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Abstract

Large language models are playing an increas-001
ingly significant role in molecular research, yet002
existing models often generate erroneous infor-003
mation, posing challenges to accurate molec-004
ular comprehension. Traditional evaluation005
metrics for generated content fail to assess a006
model’s accuracy in molecular understanding.007
To rectify the absence of factual evaluation,008
we present MoleculeQA1, a novel question an-009
swering (QA) dataset which possesses 62K QA010
pairs over 23K molecules. Each QA pair, com-011
posed of a manual question, a positive option012
and three negative options, has consistent se-013
mantics with a molecular description from au-014
thoritative molecular corpus. MoleculeQA is015
not only the first benchmark for molecular fac-016
tual bias evaluation but also the largest QA017
dataset for molecular research. A comprehen-018
sive evaluation on MoleculeQA for existing019
molecular LLMs exposes their deficiencies in020
specific areas and pinpoints several particularly021
crucial factors for molecular understanding.022

1 Introduction023

Large Language Models (LLMs) have practical024

applications in molecule research (Bagal et al.,025

2021; Fabian et al., 2020), specifically in the use026

of cross-modal models (Liu et al., 2023b; Cao027

et al., 2023). These models bridge the gap between028

molecular structures and natural language (Bran029

and Schwaller, 2023), helping experts understand030

the properties, potential applications, and acqui-031

sition methods of specific compounds, improving032

understanding of the complex molecular space and033

reducing experimental failure rates.034

Although molecular LLMs are capable of gener-035

ating task-relevant content, they often suffer from036

the problem of generating false statements. In the037

widely studied molecule captioning task, users ex-038

pect the model to generate a comprehensive and039

1Our dataset and code will be released.

CID Ground-Truth Generated

9810996 The molecule is a dipeptide com-
posed of N-(3,3-dimethylbutyl)-
L-aspartic acid and methyl L-
phenylalanate units joined by a
peptide linkage.

The molecule is a dipeptide
obtained by formal conden-
sation of the alpha-carboxy
group of N-(3,3-dimethylbutyl)-
L-phenylalanine with ethanol.

10129879 The molecule is the stable isotope
of potassium with relative atomic
mass 38.963707.

The molecule is the stable iso-
tope of tellurium with relative
atomic mass 124.904425.

5281034 A synthetic androgen, it was
mainly used for the treatment of
anaemias until being replaced by
treatments with fewer side effects.

It has a role as a contraceptive
drug, a progestin and a synthetic
oral contraceptive.

15011611 It is found in Tripterygium wil-
fordii and Tripterygium hypoglau-
cum.

The molecule is an abietane
diterpenoid isolated from
the stem bark of Fraxinus
sieboldiana.

Table 1: The accuracy of the state-of-the-art molecule caption
model in describing the given molecule is assessed using
BioT5-base (Pei et al., 2023) inference results. The generated
content is plausible and fluent, but comparison with the ground
truth reveals several factual errors highlighted in red.

detailed description of a given compound. In this 040

task, existing benchmarks (Edwards et al., 2022; 041

Liu et al., 2023b) typically employ n-gram metrics 042

such as BLEU (Papineni et al., 2001) and ROUGE 043

(Lin, 2004) to evaluate the performance of molecu- 044

lar LLMs. However, without examining the factual 045

accuracy of these models, it is vague to justify 046

how reliable they are. In Table 1, we provides sev- 047

eral examples from the CheEBI-20 (Edwards et al., 048

2021) test dataset to illustrate this issue. Despite 049

the plausible and fluent appearance of the generated 050

content, there are numerous unnoticed inaccurate 051

statements, which remain difficult to detect under 052

the current lexical-based benchmarking approach. 053

Counterfactual molecular generation content can 054

lead to the following adverse consequences: 1) Mis- 055

use of deployed models can deceive and mislead 056

ordinary users, reducing productivity. 2) Profes- 057

sionals may lower their expectations of deployed 058

models when they recognize significant factual bi- 059

ases, thus hindering positive applications. To avoid 060

these repercussions, quantifying the level of com- 061

prehension that models have of molecule knowl- 062

edge is valuable. However, expertise and profes- 063

sional knowledge are required for human to detect 064
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hallucinations in generated molecular text, which065

is extremely difficult with high cost.066

To alleviate this, we propose MoleculeQA, a067

comprehensive benchmark based on questions and068

answers covering various aspects such as property,069

source, structure, and application. MoleculeQA en-070

deavors to rectify the absence of reliable assess-071

ments of molecular knowledge comprehension of072

language models within the molecular domain.073

Construction of MoleculeQA involves two main074

stages. 1) Domain Taxonomy Construction. We075

utilize authoritative molecule description corpus as076

the source. Using a hybrid approach of rule-based077

and automated methods, we extract topics based on078

properties, sources, and other relevant aspects. Af-079

ter clustering and manual normalization, we gather080

the topics to build a hierarchical domain taxonomy081

that has broad coverage and strong expertise. 2)082

Taxonomy-guided QA construction. By convert-083

ing each molecular description into several pairs084

of QA that align with the topics at different levels085

of taxonomy, we can create a QA benchmark that086

guarantees both granularity, breadth, and quality.087

MoleculeQA is not only the first factual evaluation088

benchmark in the molecular domain, but also the089

largest molecular QA dataset. Furthermore, we per-090

formed fine-tuning and accuracy tests on various091

molecular LLMs on MoleculeQA. Our experimen-092

tal results indicate that existing methods remain at093

a discernible remove from achieving a precise com-094

prehension of molecules, and undercover several095

vital factors for molecule modeling. Our contribu-096

tions are summarized as follows:097

• We have observed that the current language098

model in the molecule or chemistry domain ex-099

hibits factual bias in its descriptions of com-100

pounds, which cannot be adequately detected101

using existing metrics based on lexical similarity.102

• To evaluate this bias, we have developed a do-103

main taxonomy for molecule corpus and used it104

to create a high-quality comprehensive quality105

assurance benchmark called MoleculeQA.106

• Using MoleculeQA, we have tested a series of107

models to assess their level of comprehension in108

the molecule domain. Based on our experimen-109

tal outcomes, we identify specific deficiencies110

present in molecular models and summarize sev-111

eral critical factors for molecular understanding.112

2 Related Work 113

2.1 Molecule Understanding LLMs 114

Recent advancements in language models pre- 115

trained with biomedical scientific corpora (Lee 116

et al., 2019; Luo et al., 2022; Beltagy et al., 117

2019) have shown considerable success in molec- 118

ular research. Recently, cross-modal models have 119

emerged (Edwards et al., 2021; Christofidellis 120

et al., 2023; Luo et al., 2023a; Li et al., 2023; 121

Liu et al., 2023a), aiming to bridge the gap be- 122

tween molecular language (bio-sequence or struc- 123

ture) and natural language. Evaluation tasks for 124

these models include seq2seq generation-based 125

tasks (e.g., molecule captioning and text-based de 126

novo molecule generation) and contrastive-based 127

tasks (e.g., cross-modal retrieval). The correspond- 128

ing models can be classified as generative models 129

(e.g., MolT5 (Edwards et al., 2022), BioT5 (Pei 130

et al., 2023)) and contrastive models (e.g., MoMu 131

(Su et al., 2022), MoleculeSTM (Liu et al., 2022)). 132

Seq2seq tasks assess the model’s translation abil- 133

ity between modalities. Metrics evaluate the simi- 134

larity between generated and ground truth content. 135

For text-based de novo molecule generation, met- 136

rics include molecule fingerprint similarity (e.g. 137

MACCS-FTS (Durant et al., 2002), RDK-FTS, 138

Morgan-FTS (Schneider et al., 2015)), sequence- 139

based metrics like BLEU (Papineni et al., 2001) 140

and validity. Molecule captioning tasks rely on 141

n-gram precision (BLEU), recall (ROUGE (Lin, 142

2004)), or both (METEOR (Banerjee and Lavie, 143

2005)) to measure lexical similarity but lack chem- 144

ical knowledge comparison and factual bias de- 145

tection. Retrieval-type tasks align molecules with 146

descriptions, but overlook fine-grained alignment 147

and connections between text snippets and sub- 148

structures. MoleculeQA introduces a hierarchical 149

question-answering benchmarking framework, en- 150

abling a comprehensive evaluation of a model’s 151

molecular-related knowledge inferencing ability. 152

2.2 Domain-Specific QA 153

The Question Answering (QA) task serves as a 154

quantitative measure for evaluating the reasoning 155

and inference capabilities of intelligent systems. In 156

the general domain, a large number of annotated 157

QA samples have been constructed (Rajpurkar 158

et al., 2016; Lai et al., 2017; Yang et al., 2018). 159

In addition, specific domains such as medical (Jin 160

et al., 2019, 2020; Pal et al., 2022), news (Nalla- 161

pati et al., 2016; Trischler et al., 2016), and legal 162
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(Zheng et al., 2021; Zhong et al., 2019) have also163

developed standard QA datasets that are widely164

accepted and used by the community. QA data165

sets in specific domains can be classified into166

extraction-based (Pappas et al., 2018; Tsatsaronis167

et al., 2015), generation-based (Savery et al., 2020),168

multichoice (Pal et al., 2022) and Yes / No for-169

mats (Jin et al., 2019). QA pairs are constructed170

from various sources, including scientific articles171

(Jin et al., 2019), examination questions (Jin et al.,172

2020; Pal et al., 2022; Zaki et al., 2023), profes-173

sional databases (Liang et al., 2023), and crowd-174

sourcing (Wei et al., 2020; Hendrycks et al., 2020).175

However, in the molecular domain, there is176

a scarcity of comprehensive, diverse, and high-177

quality QA datasets. Existing datasets like178

DrugChat (Liang et al., 2023) have limitations179

in terms of molecule features and simplistic an-180

swers. BioMedGPT (Luo et al., 2023b) transforms181

molecule caption task datasets into QA samples,182

inheriting current evaluation issues like domain183

knowledge deficiency and excessive reliance on lex-184

ical similarity. Conversely, MoleculeQA constructs185

a domain taxonomy and derives QA pairs from de-186

scriptive texts, ensuring comprehensive, diverse,187

high-quality, and credible coverage. This makes188

it an effective benchmark for evaluating a model’s189

understanding of molecular-oriented knowledge.190

3 Method191

3.1 Exposure of Factual Bias192

In this subsection, we analyze the presence of fac-193

tual bias in the generated content of the molecule194

caption models.195

Setup. To evaluate the reliability of compound196

descriptions generated by these models, we cat-197

egorized them into different aspects: Structure,198

Property, Application, and Source. The aspects199

were derived from descriptions in PubChem (Kim200

et al., 2022), the largest molecule caption dataset201

currently available. PubChem includes specific202

sources for each molecule’s description, such as203

Lotus (Mun et al., 2016) for source information,204

DrugBank (Wishart et al., 2017) for application205

details, CAMEO Chemicals (cam) for property de-206

scriptions, and multiple data repositories for struc-207

ture information. The definitions of these main208

aspects are summarized in the Table 2 below.209

We randomly sampled 100 molecule&caption210

samples from the ChEBI-20 test set and used211

MolT5, MoMu, and BioT5 models to generate de-212

Aspect Definition

Structure Details about architecture, composition, and
interaction of atoms within a molecule.

Property Physical, biological or chemical property in
various environments or reactions.

Application The utilization of a molecular compound in
various applications and scenarios.

Source The natural or synthetic origin, as well as
the production context related to a molecule.

Table 2: Evaluation Aspects of description about molecules.

scriptions for each molecule. Both ground truth and 213

generated content were manually classified based 214

on four aspects. We evaluated the models’ descrip- 215

tions in each aspect against the ground truth, with 216

two trained domain experts judging them as cor- 217

rect (if the generated content matched the ground 218

truth), miss (if the ground truth had a correspond- 219

ing aspect description but it was completely miss- 220

ing in the generated content), or error (if there was 221

a clear factual inconsistency with the ground truth). 222

Figure 1: The performance of three representative models
on the traditional metrics for the molecule caption task (e.g.
BLEU etc.) and the factual accuracy metric we defined.

Model Structure Property Application Source

MolT5-base 63/0/34 1/4/3 7/15/8 20/10/30
MoMu-base 63/0/34 1/4/3 5/16/9 19/ 8/33
BioT5-base 62/0/35 2/3/3 9/12/9 16/13/31

Table 3: Human Assessment of Model Generated Molecu-
lar Descriptions based on 4 aspects, with the counts presented
according to error / miss / correct.

Results. In Figure 1, we assess the content gener- 223

ated by the model using traditional lexical-based 224

metrics (BLEU, ROUGE, METEOR), as well as 225

measure their factual accuracy on the selected sub- 226

set. We define factual accuracy as the ratio of cor- 227

rect predictions to the total number of slots, serving 228

as an average metric to evaluate the reliability of the 229

generated content. Despite the progress in training 230

methodologies, models have exhibited incremental 231

improvements in lexical similarity metrics (such 232

as a 17.6% increase in BLEU-2). Nevertheless, 233

there has been no discernible improvement in the 234

dependability of the generated content, with factual 235

accuracy persisting at 0.4. In our detailed factual 236

performance analysis (Table 3), we observed mod- 237
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antibacterial activity

reagent antidepressant

n-substituent
cationic groups

Description 
Corpus Topics Taxonomy

Normalization
&

Structuralize

Extract

Figure 2: The process of constructing a molecular domain taxonomy. The procedures involve the selection of the information
source, extraction of topics, normalization and structuralization of topics, and hierarchical clustering by domain experts.

Text: "It has a role as a metabolite 
and an acaricide. It is a diterpenoid.."
Topic: {"acaricide"..,}

Content: "It has a role as an acaricide."

acaricide

Therapeutic Usage

Application

Appropriate Topic: 
Therapeutic Usage

Q: "How can the molecule be 
applied for therapeutic use？"

"It has a role as an acaricide."
"Can be used as vasodilation."
"It can be used as a recreational drug."
"Can be used as sedative."

(a) Extract Content (b) Reassign topic (c) Design question (d) Collect Pos. & Neg. answers

Figure 3: The process of constructing a molecular domain taxonomy. The procedures involve the selection of the information
source, extraction of topics, normalization and structuralization of topics, and hierarchical clustering by domain experts.

els often omit application-related details and rel-238

evant properties. Describing molecular structures239

showed significant discrepancies of more than 63%240

compared to ground truth. This challenges the cred-241

ibility of expert model-generated content, which242

warrants further scrutiny.243

3.2 Domain Taxonomy Construction244

Taxonomy frameworks organize concepts or en-245

tities within a domain hierarchically, aiding in246

the organization of domain-specific queries (Liu247

et al., 2012) and ensuring the quality of comprehen-248

sion domain knowledge and constructing question-249

answering pairs. We adhere to established proce-250

dures for the construction of domain taxonomies,251

as illustrated in Figure 2.252

Information Source. Considering the data quality,253

we choose the most widely used ChEBI-20 dataset254

as our molecular description corpus. To mitigate255

the class imbalance issue in ChEBI-20, primarily256

dominated by structural information, we include257

additional sources like T3DB (Wishart et al., 2014),258

FDA Pharm Classes, and DrugBank. We employ259

a pre-trained text classifier to perform an initial260

coarse-grained division of the corpus based on the261

four aspects we defined above, which serve as the262

first-level nodes in our taxonomy.263

Topics Extraction. We further employ a hybrid ap-264

proach combining rule-based and few-shot prompt-265

ing methods to extract topics and their correspond-266

ing original text from the corpus, formatting the267

(topic, text) pairs. Subsequently, to mitigate lexi-268

cal noise and uncontrolled granularity within the269

1K topics collected, we utilize GPT-4 (OpenAI, 270

2023b) with a few-shot prompt-based approach to 271

accomplish an initial semantic aggregation. 272

Topics Normalization & Structuralization. Next, 273

domain experts intervene to perform rule-based 274

topic merging and concept splitting manually. Sub- 275

sequently, the remaining 587 topics are hierar- 276

chically clustered by human experts, resulting in 277

a three-level molecular domain taxonomy. An 278

overview of this taxonomy can be found in the 279

Appendix. The leaf nodes represent specific 280

molecule characteristics and are the narrowest 281

topics/concepts, while non-leaf nodes represent 282

broader concepts. 283

3.3 MoleculeQA Construction 284

Based on the taxonomy in 3.2, we develop a 4-step 285

procedure to extract questions and answers from 286

molecular descriptions to construct MoleculeQA. 287

The whole workflow is displayed in Fig 3. 288

Content Extraction & Reassign Topic. With 289

(topic, text) pairs annotated in 3.2, a reasonable 290

notion is to query molecules by topic, but content 291

related to a specific topic can be over-brief to be 292

queried. For example, for molecule CID:5479113, 293

content of topic acaricide is It has a role as 294

an acaricide. Without enough information, it 295

is difficult to justify which species of mites this 296

molecule is effective. However, it can be queried 297

from a coarser granularity like Therapeutic 298

Usage, the parent topic of acaricide. 299

To select a suitable topic for querying, we first 300

use an agent to extract content related to the topic 301
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Taxonomy Reference Description Extracted Question Positive Answer Negative Answer

Property→
Antiviral
activity

It has been shown to exhibit inhibitory ef-
fects on the viral neuraminidases from two
influenza viral strains, H1N1 and H9N2.

Which kind of antivi-
ral activity does this
molecule have/exhibit?

It exhibits inhibitory effects on the
viral neuraminidases from two in-
fluenza viral strains, H1N1 and
H9N2.

It is used for the treatment of cy-
tomegalovirus (CMV) retinitis in
AIDS patients.

Structure→
Backbone

The molecule is a heparan sulfate com-
posed of a backbone of repeating beta-
D-glucuronosyl-(1->4)- N-sulfonyl-alpha-D-
glucosamine units joined by (1->4)-linkages.

Which kind of backbone
does this molecule have?

It has a backbone of repeating
beta-D-glucuronosyl-(1->4)-N-
sulfonyl-alpha-D-glucosamine units
joined by (1->4)-linkages

It has a backbone of repeating
alpha-L-iduronosyl-(1->4)-N-
sulfonyl-alpha-D-glucosamine
units joined by (1->4)-linkages.

Table 4: Examples of automatically generated QA instances. blue stands for reference locations, red for factual errors.

from text. A rule-based program is employed to302

verify the content and, in cases where specific de-303

tails about a given topic are unavailable, we replace304

the topic with its parent topic until the level of305

granularity is appropriate for querying purposes.306

Question Design. We invite two annotators307

to design questions for topics based on the308

extracted contents. For example, contents309

for topic inhibitor include It is a protein310

synthesis inhibitor and It is a mitotic311

inhibitor, annotators may design Which kind312

of inhibitor is this molecule?. For each313

topic, annotators discuss choosing the better design314

as its final question and make sure each question315

can be answered using the molecular descriptions.316

Pos. Options Collection. For the positive op-317

tion, since formal extracted contents may be rigid318

and can’t be directly used as answers, we lever-319

age the in-context learning capability of ChatGPT320

(OpenAI, 2023a) to generate appropriate positive321

options via few-shot prompting.322

Neg. Options Collection. For the same question,323

we take positive options from other molecules as324

negative candidates for each molecule. To elimi-325

nate illegal negatives, we merge synonymous op-326

tions and remove overlapping options. Then we327

adopt BioT5 (Pei et al., 2023) to encode all candi-328

dates and choose candidates with similar semantics329

to the positive option as negatives. Several gener-330

ated QA instances are shown in Table 4.331

Data Split. We split molecules in MoleculeQA into332

train/dev/test sets by scaffolds to divide molecules333

with similar structures into the same sets as sug-334

gested in (Hu et al., 2019), making the QA task335

more challenging yet realistic.336

Quality Control. To provide reliable factual eval-337

uation, LLM and human efforts are combined to338

ensure MoleculeQA’s quality. We convert each QA339

instance into natural language using templates and340

assess its logical and semantic consistency with the341

original description using ChatGPT. This process342

is repeated 3 times to minimize variations. With343

taxonomy guidance, the number of disqualified344

samples is minimal and can be manually resolved. 345

Human Evaluation. We assign one annotator 2 to 346

evaluate the reliability of the test split and receive 347

error rate lower than 1%. Finally, we randomly 348

sample 100 cases and assign two annotators to eval- 349

uate the quality of QA samples. The annotators 350

assess the Consistency between the question and 351

the correct option with the reference caption text, 352

as well as Discrimination between the positive and 353

negative options. Human evaluation results can be 354

found in Table 5. The high consistency and discrim- 355

ination metrics, along with a satisfactory level of 356

agreement (Cohen kappa) among annotators, vali- 357

date the quality and reliability of our MoleculeQA. 358

Metric Annotator 1 Annotator 2 Agreement (κ)

Consistency 99.0 99.0 1.0
Discrimination 97.0 96.0 0.85

Table 5: Evaluation for the generated QAs quality.

3.4 Data Analysis 359

Data Statistics. In Table 6, we present the num- 360

ber of QA samples and the coverage of topics in 361

MoleculeQA in comparison to several popular bio- 362

molecular and chemistry-related benchmarks (Wei 363

et al., 2020; Yue et al., 2023; Hendrycks et al., 2020; 364

Lu et al., 2022). We observe that MoleculeQA 365

is both the first benchmark focused on evaluating 366

molecular factual knowledge and the largest scale 367

QA dataset in the molecular field.

Benchmarks # QA Sophistication

MMLU(Chem) 534 College, High school, Medicine
MMMU(Chem) 638 Inorganic, Organic, Physical
ScienceQA 867 Solution, Reaction, Molecule
ChemistryQA 4,500 Reaction, Molecule, Physics

MoleculeQA 61,574 Structure, Source, Property, Application

Table 6: Number of samples and topics coverage compared
to popular related benchmarks.

368
The train, development, and test split consists of 369

49,993, 5,795 & 5,786 QA samples. The general 370

statistics of the dataset are summarized in Table 7. 371

Data Distribution. Fig 4 provides the visualized 372

distribution of MoleculeQA. All topics in our tax- 373

2All annotators are doctoral students engaged in molecule
research, with at least six months of professional experience.
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Aspects Structure Property Application Source Total

# Train 32,176 4,838 1,917 11,062 49,993
# Dev 3,314 698 558 1,225 5,795
# Test 3,113 731 599 1,343 5,786
Avg. Q Tokens 7.96 9.02 7.90 7.00 7.74
Avg. A Tokens 9.50 10.98 11.93 7.96 9.42

Table 7: MoleculeQA dataset statistics, where Q and A rep-
resent the Question and Answer respectively.

onomy are queried in MoleculeQA for a compre-374

hensive, fine-grained factual evaluation. Inherited375

from ChEBI-20, QA pairs in the Structure aspect376

account for approximately two-thirds of the whole377

MoleculeQA. While topics within each aspect have378

relatively balanced sample numbers.379
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Figure 4: An overview of MoleculeQA topics distribution.
Four coarse-grained aspects occupy the inner circle, and in the
outer circle we list finer-grained non-leaf topics.

4 Experiment380

4.1 Baseline Models381

The main purpose of baseline experiments is to382

investigate current models’ performance in answer-383

ing multiple-choice questions related to molecu-384

lar knowledge. We categorize models based on385

whether their base LLMs are adequately trained on386

a large-scale biomolecular corpus as follows:387

Molecular LLM, represented by MolT5 (Edwards388

et al., 2022), MoMu (Su et al., 2022), BioT5389

(Pei et al., 2023), MolCA (Liu et al., 2023b) and390

BioMedGPT-LM-7B (Luo et al., 2023b). These391

models undergo multiple training rounds during the392

pretraining or incremental training stages, utilizing393

extensive molecular modality data (e.g. SMILES394

or SELFIES strings), biomedical-related scientific395

papers, and molecule-description pairs.396

General LLM, represented by T5 (Raffel et al.,397

2019), OPT (Zhang et al., 2022), GALACTICA398

(Taylor et al., 2022), BLOOM (Scao, 2022), Pythia399

(Biderman et al., 2023), LLama-2 (Touvron et al.,400

2023b), along with its instruction fine-tuned deriva- 401

tives, such as Vicuna (Chiang et al., 2023) and 402

Mol-Instruction-7B (Fang et al., 2023). 403

Large-scale Universal Models. We evaluate the 404

large-scale, state-of-the-art LLMs in few-shot set- 405

tings, including open-access models such as Mix- 406

tral 8×7B (Jiang et al., 2024), and OpenAI’s GPT 407

family, specifically GPT-3.5 (OpenAI, 2023a) and 408

GPT-4 (OpenAI, 2023b) accessed via API 3. 409

4.2 Evaluation Setups 410

Training approaches in our evaluation include: 411

Full Fine-tuning: All parameters of the whole 412

model are updated, including the base LLMs, struc- 413

ture encoders, and projectors for aligning molecular 414

structure and natural language modality. 415

LoRA-based Fine-tuning: The base LLMs are 416

tuned by low-rank adaptation (Hu et al., 2021), and 417

structure encoders are also trainable. 418

Few-shot Setting: We sample 10 QA examples 419

from four aspects respectively to prompt LLMs 420

with task definition and contextual information. 421

We select training approaches and hyper- 422

parameters consistent with the original papers for 423

respective models. Details about training configura- 424

tion and few-shot prompting examples are provided 425

in the Appendix. The main metric of MoleculeQA 426

is the accuracy, which is defined as the ratio of 427

correctly answered samples among all test samples. 428

We present the corresponding accuracy for four 429

aspects as well as the total accuracy in Table 8. 430

4.3 Main Results 431

We summarize the benchmarking results in Table 8: 432

• Comparison over four aspects. Achieving the 433

highest accuracy on Source is generally more fea- 434

sible for each model, whereas addressing Prop- 435

erty and Application presents notable difficulties 436

across all models, with none surpassing a 50% 437

accuracy rate. This phenomenon may be ascribed 438

to the comparatively smaller sample sizes within 439

these particular domains. 440

• Molecular LLMs v.s. General LLMs. Molecu- 441

lar LLMs demonstrate better performance, with 442

a minimum total accuracy over 51%. By contrast, 443

other than T5s, decoder-only General LLMs 444

fail to achieve a total accuracy exceeding 50%, 445

whether fully fine-tuned or tuned with LoRA. 446

• T5 series comparison. Among T5-based meth- 447

ods, T5 demonstrates superior performance com- 448

3https://api.openai.com/v1/chat/completions
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Model # Trainable
Params Implementation Structure Source Property Application Total

Random – – 24.41 22.30 23.04 24.57 24.03

Molecular LLM

MolT5-small 80M full ft 49.59 64.18 46.51 40.90 51.69
MolT5-base 250M full ft 58.01 65.85 45.14 42.24 55.39
MoMu-small 82M full ft 52.71 63.44 44.87 40.57 52.96
MoMu-base 252M full ft 61.58 65.30 43.78 43.07 57.43
BioT5-base 252M full ft 65.98 69.24 49.11 40.73 62.03
MolCA-125M 100M LoRA ft 65.54 67.34 45.77 40.33 60.30
MolCA-1.3B 110M LoRA ft 71.12 70.98 47.81 43.17 64.79
BioMedGPT-LM-7B 40M LoRA ft 54.19 60.01 38.85 40.90 52.23

General LLM

T5-small 60M full ft 55.51 64.41 45.42 38.56 54.55
T5-base 220M full ft 60.42 66.42 45.83 43.74 58.24
OPT-125M 125M full ft 38.58 55.92 41.04 28.73 42.93
OPT-350M 331M full ft 44.39 60.83 46.24 40.57 48.05
GALACTICA-6.7B 12.5M LoRA ft 32.35 41.92 31.05 28.21 33.96
BLOOM-7.1B 27.5M LoRA ft 35.01 47.51 31.46 33.56 37.31
Pythia-6.9B 29.4M LoRA ft 42.79 58.90 38.58 39.07 45.61
Mol-Instruction-7B 40M LoRA ft 37.46 47.36 32.69 29.88 38.37
Llama-2-7B-chat 40M LoRA ft 28.75 39.84 31.33 27.71 31.54
Llama-2-13B-chat 63M LoRA ft 34.37 43.86 31.05 29.72 35.67
Vicuna-v1.5-7B 40M LoRA ft 34.89 44.15 34.20 31.55 36.61
Vicuna-v1.5-13B 63M LoRA ft 37.01 43.19 30.64 31.55 37.07

Large-scale Universal Models
Mixtral-8×7B-Instruct-v0.1 – 10-shot 23.32 31.87 32.89 29.96 27.79
GPT-3.5-1106-turbo – 10-shot 25.60 37.60 28.04 32.22 29.29
GPT-4-1106-preview – 10-shot 60.94 50.19 35.57 43.91 53.47

Table 8: We report the accuracy (%) results on MoleculeQA test set under different aspects (Best for model-wise).

pared to MolT5 (e.g., T5-base achieves total ac-449

curacy surpassing MolT5-base by 5.1%) contra-450

dicting their performance on molecule caption451

tasks. BioT5 combines bio-molecular texts and452

databases for molecular pretraining, achieving453

higher accuracy than T5 (+ 6.5%).454

• Decoder-only LLMs comparison. Among455

Llama-based models, BioMedGPT-7B achieves456

the best performance by incremental pre-training,457

while Mol-Instruction fine-tuned by instructions458

has slight improvement than Llama and Vicuna.459

With the similar size of the base model (7B)460

and LoRA parameters, the performance ranking461

among different models is as follows: Pythia >462

BLOOM > GALACTICA > Llama, which may463

provide a reference for molecular base model se-464

lection. Increasing model size (e.g. 7B→13B)465

also receives mild accuracy gain.466

• Single v.s. Multiple modalities. Both MoMu467

and MolCA are models that jointly incorporate468

molecular 2D graph modality and textual infor-469

mation. They demonstrate improvements over470

their base models (MolT5 and GALACTICA re-471

spectively) that solely rely on a single 1D-text472

modality.473

• Large-scale Universal Models The utilization474

of highly advanced models, such as GPT-4, has475

potential in the field of molecular research. In a476

10-shot scenario, GPT-4 demonstrates accuracy477

comparable to certain specialized models. How- 478

ever, the performance of smaller models declined 479

sharply, which may be attributed to the lack of 480

their emergent abilities((Wei et al., 2022)). 481

5 Analysis 482

We propose the following research questions(RQs) 483

for the molecular domain to guide our analysis: 484

• RQ1: Are existing LLMs powerful enough for 485

application in practical molecular scenarios? 486

• RQ2: What factors are crucial for enhancing 487

LLMs’ ability for molecule comprehension? 488

• RQ3: How do LLMs adhere to the scaling law 489

in molecular scenarios? 490

5.1 In-depth Performance Analysis (RQ1) 491

We draw a preliminary conclusion from Table 8 492

that existing LLMs’ comprehension of molecules 493

is far from satisfactory: When confronted with 494

aspects of Property and Application, pivotal for 495

real-world applications, evaluated models consis- 496

tently fail to achieve commendable accuracy. To 497

more thoroughly assess the methods’ level of com- 498

prehension across various molecular aspects, we 499

plot T5-base and BioT5’s accuracy over each sub- 500

category in our taxonomy in Fig. 5. We find that in 501

aspects of Source and Structure, two models exhibit 502

consistent performance, with accuracy exceeding 503

40% across all categories. But on sub-topics like 504

7



Figure 5: Accuracy of different finer topics under 4 coarse-grained aspects on the MoleculeQA test set. We select BioT5- and
T5-base as representatives of Molecular LLM and General LLM, respectively, represented by solid and dashed bars.

Agricultural Chemical and Approval status, two505

models perform notably sub-optimal. Various ac-506

curacy on different topics can serve as a confidence507

coefficient for related model applications.508

5.2 Crucial Factor Attribution (RQ2)509

We summarize the following crucial factors for510

improving molecular comprehension ability:511

Molecular Corpora. The two text-based variants512

derived from T5, MolT5 and BioT5, displayed di-513

vergent outcomes. MolT5 exhibited lower perfor-514

mance compared to T5, while BioT5 demonstrated515

improved performance. The observed performance516

divergence between MolT5 and BioT5 can be at-517

tributed to the differences in their training corpora,518

specifically in terms of scale and diversity. Sim-519

ilarly, decoder-only models also exhibit this phe-520

nomenon: BioMedGPT (4.2M bio-molecular pa-521

pers) > Mol-Instruction (1M molecular-oriented522

instruction samples) > Vicuna (70K general instruc-523

tion samples) > Llama(General corpus). The above524

findings emphasize the importance of large, diverse,525

and high-quality datasets specific to the molecular526

domain for improving performance.527

Modality Modeling Strategy. We investigate528

which modality modeling strategies can more effec-529

tively facilitate molecular modeling. (1) Modality530

learning: There is a significant performance gap531

between LoRA-based textual methods and methods532

employing multi-modal fusion or full fine-tuning,533

which underscores that a certain scale of trainable534

parameters is necessary to adequately model the535

textual or graph modalities of molecules. (2) Multi-536

modal fusion: Both MolCA and MoMu demon-537

strate that fusing molecular graphs into the seman-538

tic space of LLMs is a viable pathway. However,539

although they both deploy GIN for graph modeling,540

in comparison to MoMu’s adaptation with linear541

layers, MolCA’s graph adaptation utilizing the Q-542

Former (Li et al., 2022) module achieves a much543

more significant improvement.544
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Figure 6: Model parameter size vs. total accuracy on
MoleculeQA test set. Solid lines denote full fine-tune models,
and dashed lines represent LoRA fine-tune.

5.3 Scaling Law for Molecular LLMs (RQ3) 545

In Fig. 6, we depict the performance variations of 546

several models over increasing model scale. We 547

observe a pronounced scaling effect across differ- 548

ent training methods and model architectures, with 549

the scale effect being more evident in the full fine- 550

tuning approaches. This observation is consistent 551

with previous analysis about the scale of parame- 552

ters and indicates that scaling up model size is a 553

promising way to enhance molecular modeling. 554

6 Conclusion and Future Work 555

In conclusion, this paper addresses the lack of eval- 556

uation for factual discrepancies in Large Language 557

Models (LLMs) within the molecular domain. By 558

organizing molecular descriptions into a taxonomy 559

and constructing QA pairs through human and 560

LLM efforts, we introduce MoleculeQA, a novel 561

dataset for molecular factual question answering. 562

Our evaluation reveals shortcomings in existing 563

models, emphasizing critical factors for molecular 564

comprehension and providing guidance for future 565

LLM development. Looking forward, we propose 566

three key future directions: (1) Design a powerful 567

molecular model based on our analysis. (2) Apply 568

MoleculeQA in the training of molecular LLMs. 569

(3) Incorporate additional data sources to enrich 570

MoleculeQA’s comprehensiveness. 571
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Limitations572

We conclude our limitations into the following as-573

pects: (1) Imbalanced data distribution across dif-574

ferent aspects, notably with Structure and Source575

data dominating the majority. This skew results576

from the overall prevalence of structural and source-577

related information in the data sources. To address578

this, future efforts will focus on introducing more579

data related to properties and applications while ex-580

panding topic coverage and diversity, all while safe-581

guarding against data leakage. (2) Absence of full582

fine-tuning for large models: Under the constraint583

of computational resources, we fail to fully fine-584

tune LLMs with 7B parameters and above, leading585

us to opt for adaptation-based fine-tuning meth-586

ods. (3) Absence of a specially designed molecular587

model: As highlighted in the Future Work, we did588

not provide a self-designed model based on bench-589

mark analysis. In future endeavors, high-quality do-590

main datasets and appropriate multi-modal fusion591

strategy will be leveraged to develop a molecular592

model with robust molecular comprehension.593

Potential Risks594

Although MoleculeQA offers a viable approach595

for factual assessment in the molecular domain596

with reliable data quality, there remains a risk of597

misuse. Evaluations on this dataset may not accu-598

rately represent a model’s comprehension over all599

molecules. MoleculeQA could potentially be lever-600

aged to furnish a veneer of reliability for models601

with underlying risks.602
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A Appendix981

A.1 Data Sources and License982

As depicted in Table 10, we elaborate on the ori-983

gins and legal permissions associated with each984

data component utilized in the development of the985

MoleculeQA. This encompasses both biomolecular986

data and textual descriptions. Thorough scrutiny987

was conducted on all data origins to confirm com-988

patibility with our research objectives and sub-989

sequent utilization. Proper and accurate citation990

of these data sources is consistently maintained991

throughout the paper.992

A.2 Details about Taxonomy993

We present the overall hierarchical structure of the994

taxonomy upon which MoleculeQA is based in995

Figure 7. Additionally, Table 9 provides details re-996

garding the subtopics and part of leaf topics encom-997

passed within each of the four aspects: Structure,998

Source, Property, and Application.999

A.3 Experimental Setup Details1000

A.3.1 Baselines1001

The following parts will individually introduce1002

the models we evaluated in this study and the ap-1003

proaches used for implementation.1004

T5 (Raffel et al., 2019) is an encoder-decoder1005

model pre-trained on a multi-task mixture of un-1006

supervised and supervised tasks for which each1007

task is converted into a text-to-text format. We di-1008

rectly fine-tuned it on MoleculeQA dataset from1009

public checkpoints 4 with three different model1010

sizes: small, base and large. It’s important to note1011

that the original T5 pre-training does not incorpo-1012

rate any specific knowledge related to the domain1013

of molecules.1014

MolT5 (Edwards et al., 2022) undergoes joint1015

training on molecule SMILES from the ZINC-151016

dataset (Sterling and Irwin, 2015) and a general1017

corpus from the C4 dataset (Raffel et al., 2019),1018

enabling MolT5 to acquire prior knowledge in1019

both of these domains. It contains three different1020

sizes: small, base, and large. In the experiment, we1021

utilized pre-trained model checkpoints of various1022

sizes 5 released by the authors. Subsequently, we1023

4https://github.com/google-research/
text-to-text-transfer-transformer/blob/
main/released_checkpoints.md#t511

5https://huggingface.co/laituan245/
molt5-small, https://huggingface.
co/laituan245/molt5-base/, https:
//huggingface.co/laituan245/molt5-large/

conducted full fine-tuning on the MoleculeQA train 1024

set, followed by evaluating on the test set. 1025

MoMu (Su et al., 2022) is pre-trained using molec- 1026

ular 2D graphs and their semantically related tex- 1027

tual data (crawled from published Scientific Cita- 1028

tion Index papers) via contrastive learning. We 1029

adopted MoMu-K pre-trained checkpoints 6 where 1030

the text encoder is initialized with the weights of 1031

KV-PLM (Zeng et al., 2022). Following the origi- 1032

nal methodology, we injected encoded graph fea- 1033

tures into MolT5-base & large and conducted fine- 1034

tuning on MoleculeQA. 1035

BioT5 (Pei et al., 2023) as a comprehensive pre- 1036

training framework, builds upon the methodology 1037

of MolT5 while enhancing cross-modal integration 1038

into biology through chemical knowledge and nat- 1039

ural language associations. It leverages SELFIES 1040

for robust molecular representations and extracts 1041

knowledge from the surrounding context of bio- 1042

entities in unstructured biological literature. We 1043

utilized the official base version pre-trained check- 1044

point 7 and converted the MoleculeQA data into 1045

the corresponding format for fine-tuning. 1046

MolCA (Liu et al., 2023b) facilitates a language 1047

model (LM), such as Galactica, in comprehend- 1048

ing both text- and graph-based molecular contents 1049

through its cross-modal projector. This projector, 1050

implemented as a Q-Former, serves to bridge the 1051

representation space of a graph encoder with the 1052

text space of an LM. Additionally, MolCA employs 1053

a uni-modal adapter to enable efficient adaptation 1054

of the LM to downstream tasks. We conducted pre- 1055

training, including both stage 1 and stage 2, on the 1056

125M and 1.3B versions, based on the official code 1057

and cleaned data 8. Subsequently, we performed 1058

finetuning on MoleculeQA. 1059

BioMedGPT-LM-7B (Luo et al., 2023b) It is a 1060

large generative language model based on Llama2 1061

in the biomedical domain. It was fully fine-tuned 1062

from the Llama2-7B-Chat with millions of biomed- 1063

ical papers from the S2ORC corpus (Lo et al., 1064

2020). We directly apply the LoRA finetuning 1065

method on the checkpoint 9 provided by the official 1066

source. 1067

OPT (Zhang et al., 2022) is a series of open- 1068

6https://github.com/ddz16/MoMu?tab=
readme-ov-file#pretrain

7https://huggingface.co/QizhiPei/
biot5-base

8https://github.com/acharkq/MolCA
9https://huggingface.co/PharMolix/

BioMedGPT-LM-7B
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 MoleculeQA

 Property

 Types of Reactions
37

 Biological and Pharmacological Activities
19

 Chemical Interaction and Mechanism
13

 Chemical Properties
6

 Drug and Substance Classification
12

 Environmental and Safety Concerns
7

 Medical and Therapeutic Efficacy
8

 Physical and Sensory Properties
17

 Structure

 Biochemical and Biological Terms

 Proteins and Enzymes
4

 Nucleic Acids and Bases
3

 Carbohydrates and Sugars
5

 Peptides and Amino Acids
3

 Other Biochemical Entities
9

 Chemical Bonding and Interactions
 Types of Bonds

6

 Bonding Concepts
3

 Chemical Compounds and Classes

 Acids and Bases
3

 Organic Compounds
14

 Lipids, Steroids and Fatty Acids
7

 Salts
5

 Ions
11

 Chemical Species and States
 Chemical States

4

 Chemical Species
4

 Chemical Reactions and Processes
 Types of Reactions

39

 Derivatives and Substitutes
13

 Functional Groups and Chemical Entities

 Functional Groups and Moieties
64

 Types of Molecules and Components
33

 Specific Atoms and Atom-related Terms
26

 Molecular Structure and Configuration

 Basic Structure, Backbone and Configurations
57

 Stereochemistry and Chirality
15

 Chemical Linkages and Connections
3

 Conjugate Relationship
3

 Source

 metabolite

 derives from

 isolated from

 found in

 Application

 Agricultural Chemicals
10

 Biological Agents
8

 Chemical Applications and Techniques
10

 Pharmacodynamics and 
 Pharmacokinetics

9

 Regulatory Status and Approval
3

 Research and Development
5

 Therapeutic Use
40

Figure 7: The overarching structure of the MoleculeQA taxonomy comprises multiple aspects and subtopics arranged
hierarchically to categorize various facets of molecular factual knowledge. Due to space constraints, we did not elaborate on all
leaf topics.
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ASPECT SUB TOPICS LEAF TOPICS

Property

Biological and Pharmacologi-
cal Activities

"antimicrobial activity", "anti-neoplastic activity", "antioxidant activity",
"enzyme inhibition", "ion channel activity", "receptor activity"...

Reaction Types "acetylation", "condensation", "dehydrogenation", "epoxidation", "glycosy-
lation", "hydroxylation", "oxidation", "phosphorylation", "reduction"...

Chemical Interaction and Mech-
anism

"action", "affinity", "binding", "conversion", "decomposition", "duration",
"formation", "mechanism", "reaction/binding", "receptor affinity", "selectiv-
ity"...

Chemical Properties "chemical nature", "sensitivity", "ph value", "stability", "valence", "reactiv-
ity"

Environmental and Safety Con-
cerns

"bio-accumulation", "xenobiotic", "cell permeability", "teratogenic agent",
"environmental contaminant", "resistance", "safety concerns"

Medical and Therapeutic Effi-
cacy

"analgesic activity", "anti-inflammatory activity", "antimalarial activity",
"anti-mycobacterial", "carcinogenicity", "medical effects", "potency"...

Physical and Sensory Properties "abundance", "atomic mass", "boiling point", "color", "half-life", "odor",
"optical activity", "physical state", "solubility", "taste", "volatileness"...

Application

Agricultural Chemicals "fungicide", "herbicide", "insecticide", "disease control", "herbicide safener",
"synthetic auxin", "phytoestrogen"...

Biological Agents "antibiotic", "antifungal drug", "antibacterial drug", "antiprotozoal", "antivi-
ral drug", "nematicide", "acaricide", "antiseptic"...

Chemical Applications and
Techniques

"reagent", "indicator", "detection", "derivatisation agent", "fluorescent dye",
"production", "chromatographic reagent", "tracer", "solvent", "food addi-
tive"...

Pharmacodynamics and Phar-
macokinetics

"inhibitor", "antagonist", "prodrug", "modulator", "sympathomimetic agent",
"allergen", "sodium channel blocker", "ligand", "agonist"...

Regulatory Status and Approval "approval", "withdrawn from market", "registered in"...
Research and Development "experimental", "biomarker", "clinical development", "testing"...
Therapeutic Use "anti-arrhythmia drug", "anti-allergic agent", "anti-asthmatic drug", "an-

ticoronaviral agent", "anti-neoplastic agent", "anti-ulcer drug", "anti-HIV
agent", "orphan drug", "recreational drug", "vasodilator"...

Source

found in "found in"
metabolite "metabolite"
derives from "derives"
isolated from "isolated"

Structure

Biochemical and Biological
Terms

"active metabolite", "alkaloid" "coenzyme a", "enzyme", "epitope", "fatty
acyl coa", "glucoside", "hapten", "nucleobase", "oligosaccharide", "sphin-
goid base", "substrate"...

Chemical Bonding and Interac-
tions

"glycosidic bond", "disulfide bonds", "double bond", "exocyclic double
bond", "peptide bond", "c=c double bond", "bond", "connection", "attach-
ment"...

Chemical Compounds and
Classes

"acid", "alcohol", "amine", "cation", "dimer", "enamide", "hydrochloride",
"ion", "lactam", "polyphenol", "salt", "phosphate", "sulfate", "oxoanion",
"zwitterion"...

Chemical Species and States "anhydrous form", "heptahydrate form", "oxidation state", "hydrate", "major
microspecies", "deoxygenated", "major species", "microspecies"...

Functional Groups and Chemi-
cal Entities

"acyl group", "alcohol group", "alkyl group", "anilino group", "carbamoyl
group", "chloro group", "epoxy group", "ester group", "fatty acyl group",
"hydrazino group", "hydroperoxy group", "isopropyl substituent", "keto
group", "methyl group", "oxo group", "pentyl group", "phosphate group",
"primary hydroxy group", "s-acyl component", "s-methyl group", "sulfo
group", "thiol group"...

Molecular Structure and Config-
uration

"alpha-branch", "alpha-carbon", "backbone", "branch", "bridge", "core",
"composition", "configuration", "linked group", "n-substituent", "oh groups",
"omega-hydroxy", "position", "prenyl units", "terminal", "terminal group",
"glycosyl fragment", "repeating unit", "sequence", "subcomponents", "side
chain", "nucleus", "sugar fragment", "unit"...

Table 9: Taxonomy of Property, Application, Structure and Source aspects in MoleculeQA. Leaf Topics correspond to the most
granular concepts, while Sub Topics aggregate leaf topics further. The table presents only a subset of leaf topics.
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DATA SOURCES LICENSE URL LICENSE NOTE

PubChem https://www.nlm.nih.gov/web_
policies.html

Works produced by the U.S. government are not subject to copyright
protection in the United States. Any such works found on National
Library of Medicine (NLM) Web sites may be freely used or reproduced
without permission in the U.S.

FDA Pharm Classes https://www.fda.gov/about-fda/
about-website/website-policies

Unless otherwise noted, the contents of the FDA website (www.fda.gov),
both text and graphics, are not copyrighted. They are in the public domain
and may be republished, reprinted and otherwise used freely by anyone
without the need to obtain permission from FDA. Credit to the U.S. Food
and Drug Administration as the source is appreciated but not required.

Drug Bank https://creativecommons.org/
licenses/by-nc/4.0/legalcode

Subject to the terms and conditions of this Public License, the Licensor
hereby grants You a worldwide, royalty-free, non-sublicensable, non-
exclusive, irrevocable license to exercise the Licensed Rights in the
Licensed Material to: reproduce and Share the Licensed Material, in
whole or in part, for NonCommercial purposes only; and produce, repro-
duce, and Share Adapted Material for NonCommercial purposes only.

ChEBI https://creativecommons.org/
licenses/by/4.0/

You are free to: Share — copy and redistribute the material in any
medium or format. Adapt — remix, transform, and build upon the
material for any purpose, even commercially.

LOTUS https://lotus.nprod.net/ LOTUS is one of the biggest and best-annotated resources for natural
products occurrences available free of charge and without any restriction.

CAMEO Chemicals https://cameochemicals.noaa.
gov/help/reference/terms_and_
conditions.htm?d_f=false

CAMEO Chemicals and all other CAMEO products are available at no
charge to those organizations and individuals (recipients) responsible for
the safe handling of chemicals.

Toxin-Toxin-Target
Database (T3DB)

http://www.t3db.ca/ T3DB is offered to the public as a freely available resource. Use and
re-distribution of the data, in whole or in part, for commercial purposes
requires explicit permission of the authors and explicit acknowledgment
of the source material (T3DB) and the original publication.

Table 10: Data resources and licenses utilized in data collection for MoleculeQA.

sourced large causal language models which per-1069

form similar in performance to GPT-3 (Brown et al.,1070

2020). For comparison with fully fine-tuned T5 se-1071

ries models, we opted to fully fine-tune OPT-125M,1072

-350M, and -1.3B size models on MoleculeQA. In1073

our implementation, we referred to the interfaces1074

provided by Hugging Face 10.1075

GALACTICA (Taylor et al., 2022) is a large lan-1076

guage model (LLM) for Science: trained on over1077

48 million papers, textbooks, reference material,1078

compounds, proteins and other sources of scien-1079

tific knowledge. We selected GALACTICA-125M,1080

-1.3B, and -7.1B versions of the model 11 and con-1081

ducted fine-tuning using LoRA on MoleculeQA.1082

Pythia (Biderman et al., 2023) is an open suite of1083

large language models, all trained on public data in1084

the same order. These models vary in size, ranging1085

from 70M to 12B parameters. They were trained1086

on the Pile dataset, which is constructed from 221087

diverse high-quality subsets. We opted to conduct1088

finetuning based on LoRA on the standard versions1089

of Pythia-410M, -1B, -2.8B, -6.9B, and -12B sizes1090

10https://huggingface.co/docs/
transformers/model_doc/opt

11https://huggingface.co/models?other=
galactica

models 12. 1091

BLOOM (Scao, 2022) is an autoregressive large 1092

language model, trained to continue text from 1093

a prompt on vast amounts of text data using 1094

industrial-scale computational resources. It was 1095

trained on the ROOTS (Laurenccon et al., 2023) 1096

corpus, a dataset comprising hundreds of sources 1097

in 46 natural and 13 programming languages (59 1098

in total). For model scaling evaluation, we chose to 1099

conduct finetuning based on LoRA on the BLOOM- 1100

560M, -1.1B, -1.7B, -3B, and -7.1B sizes versions 1101

of the model 13. Subsequently, we provided the 1102

results on the MoleculeQA test set. 1103

LLaMA-2 (Touvron et al., 2023b) is a collection 1104

of large language models with parameters ranging 1105

from 7 billion to 70 billion. The model architecture 1106

remains largely unchanged from that of LLaMA-1 1107

models (Touvron et al., 2023a), but 40% more data 1108

was used to train the foundational models. Specifi- 1109

cally, Llama 2 includes pre-trained and fine-tuned 1110

models optimized for dialogue applications, termed 1111

Llama 2-Chat. We opted to utilize the LLaMA- 1112

12https://huggingface.co/models?other=
pythia

13https://huggingface.co/docs/
transformers/model_doc/bloom
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2-Chat 7B and 13B models 14 and transformed1113

MoleculeQA into instruction samples for LoRA1114

fine-tuning.1115

Vicuna-v-1.5 (Chiang et al., 2023) is an open-1116

source chatbot that has been trained by fine-tuning1117

LLaMA on over 150K user-shared conversations1118

collected from ShareGPT.com. Preliminary evalua-1119

tion, conducted with GPT-4 as the judge, demon-1120

strates that the Vicuna series achieves competitive1121

performance when compared to OpenAI ChatGPT,1122

while also outperforming other models such as1123

LLaMA. We selected the v1.5 series models and1124

conducted LoRA Finetuning on both the 7B and1125

13B versions 15.1126

Mol-Instructions-7B (Fang et al., 2023) is a low-1127

rank adapter designed for LLaMA-2 base LLM,1128

specifically trained on molecule-oriented instruc-1129

tions sourced from the Mol-Instructions dataset.1130

We utilize the version tailored for LLaMA-2-Chat1131
16, merging the adapter back to the base LLM be-1132

fore proceeding with LoRA fine-tuning.1133

Mixtral-8×7B (Jiang et al., 2024) is a Sparse Mix-1134

ture of Experts (SMoE) language model consisting1135

of a decoder-only architecture. Its feedforward1136

block selects from a set of 8 distinct groups of1137

parameters. Notably, it is recognized as the most1138

robust open-weight model currently available, li-1139

censed under Apache 2.0. We adopt a locally de-1140

ployed approach for conducting few-shot prompt-1141

ing inference.1142

GPT-3.5-turbo and GPT-4. For closed-source1143

models such as OpenAI GPT Family GPT-3.5-1144

turbo (OpenAI, 2023a) and GPT-4 (OpenAI,1145

2023b), we employ batch inference via APIs for1146

conducting few-shot prompt inference. This ap-1147

proach significantly enhances evaluation efficiency1148

and reduces overhead.1149

A.3.2 Hyper-parameters1150

For MolT5, MoMu, T5, and BioT5, we employed1151

the original codebases and hyper-parameters pro-1152

vided in the respective papers for full fine-tuning.1153

Specifically, these models were trained on a single1154

NVIDIA 48GB A6000 GPU. Except for BioT5,1155

which had a learning rate set to 1e-3, the learning1156

rates for all other models were set to 1e-4. All1157

14https://huggingface.co/docs/
transformers/model_doc/llama2

15https://huggingface.co/lmsys/
vicuna-7b-v1.5, https://huggingface.co/
lmsys/vicuna-13b-v1.5

16https://huggingface.co/zjunlp/
llama2-molinst-molecule-7b

models underwent fine-tuning for 100 epochs on 1158

the training set, and the checkpoint with the best 1159

performance on the development set was selected 1160

for evaluation on the test set. 1161

For MolCA, we utilized the author’s recently 1162

updated dataset (excluding any data leakage con- 1163

cerns) and conducted pre-training stage 1 and stage 1164

2 training on 2 NVIDIA 48GB A6000 GPUs. We 1165

maintained consistency with the training hyper- 1166

parameters provided in the original paper. Sub- 1167

sequently, we fine-tuned pre-trained checkpoints of 1168

different sizes on MoleculeQA, with a total batch 1169

size set to 16. The 125M model was trained on a 1170

single GPU card, while the 1.3B model was trained 1171

on two GPU cards. The fine-tuning total epochs 1172

were set to 100 for all versions. 1173

For full fine-tuning of the OPT series, we con- 1174

ducted training on 4 A6000 GPUs for the 125M and 1175

350M versions and 8 GPUs for the 1.3B version. 1176

The total batch size was set to 256, and the learning 1177

rates were set to 3e-4 and 2e-4 for the respective 1178

versions. All other hyper-parameters were kept 1179

consistent with those specified in the original paper. 1180

We performed full fine-tuning for 60 epochs, as we 1181

observed over-fitting phenomena when exceeding 1182

50 epochs. 1183

For the remaining experiments based on LoRA 1184

tuning, we employed the Alpaca-LoRA codebase 1185

for instruction fine-tuning. Except for the 13B size 1186

model trained on 8 A6000 GPUs, all other models 1187

were trained on 4 GPUs. The total batch size was 1188

set to 400, with gradient accumulation and learning 1189

rate adjusted according to the model size (typically 1190

set to 3e-4). We set the total training epochs to 20. 1191

Regarding the LoRA configuration, we uti- 1192

lized the PEFT 17 library for implementation. 1193

We set LoRA’s rank r as 16, α as 16, dropout 1194

rate as 0.05, and applied LoRA to all mod- 1195

ules of ["q/k/v/o_proj", "gate_proj", 1196

"down/up_proj"] (adjusting module names if 1197

necessary based on actual implementation). Equiv- 1198

alent trainable parameters are reported in Table 8. 1199

A.4 Scaling Law in Detail 1200

In Figure 8, we illustrate the accuracy rate changes 1201

across different series models as the model param- 1202

eter scale increases, focusing on the four main as- 1203

pects: Structure, Source, Property, and Applica- 1204

tion. 1205

For fully fine-tuned models, we conducted com- 1206

17https://github.com/huggingface/peft

18
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parisons between T5-based models (represented1207

by T5 and MolT5) and decoder-only-based mod-1208

els (represented by OPT). To validate whether1209

adaptively fine-tuning can augment general do-1210

main LLMs to acquire molecular domain factual1211

knowledge, we compared models such as BLOOM,1212

Pythia, GALACTICA, and the LLaMA2-series1213

models using LoRA fine-tuning.1214

A.5 Prompt of Different Tasks for LLM1215

In the construction process of MoleculeQA, we de-1216

ploy LLMs to finish the following tasks: (1) Corpus1217

classification; (2) Topic extraction; (3) Answer gen-1218

eration; (4) Semantic consistency validation. We1219

report the definitions and task contexts, which are1220

components of prompts for LLMs, of these tasks1221

in Table 11.1222

A.6 Few-Shot Details and Prompt Exhibition1223

We introduce details about our few-shot setting:1224

For each aspect, we select a representative and1225

various samples from different topics as examples1226

to construct an aspect-specific 10-shot prompt. We1227

demonstrate selected samples and the format of1228

prompt in Source aspect in Table 12.1229
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Figure 8: Model parameter size vs. Accuracy in four aspects.

TASK DEFINITION TASK CONTEXT

Corpus Classification
Classify molecular descriptions
from the data source into one of four
aspects.

You are a research assistant for molecular research.
Please help me to classify some corpus.
Four kinds of content are included in this corpus :
The first is Source, which describes...
The second is...

Topic Extraction
Extract attributes of molecules in
specific aspect from original
descriptions.

You are a chemical research assistant,
you are familiar with description text of molecules,
you need to help me extract molecules’ Source
information, which describes...

Answer Generation Generate answer for given
question with original description

You are a chemistry research assistant, and I need you
to complete the following task: You will be given a
detailed description of a molecule and a question, please
extract specific information from the given description
to answer the question...

Semantic Consistency
Validation

Check if generated answer
has consistent semantic
with original description.

You are a chemistry research assistant, and I need you
to complete the following task: You will be given a
description of a molecule and a sentence transcribed from
it, please justify whether their semantics are consistent...

Table 11: Definition and context for each task. We prompt LLMs to finish these tasks for MoleculeQA construction.
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messages = [ {"role":"system", "content": f"""

You are a chemistry research assistant, and I’d like to test your professional ability on molecule understanding, please
complete the following task:

You are provided with the SMILES representation of a molecule and asked a question about the molecule’s source-
related knowledge (Source means the natural or synthetic origin, as well as the production context related to a
molecule), with four options given. Three of these options do not describe the given molecule, and you must select the
correct option.

Here are several examples to show how to finish the Question Answering task:

###

Example 1:

Molecular SMILES: C1=CC(=CC=C1/C=CC(=O)O[C@@H]([C@H](C(=O)O)O)C(=O)O)O

Question: Which molecule does this molecule derive from?

Choices:

A: It derives from a meso-tartaric acid and a cis-4-coumaric acid.

B: It derives from a meso-tartaric acid and a cis-caffeic acid.

C: It derives from a cyanidin cation and a cis-4-coumaric acid.

D: It derives from a cis-vaccenic acid and an oleic acid.

Answer: A

###

###

Example 2:

Molecular SMILES: COC1=C(C=C(C=C1)C=O)OC

Question: Where this molecule can be found?

Choices:

A: It can be found in leaves and fruit of cowberry Vaccinium vitis-idaea, grape seeds and beer.

B: It can be found in peppermint, ginger, raspberry, and other fruits.

C: It can be found in edible vegetables, grains, and fruits.

D: It can be found in grape seeds, in Hibiscus cannabinus (kenaf) root and bark, in apple and in cacao.

Answer: B

###

...

Notice that here are some rules you need to follow:

1. Your answer for each question should be one of A/B/C/D, which corresponds to the four options.

2. For my convenience, please give me a list of ANSWERs for the given instances in the format ’Answer X: ...’, without
any other information.

"""}

{ "role":"user", "content": f"""

Please give me your choices for these instances in the above examples’ styles. No other information is required.

Instance ID: <Instance ID>

Molecular SMILES: <Instance SMILES>

Question: <Instance Question>

Choices: <Instance Choices>

"""}

]

Table 12: An illustration depicting the process of constructing few-shot in-context-learning prompts for MoleculeQA
test set inference with GPT-4-like large-scale universal models.
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