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Abstract. Few-shot learning performs classification tasks and regres-
sion tasks on scarce samples. As one of the most representative few-shot
learning models, Prototypical Network represents each class as sample
average, or a prototype, and measures the similarity of samples and
prototypes by Euclidean distance. In this paper, we propose a frame-
work of spectral filtering (shrinkage) for measuring the difference be-
tween query samples and prototypes, or namely the relative prototypes,
in a reproducing kernel Hilbert space (RKHS). In this framework, we
further propose a method utilizing Tikhonov regularization as the filter
function for few-shot classification. We conduct several experiments to
verify our method utilizing different kernels based on the miniImageNet
dataset, tiered-ImageNet dataset and CIFAR-FS dataset. The experi-
mental results show that the proposed model can perform the state-of-
the-art. In addition, the experimental results show that the proposed
shrinkage method can boost the performance. Source code is available at
https://github.com/zhangtao2022/DSFN.

Keywords: Few-shot learning, Relative-Prototype, Spectral Filtering,
Shrinkage, Kernel

1 Introduction

Humans have an innate ability to quickly learn from one or several labeled
pictures and infer the category of new pictures. In contrast, deep learning, despite
its breakthrough success in computer vision, still needs huge data to drive it.
This shortcoming seriously hinders its applications in some practical situations
where data is scanty. Therefore, it is an important and challenging problem for
machines to acquire the human-like ability to make inferences about unknown
samples based on too few samples. Inspired by this ability of humans, few-shot
learning is proposed and has become a hot spot [9,43,19]. Vinyals et al. [44]
proposed a training paradigm that few-shot learning models should learn new
categories of unseen examples from query set using very few examples from
support set. Meta-learning methods can be well applied to the few-shot settings
that need to complete the task that contains both support set and query set.

https://github.com/zhangtao2022/DSFN
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Fig. 1: Comparison of the relative-prototypes (dotted line) in the Prototypical Networks
(ProtoNet)[41], Deep Subspace Networks (DSN)[40] and the proposed DSFN. Left:
ProtoNet in Euclidean space; Middle: DSN in Euclidean space; Right: DSFN in a
reproducing kernel Hilbert space. For them, ul,1,ul,2 and ul,3 are the relative-prototypes
with class 1(brown), class 2(green) and class 3(blue), respectively.

Recently, a series of meta-learning models for few-shot setting have been pro-
posed, which can be divided into the metric-based models and the optimization-
based models [41,10,42,29,20,24,2,35,17,47,13,23,37,48]. Prototypical Networks
(ProtoNet), as one of the metric-based representatives, proposes to use proto-
types to represent each category, and to measure the similarity between a sam-
ple and a prototype by using Euclidean distance [41]. Based on this idea, some
prototype-related models have been proposed in recent years [5,32,11,33].

The prototype in ProtoNet is estimated by support sample mean in each
class, which may deviate from the true prototype [22]. In [22], Two bias elimina-
tion mechanisms are proposed to eliminate the difference between the prototype
estimated value and the true value. In addition, a method of using a combination
of semantic information and visual information to better estimate the prototype
was proposed, and a significant improvement was obtained [45].

In measurement of sample similarity, Mahalanobis distance would be better
than Euclidean distance to capture the information from the distribution within
the class[3]. In addition, similarity measurement in hyperbolic space that learns
the features of a hierarchical structure could be better than those in Euclidean
space for few-shot image classification [8,16].

In this paper, we propose a method called Deep Spectral Filtering Networks
(DSFN) aiming to better estimate relative prototypes, or the difference between
prototypes and query samples (Fig. 1). Euclidean distance can not fully capture
the information of intra-class difference as it is applied to measure the difference
between sample and prototype. Thus, the main components of the inner class
distance are taken into account in the similarity assessment between the sam-
ple and the prototype, which to some extent interferes with this assessment. In
our approach, the influence of these components is weakened via spectral filter-
ing. It is similar to the kernel mean shrinkage estimation that aims to reduce
the expected risk of mean estimation [26,25,28,27], but the estimated relative
prototypes don’t have to be close to the true mean.
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Fig. 2: The overview of our proposed approach. The features of support set and query
set extracted from fθ are mapped into RKHS by the function ϕω. The relative proto-
types are shrunk based on the eigenvalues and eigenvectors from the support set.

Recent work has shown that kernel embedding can significantly improve the
performance of few-shot learning [8]. Based on kernel mean embedding theory,
our approach can measure the relative prototypes in a reproducing kernel Hilbert
space (RKHS). The advantage of this is that we can deal with the projection
problem of feature space by means of the kernel embedding. The overview of our
proposed approach is shown in Fig. 2.

The contributions of our work are summarized as four folds:

1) To our knowledge, this work is the first to estimate relative-prototypes using
a kernel shrinkage method for few-shot learning.

2) We propose to estimate relative prototypes instead of prototypes, aiming to
better capture the probability information that the query samples belongs
to a class.

3) We propose a framework of spectral filtering to estimate the relative proto-
types. This approach can filter the interference within cluster variation while
measuring the relative prototypes and boost the performance.

4) We introduce kernel embedding for measuring the relative prototypes via
spectral filtering in RKHS, which allows us to apply the kernels that achieve
the state-of-the-art performance.

2 Related Work

2.1 Metric-based Few-shot Learning

Recently, some metric-based meta-learning algorithms for few-shot setting, one-
shot setting and zero-shot setting were proposed, and the representatives of
metric-based meta learning are Matching Networks (MatchingNet) [44] and Pro-
toNet [41]. MatchingNet proposed an attention mechanism for rapid learning. In
addition, it pointed out that in the training procedure, the test condition should
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match with the train condition. ProtoNet proposed a simple strategy to improve
the performance of MatchingNet. The strategy is using prototype, the mean of
support samples in each class, to represent its support set[41]. From the perspec-
tive of classifier design, some works proposed a different kind of classifier with
MatchingNet and ProtoNet. Simon et al. proposed the dynamic classifiers by us-
ing subspaces for few-shot learning called Deep Subspace Networks (DSN)[40].
These classifiers are defined as the projection of the difference between a proto-
type and a query sample onto a subspace. Lee et al. [20] proposed a linear support
vector machine instead of nearest neighbor classifiers for few-shot learning.

Our work is related to the rectification of the prototype. For ProtoNet, the
prototype is simply calculated by averaging the support sample values. Some
kinds of work show that, for improving the classification performance, the pro-
totype need to be better estimated. For example, compared with the simple
visual information, the combination of cross-modal information and visual in-
formation can better represent the prototype [45,33]. In addition, a method of
transductive setting has been proposed to rectify prototype, which diminishes
the intra-class bias via label propagation and diminishes the cross-class bias via
feature shifting [22]. Gao et al. used a combination of the instance-level atten-
tion and the feature-level attention for the noisy few-shot relation classification
[12]. In this method, prototype is a weighted mean of support samples after
conducting by the instance-level attention.

Our work is also related to the similarity measurement of two samples. Sim-
ilarity measurement between samples in ProtoNet is carried out by using Eu-
clidean distance. Euclidean distance implies two assumptions, that is, the char-
acteristic dimensions are not correlated and have consistent covariance. How-
ever, in the real world these two assumptions are not necessarily true. Boris N.
Oreshkin et al. found that, by using the metric scaling, the performance of few-
shot algorithms can be improved by optimizing the metric scaling, and showed
that the performance using scaled cosine distance nears that using Euclidean
distance[32]. The metric scaling can also be learned from a Bayesian method
perspective.[5]. Sung et al. proposed the Relation Networks (Relation Nets) that
learns to learn a transferrable deep metric[42]. In addition, Mahalanobis dis-
tance is proposed to overcome the defect of Euclidean distance on measuring
the similarity between two samples [3,11]. Recently, Khrulkov et al. studied how
to measure sample similarity in a hyperbolic space instead of Euclidean space.
They found that, compared with Euclidean space, hyperbolic embeddings can
benefit the embedding of images and provide a better performance [16]. How-
ever, it is more difficult to operate in hyperbolic space, such as sample averaging,
which further hinders the use of hyperbolic geometry. Fang et al. [8] provides
several positive definite kernel functions of hyperbolic spaces, which enable one
to operate in hyperbolic spaces.

2.2 Kernel Mean Shrinkage Estimation

The method of kernel mean shrinkage estimation is relevant to our work, which
is employed to estimate the relative prototype. In recent years, some work has
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been done on the kernel mean shrinkage estimation. Muandet et al. [25] pointed
out that the estimation of an empirical average in RKHS can be improved by
employing Stein effect. Like James-Stein estimator, they propose several kernel
mean shrinkage estimators, e. g., empirical-bound kernel mean shrinkage esti-
mator (B-KMSE) and spectral kernel mean shrinkage estimator (S-KMSE) [27].
B-KMSE is easily optimized but the degree of shrinkage is the same for all co-
ordinates. S-KMSE can shrink differently on each coordinate on the basis of
eigenspectrum of covariance matrix, but it is difficult to optimize. Furthermore,
“Shrinkage” can be achieved by a generalized filter function that can be em-
bodied by various forms, such as Truncated SVD [28]. For these estimators, the
shrinkage parameters are commonly obtained by a cross-validation score.

3 Methodology

3.1 Preliminary

In metric-based few-shot learning, before measuring the difference between query
and classes, one often firstly represent each class by using support samples be-
longing to them, respectively. Here we consider two different geometric types of
the class representation.

Point type. In this type, a class is often represented as a point, e.g., a
prototype, which is calculated by averaging of support samples in each class
[41]. In addition, the point can also be calculated by summing over the support
samples[42]. In these cases, The probability of measuring a sample belonging to
a class is usually based on the distance between two points. For example, for
ProtoNets, the distance square is expressed as

d2l,c = ∥fθ (ql)− µc∥2, with µc =
1

n

n∑
i=1

fθ (si,c) , (1)

where ql is the lth sample in query set, and si,c is the ith sample in the cth class
of the support set. In addition, fθ(·) with the parameter θ is a network.

Subspace type. In addition to the point type, a class can also be represented
as a subspace, e. g., the subspace spanned by the the feature vectors created
from the support samples in a class [40]. In this case, a sample should be close
to its own class subspace and stay away from the subspaces of other classes. For
example, for DSN, the distance square is expressed as

d2l,c = ∥(I − PcP
T
c )(fθ (ql)− µc)∥2, with µc =

1

n

n∑
i=1

fθ (si,c) , (2)

where Pc the truncated matrix of Wc the eigenvector matrix of empirical co-
variance matrix of support set. For a SVM classifier in few-shot learning, the
representation of each class is one or more subspaces whose boundaries are so-
called hyperplanes, which are determined by the support vectors [20]. In this
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case, a sample should belong to its own class subspace and stay away from the
hyperplanes.

In the following, we show that the class representations of the two types are
not entirely different. For example, we demonstrate that our framework can be
embodied as either of ProtoNet and DSN with different filter functions (see the
Section 3.4).

3.2 Kernel Shrinkage Relative-prototype

Here we propose the definition of kernel shrinkage relative-prototype. Given the
C-way n-shot support set S = {S1,S2, ...,SC} with Sc = {s1,c, s2,c, ..., sn,c},
and the query set Q = {q1, q2, ..., qm}. We firstly use function ϕω to map the
observations of support samples of class c in feature space, and calculate the
prototype as:

µc =
1

n

n∑
i=1

ϕω (fθ (si,c)) , (3)

where ϕω(·) with the parameter ω is a mapping function, and fθ(·) with the
parameter θ is a network. Similar to the concepts in [46,15], we propose the
relative-prototype, the difference between a sample in the query set and a pro-
totype of class as a mean form:

µl,c = ϕω (fθ (ql))− µc =
1

n

n∑
i=1

ml,i,c, (4)

where

ml,i,c = ϕω (fθ (ql))− ϕω (fθ (si,c)) . (5)

Simon et al. proposed a method that using adaptive subspaces instead of proto-
types for few-shot learning [40]. In their work, the sample similarity is measured
via a distance between a query sample and a subspace created from a support
set, which can be seen as a “shrinkage” of the distance between a query sample
and a prototype. Enlightened by it, we apply the shrinkage estimation theory to
extend their idea and measure the sample similarity in a RKHS, or express the
kernel shrinkage estimation of µl,c as

µl,c(λc) = µl,c −
n∑

i=1

h(γi,c, λl,c)γi,c⟨µl,c,wi,c⟩wi,c, (6)

where λl,c is the shrinkage coefficient with the class c, (γi,c,wi,c) are respec-
tively the eigenvalues and eigenvectors of the empirical covariance matrix C =∑n

i=1 ri,c ⊗ ri,c where
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ri,c = ϕω (fθ (si,c))− µc. (7)

In Eq. 6, h(γi,c, λl,c) is a shrinkage function that approaches 1/γi,c as λl,c de-
creases to 0, implying that the relative prototype is fully shrunk; As λl,c in-
creases, the shrinkage of relative prototype decreases or remain the same. There
exist different ways of kernel mean shrinkage estimation that can be realized by
constructing h(γi,c, λl,c) differently, such as Tikhonov regularization and Trun-
cated SVD [28]. In this work we apply the Tikhonov regularization as the filter
function that

h(γi,c, λl,c) =
1

γi,c + λl,c
. (8)

In other ways, however, the kernel relative-prototype shrinkage estimation
µl,c(λl,c) in Eq. 6 is not a computable form as the mapping function ϕω is not
or in some cases can not be known, e. g., ϕω : Rd → R∞. Thus, we propose a
computable form of µl,c(λl,c) based on the work by Muandet et al. [28].

Theorem 1. Denote the n × n metrix Kc
ss whose entry at the row i and

the column j (∀i, j) can be expressed the kernel form k(fθ(si,c), fθ(sj,c)) =
ϕω(fθ(si,c))

Tϕω(fθ(si,c)), and the n × n metrix Kl,c
qs whose entry at the row

i and the column j (∀i, j) can be expressed the kernel form k(fθ(si,c), fθ(ql,c)) =
ϕω(fθ(si,c))

Tϕω(fθ(ql,c)). The kernel kean shrinkage estimation of µl,c in Eq. 6
can be expressed as:

µl,c(λl,c) = µl,c −
n∑

i=1

αl,i,c(λl,c)ri,c, (9)

with

αl,c(λl,c) = gh(K̃c
ss, λl,c)K̃

l,c
qs In, (10)

K̃c
ss = Kc

ss − ÎnK
c
ss −Kc

ssÎn + ÎnK
c
ssÎn, (11)

K̃l,c
qs = Kl,c

qs − ÎnK
l,c
qs −Kc

ss + ÎnK
c
ss, (12)

where αl,c(λl,c) = [αl,1,c(λl,c), ..., αl,n,c(λl,c)]
T and In = [1/n, 1/n, ..., 1/n]T , and

{În}i,j = 1/n. Suppose the eigen-decomposition that K̃c
ss = V ΨV T , then

g(K̃c
ss, λl,c) = V gh (Ψ , λl,c)V

T , (13)

where g(Ψ , λl,c) = diag(h(γ1,c, λl,c), ..., h(γn,c, λl,c)) with the K̃c
ss’s eigenvalues

γ1, γ2, ..., γn.



8 T. Zhang et al.

Proof. Suppose that vi,j is the entry at the row i and column j of V . According
to [39], we have wi,c = (1/

√
γi)

∑n
j vi,jrj,c,

µl,c(λl,c) = µl,c −
n∑

i=1

h(γi,c, λl,c)γi,c⟨µl,c,wi,c⟩wi,c

= µl,c −
n∑

j=1

n∑
i=1

vi,jh(γi,c, λl,c)⟨µl,c,

n∑
k

vi,krk,c⟩rj,c

= µl,c −
n∑

j=1

αl,j,c(λl,c)rj,c.

(14)

where

αl,j,c(λl,c) =

n∑
i=1

vi,jh(γi,c, λl,c)⟨µl,c,

n∑
k=1

vi,krk,c⟩

=

n∑
i=1

vi,jh(γi,c, λl,c)

n∑
k

vi,k⟨µl,c, rk,c.⟩
(15)

Suppose that vi = [vi,1, vi,2, ..., vi,n]
T ,

αl,c(λl,c) =

n∑
i=1

vih(γi,c, λl,c)

n∑
k

vi,k⟨µl,c, rk,c⟩

=

n∑
i=1

vih(γi,c, λl,c)v
T
i K̃

l,c
qs In

= g(K̃c
ss)K̃

l,c
qs In.

(16)

Based on Theorem 1, we can calculate the similarity between each sample in
query set and prototype of each class using µl,c(λl,c).

3.3 Shrinkage Base Classifiers

For the convenience of calculation, we suppose that all the shrinkage parameters
are the same, or λl,c = λ. The similarity of sample-pairs can be measured using
the square of distance between the relative-prototype and original point in RKHS

d2l,c (λ,Sc, ql) = ∥µl,c (λ)∥2

= (αl,c (λ))
T
K̃c

ssαl,c (λ) + IT
n K̃

l,c
qq In − 2 (αl,c (λ))

T
K̃l,c

qs In
(17)

where K̃l,c
qq can be written as
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K̃l,c
qq = Kl,c

qq +Kc
ss −Kl,c

qs −
(
Kl,c

qs

)T
, (18)

with the n × n metrix Kl,c
qq whose entry at the row i and the column j (∀i, j)

can be expressed the kernel form k(fθ(ql), fθ(ql)) = ϕω(fθ(ql))
Tϕω(fθ(ql)).The

probability of the sample ql in query set belonging to class c is

Pω,θ (Y = c|ql) =
exp

(
−ζd2l,c (λ,Sc, ql)

)
∑C

c=1 exp
(
−ζd2l,c (λ,Sc, ql)

) , (19)

where ζ is the metric scaling parameter. The loss function of DSFN is

L(ω, θ) =− 1

m

m∑
l=1

logPω,θ (yl|ql), (20)

where yl is the label of ql. The few-shot learning process with the proposed
DSFN is shown as Algorithm 1.

Algorithm 1 Few-shot learning with the proposed DSFN

Input: Support set S and query set Q, learning rate α.
Output: θ
1: Initialize θ randomly;
2: for t = 1 to T do

3: Generate episode by randomly sampling S(t) from S and Q(t) from Q;
4: for c = 1 to C do
5: for l = 1 to m do

6: Compute K̃c
ss, K̃

l,c
qs and K̃l,c

qq using Eq. 11, Eq. 12 and Eq. 18,

respectively, where Kc
ss, K

l,c
qs and Kl,c

qq are calculated using the samples

in S(t) and Q(t);

7: Compute αl,c(λl,c) with Eq. 10,using K̃l,c
qs and eigenvalue decomposition

of K̃c
ss;

8: Compute dl,c
(
λ(t),S

(t)
c , q

(t)
l

)
using Eq. 17;

9: end for
10: end for
11: Compute the loss function using Eq. 20;
12: Update θ with θ − α∇θL(ω, θ).
13: end for

3.4 Relationship to Other Methods

Here we discuss the connection of our class representation to the point type (e.
g., ProtoNet) and subspace type (e. g., DSN) representations. In fact, they are
different mainly because they use different filter functions.
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Relationship to ProtoNet. As the filter function h(γi,c, λl,c) = 0 instead
of Tikhonov regularization that causes the disappearance of shrinkage effect, and
the map function ϕω is identical, the proposed framework (Eq. 6) is embodied
as ProtoNet.

Relationship to DSN. While using the Truncated SVD as the filter func-
tion that h(γi,c, λl,c) = I(γi,c≥λl,c)γ

−1
i,c instead of Tikhonov regularization, where

I(γi,c≥λl,c)γ
−1
i,c is the indicative function that is 1 if γi,c ≥ λl,c else 0, and the map

function ϕω is identical, the proposed framework (Eq. 6) is embodied as DSN. In
this case, by setting different values of λl,c, different dimension of subspace can
be selected. Formally, the relationship of DSFN and DSN is shown in Theorem
2 (see detailed proof in supplementary material).

Theorem 2. Suppose that: 1) h(γi,c, λl,c) = I(γi,c≥λl,c)γ
−1
i,c ; 2) ζ = 1; 3) λl,c =

constant for all l and c; 4) the map function ϕω is identical. Eq. 17 is reduced
to d2l,c (λ,Sc, ql) = ∥(I − PcP

T
c )(fθ (ql)− µc)∥2 with Pc the truncated matrix of

Wc, where Wc is the eigenvector matrix of empirical covariance matrix C.

Theorem 2 implies that, while using Truncated SVD as the filter function,
the loss function of our proposed framework (Eq. 19) can be reduced to the loss
of DSN with no regularization (See Eq. 5 in the work by Simon et al.[40]).

4 Experiments Setup

4.1 Datasets

miniImageNet. miniImageNet dataset [44] was often used for few-shot learn-
ing, which contains a total of 60,000 color images in 100 classes randomly selected
from ILSVRC-2012, with 600 samples in each class. The size of each image is 84
× 84. In the data set, the training set, validation set and test set contains the
number of classes with 64 : 16 : 20.

tiered-ImageNet. The tiered -ImageNet dataset [36] is a benchmark image
dataset that is also selected from ILSVRC-2012 but contains 608 classes that
is more than that in miniImageNet dataset. These classes are divided into 34
high-level categories, can each category contains 10 to 30 classes. The size of
each image is 84 × 84. Further, the categories are divided into the training set,
validation set and test set with 20 : 6 : 8.

CIFAR-FS. The CIFAR-FS dataset [4] is a few-shot learning benchmark
containing all 100 classes from CIFAR-100 [18], and each class contains 600
samples. The size of each image is 32 × 32. The classes are divided into the
training set, validation set and test set with 64 : 16 : 20.

4.2 Implementation

In training stage, 15-shot 10-query samples are chosen on miniImageNet dataset;
10-shot 15-query samples are chosen on tieredImageNet dataset; 2-shot 20-query
samples are chosen for 1-shot task and 15-shot 10-query samples are chosen for
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5-shot task on CIFAR-FS dataset. λ is set to the best by choosing 0.01,0.1,1,10
or 100. For these datasets, the setting of 8 episodes per batch is utilized in
the experiments. The total number of training epochs is 80, and in each epoch
1000 batches are sampled. In testing stage, 1000 episodes are used to assess
our model. For the 1-shot K-way learning, another support sample was created
by flipping the original support sample, and two support samples are used for
spectral filtering in the validation and testing stages. Our model is trained and
tested in the PyTorch machine learning package [34].

Two backbones, the Conv-4 and Resnet-12, are utilized as the backbones
in our model. For Conv-4, the Adam optimizer with default momentum values
([β1, β2] = [0.9, 0.999]) is applied for the training. The learning rate is initially
set as 0.005 then decayed to 0.0025, 0.00125, 0.0005 and 0.00025 at 8, 30, 45
and 50 epochs, respectively. For ResNet-12, the SGD optimizer is applied for
the training, and the learning rate is initially set as 0.1 then decayed to 0.0025,
0.00032, 0.00014 and 0.000052 at 12, 30, 45 and 57 epochs, respectively.

The identity kernel kide(zi, zj) = ⟨zi, zj⟩ and the RBF kernel krbf (zi, zj) =
exp

(
−∥zi − zj∥2/(2σ2)

)
are chosen as the kernel functions, where σ2 is assigned

as the dimension of embeddings. In addition, the scaling parameter ζ is learned
as a variable. For the filter function, we set the shrinkage coefficient λ as the
fixed multiple of the maximum eigenvalue with each class.

5 Experiments and Discussions

5.1 Comparison with State-of-the-art Methods

Results on miniImageNet dataset. Firstly, the proposed DSFN and the
state-of-the art methods for 5-way classification tasks on miniImageNet dataset
are compared in Table 1. Table 1 shows that the proposed DSFN with identity
kernel can achieve the bests on 5-way 5-shot classification tasks using both Conv-
4 and ResNet-12 backbones, which are higher than DSN with 3.3% and 1.3%,
respectively. The RBF kernel can achieve the second best on 5-way 5-shot clas-
sification tasks. These results illustrate that the proposed DSFN can achieve the
state-of-the-art performance for 5-way 5-shot classification tasks on the dataset.

Results on tiered-ImageNet dataset. We compare the proposed DSFN
with the state-of-the-art methods for 5-way classification tasks on tieredImageNet
dataset, as shown in Table 2. It can be seen that, the performance of DSFN
with identity kernel and RBF kernel is slightly lower than DSN on 5-way 5-shot
classification task. However, they are better than the others on 5-way 5-shot
classification task.

Results on CIFAR-FS dataset. A further comparison is made on CIFAR-
FS dataset, as shown in Table 3. Table 3 shows that the proposed DSFN with
RBF kernel performs the best on 5-way 5-shot classification task, whose test
accuracy is about 1.2% and 2.8% higher than those of DSN and ProtoNet, re-
spectively. Thus, the proposed DSFN performs the state-of-the-art for 5-way
5-shot classification task on the dataset.
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Table 1: Test accuracies (%) from the proposed DSFN and the state-of-the art methods
for 5-way tasks on miniImageNet dataset with 95% confidence intervals. ‡ means that
training set and validation set are used for training the corresponding model.

Model Backbone
5-way

1-shot 5-shot

MatchingNet[44] Conv-4 43.56± 0.84 55.31± 0.73
MAML [10] Conv-4 48.70± 1.84 63.11± 0.92
Reptile [31] Conv-4 49.97± 0.32 65.99± 0.58
ProtoNet[41] Conv-4 44.53± 0.76 65.77± 0.66

Relation Nets [42] Conv-4 50.44± 0.82 65.32± 0.70
DSN[40] Conv-4 51.78± 0.96 68.99± 0.69

DSFN(identity kernel) Conv-4 50.21± 0.64 72.20± 0.51
DSFN(RBF kernel) Conv-4 49.97± 0.63 72.04± 0.51

SNAIL[24] ResNet-12 55.71± 0.99 68.88± 0.92
TADAM[32] ResNet-12 58.50± 0.30 76.70± 0.30

AdaResNet[30] ResNet-12 56.88± 0.62 71.94± 0.57
LEO‡[38] WRN-28-10 61.76± 0.08 77.59± 0.12
LwoF[13] WRN-28-10 60.06± 0.14 76.39± 0.11

wDAE-GNN‡[14] WRN-28-10 62.96± 0.15 78.85± 0.10
MetaOptNet-SVM[20] ResNet-12 62.64± 0.61 78.63± 0.46

DSN[40] ResNet-12 62.64± 0.66 78.83± 0.45
CTM[21] ResNet-18 62.05± 0.55 78.63± 0.06
Baseline[6] ResNet-18 51.75± 0.80 74.27± 0.63

Baseline++[6] ResNet-18 51.87± 0.77 75.68± 0.63
Hyper ProtoNet[16] ResNet-18 59.47± 0.20 76.84± 0.14

Hyperbolic RBF kernel[8] ResNet-18 60.91± 0.21 77.12± 0.15

DSFN(identity kernel) ResNet-12 61.27± 0.71 80.13± 0.17
DSFN(RBF kernel) ResNet-12 59.43± 0.66 79.60± 0.46

Table 2: Test accuracies (%) from the proposed DSFN and the state-of-the art methods
for 5-way tasks on tiered-ImageNet dataset with 95% confidence intervals. ‡ means that
training set and validation set are used for training the corresponding model.

Model Backbone
5-way

1-shot 5-shot

ProtoNet[41] ResNet-12 61.74± 0.77 80.00± 0.55
CTM[21] ResNet-18 64.78± 0.11 81.05± 0.52
LEO‡[38] WRN-28-10 66.33± 0.05 81.44± 0.09

MetaOptNet-RR[20] ResNet-12 65.36± 0.71 81.34± 0.52
MetaOptNet-SVM[20] ResNet-12 65.99± 0.72 81.56± 0.53

DSN [40] ResNet-12 66.22± 0.75 82.79± 0.48

DSFN(identity kernel) ResNet-12 65.46± 0.70 82.41± 0.53
DSFN(RBF kernel) ResNet-12 64.27± 0.70 82.26± 0.52
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Table 3: Test accuracies (%) from the proposed DSFN and some state-of-the art meth-
ods for 5-way classification tasks on CIFAR-FS dataset with 95% confidence intervals.

Model Backbone
5-way

1-shot 5-shot

ProtoNet[41] ResNet-12 72.2± 0.7 83.5± 0.5
MetaOptNet-RR[20] ResNet-12 72.6± 0.7 84.3± 0.5
MetaOptNet-SVM[20] ResNet-12 72.0± 0.7 84.2± 0.5

DSN[40] ResNet-12 72.3± 0.7 85.1± 0.5

DSFN(identity kernel) ResNet-12 70.62± 0.79 86.11± 0.58
DSFN(RBF kernel) ResNet-12 71.28± 0.70 86.30± 0.58

5.2 Ablation Study

The impact of shrinkage parameter. The influence of different values of
shrinkage parameter λ on the performances of the proposed DSFN is shown
in Fig. 3. Fig. 3 shows that the general trends drop for these datasets as the
shrinkage parameter increases from 0.01 to 100, and the descending trends with
5 shot is more obvious that those with 1 shot. These results indicate that smaller
shrinkage parameters (e.g., 1, 0.1, 0.01) or stronger shrinkage effect can better
improve the performance of the proposed model.
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Fig. 3: Test accuracies on few-shot classification tasks from the proposed DSFN against
different values of shrinkage parameter, where ResNet-12 is used.

The effectiveness of shrinkage. We show an ablation study to illustrate
the effectiveness of shrinkage in our work, as shown in Table 4. In this experiment,
the performances of identity kernel and RBF kernel with and without shrinkage
in few-shot classification tasks are compared. Table 4 shows that, the proposed
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Table 4: Accuracies (%) from models with and without shrinkge for 5-way 1-shot and
5-way 5-shot classification tasks, w S: with shrinkge, w/o S: without shrinkge.

Dataset Kernel w S w/o S 1-shot 5-shot

miniImageNet

identity ✓ 60.14± 0.67 77.65± 0.52
identity ✓ 61.00± 0.25 80.13± 0.17
RBF ✓ 58.74± 0.65 79.18± 0.46
RBF ✓ 59.43± 0.66 79.60± 0.46

tiered-ImageNet

identity ✓ 65.05± 0.72 81.14± 0.55
identity ✓ 65.46± 0.70 82.41± 0.53
RBF ✓ 64.23± 0.70 82.07± 0.53
RBF ✓ 64.27± 0.70 82.26± 0.52

CIFAR-FS

identity ✓ 70.54± 0.82 85.30± 0.59
identity ✓ 70.62± 0.79 86.11± 0.58
RBF ✓ 71.18± 0.73 86.09± 0.47
RBF ✓ 71.28± 0.70 86.30± 0.46

model with shrinkage performs better than those without shrinkage for both
kernels. In addition, the improvement of shrinkage on 5-way 5-shot classification
tasks is more obvious than those on 5-way 1-shot classification tasks, probably
because the eigenvalues and eigenvectors with one shot is hard to learn.

5.3 Time Complexity

Our proposed DSFN approach has the time complexity ofO(max(CN3, CN2D)),
where C, N , D are the number of way, shot and feature dimensionality, respec-
tively. The proposed DSFN approach is slower than DSN (O(min(CND2, CN2D)))
and ProtoNet (O(CND)) due to the kernel matrix calculation, eigen-decomposition
and multiple matrix multiplication. A way to reduce the time complexity is using
some efficient algorithms, such as the fast adaptive eigenvalue decomposition [7]
and faster matrix multiplication [1].

6 Conclusion

In this work, we propose a framework called DSFN for few-shot learning. In this
framework, one can represent the similarity between a query and a prototype
as the distance after spectral filtering of support set in each class in RKHS.
DSFN is an extension of some mainstream methods, e. g., ProtoNet and DSN,
and with appropriate filter function, the framework of DSFN can be embodies
as those methods. In addition, we also showed that in this framework, one can
explore new methods by applying diverse forms, e. g., Tikhonov regularization, as
the filter function, and diverse forms of kernels. Several experiments verified the
effectiveness of various specific forms of the proposed DSFN. Future works should
take a closer look at the selection of filter function and the role of shrinkage
parameter in the proposed framework.
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