 0.992 0.975 0.976 0.788 0.383 0.233 0.638 0.230 0.012
Proteı́na, ω=2.5 0.993 0.979 0.997 0.842 0.366 0.298 0.636 0.224 0.012

Chroma 0.888 0.486 0.644 0.240 0.007 0.000 0.133 0.002 0.000

samples for each T-level class. The generated samples are then evaluated using our fold classifier
(trained in App. E.3.2) to predict the probability that they belong to the correct class.

We group the classes by their frequency in the training set and calculate the average re-classification
probability for each group. Specifically, there are three C-level classes: ”Mainly Alpha”, ”Mainly
Beta”, and ”Alpha Beta”. For A-level classes, we divide them into three categories: 9 classes with
over 500K samples (common), 13 classes with 10K–500K samples (regular), and 17 classes with
fewer than 10K samples (rare). For T-level classes, we have 31 classes with over 100K samples
(common), 237 classes with 5K–100K samples (regular), and 958 with fewer than 5K samples (rare).

As shown in Tab. 6, Proteı́na can accurately produce the main C classes. At A- and T-level, where
we have an increasingly fine spectrum of classes (Fig. 3), the task becomes more challenging, and
on average common folds are generated better than rare ones. Considering the imbalanced label
distribution with many rare classes, this result is expected. Moreover, re-classification accuracy
generally increases with guidance weight ω, validating our tailored CFG scheme (Sec. 3.2). We
conclude that while rare classes can be challenging, as expected, the conditioning generally works
well for the three C and the common A and T classes.

I.1 RE-CLASSIFICATION ANALYSIS OF FOLD CLASS-CONDITIONAL CHROMA SAMPLING

As discussed in the main text, we also evaluated Chroma (Ingraham et al., 2023) on fold class-
conditional generation (also see App. L). Chroma uses its own CATH fold class label classifier to
guide its generation when conditioning on fold classes. We repeated the re-classification analysis
for Chroma and report its correct re-classification probabilities in the last row in Tab. 6. We find
that Chroma generally performs poorly compared to Proteı́na. While Proteı́na can guide into the
three main C class with with almost 100% success rate, Chroma struggles to reliably guide into
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Figure 15: Designability-Diversity trade-offs achieved when training a “small” model using different
t-sampling distributions. The curves are obtained by sampling each trained model for multiple noise
scaling parameters γ between 0.25 and 0.55.

these high-level classes. Furthermore, when guiding with respect to the more fine-grained A and T
classes, Chroma’s success plummets. This means that Chroma cannot reliably perform fold class
conditioning, in contrast to Proteı́na.

We would also like to comment on Chroma’s results in Tab. 2, where it performs competitively with
Proteı́na. This is because the designability, diversity and novelty metrics do not actually test whether
correct protein structures given the labels were generated, but these metrics only score the overall set
of generated backbones, irrespective of their labels. Only the re-classification analysis conducted
here specifically tests the fold class conditioning capabilities in a fine-grained manner.

J ABLATION STUDIES

This section presents multiple ablations we carried out while developing the model. We tested
multiple distributions to sample the time t during training (App. J.1), different stochasticity schedules
g(t) (App. J.2), and explored various architectural choices (App. J.3). We note that these ablations
were done at different stages during model development, and are thus not always directly comparable
between each other, nor with the results presented in the main paper, as they were carried out with
different models or sampling schemes. However, these ablations informed our decisions while
developing our model and training regime.

J.1 SAMPLING DISTRIBUTIONS FOR t

We consider multiple choices for the t-sampling distribution p(t): the mode(1.29)
distribution from Esser et al. (2024), the Logit-normal(1, 0) distribution
from Esser et al. (2024), Beta(3, 1), Beta(1.6, 1), Beta(1.9, 1),
Mixture(0.02*Uniform+0.98*Beta(1.9, 1)), and Uniform(0, 1). For each
of these we trained a “small” model (30M parameters, no pair updates) on the DFS dataset for
150K steps, using 4 GPUs with a batch size of 25 per GPU. Noting that training losses are not
directly comparable for different t-sampling distributions, we compare the models by studying the
designability-diversity trade-off they achieve when sampled under different noise scaling parameters
γ. Results are shown in Fig. 15, where we show diversity metrics (Diversity cluster and Diversity
TM-score, see App. D for details) as a function of designability. The curves are obtained by sweeping
the noise scaling parameter γ between 0.25 and 0.55. We can observe that the mixture distribution
consistently achieves the best trade-offs for both diversity metrics. (The training run using the
uniform distribution displayed somewhat unstable behavior, producing nan values during training,
so we did not sample it.)

We performed this ablation early during model development, using the stochasticity schedule g(t) =
(1−t)/(t+0.01) and a uniform discretization of the unit interval (with 400 steps). We emphasize that
these results are not comparable with the ones in the main papar and other sections in the Appendix,
as they were obtained using a significantly smaller model, trained for less steps using less compute,
and sampled using a different numerical simulation scheme.
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Figure 17: Results of sampling MFS under three different schedules, g(t), gtan(t) and g1−t(t).
Curves are obtained by sweeping the noise scaling parameter γ between 0.3 and 0.5.

J.2 STOCHASTICITY SCHEDULES g(t)
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Figure 16: Different stochasticity schedules
tested as a function of t.

In addition to the schedule g(t) = 1/(t+ 0.01) pre-
sented in App. F.4, used for all the results we re-
port in the main paper, we also tested the sched-
ules g1−t(t) = (1 − t)/(t + 0.01) and gtan(t) =
π
2 tan

(
(1− t)π2

)
.2 A comparison of these three

schedules is shown in Fig. 16, where it can be ob-
served that gtan and g1−t inject significantly less
noise for times t ≈ 1. We sampled and evaluated
our MFS model for these three schedules. Results
for deisgnability, diversity and novelty (w.r.t. PDB)
are shown in Fig. 17. It can be observed that the
stochasticity schedule used has a strong effect in the
model’s final performance, with g(t) leading to better
results than gtan(t) and g1−t(t). Note that, in principle, for γ = 1 all stochasticity schedules yield the
same marginal distributions during the sampling process. In pracrice, however, the SDE is simulated
numerically, and we use a noise scaling parameter γ < 1 (common in diffusion and flow-based
generative methods for protein backbone design). These two factors have a non-trivial interaction
with the stochasticity schedule, explaining the differences in results for the different g(t) considered.

J.3 QK LAYER NORM, REGISTERS, AND ROPE EMBEDDINGS

We also ablated several choices for the architecture, with an interesting one being the addition or
removal of pair updates with triangular multiplicative layers (model MFS against model Mno-tri

FS ).
These two models were compared in the main text in Tab. 1. While the use of pair updates with
triangular multiplicative updates leads to better performance, it also has a negative impact on the
model’s scalability. In Tab. 1 we observed that our Mno-tri

FS model is still competitive while being
significantly more computationally efficient, which enabled us to scale to protein backbones of up to
800 residues, as discussed in the main text.

Other architectural choices we ablated involved the use of QK layer norm, registers, and Rotary
positional embeddings (RoPE) (Su et al., 2024) for the attention in the network’s trunk. These changes
only affect the architecture, so training losses are directly comparable. Training small models (see
App. J.1) we observed that the use of registers and QK layer norm led to slightly improved training
losses, so we included them in our final architecture. The use of RoPE embeddings, on the other
hand, led to a slight increase in the training loss, so we did not include it in our final architecture.

K EXPERIMENT DETAILS AND HYPERPARAMETERS

This section gives details of our architectures, training and sampling configurations for our results.

2For numerical stability we compute gtan(t) = π
2

C(t)
S(t)+0.01

where C(t) = cos
(
(1− t)π

2

)
and S(t) =

sin
(
(1− t)π

2

)
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K.1 TRAINED PROTEÍNA MODELS

Tab. 7 presents the hyperparameters used to define the three architectures considered in this paper,
giving details about number of layers, dimensions of each feature, and number of trainable parameters,
among others. It also gives details behind the training of our models, such as number of GPUs used,
number of training steps, and batch size per GPU. All our models were trained using Adam (Kingma,
2014) with β1 = 0.9 and β2 = 0.999. We use random rotations to augment training samples.

Table 7: Hyperparameters for our model training.

Hyperparameter Pre-training Fine-tuning
MFS Mno-tri

FS M21M MLoRA Mlong

Proteı́na Architecture
initialization random random random MFS Mno-tri

FS
sequence repr dim 768 768 1024 768 768
# registers 10 10 10 10 10
sequence cond dim 512 512 512 512 512
t sinusoidal enc dim 256 256 256 256 256
idx. sinusoidal enc dim 128 128 128 128 128
fold emb dim 256 256 256 256 256
pair repr dim 512 512 512 512 512
seq separation dim 128 128 128 128 128
pair distances dim (xt) 64 64 64 64 64
pair distances dim (x̂(xt)) 128 128 128 128 128
pair distances min (Å) 1 1 1 1 1
pair distances max (Å) 30 30 30 30 30
# attention heads 12 12 16 12 12
# tranformer layers 15 15 18 15 15
# triangle layers 5 — 4 5 —
# trainable parameters 200M 200M 400M 7M 200M

Proteı́na Training
# steps 200K 360K 180K 11K 220K/80K
batch size per GPU 4 10 4 6 2/1
# GPUs 128 96 128 32 128
# grad. acc. steps 1 1 1 2 1/2

K.2 UNCONDITIONAL GENERATION EXPERIMENTS

This section presents precise details for all results for unconditional generation shown in Tabs. 1
and 3 (not including LoRA fine-tuning, covered in App. K.3). All experiments follow the sampling
algorithm described in App. F.4.

Tab. 1 shows results obtained for our MFS and Mno-tri
FS models under multiple noise scales.3 We

sampled the MFS model without self-conditioning, since we observed that this yielded better trade-
offs between designability, diversity, and novelty in the unconditional setting. On the other hand, we
used self-conditioning with the Mno-tri

FS model, since we observed it often led to slightly improved
performances. The noise scales γ ∈ {0.35, 0.45, 0.5} shown for MFS were chosen to show different
points in the Pareto front between different metrics, while still retaining high designability values. On
the other hand, Mno-tri

FS was sampled for a single noise scale (γ = 0.45), to show that, even without a
pair track (i.e., no updates to the pair representation, yielding significantly improved scalability), our
model still performs competitively.

Tab. 1 also shows results for the M21M model for two different noise scales γ ∈ {0.3, 0.6}. These
two runs have different purposes. The one with lower noise scale aims to show that we can achieve
extremely high designability values by training on a large dataset filtered for high quality structures
(to achieve this we use self-conditioning for this run), while the other one attempts to show better
trade-offs between different metrics (achieved without self-conditioning).

Finally, Tab. 3 shows results for ODE sampling for the MFS and M21M models (both runs with
self-conditioning, which yields better designability values). These runs can be observed to produce

3While the Mno-tri
FS model was trained for 360k steps, we observed better designability-diversity trade-offs for

earlier training checkpoints. Therefore, for that model, we show results after 80k steps.
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Figure 18: scRMSD values for long protein generation, with zoomed-out view (left, y-axis: 0 Å to 30
Å) and zoomed-in view (right, y-axis: 0 Å to 5 Å).

significantly better values for our new metrics, FPSD, fS and fJSD. This is expected since scaling the
noise term in the SDE is known to modify the distribution being sampled.

K.3 LORA FINE-TUNING ON PDB

To enhance our model’s ability to generate both designable and realistic samples, we curate a high-
quality, designable PDB dataset as outlined in App. B.1. We then fine-tune our best unconditional
model, MFS, on this processed dataset. To prevent overfitting and enable efficient fine-tuning, we
apply LoRA (Hu et al., 2022) with a rank of 16 and a scaling factor of 32, introducing trainable
low-rank decomposition matrices into all the embedding and linear layers of the model. This reduces
the number of trainable parameters to 7M, significantly lower than the original 200M parameters.
The complete training configuration is detailed in Tab. 7. For inference, we observe that enabling
self-conditioning consistently improves designability, so we adopt it for this model.

K.4 CONDITIONAL GENERATION EXPERIMENTS

For conditional generation, we follow the same schedule as unconditional sampling, with self-
conditioning enabled, as we find it improves designability and re-classification probabilities. In Tab. 1,
we explore the effect of classifier-free guidance (CFG) by sweeping the guidance weight among 1.0,
1.5, and 2.0 for the model Mcond

FS with a noise scale of γ = 0.4.

During sampling, we account for the compatibility of the (length, CATH code) combinations to avoid
generating unrealistic lengths for certain classes. We divide the lengths into buckets ranging from 50
to 1,000, with a bucket size of 25. An empirical label distribution is then constructed for each length
bucket based on the datasets DFS and D21M. For each length in conditional sampling, we randomly
select a CATH code from the empirical distribution corresponding to that length.

Class-specific Guidance. To showcase the utility of guidance at different hierarchical levels, we
also perform class-specific guidance where we guide the model only via class labels (“mainly alpha”,
“mainly beta”, “alpha/beta”) to control secondary structure content in samples while still maintaining
high designability and diversity. We sample the model conditionally with a guidance weight of 1, and
a noise scale of γ = 0.4 for the conditional classes and γ = 0.45 for the unconditional case. With
this configuration, we generate samples of length 50, 100, 150, 200, and 250 with 100 examples
each, totaling 500 samples, which are used to report designability, diversity, novelty, and secondary
structure content in Tab. 4.

K.5 LONG LENGTH GENERATION EXPERIMENTS

For the long length generation results in Fig. 8 we first take the model Mno-tri
FS after 360K steps and

fine-tune it for long-length generation; for this, we train it for 220K steps on the AFDB Cluster
representatives filtered to minimum average pLLDT 80, minimum length 256 and maximum length
512. We then train it for 80K more steps on the same dataset, but with the maximum length increased
to 768. We sample this final model Mlong with a noise scale of γ = 0.35 and 400 steps to generate
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samples of lengths 300, 400, 500, 600, 700 and 800 with 100 examples per length. These samples
are then subject to the previously described metric pipeline calculating designability and diversity.
Similarly, for Fig. 8, we sample these lengths from each baseline in accordance with App. L. Also see
Fig. 18 for scRMSD plots of Proteı́na and the baselines for the long protein generation experiment.

In addition, we combine these long length generation capabilities of our model with class-specific
guidance (i.e. conditional sampling of the model while providing labels at the C level of the CATH
hierarchy) to obtain large proteins with controlled secondary structure content, as well as guidance
with respect to A and T level in order to guide generation towards specific folds.

K.6 AUTOGUIDANCE EXPERIMENTS

In Fig. 7, we show both conditional and unconditional sampling of our model, M21M, using the full
distribution mode (ODE). The checkpoint at 10K training steps serves as a “bad” guidance checkpoint,
corresponding to the “reduced training time” degradation discussed in the original paper (Karras
et al., 2024). For both conditional and unconditional sampling, we apply self-conditioning while
keeping all other inference configurations consistent with those described earlier.

L BASELINES

In this section, we briefly list out the models we sampled for metric benchmark and the sampling
configurations we used.

Genie2: We used the code from Genie2 public repository. We loaded the base checkpoint trained for
40 epochs. The noise scale was set to 1 for full temperature sampling and 0.6 for low temperature
sampling. The sampling was run in the provided docker image.

RFDiffusion: We used the code from RFDiffusion public repository. The sampling was run in the
provided docker image. Default configuration of the repository was used for sampling.

ESM3: We followed the instruction on ESM3 public repository to install and load the publicly
available weight through the HugginFace API. When sampling structures, we set the temperature to
0.7, and number of steps to be L ∗ 3

2 where L is the length of the protein sequence. It is noteworthy
that ESM3 performs relatively poorly on metrics evaluating unconditional generation. It is expected
as ESM3 is trained on many metagenomic sequences which are less designable.

FoldFlow: We used the code form FoldFlow public repository. When sampling the FoldFlow-base
model, we set both the ot plan and stochastic path in the flow matcher configura-
tion to False. When sampling the FoldFlow-OT model, we set the ot plan to True. Lastly,
when sampling the FoldFlow-SFM model, we set both the ot plan and the flow matcher
to True, with the noise scale set to 0.1. For all three models, we set the configuration
flow matcher.so3.inference scaling to 5 as we empirically found that such setting
yields the closest performance compared to the FoldFlow paper Bose et al. (2024).

FrameFlow: We installed FrameFlow from its public repository. The model weights are downloaded
from Zenodo. Default settings are used for unconditional sampling.

Chroma: We used the code from the Chroma public repository. Model weights were downloaded
through the API following the instruction. Default settings were used for unconditional sampling. For
conditional sampling using CAT labels, we used the default ProClassConditioner provided in
the repository to guide the generation.

FrameDiff: We used the code from FrameDiff public repository, using the public weights from the
paper located in ./weights/paper weights.pth. The default configuration of the repository
was used for sampling. The sampling was run in the provided conda environment.

Proteus: We used the code from Proteus public repository, using the public weights from the paper
located in ./weights/paper weights.pt. The default configuration of the repository was
used for sampling. The sampling was run in the provided conda environment.
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Figure 19: Left: Flow matching loss over the course of training for differently sized Proteı́na models
(number of model parameters given at the top right). Batch size 5 for all. Right: The same training
curves, but we emphasize that scaling the model, the flow matching loss reaches similarly low values
(gray dashed line) significantly faster.

Table 8: Unconditional backbone generation performance of the additional, smaller Msmall
FS Proteı́na model,

side-by-side with the other, larger models that we trained. Results partly copied from Tab. 1.
Model Design- Diversity Novelty vs. FPSD vs. fS fJSD vs. Sec. Struct. %

ability (%)↑ Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C / A / T)↑ PDB↓ AFDB↓ (α / β )

Unconditional generation. Mj
i denotes the Proteı́na model variant, and γ is the noise scale for Proteı́na.

MFS, γ=0.45 96.4 0.63 (305) 0.36 0.69 0.75 388.0 368.2 2.06 / 5.32 / 19.05 1.65 1.23 68.1 / 6.9
Mno-tri

FS , γ=0.45 93.8 0.62 (292) 0.36 0.69 0.76 322.2 306.2 1.80 / 4.72 / 18.59 1.84 1.36 71.3 / 5.5
Msmall

FS , γ=0.45 94.8 0.55 (273) 0.35 0.72 0.78 322.3 323.3 2.21 / 5.91 / 22.83 1.53 1.24 64.7 / 8.0

M ADDITIONAL RESULTS AND EVALUATIONS

M.1 SCALING FLOW MATCHING TRAINING

In Fig. 19, we study the optimization of Proteı́na’s flow matching objective as function of the
number of parameters, using Proteı́na models without triangular multiplicate layers, scaling the novel
non-equivariant transformer architecture. We trained models of various sizes between ≈60M and
≈400M parameters, and we find that we can consistently improve the loss as we scale the model size,
thereby validating the scalability of our architecture. This observation is in line with recent work on
state-of-the-art image generation (Esser et al., 2024), leveraging a similar flow matching approach.

M.2 MODEL PARAMETERS, SAMPLING SPEED AND MEMORY CONSUMPTION

To compare the parameter numbers of different models as well as the practical implications of these
parameter numbers such as memory consumption and sampling speed, we conduct three analyses:

1. Models are sampled with batch size 1 and the sampling time is measured. This is run on an
A6000-48GB GPU for comparison with previous works (Lin et al., 2024). See Tab. 9 and Fig. 20.

2. For all tested models, we determine the largest supported batch size that fits into GPU memory
and does not result in OOM errors. This is executed on an A100-80GB GPU. See Tab. 10.

3. Models are sampled with their maximum batch size and the sampling time is measured, normal-
ized with respect to their batch sizes. This is executed on an A100-80GB GPU. See Tab. 11.

Each of the linked tables shows all models’ number of parameters.

As part of these experiments, we use an additional model Msmall
FS which only contains around 60M

parameters (similar to RFDiffusion), but still performs very competitively, outperforming most
baselines like RFDiffusion (Tab. 8). As one would expect due to the smaller model size, it does
perform slightly worse than our larger state-of-the-art models, though, showing slightly worse
diversity and novelty. The training and sampling of this model follows the setting from Mno-tri

FS , with
the main difference being the number of parameters.

Looking at sampling time for single protein (batch size 1) on an A6000-48GB (Tab. 9), we see that
the runtime of Proteı́na depends on whether we use triangle layers or not: Proteı́na models with
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Table 9: Sampling time [seconds] for different methods at batch size 1 for samples of varying length (the
numbers in the top row indicate protein backbone chain length) on an A6000-48GB GPU.

Method # Model parameters Inference steps 100 200 300 400 500 600 700 800
Genie2 15.7M 1000 48 75 135 233 356 536 740 961
RFDiffusion 59.8M 50 21 41 80 137 214 296 397 531
FrameFlow 17.4M 100 4 6 9 13 18 22 28 35
Chroma 18.5M 500 22 29 36 42 49 55 63 69
Msmall

FS 59M 400 3 3 6 8 12 18 25 32
Mno-tri

FS 191M 400 3 5 9 15 23 32 42 54
MFS 208M 400 8 26 63 119 188 273 370 529
M21M 397M 400 8 24 54 102 159 230 310 408
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Figure 20: Single sample runtimes. The runtimes for different models for batch size 1 on a A6000-48GB
GPU. Different scales are used for y-axis (left - linear, right - logarithmic). The same data is shown in Tab. 9.

Table 10: Maximum batch size during inference for different methods for samples of varying length (the
numbers in the top row indicate protein backbone chain length) on an A100-80GB GPU.

Method # Model parameters Inference steps 100 200 300 400 500 600 700 800
Genie2 15.7M 1000 204 51 22 12 8 5 4 3
Chroma 18.5M 500 862 435 285 211 162 136 116 101
Msmall

FS 59M 400 1599 416 200 194 72 46 36 25
Mno-tri

FS 191M 400 700 187 85 48 31 21 16 12
MFS 208M 400 199 55 26 14 9 6 4 3
M21M 397M 400 157 44 20 11 7 5 3 2

Table 11: Sampling time [seconds] for different methods at max batch size for varying lengths (the numbers in
the top row) on an A100-80GB GPU. The time is obtained by dividing the total runtime by the batch size.

Method # Model parameters Inference steps 100 200 300 400 500 600 700 800
Genie2 15.7M 1000 27.74 65.47 117.59 183.67 257.63 373.40 526.00 690.67
Chroma 18.5M 500 4.81 9.56 12.09 17.58 21.99 26.31 30.84 35.17
Msmall

FS 59M 400 0.29 0.94 2.01 3.38 5.26 7.33 9.97 14.44
Mno-tri

FS 191M 400 0.59 1.88 3.87 6.54 9.96 14.04 18.87 24.33
MFS 208M 400 3.74 13.05 28.31 50.14 80.89 125.33 173.25 229.00
M21M 397M 400 3.29 11.20 24.35 42.64 75.57 105.80 144.33 192.00

triangle layers are still faster than state-of-the-art tools like RFDiffusion and Genie2, but are slower
than FrameFlow at all lengths and slower than Chroma at longer lengths. However, Proteı́na models
without triangle layers are a lot faster and perform competitively even with way smaller models like
FrameFlow (with Msmall

FS running faster than FrameFlow for all lengths). Note that we compare with
RFDiffusion, Genie2, FrameFlow and Chroma, as these represent the most competitive baselines.

In practice, one performs inference batch-wise. To compare the performance of Proteı́na in this
setting, we determined the maximum batch size for each method on an A100-80GB GPU (Tab. 10)
and then determined the normalized sampling times per sequence in this batch setting by dividing the
overall batch runtime by the batch size (Tab. 11). No numbers were reported for RFDiffusion and
FrameFlow since these methods do not support batched inference, limiting the batch size to 1.

Even with Proteı́na having more parameters than the baselines, we see that Proteı́na models with
triangle layers can fit similar batch sizes to Genie2. On the other hand, Proteı́na models without
triangle layers can fit very large batches, up to 1.6k proteins of length 100 for Msmall

FS .

Looking at the per-sequence sampling time in the max batch size setting (Tab. 11), we see that
Proteı́na benefits strongly from batched inference, especially for models without triangle layers and
shorter sequence lengths. This enables fast batched sample generation, with less than 1 second per
chain for short chain lengths.
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Table 12: FrameFlow, RFDiffusion, Genie2 and three variants of Proteı́na’s cluster diversity values with (#
designable clusters) under different TM-score clustering thresholds. Best scores are bold.

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FrameFlow 0.051 (23) 0.054 (24) 0.067 (30) 0.237 (105) 0.523 (232) 0.808 (358) 0.934 (414) 0.993 (440) 0.997 (442)
RFDiffusion 0.046 (22) 0.046 (22) 0.048 (23) 0.127 (60) 0.447 (211) 0.720 (340) 0.834 (394) 0.887 (419) 0.936 (442)
Genie2 0.060 (29) 0.060 (29) 0.060 (29) 0.144 (69) 0.596 (284) 0.915 (436) 0.978 (466) 0.991 (472) 1.000 (476)
MFS, γ=0.45 0.101 (49) 0.101 (49) 0.118 (57) 0.302 (146) 0.639 (308) 0.852 (411) 0.943 (455) 0.981 (473) 0.995 (480)
Mno-tri

FS , γ=0.45 0.083 (39) 0.089 (42) 0.095 (45) 0.257 (121) 0.626 (294) 0.820 (385) 0.916 (430) 0.980 (460) 0.993 (466)
M21M, γ=0.3 0.056 (28) 0.060 (30) 0.064 (32) 0.147 (73) 0.305 (151) 0.442 (219) 0.569 (282) 0.723 (358) 0.901 (446)
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Figure 21: Pairwise TM-Score distributions of FrameFlow, RFDiffusion, Genie2 and three variants
of Proteı́na across different residue lengths, with lower TM-Scores indicating better performance.

Our overall conclusion from these experiments is that even though we investigated model size scaling
in this work, this scaling does not come at a cost in terms of inference efficiency, thanks to our
efficient and scalable architecture. Our models support batches as large as or larger than the baselines
and can be sampled as fast as or faster than the baselines, meanwhile leading to state-of-the-art
protein backbone generation performance (see main paper).

M.3 FINE-GRAINED DIVERSITY EVALUATIONS

Cluster-based diversity with different thresholds. We evaluate the cluster-based diversity metric
under varying clustering thresholds for three of our best models and the most relevant and competitive
baselines—Genie2, RFDiffusion, and FrameFlow—as shown in Tab. 12. For looser thresholds, our
MFS (γ=0.45) model outperforms the others. However, with very strict clustering thresholds, all
models and baselines produce highly diverse results, covering a wide range of distinct clusters.

Distribution of pairwise TM-scores. The other diversity metric that we use in this work are average
pairwise TM-scores. Here, we analyze the distributions of the pairwise TM-scores for samples
generated by our models and the three most relevant baselines mentioned above. We draw violin
plots across different lengths in Fig. 21. The results demonstrate that all models maintain reasonable
TM-score distributions, showing no signs of mode collapse.

M.4 EVALUATION OF METRICS FOR REFERENCE DATASETS

To provide reference values for our results in Tab. 1, we report metrics for two representative protein
structure databases: the PDB (natural proteins) and the AFDB (synthetic proteins predicted by
AlphaFold2). We use the representative subsets of the PDB and AFDB processed in App. E.2 as our
reference distributions. Following the protocols outlined in App. D and App. E, we sample from these
reference datasets and evaluate all metrics. The results, presented in Tab. 13, show novelty values
close to 1, and very low FPSD and fJSD values, as expected. The designability of the two reference
datasets aligns with previously reported results in Lin et al. (2024), with the PDB exhibiting lower
designability due to the use of sequence clustering to avoid over-represented clusters. Additionally,
we observe that the reference datasets display higher diversity than all models and baselines. This
suggests that existing models still have room for improvement in optimizing diversity.
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Table 13: Reference metrics by sampling two reference datasets (AFDB and PDB) introduced in App. E.2.
Dataset Design- Diversity Novelty vs. FPSD vs. fS fJSD vs. Sec. Struct. %

ability (%)↑ Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C / A / T)↑ PDB↓ AFDB↓ (α / β)

PDB ref. 67.2 0.62 (209) 0.31 0.99 0.87 3.433 71.20 2.94 / 9.48 / 90.45 0.05 0.51 35.0 / 16.8
AFDB ref. 33.6 0.91 (154) 0.29 0.76 1.00 73.02 3.011 2.71 / 6.57 / 34.88 0.53 0.02 44.9 / 12.7

Table 14: Proteı́na’s unconditional generation results under different random sampling seeds.
Seed Design- Diversity Novelty vs. FPSD vs. fS fJSD vs. Sec. Struct. %

ability (%)↑ Cluster↑ TM-Sc.↓ PDB↓ AFDB↓ PDB↓ AFDB↓ (C / A / T)↑ PDB↓ AFDB↓ (α / β )

Unconditional generation with Proteı́na model Mno-tri
FS and noise scale γ = 0.45.

0 93.6 0.62 (294) 0.36 0.70 0.76 322.2 306.1 1.80 / 4.72 / 18.59 1.85 1.36 70.5 / 6.1
1 92.8 0.61 (283) 0.36 0.70 0.75 327.0 313.0 1.78 / 4.64 / 18.83 1.85 1.39 70.7 / 6.2
2 94.8 0.60 (283) 0.36 0.69 0.75 318.4 303.2 1.83 / 4.74 / 19.35 1.79 1.34 71.5 / 5.3
3 94.4 0.58 (272) 0.37 0.71 0.76 325.1 308.0 1.78 / 4.60 / 18.40 1.88 1.40 71.1 / 5.2
4 93.0 0.57 (263) 0.37 0.71 0.76 316.6 300.3 1.79 / 4.70 / 18.93 1.83 1.38 71.6 / 4.9

Mean 93.7 0.60 (279) 0.36 0.70 0.76 321.9 306.1 1.80 / 4.68 / 18.82 1.84 1.37 71.1 / 5.5
Std. Dev. 0.9 0.02 (12) 0.01 0.01 0.01 4.4 4.8 0.02 / 0.06 / 0.36 0.03 0.03 0.5 / 0.6

Note that our models and the baselines are able to achieve much higher designability among the gen-
erated proteins due to noise or temperature scaling during inference (or rotation schedule annealing),
effectively modifying the generated distribution towards more well-structured protein backbones.

M.5 STATISTICAL VARIATION OF METRICS

To assess the statistical stability of our results, we select the model, Mno-tri
FS (γ=0.45), for efficiency

and repeat the evaluation five times using different random seeds. The results, presented in Tab. 14,
show minimal variance across all metrics, indicating robustness of our evaluation process.

N ON THE RELATION BETWEEN FLOW MATCHING AND DIFFUSION MODELS

A question that frequently comes up is the relation between flow matching (Lipman et al., 2023; Liu
et al., 2023; Albergo & Vanden-Eijnden, 2023) and diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021). For Proteı́na, we opted for a flow matching-based approach, but in
protein structure generation, both approaches have been leveraged in the past. Hence, here we discuss
the two frameworks.

Crucially, we would first like to point out that we are using flow matching to couple the training data
distribution (the protein backbones for training) with a Gaussian noise distribution, from which the
generation process is initialized when sampling new protein backbones after training. In this case, i.e.
when coupling with a Gaussian distribution, flow matching models and diffusion models can in fact
be shown to be equivalent up to reparametrizations. This is because diffusion models generally use a
Gaussian diffusion process, thereby also defining Gaussian conditional probability paths, similar to
the Gaussian conditional probability paths in flow matching with a Gaussian noise distribution.

For instance, when using a Gaussian noise distribution, one can rewrite the velocity prediction
objective used in flow matching as a noise prediction objective, which is frequently encountered in
diffusion models (Ho et al., 2020). Different noise schedules in diffusion models can be related to
different time variable reparametrizations in flow models (Albergo et al., 2023). Most importantly, for
Gaussian flow matching, we can derive a relationship between the score function ∇xt log pt(xt) of
the interpolated distributions and the flow’s velocity (see Eq. (3) as well as App. F.1). The score is the
key quantity in score-based diffusion models (Song et al., 2021). Using this relation, diffusion-like
stochastic samplers for flow models can be derived, as well as flow-like deterministic ODE samplers
for diffusion models (Ma et al., 2024). In conclusion, we could in theory look at our Proteı́na
flow models equally as score-based diffusion models. With that in mind, from a pure performance
perspective flow matching-based approaches and diffusion-based approaches should in principle
perform similarly well when coupling with a Gaussian noise distribution. In practice, performance
boils down to choosing the best training objective formulation, the best time sampling distribution
to give appropriate relative weight to the objective (see Sec. 3.2), etc.—these aspects dictate model
performance, independently of whether one approaches the problem from a diffusion model or a flow
matching perspective.
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In fact, we directly leverage the connections between diffusion and flow models when developing
our stochastic samplers (see App. F.1) and guidance schemes. Both classifier-free guidance (Ho &
Salimans, 2021) and autoguidance (Karras et al., 2024) were proposed for diffusion models, but due
to the relations between score and velocity, we can also apply them to our flow models (to the best
of our knowledge, our work is the first to demonstrate classifier-free guidance and autoguidance for
flow matching of protein backbone generation). Please see App. F.2 for all technical details regarding
guidance in Proteı́na.

Considering these relations, why did we overall opt for the flow matching formulation and per-
spective? (i) Flow matching can be somewhat simpler to implement and explain, as it is based on
simple interpolations between data and noise samples. No stochastic diffusion processes need to
be considered. (ii) Flow matching offers the flexibility to be directly extended to more complex
interpolations, beyond Gaussians and diffusion-like methods. For instance, we may consider optimal
transport couplings (Pooladian et al., 2023; Tong et al., 2024) to obtain straighter paths for faster
generation or we could explore other, more complex non-Gaussian noise distributions. We plan
to further improve Proteı́na in the future and flow matching offers more flexibility in that regard.
At the same time, when using Gaussian noise, all tricks from the diffusion literature still remain
applicable. (iii) The popular and state-of-the-art large-scale image generation system Stable Diffusion
3 is similarly based on flow matching (Esser et al., 2024). This work demonstrated that flow matching
can be scaled to large-scale generative modeling problems.

We would like to point out that the relations between flow-matching and diffusion models have been
discussed in various papers. One of the first works pointing out the relation is Albergo & Vanden-
Eijnden (2023) and the same authors describe a general framework in Stochastic Interpolants (Albergo
et al., 2023), unifying a broad class of flow, diffusion and other models. Some of the key relations
and equations can also be found more concisely in Ma et al. (2024). The relations between flow
matching and diffusion models have also been highlighted in the Appendix of Kingma & Gao (2023).
The first work scaling flow matching to large-scale text-to-image generation is the above mentioned
Esser et al. (2024), which also systematically studies objective parametrizations and time sampling
distributions, similarly leveraging the relation between flow and diffusion models.
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