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Abstract
One of the most promising devices for realizing power production through nuclear fusion is the
tokamak. To maximize performance, it is preferable that tokamak reactors achieve advanced op-
erating scenarios characterized by good plasma confinement, improved magnetohydrodynamic
(MHD) stability, and a largely non-inductively driven plasma current. Such scenarios could en-
able steady-state reactor operation with high fusion gain — the ratio of produced fusion power
to the external power provided through the plasma boundary. Precise and robust control of the
evolution of the plasma boundary shape as well as the spatial distribution of the plasma current,
density, temperature, and rotation will be essential to achieving and maintaining such scenarios.
The complexity of the evolution of tokamak plasmas, arising due to nonlinearities and coupling
between various parameters, motivates the use of model-based control algorithms that can account
for the system dynamics. In this work, a learning-based accelerated model trained on data from
the National Spherical Torus Experiment Upgrade (NSTX-U) is employed to develop planning and
control strategies for regulating the density and temperature profile evolution around desired tra-
jectories. The proposed model combines empirical scaling laws developed across multiple devices
with neural networks trained on empirical data from NSTX-U and a database of first-principles-
based computationally intensive simulations. The reduced execution time of the accelerated model
will enable practical application of optimization algorithms and reinforcement learning approaches
for scenario planning and control development. An initial demonstration of applying optimization
approaches to the learning-based model is presented, including a strategy for mitigating the ef-
fect of leaving the finite validity range of the accelerated model. The approach shows promise for
actuator planning between experiments and in real-time.
Keywords: Fusion, Plasma Control, Reduced Modeling, Actuator Planning, Genetic Algorithms

1. Introduction

Fusion is the process by which two light nuclei combine to form a heavier nucleus and convert a
small amount of mass into a large amount of energy. This energy release makes it a potential means
for producing electrical power. The most likely fuels for fusion are plentiful: deuterium can be
extracted from sea water and tritium can be bred from lithium. Furthermore, there is no associated
risk of a runaway nuclear reaction, no generation of high-level nuclear waste or weapon-grade
material, and no emission of green house gases or air pollution.

While these advantages make fusion an attractive alternative to the use of fossil fuels or nuclear
fission for power production, fusion is extremely challenging from both scientific and technical
perspectives. Fusion reactions require extremely high temperatures (on the order of 100 million
degrees) to occur frequently enough to make a reactor economically viable. The fuel mixture be-
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comes a plasma at these temperatures — an ionized gas of independent negatively and positively
charged particles. The tokamak (Wesson, 2004), one of the most promising devices for confining
fusion plasmas, closes and twists an applied magnetic field lines into a helical structure, trapping
the plasma inside a toroidal vessel and creating a magneto-hydrodynamic equilibrium.

The NSTX-U spherical torus is a low-aspect-ratio tokamak (Menard et al., 2017; Battaglia et al.,
2018), which enables a more compact device that makes efficient use of magnetic fields for con-
finement. Experiments on NSTX-U aim to build on the results of NSTX (Kaye et al., 2015) to
explore how aspect ratio affects the scaling of confinement quality with power, magnetic field, and
plasma current (Kaye et al., 2007) and guide the design of future pilot plants (Menard et al., 2016).
ITER, which is the next experimental step for tokamak fusion research currently under construction
in France, will attempt to be the first device to achieve a burning plasma (one in which a majority
of the heat needed to sustain the plasma comes from fusion reactions) and to show the scientific
feasibility of a commercial nuclear fusion power plant. NSTX-U aims to study key elements of
burning plasma physics, which will be critical to ITER and future reactors, including control of non-
inductive scenarios (Gerhardt et al., 2011), fast ion instabilities (Fredrickson et al., 2018), plasma
boundary physics, heat load management (Vail et al., 2019a,b), and disruption prediction (Gerhardt
et al., 2013).

To facilitate and optimize ITER and future nuclear reactor operations, several challenging con-
trol problems must be addressed. An overview of these control problems can be found in (Pironti
and Walker, 2005; Walker et al., 2006). Numerous actuators, including magnetic coils, neutral
beams, antennae, and gas injection valves are used to initiate, shape, fuel, and heat the plasma.
Many critical tokamak plasma-control problems can be posed as optimization problems, and nu-
merical methods for solving such problems have been explored in (Wehner et al., 2019; Felici and
Sauter, 2012; Xu et al., 2010; Ou et al., 2008). These approaches typically make use of either
high-fidelity simulations from integrated tokamak modeling codes, like TRANSP (Poli et al., 2018;
Hawryluk, 1981), which have significant computational costs, or reduced models, which sacrifice
accuracy for speed. Recent work has shown that machine learning approaches can be used to gen-
erate highly accelerated surrogate models of computationally intensive fusion simulation codes that
retain high accuracy (Boyer et al., 2019; Meneghini et al., 2017; Citrin et al., 2015). Machine
learning can also enable training of highly flexible empirical models for aspects of tokamak plasma
evolution that are not well modeled from first-principles. Machine learning simulation acceleration
and system identification thus enables fast, high fidelity nonlinear modeling spanning a large range
of operating space, relaxing the trade-off of fidelity and speed in optimization and real-time con-
trol applications. The development of high accuracy and high speed models motivates studying the
application of sample inefficient but highly flexible and powerful global methods for optimization,
planning, and feedback approaches, like genetic optimization and reinforcement learning.

In this work, a learning-based data-driven modeling approach is applied to the temperature,
density, and fast ion profile evolution on NSTX-U. The modeling approach includes an acceler-
ated first-principles-based neutral beam injection model, and data-driven models of the response of
stored energy, temperature, and density profile evolution. The model is shown to be able to repro-
duce results of experimental discharges and executes in a time on the order of 1s per simulation (in
contrast with hours that would be needed to complete a TRANSP simulation). The model is used
here to study application of sequential-quadratic-programming and genetic algorithms to actuator
trajectory optimization. Constraints on actuator magnitudes and rate limits are considered, and the
uncertainty of the accelerated model predictions is included as a penalty term, enabling experiment
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operators to vary the trade off of exploration and exploitation through varying the weight on the
penalty term. While the temperature and density profiles modeled in this work represent only a
subset of the plasma states that need to be predicted for detailed scenario development, the demon-
strated modeling approach is actively being extended to predict other important quantities, like the
safety factor profile and equilibrium evolution. Other machine learning approaches are being devel-
oped for predictions of plasma stability on NSTX-U (Piccione et al., 2020), which will eventually
be used as constraints in the trajectory optimization problem.

2. Modeling

2.1. Neutral beam modeling

One of the most time consuming calculations in the integrated modeling code TRANSP is NUBEAM,
a Monte Carlo code that calculates the influence of neutral beam injection on plasma heating, cur-
rent drive, and torque, among other effects. While the code is highly accurate, the computational
cost imposes a burden on its application in optimization and real-time applications. In (Boyer et al.,
2019) an accelerated surrogate model for NUBEAM, referred to here as NubeamNet, was developed
by generating a large database of NUBEAM calculations for a range of plasma conditions relevant
to the NSTX-U operating space. To handle the high-dimensionality of the inputs and outputs of the
regression problem (inputs consist of 15 scalar + 4 profiles each sampled at 20 spatial locations,
outputs consist of 4 scalars + 7 profiles each sampled at 20 points), the modeling approach makes
use of principal component analysis. Effects on the plasma are determined by how the fast injected
beam ions slow down over time as they interact with the bulk plasma in the reactor. The slowing
down process depends on plasma and beam parameters, which can vary throughout a discharge. To
account for this in the model, inputs to the neural network are first filtered with a bank of three sep-
arate low pass filters with time constants chosen to span the expected range of beam slowing-down
times. This gives the neural network a reduced representation of the relevant history of those inputs
to adjust the output appropriately. Finally, an ensemble approach is used, in which multiple (3 in
this work) neural networks each using 2 layers of 100 nodes each are trained on different subsets
of the training data, and the output of the model uses the average of the neural network predictions.
Large disagreement between models within the ensemble was shown to be a good indicator of ex-
trapolation. This metric can be used to assess reliability of predictions or guide expansion of the
training dataset. In this work, the metric is used to discourage trajectory optimization algorithms
from returning results from unreliably modeled operating space. A comparison of NUBEAM pre-
dicted heating and current profiles with those predicted by the neural network is shown in Figure 1
showing good agreement during a TRANSP run that was not in the training dataset.

2.2. Energy and density evolution

While a great deal of progress has been made in theoretical understanding and computational mod-
eling of the turbulence that dominates transport in tokamak plasmas, there is still much work to be
done to enable consistent, accurate predictions of the evolution of these profiles from first-principles
models. Accuracy aside, these models are far too computationally intensive for use in optimization
and real-time applications. While recent work has shown that models for transport coefficients can
be accelerated through the use of neural networks (Meneghini et al., 2017; Citrin et al., 2015), we
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Figure 1: Comparison of NUBEAM calculated beam heating to electrons and fast ion pressure pro-
files predicted by the neural network. The shaded regions represent the standard deviation
of the ensemble of neural network predictions around the mean.

take an alternative data-driven approach that is fast and can reproduce experimental profile evolution
well enough for the shot planning and control applications it is developed for.

Since the shape of the temperature and density profile (distribution along the radial direction of
the plasma cross-section) are typically observed to be ‘stiff’, i.e., insensitive to the detailed distri-
bution of sources, the electron temperature and pressure profiles are written as

ne = 〈ne〉n̂e (1)

neTe = 〈neTe〉n̂eTe (2)

where 〈·〉 represents the volume average and ·̂ denotes the volume-average normalized distribution
profile shape. The profile shapes are modeled in this work by training a neural network to pre-
dict the shape of the electron density and temperature profiles measured during the 2016 NSTX-U
experimental campaign. The model uses plasma current, plasma boundary shaping parameters (ma-
jor radius, minor radius, elongation, etc.), volume-averaged electron density, and volume-averaged
electron pressure as input and is developed using the same approach as described in (Boyer et al.,
2019): principal component analysis is used to reduce dimensionality of the output profiles, and an
ensemble of neural networks composed of 3 fully connected layers of 100 nodes are trained. As
demonstrated in the example results shown in Figure 2, the model is able to accurately reproduce
the shape of the electron density and pressure profiles for a shot not included in the training dataset.

Since the plasma density evolution on NSTX-U is typically dominated by recycling from the
plasma facing components and not well controlled by available actuators, the volume-averaged
electron density 〈ne〉 is taken as a prescribed input to the model, where 〈·〉 represents the volume
average. The impurity and deuterium ion densities are calculated based on quasi-neutrality, and
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Figure 2: Comparison of experimental electron density and pressure profile shapes and those pre-
dicted by the neural network.

assuming a flat effective charge, Zeff , profile and a single impurity species with atomic number ZI :

nI = ne
Zeff − 1

ZI (ZI − 1)
(3)

nD = ne
ZI − Zeff

ZI − 1
. (4)

Impurity and deuterium ion temperature is assumed to scale with electron temperature, i.e.,

TI = TD = αTe. (5)

The evolution of the plasma stored energy W is modeled as

Ẇ = −W
τe

+ P. (6)

The absorbed power P is modeled as the volume integrated power from the NubeamNet model.
For simplicity of presentation, terms due to radiation losses, and Ohmic heating are neglected. The
ITER confinement scaling (ITER Physics Experts Groups, 1999) is used for τe:

τ98y,2 = H98y,20.0562I0.93p B0.15
T n̄0.41e P−0.69

Loss,thR
1.97
0 ε0.58κ0.78. (7)

In this expression, Ip is the plasma current in MA, BT is the toroidal magnetic field in T, n̄e is the
line-averaged electron density in #/m3×1019, R0 is the major radius in m, ε is the inverse aspect
ratio, and κ is the elongation. Plasma boundary shaping parameters like major radius and elongation
are considered to be prescribed in this work, but are controllable parameters that will be considered
in the scenario optimization problem in future work. The loss power PLoss,th is in MW and taken
here to be the total absorbed beam heating power less Ẇ . The factor H98y,2 is used to account for
deviation of achieved confinement from the scaling model and is nominally set to 1.
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The volume-averaged energy density 〈E〉 = W/V can then be written as

2

3
〈E〉 = 〈(nI + nD)TI + neTe〉 (8)

= 〈α(nI + nD)Te + neTe〉 (9)

= 〈αneTeZfac + neTe〉 (10)

where Zfac =
[

Zeff−1
ZI(ZI−1) +

ZI−Zeff

ZI−1

]
. Assuming a flat Zeff profile allows the energy density to be

written as

2

3
〈E〉 = 〈neTe〉 (1 + αZfac) (11)

〈neTe〉 =
2

3
〈E〉/ (1 + αZfac) . (12)

2.3. Model results

The inputs to the model described by (1)-(12) are the time histories of injected beam powers and
the total toroidal plasma current trajectory as well as model parameters H98y2, Zeff , ZI , and α.
While the main impurity species is typically carbon on a device with graphite tiles like NSTX-
U, the parameters H98y2, Zeff , and α are expected to vary from discharge to discharge due to
variations in experimental conditions, e.g., interactions with plasma facing wall components. For
the purposes of control and optimization, they can either be treated as uncertain parameters, can
be fit to reproduce the observables of a specific experimental discharge, or can be estimated in
real-time using a dynamic observer. To demonstrate the behavior of the model, the free parameters
were iteratively selected to approximately reproduce the results of NSTX-U discharge 204118. The
predicted electron density and temperature profile evolution is compared to the measured evolution
in Figure 3. While the predictions due not match the experiment perfectly, they are anticipated to be
suitable for use in between-shots and real-time optimization, and require a calculation time of < 1s,
in contrast to hours required to simulate the same discharge with the TRANSP code.

3. Trajectory optimization

While the model described here only predicts a subset of the quantities that define the plasma state
in a tokamak experiment, we use it here to demonstrate an envisioned application of learning based
models for scenario optimization and control. We consider the problem of optimizing the cost

J0 =

∫ tf

ti

[
(ne(0)− ne,t(0))2 + (ne(0.5)− ne,t(0.5))2

+(Pfi(0)− Pfi,t(0))2 + (Pfi(0.5)− Pfi,t(0.5))2
]
dt, (13)

which weights the error between electron pressure ne and fast ion pressure Pfi and time-varying
target trajectories ne,t and Pfi,t at two radial locations in the plasma (normalized radius ρ = 0.0 and
ρ = 0.5). The evolution of these states is subject to the dynamic equations (1)-(12). The decision
variables are formed by parameterizing the injected beam power and plasma current trajectories as
piecewise linear functions, i.e., they are the amplitude of the inputs at a finite set of points in time,
as well as the time between those points. Decision variables are constrained to enforce magnitude
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Figure 3: Comparison of experimental and predicted electron density and temperature profiles for
discharge 204118, showing good agreement in both the core and edge of the plasma.

and rate limitations of physical actuators and/or plasma stability considerations, e.g., the maximum
available power from each of the 6 beams on NSTX-U is approximately 2MW, and ramping the
plasma current too fast can lead to MHD plasma instabilities that could terminate the discharge.

Because the models are learned from a finite set of training data, it is possible that a planning
algorithm could lead to predictions that are unreliable. To avoid this, each of the learning based
models uses an ensemble approach. The uncertainty in the model is approximated by the variance
of the predictions of the ensemble, σ2ne

and σ2Pfi
, and the time integral of the uncertainty is weighted

in an augmented cost function:

J1 = J0 +

∫ tf

ti

[λne(σ
2
ne

(0) + σ2ne
(0.5) + λPfi

(σ2Pfi
(0) + σ2Pfi

(0.5)]dt (14)

By changing the weights λne and λPfi
, the optimizer can be made to exploit only the region of

operating space that the models are trained on, or to enable exploration of the uncertain operating
space. The latter could be used to help guide experimental exploration or, in the case of models
trained on simulated data, can define regions of interest for conducting additional simulations and
expanding the training dataset.

For planning problems with significant nonlinearities and constraints, gradient-based optimiza-
tion is likely to find only a local optimal solution. Genetic algorithms can overcome this issue at the
expense of the need for a large number of samples. By accelerating the simulation time by several
orders of magnitude compared to the integrated modeling code TRANSP, the model described here
makes it tractable to perform genetic optimization to find a good candidate solution, followed by
sequential quadratic programming to refine the solution.

A population of 60 individuals is initialized. For each generation, 3 elite individuals are retained,
while of the remaining individuals, 80% are generated through a cross-over operation and 20% are
generated through a mutation operation. After several generations, the best solution is then refined
through sequential quadratic programming. This process takes only a few minutes, and could be
greatly accelerated by exploiting parallel computation of individual simulations in each generation,
and for calculating numerical derivatives during the refinement step.
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Figure 4: (left) Optimized actuator trajectories, (center) achieved and targeted fast ion pressure, and
(right) achieved and targeted electron pressure.

Results of applying the optimization approach are shown in Figure 4. The plasma current and
total beam power requests are ramped up to around 1MA and 3.6MW, respectively, and result in
good tracking of the target trajectories for both fast ion pressure and electron pressure. As noted
earlier, the optimization penalizes large ensemble standard deviations (depicted as shaded regions)
to help ensure the obtained results are from the reliably modeled operating space.

4. Discussion

An approach to modeling a subset of tokamak profiles combining learning from empirical data and
simulation acceleration was proposed. Application of optimization algorithms to an actuator plan-
ning problem was enabled by the fast execution time of the modeling approach. The approach is
actively being developed to model additional profiles and behaviors, including the evolution of the
plasma equilibrium, the current profile, and rotation profiles. The more advanced model is antici-
pated to enable a highly accelerated alternative to computationally intensive integrated models for
scenario optimization and control. The rapid execution time will also facilitate studying application
of reinforcement learning approaches for between shots planning and real-time applications.

The digital data for the figures in this paper can be found in:
http://arks.princeton.edu/ark:/88435/dsp011v53k0334.
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