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ABSTRACT

This paper presents a novel look-up table-based demosaicing method for quad
Bayer pattern. Recent deep learning approaches, though effective, are computa-
tionally expensive and unsuitable for efficient implementation. We first introduces
a residual LUT to reduce memory and computational complexity. The method
employs a two-stage demosaicing process: the first stage performs primary de-
mosaicing, while the second stage enhances high-frequency components. Each
stage consists of a number of residual LUTs and they are stacked both in serial and
parallel to effectively enlarge the receptive field size. In experiments, our method
achieves stable performance and improved image quality with efficiency. In ad-
dition, the size and the computational complexity of our method enable efficient
hardware implementation.

1 INTRODUCTION

In a digital camera such as a smartphone, the
raw image data captured by the camera image 38

sensor (CIS) is converted into an RGB image, 35 : Omrs PIPNet
which is more familiar to human perception, s
through the use of an image signal processor Z 32
(ISP) that consists of various processing mod- ® 30 MuLUT-QBD
ules. In CIS, a color filter array (CFA), which is 28 o UT8D KLAP
spatially sampled for each pixel, generates the % -
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color-mosaiced raw data by allowing only light
of specific wavelength ranges to pass through Energy Cost (mJ)
each pixel. The mosaiced raw data is processed
using an ISP to convert it into RGB format, mak-
ing it perceivable by humans. The primary pro-
cessing module in this step is demosaicing. The
demosaicing reconstructs the missing color in-
formation that occurs during light-source sam-
pling by a CFA. This process converts a single-
channel raw image into an RGB 3-channel im-
age. Demosaicing is crucial for the performance
of the ISP because it determines the fundamental image quality, such as sharpness, and can introduce
various artifacts, including color artifacts, Moiré patterns, false direction, zipper artifacts, and jagging.

Figure 1. Energy cost and PSNR comparison on
McMaster benchmark for the quad Bayer demo-
saicing task. The area of the circle represents the
size of the model. Our method achieves a good per-
formance even at a very small LUT size (73KB),
which is small enough to be integrated into smart-
phone hardware.

As the demand of smartphone users for high-quality images has increased, the pixel size of CIS
has been reduced to allow CFA to sample more spatially finely, enabling the achievement of high-
resolution images. However, due to the reduction in pixel size, the drawback of poor signal-to-noise
ratio (SNR) has been exacerbated in low-light environments. To address this issue, most smartphone
manufacturers have adopted the use of a 4x4 quad Bayer pattern, which allows for more convenient
binning to increase SNR compared to the traditional 2x2 Bayer pattern.

Although the quad Bayer pattern has these advantages of improving the SNR for high-resolution
sensors, it results in increased difficulty in demosaicing. Theoretically, the 4x4 quad Bayer pattern is
spatially sampled twice as finely compared to the 2x2 Bayer pattern. This means that the number of
filter taps required for demosaicing in the quad Bayer pattern is twice as many as that in the Bayer
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pattern. Since most smartphone manufacturers utilize hardware-based ISPs, the number of filter taps
has a crucial impact on hardware complexity.

Recently, various studies on quad Bayer demosaicing using a deep-learning approach have emerged
(Kim et al.} 2019; |A Sharif et al., 2021; Zheng et al.| 2024; Zeng et al.,2024; Xu et al., [2024} Sharif
et al.} 2021} Lee et al.,|2023). However, most of the research utilizes numerous convolution layers or
transformer architectures. These approaches demonstrate remarkable performance. However, they
require a significant amount of computation using high-end GPUs. Consequently, these approaches
are not suitable for implementation on smartphones or edge devices. Recently, ISPs for smartphones
should provide the capability for high-resolution video recording (e.g. 8K @30FPS video). Thus, an
implementable approach on hardware is necessary for commercialization.

To reduce computational complexity, several look-up table (LUT)-based approach has been introduced
(Jo & Kiml |2021;Ma et al., 2022} [Li1 et al., 2024b; |Liu et al., 2023} [L1 et al., 2022 2024 c:a)). This
approach trains a deep neural network (DNN) and transfers it into the LUT to significantly reduce
computation. However, the memory utilization of the LUT is exponentially proportional to its input
dimension. As a result, it was difficult to apply to the demosaicing task that requires a large receptive
field. In this paper, we introduce a LUT-based demosaicing method for a quad Bayer pattern CFA
sensor for the first time. Although this approach improves image quality compared with traditional
image processing techniques, it significantly reduces the computational load affordable for hardware
ISP implementation. For the quad Bayer demosaicing task, we effectively enlarge the receptive
field by serially and parallelly cascading multiple LUTs. Additionally, we incorporate a directed
chroma interpolation method, widely used in the traditional demosaicing techniques, into the overall
architecture to ensure stable demosaicing performance.

2 RELATED WORK

2.1 QUAD BAYER DEMOSAICING

A number of deep learning-based methods have been proposed to enhance the performance of the
traditional Bayer pattern demosaicing (Gharbi et al.,2016; Tan et al.|[2017; |Kokkinos & Lefkimmiatis,
2018; Tan et al., 2018; |Qian et al., 2019; Liu et al.| 2020; Xing & Egiazarian, |2022)). Based on these
successes and the emergent of quad Bayer pattern image sensors, researchers have also applied deep
learning approaches to the quad Bayer pattern demosaicing (Kim et al.,2019; 2021} |A Sharif et al.,
20215 Zheng et al., |2024} |Zeng et al., 2024; Jia et al., 2022; Wu et al., |2022; | Xu et al.| |[2024).

DPN (Kim et al., 2019) applied a U-Net (Ronneberger et al., [2015) like feature pyramid network
structure with residual connections. Based on the U-Net structure, PIPNet (A Sharif et al., [2021)
leveraged depth attention (Hu et al., 2018]) and convolutional spatial attention (Woo et al.,[2018)). In
addition, two perceptual losses, a VGG19 feature loss and a CIEDE2000-based color loss (Luo et al.}
2001])), were applied to further enhance the visual quality of the quad Bayer demosaicing task. DRNet
(Zheng et al.,2024) adopted multi-scale encoder-decoder architecture with a kind of self-attention
(Vaswanti et al., [2017) mechanism. DJRD (Zeng et al.,2024) integrated Swin-Transformer (Liu et al.,
2021) and multi-scale wavelet transform to capture non-local dependencies, frequency and location
information effectively. It employed the HDR-VDP2 visual metric (Mantiuk et al., 2011} |Gharbi
et al., 2016) to specifically identify and reduce Moiré and zipper artifacts. DemosaicFormer (Xu
et al.,|2024)) introduced a multi-scale gating module to allow the interaction of cross-scale feature
information.

In recent years, several studies have emerged on demosaicing algorithms for nona-Bayer pattern
(Sharif et al.||2021)) and QxQ Bayer pattern (Cho et al., [2023)), as the commercialization of these
image sensors becomes feasible. Moreover, there has been a study on a unified demosaicing algorithm
capable of simultaneously handling all those Bayer patterns within a single model (Lee et al.| 2023)).

The aforementioned deep learning-based demosaicing methods have achieved performance improve-
ments by focusing on improving the deep learning models themselves. This approach is reasonable
since the models generally possess sufficient model capacity and receptive fields. However, the
method proposed in this paper is a highly lightweight and constrained one using LUTs, resulting in
very limited model capacity and receptive field. In this situation, it is not allowed to increase the
number of layers or utilize attention modules. Instead, each component of the proposed method
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must be designed to maximize its effectiveness within the model’s capacity constraints. To achieve
this, we carefully design the model components by inheriting techniques commonly used in classical
demosaicing methods (Hirakawa & Parks| 20055 |[Zhang & Wul 2005} Jeon & Dubois) 2012} Kiku
et al.,|2016)) before deep learning era. Specifically, a directed processing and a chroma processing are
applied, ensuring that appropriate processing is effectively carried out according to the structure of
the input image.

2.2 DEEP LEARNED LUT

SR-LUT (Jo & Kiml, [2021]) was the first to demonstrate the concept of converting a learned deep
network with a restricted receptive field into a LUT for the super-resolution task. Subsequent to this
work, various methods including MuLUT (Li et al.} 2022} [2024b), SP-LUT (Ma et al., [2022), and
RCLUT (Liu et al.| |2023)) have emerged by leveraging learned LUTs for a better super-resolution
quality. The rationale behind employing deep networks with restricted receptive fields lies in the
fact that the size of LUT being converted increases exponentially with the size of the receptive field.
Consequently, aforementioned LUT-based methods limited the receptive field size to a maximum
of 4 pixels. To address this, various techniques, such as a rotational ensemble (Jo & Kim|[2021), a
cascading (Li et al.| 2024bj |[Ma et al., 2022), and a decoupling (Liu et al.,2023), were introduced to
effectively increase the receptive field size more than 4 pixels.

These methods focused on isotropically expanding the receptive field size for the super-resolution
task. In contrast, for the demosaicing task, an effective direction-aware processing in accordance with
the input image structure is important (Hirakawa & Parks|, |2005} [Zhang & Wu, [2005} Jeon & Dubois|
2012; Kiku et al.,|2016)), thereby requiring the receptive field to be expanded in a direction-aware
manner. In this paper, a novel kernel design tailored to specific directions is proposed, as well as a
two-stage processing approach to consider a larger number of pixels.

Notably, conventional methods typically employ LUTs size exceeding IMB. This is typically small
size, however, it can be challenging to implement on edge devices or in hardware. To resolve this,
techniques aimed at reducing the size of LUTs have been developed. DFC (Li et al., [2024¢) proposed
a method that prioritizes the compression of the diagonal elements of the LUT and TinyLUT (L1 et al.|
2024a) suggested to decompose the correlated pixels, achieving a high compression rate. On the
other hand, this paper proposes the concept of residual LUT, which effectively enables the reduction
of the receptive field size by -1. This enables the construction of the entire pipeline using LUTs with
3-pixel and 2-pixel receptive fields, rather than using the widely used 4-pixel receptive field LUTs,
thus achieving a significant reduction in model size.

3 METHOD

3.1 RESIDUAL LUT

Firstly, we propose a novel residual LUT concept, which processes the residual value and subsequently
compensates for it, inspired by residual learning (He et al.,[2016). Previously, a deep network with
a 4-pixel receptive field could be converted into a 4D LUT. In contrast, the proposed residual LUT
transforms the 4-pixel input into a residual form as

V = LUT[p1 — pol[p2 — pol[p3 — o] + po- €]

The application of the residual LUT enables the reduction of a 4D LUT to a 3D LUT, and a 3D LUT
to a 2D LUT, resulting in a substantial decrease in the overall LUT size. For instance, SR-LUT-S
(Jo & Kim, [2021)), which originally had a size of 1.3MB, can be reduced to 77KB. Furthermore,
the conversion of a 4D LUT to a 3D LUT also leads to a reduction in computational complexity
because 4D interpolation required for output generation is also changed to 3D interpolation. The
proposed residual LUT plays a essential role in reducing our LUT size and computational complexity,
particularly in the case of chroma blocks, as will be discussed later.

3.2 OVERVIEW

The overview of our method is shown in Fig.[2] The proposed method consists of two stages. In the
first stage, a primary demosaicing is applied to the quad Bayer input image to generate a primary
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Figure 2. Our methodology comprises two distinct stages. The first stage performs initial demosaicing,
followed by high-frequency enhancement in the second stage. The type of all LUTs in our method is
the proposed residual LUT, ensuring memory efficiency.

demosaiced image. The second stage takes the result of the primary stage as its input and performs a
secondary demosaicing. Since the first stage involves restoring color values from other color pixels
and distant pixels, it is challenging to achieve a good level of restoration in a single step, particularly
when the model capacity is small, as is the case with the proposed method in this paper. To alleviate
this, the secondary demosaicing is employed to enhance the results of the primary demosaicing,
thereby enhancing the final quad Bayer demosaicing performance.

Each stage comprises a chroma block and a gradient block. The chroma block extracts chroma
components in eight directions: up, down, left, right, up-left, up-right, down-left, and down-right.
In the gradient block, the gradient values of the input quad Bayer image are calculated in the eight
directions, and the weights for each direction are then computed based on the gradient values. Finally,
the output demosaiced image is generated by taking the weighted sum of the chroma components and
the weights, and the input quad Bayer image is added through a residual connection.

Conventional LUT-based approaches primarily target super-resolution (SR) and denoising tasks, but
they are difficult to apply to demosaicing tasks, which require a wider receptive field. The proposed
method is designed to widen the receptive field by connecting small-sized LUTs in series and in
parallel, enabling the reference of distant pixel information. This characteristic allows the method to
be successfully implemented for the quad Bayer demosaicing task for the first time. Furthermore, by
integrating directed processing and chroma processing techniques, which are commonly used in the
demosaicing field (Hirakawa & Parks, [2005; [Zhang & Wul, 2005; Jeon & Dubois}, |2012; [Kiku et al.,
2016), into a learning-based LUT, the performance is improved within the limited model capacity.

The following explanation demonstrates how to generate a green pixel at the top-left corner location
of the red pixel group. Green pixel values in the other corners (i.e. top-right, bottom-left, and bottom-
right) can be generated within the same manner. We utilize a conventional, non deep learning-based
quad Bayer interpolation technique for the generation of red and blue pixels for the final color image.

We present our first demonstration on the green channel only in this study. This is because the green
channel (luminance) is considered as a key in estimating other missing color samples due to several
reasons — 1) the green channel has twice as many samples as red or blue channels in the (quad) Bayer
mosaic pattern, and 2) the human visual system is most sensitive to the green wavelength (Zhang &
'Wul [2005). However, it is worth noting that, our method can also be applied for the generation of red
and blue pixels with appropriate adjustments.

3.3 FIRST STAGE

Chroma Block A chroma block produces chroma components in eight directions from quad Bayer
input image. For a direction-aware processing, three sets of LUT operations are employed consisting
of horizontal, vertical, and diagonal configurations (Fig.[3). The horizontal configuration generates
outputs for the left and right directions, while the vertical configuration generates outputs for the up
and down directions. The diagonal configuration generates outputs for the remaining four diagonal
directions: up-left, up-right, down-left, and down-right. Each of these configuration consists of four
LUTs, which accept a predefined pixel region as input and produce weights w®" for synthesizing
directional chroma components, as well as direction weights w?" for combining the resulting chroma
components across eight directions.

For instance, as illustrated in Fig. [3a] four LUTSs in the horizontal configuration are designed to
take horizontal directionality into account. The LUT ChromH_L which is responsible for processing
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Figure 3. Three different directional configurations in the chroma block of the first stage, allowing
better consideration of the image structures.

the left-directed pixels receives three pixels colored by the red box as input in the form of the
residuals With respect to the central pixel C' (LLL — C, LL — C, and L — ('), and generates three
weights (u) , Ch , and wclh) for synthesizing left and right chroma outputs, as well as two direction

weights (wd”’ and wd”) for combining the left and right chroma components. In other words,
wlclh,wCh wCh wfl“", dir — ChromH _L[LLL — C|[LL — C][L — C].

ry o YR W,

Similarly, three right-directed pixels colored by the yellow box are input to the LUT ChromH_R
in the form of the residuals and generates total five weights as wlch wff wgf, wf” wfjr =
ChromH_R[RRR — C]|[RR — C][R — C]. After conducting the same process for the remain-
ing LUTs ChromH_U and ChromH_D, then we can obtain the final horizontal weight components
as wi = Y, wit, weh =Y wh, wih =37, weh, wiltt = 3w, and wiT = Y7, wd for i €

{l,r,u,d}.

The same processing occurs in both the vertical configuration (Fig.[3b) and the diagonal configuration
(Fig.[3d), with the 1nput pixel locations varying accordingly. In the vertical case, total five weights
are generated (wg", wi, wS", w{", and wg'"). In the diagonal case, total ten weights are generated

ch ch ch ch ch ch ch

ch ch
(wul . Wylys Was Wap's Weip s Wi s Weip, > W' s W ,and wd}m) but without direction weights due

dr,.
to a limited receptive field diagonally.

The computed weights w” are then utilized to synthesize two horizontal (C'h; and Ch,.), two vertical
(Ch,, and Chy), and four diagonal (Chy,;, C'hy,., Chg;, and Chy,.) directional chroma components,
in a total of eight, as follows:

Ch; = wi"(LL = C) + (1 —w")(L - C), Ch, =w®(RR—-C)+ (1 -uw)(R, —C),

where R, = wS"(RR — R) + R,
)
Chy = w"(UU = C)+ (1 —w)(U - C), Chq=w"(DD —C)+ (1 —wi")(Dg—C),

where Dy = w¥" (DD — D) + D,

3)
Chuy =wi (U=0C)+wi(L—C), Chy =wi(UR-C), Chaq=ws(DL-C),

Char = w§ (Dar — C) + Gk (Ray — C) + wgl:, (DRay — C),
where Dy, = w$* (DD — D)+ D, Ray = w3 (RR— R) + R,

DRy = w' (DDR—DR)+(1-wS" )(DRR—DR)+DR,

“
and please refer to Fig.[5a)for the referenced pixel locations. We exploit a blending of a far chroma
(e.g. LL — C') and a near chroma (e.g. L — C), which were widely used in traditional demosaicing
algorithms, designed to facilitate the effective processing of color values (Hirakawa & Parks| |2005;

Zhang & Wu, |2005; Jeon & Dubois|, |2012; |Kiku et al.,|2016). Here we synthesize several pseudo
plxels such as Rs, Ds, and DR, given that the quad Bayer pattern does not contain any green pixels
in these locations. This can be regarded as a synthesis of near chroma values from far chroma
values, and we empirically found an improved outcome can be obtained using the pseudo pixels.
The direction weights w?"s are subsequently merged with the outputs produced by a gradient block
explained in the subsequent chapter, and the resulting weight is then employed.
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Figure 4. The horizontal and vertical processing in the gradient block of the first stage. Compute the
gradient values between intra and inter channels first and use them as inputs for the LUTs.

Gradient Block A gradient block is a responsible for generating the directional weights w; which
is utilized in weighted averaging of the directional chroma. To provide appropriate weights based
on pixel values for each directions, the gradient block detects edges by calculating gradient values
between adjacent pixels. Thus, the LUTs of the gradient block use the gradient values as input instead
of the intrinsic pixel values.

Utilizing more gradient values within large receptive field

is more confident and suitable to treat complex edges com-
. . uu UULL' uu* UURR
pared to using only that of center pixels. However, the
number of inputs of LUT enormous affects to the memory u | || R
requirement of LUT as mentioned before. We propose wlolelrlimll !l clcel vl
a cascade structure of LUTs which effectively enables
. . DL D DR | DRR DL’ D’ DR’
enlargement of the receptive field and improves the repre-
sentation power of LUTs. By constructing LUTs in cas- ED) || EER oDLL| DD’ DDRR

cade, the memory requirement is extremely reduced from
O(ptY) to the M * O(pt*). Assuming that we construct
a single LUT with 15-input then the required memory is ) o
about 4.3TB (when pr=7). On the other hand, the structure Figure 5. Pixel positions used to com-
of the cascade LUT as shown in Fig. [fa] seven 3-input Pute directional chroma components.
LUT and a single 2-input LUT are required, which means ~Please see the text for details.

that only 2.4KB of memory is sufficient to construct the

cascade structure (i.e. 7'° to 7 x 73 4 7%). The cascade LUT for Intra Horizontal (Fig.[4a)) detects
the vertical edge component with horizontal gradient values. However, horizontal gradient values
are acquired with only adjacent intra-color pixels, which can cause suffering from aliasing artifact
due to the periodic pattern of 4-pixels. Thus, not only the gradient values on intra-color pixels but
inter-color gradient should be considered together. Fig. dc|shows the component for generating Inter
Horizontal gradients with the gradient values between inter-color pixels.

(a) First Stage (b) Second Stage

In addition to the horizontal components, vertical components Intra Vertical (Fig. b)) and Inter
Vertical (Fig.[d) can be acquired by replacing input gradient values by vertical gradient values with
the similar manner.
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As shown in Fig. de] the horizontal and vertical components previously calculated are then aggregated

grad grad grad grad grad grad grad
to generate HV directional components w;, ™, w{*%, wil %, wy =, wy, -, wite, wy, -, and

wZ:‘ld Here, the residual LUT structure is also used to reduce the size. Similarly, SB directional

grad grad grad 97ud grad grad grad 97
components wy, ", WA, wiTH wg T, wy, L wiTE wg , and wy, " also computed using the

slash and backslash gradlents (Flg l) because HYV alone does not cons1der the diagonal gradients

well. Finally, the directional weights of the gradient block wgm{i wgrad, grad, wgmd, wfjad,

d d
wdrd, w9 ", and w9 "

ad

are generated by simply adding the HV and SB components.

To obtain the final directional weights for for chroma averaging, two direction weights from the
chroma block (w®"s) and the gradient block (w97%?s) are merged by addition and a softmax is
applied as follows:

e(w;iir+w§rad)

ir rad
5, et

w; = fori € {l,r,u,d,ul,ur,dl,dr}. 5)

Final output of the first stage is computed as follows:

E:?Ui(jhi
Do wi

then the initial green output image is obtained.

C' = +C, 6)

3.4 SECOND STAGE

The second stage consists of a high-frequency block and a gradient block. The high-frequency block
executes a process that is largely analogous to that of the first stage’s chroma block. Since the input
image has color values filled in after the processing of the first stage, the processing of the second
stage can be regarded as an enhancement of directional high-frequency components. This block
generates weights w”f and the weights are utilized to synthesize two horizontal (H f; and H f,.),
two vertical (H f,, and H fy), and four diagonal (H f,;, H fy,, H fq and H fg,) high-frequency
components as follows:

Hfy =wp (LL = C") +w (L' = C"), Hf. = w"(RR' — C") + v (R - "), ()

Hf, = wl(UU - ") +wl (U — "), Hfs=whi(DD' - ")+ (D' - "), ®)

Hfy=w oL -+, (UULL = "), Hfu, = whf(UR’ —CY+wh (UURR' —

),

Hfy= wdl (DL’ -+ wdd”(DDLL’ C"), Hfqy = wd (DR’ C' + wddTT(DDRR' - "),

©))

and please refer to Fig. [5b|for the referenced pixel locations.
In this block, the directional weights w?"s are no longer generated, instead the gradient block solely
responsible for generating them. This is a reasonable design choice as the gradient block can consider
more pixels with directionality compared to this block. The gradient block of the second stage is

exactly the same as that of the first stage.

3.5 STEPWISE FINETUNING

After training the DNN with the above structure, the values at predetermined sampling point positions
are converted into LUTs. During inference using the LUT, output values are generated through
interpolation based on the sampling points (Jo & Kiml 2021)). This process introduces interpolation
errors, which are mitigated through sampling point-aware finetuning (L1 et al.| |2022;2024b).

Since the proposed method consists of multiple stacked LUTs, we perform a stepwise finetuning
according to the model’s characteristics, instead of finetuning all parts simultaneously. The DNNs
in the first stage are first finetuned, and then the DNNs in the second stage are finetuned. Within
each stage, the finetuning of each block is performed separately, with gradient blocks being finetuned
first. Specifically, we first finetune the parts at the leftmost level in Fig. fa] (5 LUTs), followed by the
next level (2 LUTSs), then the last level (1 LUT), and finally the aggregation stage in Fig. During
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Table 1. Quantitative comparisons with other methods. Our method, incorporating the residual
LUT and the cascading architecture, achieves efficient implementation while maintaining a good
performance relative to its compactness. For DNN-based methods, * stands for the number of
parameters and © for FLOPs instead of IOPs.

Size  IOPs Energy Kodak McMaster Urban100
(KB) (G) (mJ) PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS PSNR SSIM LPIPS DISTS

MuLUT-BD 1223 1.006 0.93 28.78 0.849 0.1410 0.1487 27.07 0.777 0.1732 0.1859 27.66 0.878 0.1016 0.1265
LUT MuLUT-QBD 23735 2.097 2.03 31.33 0.921 0.0741 0.0780 29.71 0.891 0.0959 0.1140 30.06 0.931 0.0519 0.0782

Type Method

Ours 73 4.879 537 37.18 0.972 0.0210 0.0248 36.87 0.968 0.0206 0.0313 35.58 0.976 0.0136 0.0226
DNN PIPNet 3.459M° 18367 558  39.19 0.983 0.0103 0.0144 36.96 0.960 0.0194 0.0297 36.86 0.979 0.0090 0.0176
KLAP 17M" 26887 6641 33.44 0.941 0.0844 0.0706 27.82 0.864 0.1350 0.1106 30.11 0.926 0.0574 0.0767

Ours

MuLUT-BD MuLUT-QBD

[FAR s F

KLAP PIPNet

=z

Figure 6. Please zoom in to see details for qualitative comparisons. Our method shows excellent
restoration capability in thin edge areas through the directional chroma processing. It also shows less
noise in flat areas.

this stepwise finetuning, all parts of the previous step are frozen. Similar procedure is applied to the
remaining directions. After the finetuning of the gradient block is completed, the finetuning of the
chroma block follows. The same process is repeated in the second stage, and this finetuning sequence
was determined through extensive experiments.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We train our quad Bayer demosaicing deep model with the DF2K dataset (Agustsson & Timofte,
2017} [Lim et al} 2017), which is widely used in the quad Bayer demosaicing task. The DF2K dataset
contains 3450 RGB images with various scenery. For the training, quad Bayer pattern is sub-sampled
from the RGB images with 48x48 patch size. Our model is trained with the AdamW optimizer
(Loshchilov & Hutter, |2017) using the mean-squared error loss. The first stage is trained for 82K
iterations with a mini-batch size of 16, and the second stage is trained for another 40K iterations.
After selecting the uniform sampling points as 7, the stepwise finetuning is conducted for 20K more
iterations, for each step takes 2K iterations.

After the training is completed, each part of the model is converted into its respective LUT. Once the
LUTs are created, the inference can be performed using solely LUTs. The output of each LUT is
obtained with tetrahedral or triangular interpolation for 3-input LUTs and 2-input
LUTs respectively. The output values are passed as input values to the next LUT, or generate the
output image at the end of the process.
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4.2 COMPARISONS WITH OTHERS

We evaluate our method with Kodak (L1 et al., 2008)), McMaster (Zhang et al., 2011}, Urban100
(Huang et al., [2015)), BSD100 (Martin et al., 2001)), and MIT Moire (Gharbi et al., 2016)). We report
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) (Wang et al., 2004) for the
image fidelity, LPIPS (Zhang et al.,|2018) and DISTS (Ding et al.l 2020) for the perceptual quality,
and we calculate the LUT size, the number of integer operations (IOPs), and the theoretical energy
cost which is introduced in (Li et al., 2024b)), for the efficiency comparisons.

We compare our method with LUT-based Bayer demosaicing method MuLUT (Li et al., |2024b),
and DNN-based quad Bayer demosaicing methods PIPNet (A Sharif et al.|[2021]) and KLAP (Lee
et al., 2023). Since MuLUT was not designed for quad Bayer demosaicing task, therefore, we test
two versions: the Bayer demosaicing model proposed in the MuLUT paper (MuLUT-BD), and
a customized model for the quad Bayer demosaicing task (MuLUT-QBD). MuLUT-BD consists
of two-level structure: MuLUT-S followed by MuLUT-SDY and the receptive field is 5x5. For
MuLUT-QBD, we replace MuLUT-S as MuLUT-SDYEHO in the MuLUT-BD so the receptive field
is enlarged to 11x11.

Quantitative Comparisons Quantitative comparisons with other methods are shown in Table
The PSNR and SSIM values are calculated in the G-channel only, and the IOPs and energy costs are
calculated for 1280x720 input image size.

Compared to the MuLUT variants, our method shows a significant performance gain in terms of
image quality, achieving average improvement of 4.68dB across the five benchmarks. In addition the
LUT size of our method is drastically reduced to 73KB by using 2-input and 3-input LUTs with 7
sampling points, instead of using the widely used 4-input LUTs and 17 sampling points settings (Jo &
Kim, 2021; Ma et al.| 2022} [Liu et al.l 2023} [Li1 et al., [2024b). Due to the increase in the total number
of LUTSs, the computational and energy costs result in more than doubled compared to MuLUT-QBD,
however, this is within an acceptable criteria for ISP hardware implementation. Note that the most
important factor for hardware implementability is the model size, which affects the physical size of
the chip.

Although DNN-based methods show better performance, they are much less efficient than LUT-based
methods in terms of computation and energy cost. Specifically, PIPNet is more than 100 times more
expensive than our method both in memory and computation. These characteristics make efficient
hardware implementation very challenging. Notably, our method achieves a very compact LUT
size of 73KB while maintaining a reasonable performance. We found that this size is affordable to
conventional image signal processor hardware in mobile processors.

Qualitative Comparisons  Fig. [6] shows the visual comparisons with other methods. MuLUT-BD
and MuLUT-QBD show noticeable artifacts due to the absence of quad Bayer adaptive processing.
KLAP, being trained on inverse tone-mapped images, shows poor performance on conventional
RGB images (train-test distribution mismatch) despite of applying its meta-update feature. PIPNet
generally shows good sharpness by employing extensive computations. However, while PIPNet shows
poor performance in specific areas such as thin edges, the proposed method achieves better results in
terms of noise and aliasing artifacts despite using a much smaller model and fewer computations,
through the directional chroma processing. We conjecture it’s because the proposed gradient block
can effectively process image gradients through directionally stacked LUTs.

Please refer to the appendix [A] for ablation study, failure case, and analysis on sampling points.

5 CONCLUSION

This study presents the first demonstration of LUT-based quad bayer demosaicing. By proposing a
residual LUT approach, we reduce the LUT size to make it suitable for hardware implementation.
We effectively increased the receptive field by stacking multiple LUTs both in serial and parallel.
Furthermore, we apply a directional chroma processing, inspired by traditional demosaicing methods,
to mitigate artifacts. While this paper focused only on the G color channel, we believe it can be
extended to RB channels with a slightly modified model design.



Under review as a conference paper at ICLR 2026

REFERENCES

SM A Sharif, Rizwan Ali Naqvi, and Mithun Biswas. Beyond joint demosaicking and denoising:
An image processing pipeline for a pixel-bin image sensor. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 233-242, 2021.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, July 2017.

Minhyeok Cho, Haechang Lee, Hyunwoo Je, Kijeong Kim, Dongil Ryu, and Albert No. Pynet-qx
q: An efficient pynet variant for qx q bayer pattern demosaicing in cmos image sensors. I[EEE
Access, 11:44895-44910, 2023.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
structure and texture similarity. IEEFE transactions on pattern analysis and machine intelligence,
44(5):2567-2581, 2020.

Michaél Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. Deep joint demosaicking and
denoising. ACM Transactions on Graphics (ToG), 35(6):1-12, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Keigo Hirakawa and Thomas W Parks. Adaptive homogeneity-directed demosaicing algorithm. leee
transactions on image processing, 14(3):360-369, 2005.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132-7141, 2018.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 5197-5206, 2015.

Gwanggil Jeon and Eric Dubois. Demosaicking of noisy bayer-sampled color images with least-
squares luma-chroma demultiplexing and noise level estimation. IEEE Transactions on Image
Processing, 22(1):146-156, 2012.

Jun Jia, Hanchi Sun, Xiaohong Liu, Longan Xiao, Qihang Xu, and Guangtao Zhai. Learning rich
information for quad bayer remosaicing and denoising. In European conference on computer
vision, pp. 175-191. Springer, 2022.

Younghyun Jo and Seon Joo Kim. Practical single-image super-resolution using look-up table.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
691-700, 2021.

Daisuke Kiku, Yusuke Monno, Masayuki Tanaka, and Masatoshi Okutomi. Beyond color difference:
Residual interpolation for color image demosaicking. IEEE Transactions on Image Processing, 25
(3):1288-1300, 2016.

Irina Kim, Seongwook Song, Soonkeun Chang, Sukhwan Lim, and Kai Guo. Deep image demosaicing
for submicron image sensors. Electronic Imaging, 32:1-12, 2019.

Irina Kim, Yunseok Choi, Hayoung Ko, Dongpan Lim, Youngil Seo, Jeongguk Lee, Geunyoung Lee,
Eundoo Heo, Seongwook Song, and Sukhwan Lim. Under display camera quad bayer raw image
restoration using deep learning. Electronic Imaging, 33:1-7, 2021.

Filippos Kokkinos and Stamatios Lefkimmiatis. Deep image demosaicking using a cascade of

convolutional residual denoising networks. In Proceedings of the European conference on computer
vision (ECCV), pp. 303-319, 2018.

10



Under review as a conference paper at ICLR 2026

Haechang Lee, Dongwon Park, Wongi Jeong, Kijeong Kim, Hyunwoo Je, Dongil Ryu, and Se Young
Chun. Efficient unified demosaicing for bayer and non-bayer patterned image sensors. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12750-12759,
2023.

Huanan Li, Juntao Guan, Lai Rui, Sijun Ma, and Lin Gu. Tinylut: Tiny look-up table for efficient
image restoration at the edge. Advances in Neural Information Processing Systems, 37:85340—
85359, 2024a.

Jiacheng Li, Chang Chen, Zhen Cheng, and Zhiwei Xiong. Mulut: Cooperating multiple look-
up tables for efficient image super-resolution. In European conference on computer vision, pp.
238-256. Springer, 2022.

Jiacheng Li, Chang Chen, Zhen Cheng, and Zhiwei Xiong. Toward dnn of luts: Learning efficient
image restoration with multiple look-up tables. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024b.

Xin Li, Bahadir Gunturk, and Lei Zhang. Image demosaicing: A systematic survey. In Visual
Communications and Image Processing 2008, volume 6822, pp. 489-503. SPIE, 2008.

Yinglong Li, Jiacheng Li, and Zhiwei Xiong. Look-up table compression for efficient image restora-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp- 26016-26025, 2024c.

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual
networks for single image super-resolution. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, July 2017.

Guandu Liu, Yukang Ding, Mading Li, Ming Sun, Xing Wen, and Bin Wang. Reconstructed
convolution module based look-up tables for efficient image super-resolution. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 12217-12226, 2023.

Lin Liu, Xu Jia, Jianzhuang Liu, and Qi Tian. Joint demosaicing and denoising with self guidance.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2240-2249, 2020.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101,2017.

M Ronnier Luo, Guihua Cui, and Bryan Rigg. The development of the cie 2000 colour-difference
formula: Ciede2000. Color Research & Application: Endorsed by Inter-Society Color Council,
The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of
Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour
Society of Australia, Centre Frangais de la Couleur, 26(5):340-350, 2001.

Cheng Ma, Jingyi Zhang, Jie Zhou, and Jiwen Lu. Learning series-parallel lookup tables for efficient
image super-resolution. In European Conference on Computer Vision, pp. 305-321. Springer,
2022.

Rafat Mantiuk, Kil Joong Kim, Allan G Rempel, and Wolfgang Heidrich. Hdr-vdp-2: A calibrated
visual metric for visibility and quality predictions in all luminance conditions. ACM Transactions
on graphics (TOG), 30(4):1-14, 2011.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings eighth IEEE international conference on computer vision. ICCV 2001,
volume 2, pp. 416-423. IEEE, 2001.

11



Under review as a conference paper at ICLR 2026

Guocheng Qian, Yuanhao Wang, Jinjin Gu, Chao Dong, Wolfgang Heidrich, Bernard Ghanem, and
Jimmy S Ren. Rethink the pipeline of demosaicking, denoising, and super-resolution. arXiv
preprint arXiv:1905.02538, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention—MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part 111
18, pp. 234-241. Springer, 2015.

SMA Sharif, Rizwan Ali Naqvi, and Mithun Biswas. Sagan: Adversarial spatial-asymmetric attention
for noisy nona-bayer reconstruction. arXiv preprint arXiv:2110.08619, 2021.

Daniel Stanley Tan, Wei-Yang Chen, and Kai-Lung Hua. Deepdemosaicking: Adaptive image
demosaicking via multiple deep fully convolutional networks. IEEE Transactions on Image
Processing, 27(5):2408-2419, 2018.

Runjie Tan, Kai Zhang, Wangmeng Zuo, and Lei Zhang. Color image demosaicking via deep residual
learning. In Proc. IEEE Int. Conf. Multimedia Expo (ICME), volume 2, pp. 6, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. /EEE transactions on image processing, 13(4):600—612,
2004.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In Proceedings of the European conference on computer vision (ECCV), pp.
3-19, 2018.

Xun Wu, Zhihao Fan, Jiesi Zheng, Yaqi Wu, and Feng Zhang. Learning to joint remosaic and denoise
in quad bayer cfa via universal multi-scale channel attention network. In European Conference on
Computer Vision, pp. 147-160. Springer, 2022.

Wenzhu Xing and Karen Egiazarian. Residual swin transformer channel attention network for image
demosaicing. In 2022 10th European Workshop on Visual Information Processing (EUVIP), pp.
1-6. IEEE, 2022.

Senyan Xu, Zhijing Sun, Jiaying Zhu, Yurui Zhu, Xueyang Fu, and Zheng-Jun Zha. Demosaicformer:
Coarse-to-fine demosaicing network for hybridevs camera. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1126-1135, 2024.

Haijin Zeng, Kai Feng, Jiezhang Cao, Shaoguang Huang, Yongqiang Zhao, Hiep Luong, Jan Aelter-
man, and Wilfried Philips. Inheriting bayer’s legacy: Joint remosaicing and denoising for quad
bayer image sensor. International Journal of Computer Vision, 132(11):4992-5013, 2024.

Lei Zhang and Xiaolin Wu. Color demosaicking via directional linear minimum mean square-error
estimation. /EEE Transactions on Image Processing, 14(12):2167-2178, 2005.

Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. Color demosaicking by local directional
interpolation and nonlocal adaptive thresholding. Journal of Electronic imaging, 20(2):023016—
023016, 2011.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

Bolun Zheng, Haoran Li, Quan Chen, Tingyu Wang, Xiaofei Zhou, Zhenghui Hu, and Chenggang
Yan. Quad bayer joint demosaicing and denoising based on dual encoder network with joint
residual learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
7552-7561, 2024.

12



Under review as a conference paper at ICLR 2026

A APPENDIX

Slash and Backslash Directional Processing
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Figure 7. The slash and backslash directional processing in the gradient block of the first stage.
Ablation Study

Table 2. The results of ablation study. The proposed method achieves superior performance through
the combination of all the components, while the stepwise finetuning proves to be essential.

Method Size GIOPs Energy Kodak McMaster Urban100 BSD100 MIT Moire

(KB) (mJ) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
w/o 2nd stage 39.32  2.395 2.68 3337 0956 3336 0.952 2994 0953 31.63 0.948 30.04 0915
w/o Ch&HF blocks  25.05 2.633 272 3156 0918 3331 0.943 28.18 0917 2992 0.899 2941 0.882
w/o Gradient blocks 48.23 2.321 286 3630 0966 3642 0966 34.62 0971 34.69 0.963 32.68 0.932
w/o ft. 7328 4.789 537 3541 0953 3598 0.962 3396 0964 33.88 095 3237 0.929
Ours 7328 4.789 537 37.18 0972 36.87 0.968 3558 0976 35.69 0971 3342 0.939

w/o Ch&HF b. w/o Gradient b. w/o 2nd stage w/o ft. Ours

Figure 8. The qualitative results of ablation study. Our method effectively handles aliasing-prone
areas caused by the quad Bayer pattern (2px-wide repeated lines).

We conduct an ablation study to verify the effectiveness of each part of our method, and the result is
shown in Table 2] and Fig.[8] From the results, we confirm that performance degradation occurs when
each proposed component is removed, in order from the first row: the second stage, the chroma and
high-frequency blocks, the gradient blocks, and the stepwise finetuning. This verifies that optimal
performance is achieved when all the components are combined, proving that each component
is essential. Especially, the second stage is necessary to address the most severe visual artifacts,
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which are difficult to resolve within the single stage processing. Note that end-to-end simultaneous
finetuning decreases the overall performance (PSNR 36.63 on Kodak) compared to our stepwise
finetuning due to our multiple path LUT pipeline.

Sampling Points Variations
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Figure 9. The result of varying sampling points. Our method use 7 points because the saturation
becomes severe around it. The area of the purple circle shows a relative comparison of the LUT size
according to the sampling points.

We examine the relationship between LUT size and PSNR performance by varying sampling points
from 3 to 17. As shown in Fig. [9] the most significant saturation occurs around 7-point. The
purple circles are shown to provide a relative comparison of LUT sizes for each sampling point.
Considering both LUT size and PSNR performance comprehensively, we confirm that 7-point is
suitable configuration for efficient hardware implementation in smartphones or edge devices. Note
that the LUT size and the energy cost remain constant regardless of the sampling points.

Failure Case

PIPNet Ours GT

Figure 10. A failure case. We found that artifacts sometimes occur in corner areas.

Fig.[10]shows a failure case of our method. Traditionally, one of the difficult parts in the demosaicing
task is corners, and we found that our method occasionally causes artifacts due to the lack of
corner-aware processing.
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