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Abstract

The Fisher information matrix can be used to characterize the local geometry of the
parameter space of neural networks. It elucidates insightful theories and useful tools
to understand and optimize neural networks. Given its high computational cost,
practitioners often use random estimators and evaluate only the diagonal entries.
We examine two popular estimators whose accuracy and sample complexity depend
on their associated variances. We derive bounds of the variances and instantiate
them in neural networks for regression and classification. We navigate trade-offs
for both estimators based on analytical and numerical studies. We find that the
variance quantities depend on the non-linearity w.r.t. different parameter groups
and should not be neglected when estimating the Fisher information.

1 Settings

In the parameter space of neural networks (NNs), i.e. the neuromanifold [1], the network weights and
biases play the role of a coordinate system and the local metric tensor can be described by the Fisher
Information Matrix (FIM). As a result, empirical estimation of the FIM helps reveal the geometry of
the loss landscape and the intrinsic structure of the neuromanifold. Utilizing these insights has lead
to efficient optimization algorithms, e.g., the natural gradient [1] and Adam [16].

A NN with inputs x and stochastic outputs y can be specified by a conditional p.d.f. p(y |x;θ),
where θ is the NN’s weights and biases. This paper considers the general parametric form

p(y |x;θ) = π(y) · exp
(
t⊤(y)hθ(x)− F (hθ(x))

)
, (1)

where hθ : ℜI → ℜT maps I-dimensional inputs x to T -dimensional exponential family param-
eters, t(y) is a vector of sufficient statistics, π(y) is a base measure, and F (·) is the log-partition
function (normalizing the exponential). For example, if y denotes class labels and t(y) maps to its
corresponding one-hot vectors, then Eq. (1) is associated with a multi-class classification network.

Assuming that the marginal distribution q(x) is parameter-free, we define parametric joint distribu-
tions p(x,y;θ) = q(x)p(y |x;θ). The (joint) FIM is defined as I(θ) .

= Eq(x) [I(θ |x)], where

I(θ |x) .
= E

p(y |x;θ)

[
∂ log p(y |x;θ)

∂θ

∂ log p(y |x;θ)
∂θ⊤

]
(∗)
= − E

p(y |x;θ)

[
∂2 log p(y |x;θ)

∂θ∂θ⊤

]
(2)

is the ‘conditional FIM’. The second equality (*) holds if hθ’s activation functions are in C2(ℜ)
(i.e., hθ is a sufficiently smooth NN). I(θ |x) does not have this equivalent expression (*) for NNs
with ReLU activation functions [37]. Both I(θ) and I(θ |x) define dim(θ) × dim(θ) positive
semi-definite (PSD) matrices. The distinction in notation is to emphasize that the joint FIM I(θ)
(depending only on θ) is simply the average over individual conditional FIMs I(θ |x) (depending
on both θ and x).
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Figure 1: Natural gradient (NG) descent using Î1(θ) / Î2(θ) on a 2D toy dataset for regression
(linear regression) and classification (logistic regression) (details in Appendix A). Inset plot shows
the parameter updates throughout training. Here, the variance of Î2(θ) is generally lower than Î1(θ).

In practice, the FIM is typically computationally expensive and needs to be estimated. Given q(x)
and a NN with weights and biases θ parameterizing p(y |x;θ), as per Eq. (1), we consider two
commonly used estimators of the FIM [11, 37] given by

Î1(θ)
.
=

1

N

N∑
k=1

[
∂ log p(yk |xk)

∂θ

∂ log p(yk |xk)

∂θ⊤

]
; and Î2(θ)

.
=

1

N

N∑
k=1

[
−∂2 log p(yk |xk)

∂θ∂θ⊤

]
, (3)

where p(yk |xk)
.
= p(yk |xk;θ) and (x1,y1), . . . , (xN ,yN ) are i.i.d. sampled from p(x,y;θ). A

conditional variant of the estimators, denoted as Î1(θ |x) and Î2(θ |x), can be defined by fixing
x = x1 = · · · = xN and sampling y1, . . . ,yN independently from p(y |x) in Eq. (3) — details
omitted for brevity.

Both estimators, Î1(θ) and Î2(θ), are random matrices with the same shape as I(θ). By Eq. (2),
they are unbiased — for Î2(θ), this only holds if activations functions are in C2(ℜ). Following
Eq. (1)’s setting, the estimation variances of Î1(θ) and Î2(θ) can be expressed in closed form and
upper bounded [37]. This provides an important, yet not widely discussed, tool for quantifying the
estimators’ accuracy [11] and hence insights for where / when different estimators should be used.
Despite this, for deep NNs, neither these variances nor their bounds can be computed efficiently due
to the huge dimensionality of θ.

This work focuses on estimating the diagonal entries of the FIM and their associated variances. Our
results — including estimators of the FIM, their variances, and their variance bounds — can be
implemented through automatic differentiation. These computational tools empower us to practically
explore the trade-offs between the two estimators. For example, Fig. 1 shows natural gradient
descent [1] for generalized linear models on a toy dataset, where Î2(θ) is preferable (especially for
regression) and Î1(θ) suffers from high variance and an unstable learning curve. Our analytical
results reveal how moments of the output exponential family and gradients of the NN in Eq. (1) affects
the FIM estimators. We discover a general decomposition of the estimators’ variances corresponding
to the samples of x and y. We investigate different scenarios where each FIM estimator is the
preferred one and then connect our analysis to the empirical FIM.

2 Related Work

Prior efforts aim to analyze the structure of the FIM of NNs with random weights [34, 14, 15, 3, 31].
This body of work hinges on utilizing tools from random matrix theory and spectral analysis,
characterizing the behavior and statistics of the FIM. One insight is that randomly weighted NNs
have FIMs with a majority of eigenvalues close to zero; with the other eigenvalues taking large
values [14, 15]. In our work, the randomness stems from sampling from data distributions p(x,y)
— which follows the principle of Monte Carlo (MC) information geometry [29] that approximates
information geometric quantities via MC estimation. We examine a different subject on how the
distribution of the FIM on a matrix manifold is affected by finite sampling of the data distribution.

In the literature of NN optimization, a main focus is on deriving a computationally friendly proxy
for the FIM. One can consider the unit-wise FIM [30, 20, 39, 3] (also known as quasi-diagonal
FIM [30]), where a block-diagonal approximation of the FIM is taken to capture intra-neuron
curvature information. Or one can consider the block-diagonal layer-wise FIM where each block
corresponds to parameters within a layer [19, 27, 32, 26, 12, 35, 13]. NN optimizers can approximate
the inverse FIM [36] or approximate the product of the inverse FIM and the gradient vector [35].
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Much less attention is paid to how related approximations deviate from the true FIM [11, 37] or
how optimization is affected by such deviation [41]. For the univariate case, one can study the
asymptotic variance of the Fisher information [11] with the central limit theorem. In deep NNs, the
estimation variance of the FIM can be derived in closed form and bounded [37]. However, our former
analysis [37] has two limitations: (1) the variance tensors are 4D and can not be easily computed;
(2) only the norm of these tensors are bounded, and it is not clear how the variance is distributed
among individual parameters. The current work tackles these limitations by focusing on the diagonal
elements of the FIM. Our results can be computed numerically at a reasonable cost in typical learning
settings. We provide novel bounds so that one can quantify the accuracy of the FIM computation
w.r.t. individual parameters or subgroup of parameters.

Issues of utilizing the empirical FIM to approximate the FIM have been highlighted [32, 25]. For
example, estimators of the FIM do not in general capture any second-order information about the
log-likelihood [18]. The empirical FIM is a biased estimator and can be connected with our unbiased
estimators via a generalized definition of the Fisher matrix in Section 6.

Alternative to the FIM, the Generalized Gauss-Newton (GGN) matrix — a Hessian approximator —
was originally motivated through the squared loss for non-linear models [25]. The GGN is equivalent
to the FIM when a loss function is taken to be the empirical expectation of the negative log-likelihood
of Eq. (1) [12, 32, 25].

3 Variance of Diagonal FIM Estimators

In our notations, all vectors such as x, y, and θ are column vectors. We use k to index random
samples x and y and use i and j to index the NN weights and biases θ. We shorthand h

.
= hθ,

p(y |x) .
= p(y |x;θ), and p(y,x)

.
= p(y,x;θ) whenever the parameters θ is clear from context.

To be consistent, we use ‘ |x conditioning’ to distinguish between jointly calculated values versus
conditioned values with fixed x. By default, the derivatives are w.r.t. θ. For example, ∂ih

.
= ∂h/∂θi

and ∂2
i h

.
= ∂2h/∂θ2i . We adopt Einstein notation to express tensor summations, so that an index

appearing as both a subscript and a superscript in the same term indicates a summation. For example,
xaya denotes

∑
a x

aya. For clarity, we mix standard Σ-sum and Einstein notation. We denote the
variance and covariance of random variables by Var(·) and Cov(·), respectively.

Based on the parametric form of the model in Eq. (1), the diagonal entries of the FIM estimators in
Eq. (3) can be written as1:

Î1(θi) .
=
(
Î1(θ)

)
ii
=

1

N

N∑
k=1

(
∂F (h(xk))

∂θi
− ∂ha(xk)

∂θi
· ta(yk)

)2

;

Î2(θi) .
=
(
Î2(θ)

)
ii
=

1

N

N∑
k=1

(
∂2F (h(xk))

∂2θi
− ∂2ha(xk)

∂2θi
· ta(yk)

)
.

Correspondingly, the i’th diagonal entry of the FIM I(θ), which is the expected value of Î1(θi) and
Î2(θi), is denoted as I(θi). Notation is abused in I(θi), Î1(θi), and Î2(θi) as they depend on the
whole θ vector rather than solely on θi. Clearly Î1(θi) ≥ 0, while there is no guarantee for Î2(θi)
which can be negative. Our results will be expressed in terms of the (central) moments of t(y):

ηa(x)
.
= E

p(y |x)
[ta(y)]; I(h |x) .

= E
p(y |x)

[(t(y)− η(x))(t(y)− η(x))⊤];

Kp(t |x) .
= E

p(y |x)
[(t(y)− η(x))⊗ (t(y)− η(x))⊗ (t(y)− η(x))⊗ (t(y)− η(x))] ,

where “⊗” denotes the tensor product. We denote the covariance of t w.r.t. to p(y |x) as Covp(t |x)
— noting that I(h |x) = Covp(t |x). The 4D tensor Kp(t |x) denotes the 4th central moment of
t(y) w.r.t. p(y |x). These central moments correspond to the cumulants of t(y), i.e. the derivatives
of F w.r.t. the natural parameters h(x) of the exponential family. Therefore, the derivatives of F
in Î1(θi) and Î2(θi) can further be written in terms of η(x) and I(h |x) following the chain rule.
Practically, Î1 and Î2 involves computing the Jacobian ∂h(x)/∂θi and the Hessian ∂2h(x)/∂2θi,
respectively.

1This and subsequent derivations can be found in the appendix.
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Table 1: Exponential family statistics with eigenvalue upper bounds for moments. For classification,
σ(x) denotes the softmax of logit h(x). † denotes exact eigenvalues rather than upper bounds.

Setting Exp. Family Output Y Sufficient Statistic t(y) UB λmax(I(h |x)) UB λ̃max(K(t |x))

Regression (Iso.) Gaussian ℜT y 1† 3†

Classification Categorical [C] ⊂ ℜ (Jy = 0K, . . . , Jy = CK) min {σmax(x), 2 ·min {σmax(x),
1− ∥σ(x)∥22

}
1− ∥σ(x)∥22

}

In practice, both estimators can be computed via automatic differentiation [33, 6]. In terms of
complexity, by restricting to just the diagonal elements I(θi), we need to calculate O(dim(θ))
elements (originally O(dim(θ)× dim(θ)) for the full FIM). Although the log-partition function for
general exponential family distributions can be complicated, for the ones used in NNs (determined by
the loss functions used in optimization) [37] the log-partition function F is usually in closed-form;
and thus the cumulants η(x) and I(h |x) can be calculated efficiently.

Indeed, the primary cost of the estimators comes from evaluating the gradient information of the
NN, given by ∂h(x)/∂θi and ∂2h(x)/∂2θi. The former can be calculated easily. The latter is costly
even when restricted to the diagonal elements of the FIM. With the Hessian’s quadratic complexity,
in practice approximations are used to reduce the computational overhead [4, 45, 46, 8]. In this case,
additional error and (potentially) variance may be introduced as a result of the Hessian approximation.
Note, the computational cost of the Hessian can still be manageable for the last few layers close to
the output. By the chain rule, we only require a sub-computational graph from the output layer to a
certain layer to compute the Hessian of that layer. Despite this, there is still a memory cost that scales
quadratically with the number of parameters for non-linear activation functions [6].

The high cost of Hessian computation does not justify refraining from using Î2. Depending on the
setting (chosen loss function), an estimator’s variance can outweigh the benefits of lower compu-
tational costs [37]. This is especially true when the FIM is used in an offline setting — where the
Hessian’s cost can be tolerated — to study, e.g., the singular structure of the neuromanifold [2, 40],
the curvature of the loss [7], to quantify model sensitivity [28], and to evaluate the quality of the local
optimum [14, 15], etc.

To study the quality of Î1(θ) and Î2(θ), it is natural to examine the variance of the estimators [37]:
Vj(θi |x) .

= Var(Îj(θi |x)), where Îj(θi |x) .
=
(
Îj(θ |x)

)
ii

(j ∈ {1, 2}) is the i’th diagonal

element of Îj(θ |x). Similar to Î1(θi) and Î2(θi), Vj(θi |x) and Îj(θi |x) depend on the vector θ
and are abuses of notation. An estimator with a smaller variance indicates that it is more accurate and
more likely to be close to the true FIM. Based on the variance, one can derive sample complexity
bounds of the diagonal FIM via Chebyshev’s inequality, see for instance [37, Section 3.4].

By its definition, Vj(θi |x) has a simple closed form, which was proved in [37] and is restated below.

Lemma 3.1. ∀x ∈ ℜI , ∀i = 1, . . . ,dim(θ),

I(θi |x) = ∂ih
a(x)∂ih

b(x) · Iab(h |x), (4)

V1(θi |x) =
1

N
· ∂iha(x)∂ih

b(x)∂ih
c(x)∂ih

d(x) · [Kp
abcd(t |x)− Iab(h |x) · Icd(h |x)] , (5)

V2(θi |x) =
1

N
· ∂2

i h
a(x)∂2

i h
b(x) · Iab(h |x). (6)

Given a fixed x ∈ ℜI , both V1(θi |x) and V2(θi |x) have an order of O(1/N), with N denoting the
number of samples of yk. They further depend on two factors: ① the derivatives of the parameter-
output mapping θ → h stored in a T × dim(θ) matrix, either ∂iha(x) or ∂2

i h
a(x), where the latter

can be expensive to calculate; and ② the central moments of t(y), whose computation only scales
with T (the number of output units) and is independent to dim(θ).

From an information geometry [1] perspective, I(θ), V1(θ), and V2(θ) are all pullback tensors of
different orders. For example, I(θ) is the pullback tensor of I(h) and the singular semi-Riemannian
metric [40]. They induce the geometric structures of the neuromanifold (parameterized by θ) based
on the corresponding low dimensional structures of the exponential family (parameterized by h).
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4 Practical Variance Estimation

To further understand the dependencies of the derivative and central moment terms, the FIM I(θi |x)
and variances of estimators Îj(θi |x) can be bounded to strengthen intuition and to provide a
computationally convenient proxy of the interested quantities.
Theorem 4.1. ∀x ∈ ℜI ,

∥∂ih(x)∥22 · λmin(I(h |x)) ≤ I(θi |x) ≤ ∥∂ih(x)∥22 · λmax(I(h |x)), (7)

1

N
· ∥∂ih(x)∥42 · λ̃min (M) ≤ V1(θi |x) ≤

1

N
· ∥∂ih(x)∥42 · λ̃max (M) , (8)

1

N
· ∥∂2

i h(x)∥22 · λmin(I(h |x)) ≤ V2(θi |x) ≤
1

N
· ∥∂2

i h(x)∥22 · λmax(I(h |x)), (9)

where M = Kp(t |x)− I(h |x)⊗ I(h |x); λmin / λmax denotes the minimum / maximum matrix
eigenvalue; and λ̃min, λ̃max : ℜT×T×T×T → ℜ are defined as

λ̃min(T )
.
= inf

u:∥u∥2=1
uaubucudTabcd; and λ̃max(T )

.
= sup

u:∥u∥2=1

uaubucudTabcd. (10)

To help ground Theorem 4.1, we summarize different sufficient statistics quantities for common
learning settings in Table 1 — with further learning setting implications presented in Section 5.
Note that Eqs. (8) and (9) (and many subsequent results) can be further generalized for off-diagonal
elements. See Appendix C for details. Compared to prior work [37], Theorem 4.1 provides bounds
for individual elements of the variance tensors, where the NN weights (the derivatives) and sufficient
statistics (the eigenvalues) are neatly disentangled into a product. From a technical point of view, this
comes from a difference in proof technique: we utilize variational definitions and computations of
eigenvalues to establish bounds whereas [37] primarily applies Hölder’s inequality.

We stress that λ̃min(T ) and λ̃max(T ) in Eq. (10) correspond to tensor eigenvalues iff T is a super-
symmetric tensor [23] (a.k.a. totally symmetric tensor), i.e., indices are permutation invariant. In
this case, Eq. (10) is exactly the maximum and minimum Z-eigenvalues. These variational forms
mirror the Courant-Fischer min-max theorem for symmetric matrices [42]. In the case of Eq. (8),
with M = Kp(t |x) − I(h |x) ⊗ I(h |x), the tensor is not a supersymmetric tensor in general.
Despite this, we note that the lower bound of Eq. (8) is non-trivial. A weaker bound than Eq. (8) can
be established based on the Z-eigenvalue of the supersymmetric tensor Kp(t |x).
Corollary 4.2. ∀x ∈ ℜI ,

λ̃min (Kp(t |x)− I(h |x)⊗ I(h |x)) ≥ max
{
0, λ̃min (Kp(t |x))− λ2

max (I(h |x))
}
; (11)

λ̃max (Kp(t |x)− I(h |x)⊗ I(h |x)) ≤ λ̃max (Kp(t |x))− λ2
min (I(h |x)) . (12)

The tensor eigenvalue is typically expensive to calculate. However in our case, the eigenvalues
λ̃min(Kp(t |x)) and λ̃max(Kp(t |x)) on the RHS of Eqs. (11) and (12) can be calculated via [17]’s
method with O(T 4/4!) complexity. In this paper, we assume T is reasonably bounded and are mainly
concerned with the complexity w.r.t. dim(θ). From this perspective, all our bounds scale linearly
w.r.t. dim(θ), and thus can be computed efficiently.

When t(y) − η(x) is bounded (e.g. in classification), we can upper bound λ̃max (Kp(t |x)) with
λmax (I(h |x)), which is easier to calculate.

Proposition 4.3. Suppose ∥t(y)−η(x)∥22 ≤ B. Then, λ̃max (Kp(t |x)) ≤ Bλmax (I(h |x)) ≤ B2.

As long as the sufficient statistics t(y) has bounded norm ∥t∥2, we have that ∥t(y) − η(x)∥22 ≤
4∥t∥22 < ∞. A similar lower bound can be established for the minimum tensor eigenvalue
λ̃min (Kp(t |x)) ≥ λ2

min (I(h |x)), but this ends up being trivial when applying Corollary 4.2’s
lower bound, Eq. (11).

Examining Theorem 4.1 reveals several trade-offs. An immediate observation is that the first order
gradients of h(x) correspond to the robustness of h to parameter misspecification (w.r.t. an input
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x). As such, from the bounds in Eqs. (7) and (8), the scale of I(θi |x) and V1(θi |x) will be large
when small shifts in parameter space yield large changes in the output h(x). Another observation is
how the spectrum of I(h |x) affects the scale of I(θi |x) and the estimator variances. In particular,
when λmin (I(h |x)) increases, the scale of V1(θi |x) decreases but the scale of I(θi |x) and
V2(θi |x) increases. When λmax (I(h |x)) decreases, then the opposite scaling occurs. With these
two observations, there is a tension in how the scale of I(θi |x) follows the different variances
V1(θi |x) and V2(θi |x). The element-wise FIM I(θi |x) follows V1(θi |x) in terms of the scale of
NN derivatives ∥∂ih(x)∥2; at the same time, I(θi |x) follows V2(θi |x) in terms of the spectrum of
sufficient statistics moment I(h |x).
Remark 4.4. Typically, h is the linear output units: h(x) = W−1h−1(x), where W−1 is the weights
of the last layer, and h−1(x) is the second last layer’s output. We have V2(θi |x) = 0 ≤ V1(θi |x)
for any θi in W−1. A smaller variance V2(θi |x) is guaranteed for the last layer regardless of the
choice of the exponential family in Eq. (1).
Remark 4.5. h(x) = wj

−1ϕ(h
⊤
−2(x)w

j
−2 + C−2) + c−1 defines the NN mapping w.r.t. the j’th

neuron in the second last layer, where wj
−2 and wj

−1 are incoming and outgoing links of the
interested neuron, respectively; h−2(x) is the output of the third last layer; and ϕ is the activation
function. The ‘constants’ C−2 and c−1 denote an aggregation of all terms which are independent
of wj

−2 and wj
−1 in their respective layers. The Hessian of hk(x) w.r.t. wj

−2 is ∂2hk(x) =

(wj
−1)k · ϕ′′(h⊤

−2(x)w
j
−2 +C−2) · (h−2(x)h

⊤
−2(x)). By Theorem 4.1, V2(θi |x) can be arbitrarily

small depending on ϕ′′(h⊤
−2(x)w

j
−2 + C−2). For example, if ϕ(t) = 1/(1 + exp(−t)), then

ϕ′′(t) = ϕ(t)(1− ϕ(t))(1− 2ϕ(t)). In this case, for a neuron in the second last layer, a sufficient
condition for V2(θi |x) = 0 (and having Î2 favored against Î1) is h⊤

−2(x)w
j
−2 + C−2 = 0 for the

neuron’s pre-activation. When the pre-activation value is saturated (−∞ or ∞), we also have that
V1(θi |x) = V2(θi |x) = 0. Alternatively, suppose that ϕ(t) = SoftPlus(t) .

= log(1 + exp(t)), a
continuous relaxation of ReLU, then ϕ′′(t) = ϕ′(t)(1 − ϕ′(t)) where ϕ′(t) = 1/(1 + exp(−t)).
Then a sufficient condition for V2(θi |x) = 0 with V1(θi |x) ̸= 0 for a neuron in the second last
layer is h⊤

−2(x)w
j
−2 + C−2 → +∞.

These observations are further clarified by looking at related quantities over multiple parameters.
So far we have only examined the variance of the FIM element-wise w.r.t. parameters θi. To study
all parameters θ jointly, we consider the trace variances of the FIM estimators: for any j ∈ {1, 2},
Vj(θ |x) denotes the trace of the covariance matrix of diag(Îj(θ |x)), where diag(·) extracts a
matrix’s diagonal elements into a column vector. We present upper bounds of these joint quantities.
Corollary 4.6. For any x ∈ ℜI ,

tr (I(θ |x)) ≤ ∥∂h(x)∥F ·min {tr (I(h |x)) , ∥∂h(x)∥F · λmax (I(h |x))} ; (13)

V1(θ |x) ≤ 1

N
· ∥∂h(x)∥2F ·min

{
T∑

t,u=1

Kp
ttuu(t |x)− ∥I(h |x)∥2F , ∥∂h(x)∥2F · λ̃max (M)

}
; (14)

V2(θ |x) ≤ 1

N
· ∥dHes(h |x)∥F ·min {tr(I(h |x)), ∥dHes(h |x)∥F · λmax(I(h |x))} , (15)

where dHes(h |x) .
= (diag(Hes(h1 |x)), . . . ,diag(Hes(hT |x))) and ∥ · ∥F is the Frobenius norm.

This upper bound comes from integrating the parameter-wise variances in Theorem 4.1 and incorpo-
rating a trace variance bound which utilizes the full spectrum of the NN derivatives and sufficient
statistics quantities. This is fully depicted in Theorem D.1. Lower bounds can also be derived in
terms of singular values (deferred to the Appendix). Note the upper bounds in Corollary 4.6 can be
improved by expressing the min function’s first term with singular value quantities.

Having the min function in Corollary 4.6 is helpful as it shows a trade-off between two upper bounds:
the scale of NN derivatives ∂h(x) and ∂2h(x) versus the spectrum of the sufficient statistic terms.
In the case of Eqs. (13) and (15), the trace of I(h |x) is exactly the sum of all eigenvalues, including
λmax(I(h |x)). This can be helpful when the scale of the NN derivatives are not bounded by a small
value. It should be noted that, by the chain rule, these NN derivatives scale with the overall sharpness
/ flatness [22] of the landscape of the loss, i.e., the log-likelihood of Eq. (1). For NNs with large
derivatives, the first term of the min could yield tight bounds of the variance, and one can therefore
avoid dealing with the quadratic scaling of ∥∂h(x)∥ in the second term. On the other hand, if the
sharpness of the NN h can be controlled, e.g. via sharpness aware minimization [10], then one can
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benefit from the second term of the min and avoid computing the full spectrum of I(h |x) in the
first term.

Joint FIM Estimators In the above, we considered the variance of conditional FIMs, which can
scale differently depending on the input x. Prior work’s analysis was limited to that of conditional
FIMs (and their estimators) [37]. Nevertheless, the ‘joint FIM’ estimators Îj(θi) depend on sampling
of x w.r.t. the data distribution q(x). The bounds in Eq. (7) can be extended to the joint FIM
I(θi) .

= Eq(x) I(θi |x) by simply taking an expectation Eq(x) over the bounds. To analyze the
variances of the joint FIM estimators Vj(θi), we present the following theorem which connects the
prior results established for Vj(θi |x), e.g. Theorem 4.1, via the law of total variance.
Theorem 4.7. For any j ∈ {1, 2}, given Nx samples of x ∼ q(x) and N samples of y |x ∼ p(y |x)
for each x sampled,

Vj(θi) =
1

Nx
·Var (I(θi |x)) +

1

Nx
· E
q(x)

[Vj(θi |x)] , (16)

where Var (I(θi |x)) is the variance of I(θi |x) w.r.t. q(x).

The dependence on N , the number of samples of y for each fixed x, is hidden in Vj(θi |x). When
N = 1, the hierarchical sampling described in the Theorem corresponds to an i.i.d. sampling of the
joint distribution p(x,y).

The variance incurred when estimating the FIM has two components. The first term on the RHS of
Eq. (16) characterizes the randomness of the FIM w.r.t. q(x), i.e., the input randomness. It vanishes
when the FIM is estimated by taking the expectation w.r.t. q(x), or the number of samples x is
large enough. The second term (although also depending on Nx) comes from the sampling of y |x
according to p(y |x), i.e., the output randomness, which scales with the central moments of t(y).
If the NN is trained so that p(y |x) tends to be deterministic, this term will disappear leaving the
first term to dominate. Eq. (16) can be further generalized using the law of total covariance to extend
prior work considering conditional FIM covariances [37] to joint FIM covariances. Theorem 4.7
connects the variance of assuming a fixed input x with multiple samples yk with the variance of pairs
of samples (xk,yk). The Vj(θi |x) bounds in this section can thus be applied to the corresponding
joint variance Vj(θi) by using this theorem. This is straightforward and omitted.

The first variance term in Theorem 4.7 is difficult to compute in practice: it relies on how the
closed-form FIM varies w.r.t. q(x). As such, it is useful to bound the first term into computable
quantities.
Lemma 4.8. Var (I(θi |x)) ≤ Eq(x)

[
∥∂ih(x)∥42 · λ2

max(I(h |x))
]
.

This upper bound is very similar to the 4th central moment term λ̃max(Kp(t |x)) when considering
the variance upper bound V2(θi |x) in Theorem 4.1 and Corollary 4.2. In general, the eigenvalue
terms of Lemma 4.8 and Theorem 4.1 are distinct, i.e., λ2

max(I(h |x)) ̸= λ̃max(Kp(t |x)). This is
especially true for the classification and regression problems explored in this paper (see Table 1).
However, the maximum eigenvalues can be related for exponential families with bounded sufficient
statistic via Proposition 4.3, making both bounds depend only on λmax(I(h |x)).
The total number of samples of (xk,yk) is Nx · N . In terms of sample complexity of the joint
variance, using Theorem 4.7 and Lemma 4.8, the bound’s rate is given by O(1/Nx + 1/(Nx ·N)).

5 Case Studies

To make our theoretic results more concrete, we consider regression and classification settings, which
correspond to specifying the exponential family in Eq. (1) to an isotropic Gaussian distribution and a
categorical distribution, respectively. We include an empirical analysis of NNs trained on MNIST.
Notably, our analysis considers general multi-dimensional NN output. This extends the case studies of
[37] which was limited to 1D distributions due to the limitations of their bounds (and their associated
computational costs of dealing with a 4D tensor of the full covariance).

Regression: Isotropic Gaussian Distribution To characterize regression, we consider Gaussian
distributions. As per Eq. (1), we have t(y) = y ∈ ℜT and base measure π(y) ∝ exp(− 1

2y
⊤y).
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This corresponds to the case where h(x) is trained via the squared loss. In this case, I(h |x) = I
and Kp

abcd(t |x) = Iab(h |x) · Icd(h |x) + Iac(h |x) · Ibd(h |x) + Iad(h |x) · Ibc(h |x). The
derivatives of the log-partition function F (h) yields these central moments [37, Lemma 5]. To apply
Theorem 4.1, we examine the extreme eigenvalues of I(h |x) and Kp(t |x)− I(h |x)⊗ I(h |x).
Proposition 5.1. Suppose that Eq. (1) is an isotropic Gaussian distribution. Then:

λmin(I(h |x)) = λmax(I(h |x)) = 1;

λ̃min(Kp(t |x)− I(h |x)⊗ I(h |x)) = λ̃max(Kp(t |x)− I(h |x)⊗ I(h |x)) = 2.

Hence, for regression the eigenvalues of sufficient statistics quantities in our bounds are equal. As
such, in this case, the bound for I(θi |x), V1(θi |x), and V2(θi |x) in Theorem 4.1 are all equalities.

As I(θi |x) can be written exactly in terms of the gradients of h, in practice one does not need to
utilize a random estimator when computing the conditional FIM, which simplifies to a Gauss-Newton
matrix for the squared loss [25]. When computing the FIM over a random sample x, a variance
still appears due to Theorem 4.7. By Lemma 4.8 and Proposition 5.1, the variance over a joint
distribution is bounded by a function of the derivative ∂ih(x) over the marginal input distributions:
V(θi) ≤ Eq(x)[∥∂ih(x)∥42] ≤ maxx∈Supp(q) ∥∂ih(x)∥42. In other words, the overall variance to
approximate the joint FIM is bounded by the gradients of the NN outputs.

Classification: Categorical Distribution For multi-class classification, we instantiate our ex-
ponential family with a categorical distribution (with π(y) = 1). This corresponds to training a
classifier NN with the log-loss. Let Y = [C] for T = C classes defining the possible labels. Let
t(y) = (Jy = 1K, . . . Jy = CK), where JrK = 1 when the predicate r is true and JrK = 0 otherwise.
Noting our results do not depend on minimal sufficiency, this t(y) is sufficient but not minimal suffi-
cient. In this setting, the NN outputs h correspond to the logits of the label probabilities. The resulting
probabilities p(y |x) are the softmax values of h denoted by σ(x)

.
= SoftMax(h(x)) ∈ [0, 1]T .

Under this setting, we have I(h |x) = Diag(σ(x))−σ(x)σ(x)⊤ (where Diag(σ(x)) is the diagonal
matrix with its diagonal entries set to σ(x)), whose eigenvalues do not follow a convenient pattern
as C increases [44]. Likewise, the maximum eigenvalue of Kp(t |x) is not available in simple
closed form. As such, we provide upper bounds for the maximum eigenvalues of I(h |x) and
Kp(t |x)− I(h |x)⊗ I(h |x) using Corollary 4.2 and Proposition 4.3.
Theorem 5.2. Suppose that Eq. (1) is a categorical distribution. With σmax(x)

.
= maxk σk(x):

λmax(I(h |x)) ≤ m(x); and λ̃max(Kp(t |x)− I(h |x)⊗ I(h |x)) ≤ 2 ·m(x),

where m(x)
.
= min

(
σmax(x), 1− ∥σ(x)∥22

)
.

This upper bounds provides a tension. When the first term of m(x) is maximized, the second is
minimized, and vice-versa. In particular, the dominating term depends on the uncertainty of the NN’s
output. When the NN’s output is near random, e.g. at initialization, the first term will dominate with
σmax(x) ≈ 1/C. However, as the NN becomes more certain with its prediction, the second term will
start dominating: a more deterministic output p(y |x) → 1 implies that λmax(I(h |x)) → 0.

Empirical Verification: Classification We examine the MNIST classification task [21] (CC BY-SA
3.0) using multilayer perceptrons (MLP) with four densely connected layers, sigmoid activations,
and a dropout layer. For classification, we consider a categorical distribution with C = 10 class
labels. For a random x from the test set, we compute both estimators Î1(θi |x) and Î2(θi |x) using
N = 5, 000 samples. We record the variances of each estimator and compute their bounds based on
Theorem 4.1. For all 20 training epochs, the Fisher information (FI) and their variances of individual
parameters are aggregated via arithmetic averages over four parameter groups (corresponding to the
four layers).

In Fig. 2, we present the variance scale of the estimators Î1(θi |x) and Î2(θi |x) in log-space; and
the tightness of the bounds in Theorem 4.1 by consider the log-ratio log UB

VI(θi |x) , where UB is the
upper bounds in Theorem 4.1. In this experiment, the UB is much tighter than the lower bound (LB),
which is omitted in the figures for clarity. More experimental results are given in Appendix F.

We varied the NN’s architecture and activation function. Across different settings, the proposed
UB and LB are always valid. In Fig. 2, one can observe that the diagonal FIM and the associated
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Figure 2: MNIST for a 4-layer MLP with sigmoid activations. Top: The estimated Fisher information
(FI), variances, and variance bounds across 4 parameter groups and 20 training epochs. The FI (green
line) is estimated using Î1 (Î2 is almost identical and not shown for clarity). The s.t.d. (square root
of variance) is shown for variances and their bounds. Bottom: the log-ratio of Theorem 4.1’s upper
bounds (UBs) and the true variances. The closer to 0, the better the UB. In the right most column, the
variance of Î2 vanishes: V2(θi |x) = 0 ≤ V1(θi |x). Thus related curves of Î2 are not shown.

variances have a small magnitude. For example, in the first layer, V1(θi |x) and V2(θi |x) are roughly
e−10 ≈ 5× 10−5. The log-ratio log UB

V1(θi |x) ≈ 4 means that the UB is roughly 50 times larger than
V1(θi |x). Comparatively, V2(θi |x) has a tighter UB which is approximately 10 times larger than
itself. The UB serves as a useful hint on the order of magnitude of the variances. In Appendix D, we
present tighter bounds which are more expensive to compute.

In the first three layers of the MLP, V1(θi |x) presents a smaller value than V2(θi |x), meaning
that Î1 can more accurately estimate the diagonal FIM. Interestingly, this is not true for the last
layer: V2(θi |x) becomes zero while Î1 presents the largest variance across all parameter groups.
Due to this, one should always prefer Î2 over Î1 for the last layer. In the last two layers, Î2 is in
simple closed form and, hence, does not need automatic differentiation to calculate (see Remarks 4.4
and 4.5). The shape of the variance curves are sensitive to the choices of activation functions ϕ
and inputs x. In general, the variance in the first few epochs presents more dynamics than the rest
of the training process. If one uses log-sigmoid activations ϕ(t) = − log(1 + exp(−t)) (which is
equivalent to ϕ(t) = −SoftPlus(−t), as per Remark 4.4), the variances of Î1 and Î2 only appear in
the randomly initialized NN and quickly vanish once training starts, as shown in Appendix F. In
this case, the learner more easily approaches a nearly linear region of the loss landscape where local
optima lie. In practice, one should estimate and examine the scale of variances — which should not
be neglected as per Fig. 2 — before choosing a preferred diagonal FIM estimator.

6 Relationship with the “Empirical Fisher”

In some scenarios, even the estimators of the diagonal FIM Î1(θ) and Î2(θ) can be prohibitively
expensive. Part of the cost comes from requiring label samples yk for each xk, as per Eq. (3). For
example, when the FIM is used in an iterative optimization procedure, yk’s need to be re-sampled at
each learning step w.r.t. the current h alongside their backpropagation (accounting for sampling).

As such, alternative ‘FIM-like’ objects have been explored which replace the samples from p(y |x)
with samples from an underlying true (but unknown) data distribution q(y |x) [20, 27]. We define
the data’s joint distribution as q(x,y)

.
= q(x)q(y |x). Analogous to the FIM, the data Fisher

information matrix (DFIM) can be defined as the PSD tensor I(θ) .
= Eq(x)[I(θ |x)], with

I(θ |x) = E
q(ŷ |x)

[
∂ log p(ŷ |x)

∂θ

∂ log p(ŷ |x)
∂θ⊤

]
=

(
∂h

∂θ

)⊤

I(h |x)
(
∂h

∂θ

)
, (17)

where I(h |x) = Eq(ŷ |x)
[
(t(ŷ)− η(x))(t(ŷ)− η(x))⊤

]
denotes the 2nd (non-central) moment

of (t(ŷ)− η(x)) w.r.t. q(ŷ |x), and ∂h/∂θ is the Jacobian of the map θ → h. In the special case
that q(y |x) = p(y |x;θ), then I(θ |x) becomes exactly I(θ |x).
The DFIM I(θ |x) in Eq. (17) is a more general definition. Compared to the FIM I(θ |x), it
yields a different PSD tensor on the θ parameter space (the neuromanifold) depending on a dis-
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tribution q(x,y), which is neither necessarily on the same neuromanifold nor necessarily para-
metric at all. The asymmetry in the true data distribution and the empirical one results in differ-
ent geometric structures [5]. By definition, we have I(θ |x) ⪰ (∂KL/∂θ) (∂KL/∂θ)

⊤, where
KL(θ)

.
=
∫
q(ŷ |x) log q(ŷ |x)

p(ŷ |x;θ) dŷ is the Kullback-Leibler (KL) divergence, or the loss in a pa-
rameter learning scenario. The DFIM can be regarded as a surrogate function of the squared
gradient of the KL divergence. It is a symmetric covariant tensor and satisfies the same rule
w.r.t. reparameterization as the FIM. Consider the reparameterization θ → ζ, the DFIM becomes
I(ζ |x) = (∂θ/∂ζ)

⊤
I(θ |x) (∂θ/∂ζ).

Notice that η̂(x) .
= Eq(ŷ |x)[t(ŷ)] ̸= η(x) in general. As such, there will be a miss-match when

utilizing I(h |x) as a substitute for I(h |x). However, as learning progresses and p(ŷ |x) becomes
more similar to the data’s true labeling posterior q(ŷ |x), the DFIM will become closer to the FIM.

If q(x,y) = 1
N

∑N
k=1 δ(x− xk) · δ(y − yk) is defined by the observed samples, DFIM gives the

widely used “Empirical Fisher” [25], whose diagonal entries are

Î(θi) =
1

N

N∑
k=1

(∂ha
i (xk) · (ta(ŷk)− ηa(xk)))

2
,

where (x1, ŷ1), . . . , (xN , ŷN ) are i.i.d. sampled from q(x, ŷ). Similar to Î1(θi |x), an estimator
with a fixed input x can be considered, denoted as Î(θi |x).
Given the computational benefits of using the data directly — bypassing a separate sampling routine
— many popular optimization methods employ the empirical Fisher or its approximation. For instance,
the Adam optimizer [16] uses the empirical Fisher to approximate the diagonal FIM. However,
switching from sampling yk to ŷk is anything but superficial [25, Chapter 11] — Î(θ) is not an
unbiased estimator of I(θ) as I(h |x) is different from I(h |x).
The biased nature of the empirical Fisher affects the other moments as well. In particular, we do not
have the same equivalence of covariance and the metric being pulled back by θ → h [38].
Lemma 6.1. Given the conditional data distribution q(ŷ |x), the covariance of t given x is given by

Covq(t |x) = I(h |x)−∆H(x), (18)

where ∆H(x) = (η(x)− η̂(x))(η(x)− η̂(x))⊤.

As a result, although the variance of the estimator Î(θi |x) takes a similar form to V1(θi |x) (i.e.,
Eq. (8)), its sufficient statistic terms do not exclusively consist of central moments. Noting the
miss-match in η̂(x) ̸= η(x), Lemma 6.1 reveals an additional term which shifts I(h |x) away from
the 2nd central moment of t(ŷ) (w.r.t. q(ŷ |x)). Instead, these sufficient statistic terms correspond
to non-central moments of t(ŷ)− η(x). Some corresponding empirical Fisher / DFIM bounds are
characterized in Appendix G.

7 Conclusion

We have analyzed two different estimators Î1(θ) and Î2(θ) for the diagonal entries of the FIM. The
variances of these estimators are determined by both the non-linearly of the neural network and
the moments of the exponential family. We have identified distinct scenarios on which estimator
is preferable. For example, ReLU networks can only apply Î1(θ) due to a lack of smoothness. As
another example, Î2(θ) has zero variance in the last layer and thus is always preferable than Î1(θ).
Similarly, in the second last layer, Î2(θ) has a simple closed form and potentially preferable for
neurons in their linear regions (see Remark 4.5). In general, one has to apply Theorem 4.1 based
on their specific neural network and settings and choose the estimator with the smaller variance.
Our results suggest that, from a variance perspective, uniformly utilizing one of the FIM estimators
Îj(θ) is often suboptimal in NNs. Our work has further extended from analyzing the conditional
FIM estimators Îj(θ |x) to the joint FIM estimators Îj(θ); and we have examined the relationship
between the investigated estimators and the empirical Fisher. Future directions include extending the
analysis of the variance of FIM estimators to block diagonals (e.g. [26, 35]) and adapting current NN
optimizers (e.g. [16]) to incorporate the variance of FIM estimators.
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A Natural Gradient Toy Data Example

The following section describes the data and models of Fig. 1. In general, the toy data and models
constructed consists of taking 1D output setting presented by Section 5, where the NN hθ(x) is a
linear function.

A.I Data

The 2D input data x ∈ ℜ2 is sampled from a simple isotropic centered Gaussian N (0, I). A linear
response variable a ∈ ℜ is defined by the following:

a = θ⊤
truex; where θtrue = (1, 1).

The outputs of y for the cases of regression and classification are differentiated by how a is used in
sampling:

yregression ∼ N (µ = 1, σ = 1)

yclassification ∼ Bern(p = σ(a)),

where σ(z) = (1 + exp(−z)) is the logistic function.

A.II Model

The model hθ(x) = θ⊤x consists of a linear function; and the exponential family Eq. (1) is chosen
to be a 1D isotropic Gaussian and binary multinomial distribution (Bernoulli) for regression and
classification, respectively. This corresponds to Section 5 for 1D outputs. Notice that the model
exactly matches the data generating function.

A.III Training

Natural gradient descent (NGD) is taken using both Î1(θ) and Î2(θ). The estimated FIM utilize only
a single y |x sample for each input x. We use a learning rate of η = 0.01 over 256 epochs. A training
set of 256 data points are sampled. At each iteration of NGD, we sample 4 random points from the
training set for the update. The test loss is evaluated on a test set of 4096 data points sampled.

A.IV Variance Plot of Example

Larger version of Fig. 1 with additional variance sum plotted over time is given by Fig. I. Note that
variance sum is including off diagonals. Further note that the variance is calculated over joint sample
in (x, y).

A.V Other Seeds

We further present other random seed of the teaser plot in Figs. II to IV.

B The Conditional Variances in Closed Form

We consider the diagonal entries of the conditional FIM I(θi |x) and the conditional variances
Vj(θi |x) of its estimators in closed form.

Proof of Lemma 3.1. The proof directly follows from [37, Equation 6], [37, Theorem 4], and [37,
Theorem 6]. In what follows, we provide a proof of the Lemma utilizing the notation of this paper for
completeness. We prove the statement one equation at a time.
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NG with Î2
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Figure I: Extended version of Fig. 1 with the sum of variance of FIM estimators over epochs.
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Figure II: Fig. I over different randomizations (a).
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Initial Params θ̂0

True Params θ

0 8 32 64 128 256

Training Epoch

0

25

50

75

100

125

150

Î j
(θ

)
V

ar
ia

nc
e

S
um

Regression (Gaussian)

0 8 32 64 128 256

Training Epoch

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Classification (Categorical)

Figure III: Fig. I over different randomizations (b).

16



For Eq. (4), we consider the following computation.

I(θi |x)

= E
p(y |x;θ)

[
∂ log p(y |x;θ)

∂θ

∂ log p(y |x;θ)
∂θ⊤

]
= E

p(y |x;θ)

[
∂
(
t⊤(y)hθ(x)− F (hθ(x))

)
∂θ

∂
(
t⊤(y)hθ(x)− F (hθ(x))

)
∂θ⊤

]

= E
p(y |x;θ)

(∂hθ(x)

∂θ

)⊤
(
t(y)− ∂F (h)

∂h

∣∣∣∣
h=hθ(x)

)(
t(y)− ∂F (h)

∂h

∣∣∣∣
h=hθ(x)

)⊤(
∂hθ(x)

∂θ⊤

)
= E

p(y |x;θ)

[(
∂hθ(x)

∂θ

)⊤

(t(y)− η(x)) (t(y)− η(x))
⊤
(
∂hθ(x)

∂θ⊤

)]

=

(
∂hθ(x)

∂θ

)⊤(
E

p(y |x;θ)

[
(t(y)− η(x)) (t(y)− η(x))

⊤
])(∂hθ(x)

∂θ⊤

)
=

(
∂hθ(x)

∂θ

)⊤

I(h |x)
(
∂hθ(x)

∂θ⊤

)
.

Using Einstein notation and restricting the partial derivative to a component of θ yields the desired
result.

For Eq. (5), we shorthand δ(y) = t(y)− η(x). Note that the Î1(θi |x) estimator can be written as
follows:

Î1(θi |x) =
1

N

N∑
k=1

(
∂F (h(x))

∂θi
− ∂ha(x)

∂θi
· ta(yk)

)2

=
1

N

N∑
k=1

(
∂ha(x)

∂θi
· ηa(x)−

∂ha(x)

∂θi
· ta(yk)

)2

=
1

N

N∑
k=1

∂ha(x)∂hb(x)δa(yk)δb(yk).
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Î j
(θ

)
V

ar
ia

nc
e

S
um

Regression (Gaussian)

0 8 32 64 128 256

Training Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Classification (Categorical)

Figure IV: Fig. I over different randomizations (c).
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Thus, we have

V1(θi |x)
= Var

(
Î1(θi |x)

)
= Var

(
1

N

N∑
k=1

∂ha(x)∂hb(x)δa(yk)δb(yk)

)

=
1

N
·Var

(
∂ha(x)∂hb(x)δa(yk)δb(yk)

)
=

1

N
·
(

E
p(y |x;θ)

[(
∂ha(x)∂hb(x)δa(y)δb(y)

)2]− E
p(y |x;θ)

[
∂ha(x)∂hb(x)δa(y)δb(y)

]2)
.

Let us compute each of these terms.

E
p(y |x;θ)

[(
∂ha(x)∂hb(x)δa(y)δb(y)

)2]
= E

p(y |x;θ)

[
∂ha(x)∂hb(x)∂hc(x)∂hd(x)δa(y)δb(y)δc(y)δd(y)

]
= ∂ha(x)∂hb(x)∂hc(x)∂hd(x) E

p(y |x;θ)
[δa(y)δb(y)δc(y)δd(y)]

= ∂ha(x)∂hb(x)∂hc(x)∂hd(x)Kp
abcd(t |x).

And, (
E

p(y |x;θ)

[
∂ha(x)∂hb(x)δa(y)δb(y)

])2

=

(
∂ha(x)∂hb(x) E

p(y |x;θ)
[δa(y)δb(y)]

)2

=
(
∂ha(x)∂hb(x)Iab(h |x)

)2
= ∂ha(x)∂hb(x)∂hc(x)∂hd(x)Iab(h |x)Icd(h |x)
= ∂ha(x)∂hb(x)∂hc(x)∂hd(x) (I(h |x)⊗ I(h |x))abcd

Simplifying all term yields the result as required.

Finally, for Eq. (6) we consider the following simplification of the estimator.

Î2(θi |x) =
1

N

N∑
k=1

(
∂2F (h(x))

∂2θi
− ∂2ha(x)

∂2θi
· ta(yk)

)

=
1

N

N∑
k=1

(
∂

∂θi

(
∂ha(x)

∂θi
· ηa(x)

)
− ∂2ha(x)

∂2θi
· ta(yk)

)

=
1

N

n∑
k=1

(
∂ha(x)

∂θi
· ∂ηa(x)

∂θi
+

∂2ha(x)

∂2θi
· ηa(x)−

∂2ha(x)

∂2θi
· ta(yk)

)

=
1

N

n∑
k=1

(
∂ih

a(x) · ∂ηa(x)

∂θi
− ∂2

i h
a(x) · δa(yk)

)

=
1

N

n∑
k=1

(
∂ih

a(x) · ∂ihb(x) · Iab(h |x)− ∂2
i h

a(x) · δa(yk)
)

= ∂ih
a(x) · ∂ihb(x) · Iab(h |x)− 1

N

n∑
k=1

(
∂2
i h

a(x) · δa(yk)
)
,

where the last line follows from [37, Lemma 2] (a result of p(y |x;θ) following an exponential
family, see [1]).
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Notice that the first quantity is a constant w.r.t. the randomness of yk. As such, we can simplify the
variance calculation as follows.

V2(θi |x) = Var
(
Î2(θi |x)

)
= Var

(
∂ih

a(x) · ∂ihb(x) · Iab(h |x)− 1

N

n∑
k=1

(
∂2
i h

a(x) · δa(yk)
))

= Var

(
1

N

n∑
k=1

(
∂2
i h

a(x) · δa(yk)
))

=
1

N
Var

(
∂2
i h

a(x) · δa(y)
)

=
1

N
·
(

E
p(y |x;θ)

[(
∂2
i h

a(x) · δa(y)
)2]− E

p(y |x;θ)

[
∂2
i h

a(x) · δa(y)
]2)

=
1

N
·
(

E
p(y |x;θ)

[
∂2
i h

a(x) · ∂2
i h

b(x) · δa(y) · δb(y)
]
− ∂2

i h
a(x) · E

p(y |x;θ)
[δa(y)]

2

)
=

1

N
·
(
∂2
i h

a(x) · ∂2
i h

b(x) · E
p(y |x;θ)

[δa(y) · δb(y)]
)

=
1

N
· ∂2

i h
a(x) · ∂2

i h
b(x) · Iab(h |x),

where the second last line follows from the fact that η(x) = Ep(y |x;θ)[t(y)] and thus
Ep(y |x;θ)[δ(y)] = 0. This yields the desired result.

Lemma 3.1 shows that, for the former, V1(θi |x) only depends on 1st order derivatives; while
V2(θi |x) only depends on the 2nd order derivatives. For the latter, V1(θi |x) depends on both the
2nd and 4th central moments of t(y); while V2(θi |x) only depends on the 2nd central moments.

Given Iab(h |x) and ∂ih
a(x), the computational complexity of all diagonal entries I(θi |x) is

O(T 2 dim(θ)). If Kp
abcd(t |x) and ∂2

i h
a(x) are given, then the computational complexity of the

variances in Eqs. (5) and (6) is respectively O(T 4 dim(θ)) and O(T 2 dim(θ)). Each requires to
evaluate a T × dim(θ) matrix, either ∂iha(x) or ∂2

i h
a(x) — which can be expensive to calculate

for the latter. This is why we need efficient estimators and / or bounds for the tensors on the LHS of
Eqs. (4) to (6).

C Off-Diagonal Variance

We consider an off-diagonal version of the bound given by Theorem 4.1. Notice that in terms of the
dependence on neural network weights, the only change is splitting the “responsibility” of the i’th
and j’th parameter norms.
Theorem C.1. ∀x ∈ ℜI ,

Var
(
Î1(θ |x)ij

)
≤ 1

N
· ∥∂ih(x)∥22 · ∥∂jh(x)∥22 · γ̃max (M) , (19)

Var
(
Î2(θ |x)ij

)
≤ 1

N
· ∥∂2

ijh(x)∥22 · γmax(I(h |x)), (20)

where

γ̃max (M) = sup
u:∥u∥2=1,v:∥v∥2=1

uavbucvdMabcd

γmax(M) = sup
u:∥u∥2=1,v:∥v∥2=1

uavbMab.

Proof. The proof follows similarly to Appendices J and K, where the primary difference is just
swapping the regular eigenvalue-like quantities with the γ variational forms.
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It should be noted that the corresponding lower bounds become trivial as the additional degree of
freedom of having an inf over both u and v causes the corresponding γmin definition to have negative
quantities. Although it is unclear what the “tensor-like” variational quantity γ̃max (M) will be, for a
matrix, we have the following equivalence.
Lemma C.2. γmax(A) = smax(A), where smax(A) is the maximum singular value of A.

Proof. The proof follows from optimizing over u and v separately:

γmax(A) = sup
u:∥u∥2=1

sup
v:∥v∥2=1

uavbAab

= sup
u:∥u∥2=1

sup
v:∥v∥2=1

u⊤Av

= sup
v:∥v∥2=1

(Av)⊤Av

∥Av∥2

= sup
v:∥v∥2=1

√
vT (A⊤A)v.

This is equivalent to the square root of the maximal eigenvalue of A⊤A, which is exactly the
maximum singular value.

Hence for the Î2 we have the following.
Corollary C.3. ∀x ∈ ℜI ,

Var
(
Î2(θ |x)ij

)
≤ 1

N
· ∥∂2

ijh(x)∥22 · smax(I(h |x)). (21)

D Bounding the Trace Variance by Full Spectrum

Theorem D.1. For any x ∈ ℜI ,

T∑
t=1

s2t (∂h(x)) · λT−t+1 (I(h |x)) ≤ tr (I(θ |x))

≤
T∑

t=1

s2t (∂h(x)) · λt (I(h |x)) , (22)

1

N
·

T∑
t=1

s2t (vJac(h |x)) · λT−t+1

(
M
)
≤ V1(θ |x)

1

N
·

T∑
t=1

s2t (vJac(h |x)) · λt

(
M
)
, (23)

1

N
·

T∑
t=1

s2t (dHes(h |x)) · λT−t+1 (I(h |x)) ≤ V2(θ |x)

≤ 1

N
·

T∑
t=1

s2t (dHes(h |x)) · λt (I(h |x)) , (24)

where s2i (A) = λi(A
⊤A) denotes the i-th singular values, M is the “reshaped” matrix of M defined

in Theorem 4.1 — i.e. there exists j, k such that Mjk = Mabcd for all a, b, c, d,

dHes(h |x) = (diag(Hes(h1 |x)), . . . ,diag(Hes(hT |x))),
and

vJac(h |x) = (vec(∂1h(x)∂1h(x)
⊤), . . . , vec(∂Th(x)∂Th(x)

⊤)).
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Proof. The proof follows from a generalized Ruhe’s trace inequality [24]:

Theorem D.2. For A,B ∈ ℜn×n Hermitian matrices, we have that
n∑

i=1

λi(A) · λn−i+1(B) ≤ tr (AB) ≤
n∑

i=1

λi(A) · λi(B).

We prove the result for each equations.

For readability, we let J ia = ∂ih
a(x).

For Eq. (22):

One can notice that the trace of the FIM can exactly be expressed as the trace of two matrices.

tr (I(θ |x)) =
dim(θ)∑
i=1

∂ih
a(x)∂ih

b(x)Iab(h |x)

= Iab(h |x)
dim(θ)∑
i=1

J iaJ ib

= Iab(h |x)
dim(θ)∑
i=1

(J⊤)aiJ ib

= Iab(h |x)(J⊤J)ab

= tr
(
(J⊤J)I(h |x)

)
.

Thus, noting that the eigenvalue of the “squared” matrix is the matrix’s singular value λt(J
⊤J) =

s2t (J), with Theorem D.2, we have that:

T∑
t=1

s2t (∂h(x)) · λT−t+1 (I(h |x)) ≤ tr (I(θ |x)) ≤
T∑

t=1

s2t (∂h(x)) · λt (I(h |x)) .

For Eq. (23):

Noting that Mabcd = Kp
abcd(t |x)− Iab(h |x) · Icd(h |x). Furthermore, we have that

vJac(h |x) = (vec(∂1h(x)∂1h(x)
⊤), . . . , vec(∂Th(x)∂Th(x)

⊤)).

Let us define the following 3D tensor with J iab = ∂ih
a(x)∂ih

b(x) = (∂ih(x)∂
⊤
i h(x))ab.

V1(θ |x) = 1

N

dim(θ)∑
i=1

∂ih
a(x)∂ih

b(x)∂ih
c(x)∂ih

d(x)Mabcd

=
1

N
Mabcd

dim(θ)∑
i=1

J iabJ icd

=
1

N

T∑
a,b=1

T∑
c,d=1

Mabcd

dim(θ)∑
i=1

J iabJ icd

=
1

N

T 2∑
j=1

T 2∑
k=1

Mjk

dim(θ)∑
i=1

vJacij(h |x)vJacik(h |x)

=
1

N

T 2∑
j=1

T 2∑
k=1

Mjk(vJac
⊤(h |x)vJac(h |x))jk

=
1

N
tr
(
M(vJac⊤(h |x)vJac(h |x))

)
.
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Thus, again simplifying the eigenvalue of the “squared” matrix, with Theorem D.2, we have that:

1

N

T∑
t=1

s2t (vJac(h |x)) · λT−t+1

(
M
)
≤ tr

(
Î1(θ |x)

)
≤ 1

N

T∑
t=1

s2t (vJac(h |x)) · λt

(
M
)
.

For Eq. (24):

Similar to Eq. (22), we only need to rearrange the summation. Notice that
dHes(h |x) = (diag(Hes(h1 |x)), . . . ,diag(Hes(hT |x))),

thus dHesia(h |x) = ∂2
i (ha |x).

V2(θ |x) = 1

N

dim(θ)∑
i=1

∂2
i h

a(x)∂2
i h

b(x)Iab(h |x)

=
1

N
Iab(h |x)

dim(θ)∑
i=1

∂2
i h

a(x)∂2
i h

b(x)

=
1

N
Iab(h |x)

dim(θ)∑
i=1

dHesia(h |x)dHesib(h |x)

=
1

N
Iab(h |x)

dim(θ)∑
i=1

(dHes⊤)ai(h |x)dHesib(h |x)

=
1

N
Iab(h |x)(dHes⊤(h |x)dHes(h |x))ab

=
1

N
tr
(
I(h |x)(dHes⊤(h |x)dHes(h |x))

)
.

Thus, again simplifying the eigenvalue of the “squared” matrix, with Theorem D.2, we have that:

1

N

T∑
t=1

s2t (dHes(h |x)) · λT−t+1 (I(h |x)) ≤ tr
(
Î2(θ |x)

)
≤ 1

N

T∑
t=1

s2t (dHes(h |x)) · λt (I(h |x)) .

E Second Central Moment of Categorical Distribution

Proof. We first notice that the exponential family density is given by,
p(y |x) = exp(hy(x)− F (h(x)))

and thus also have

F (h(x)) = log

T∑
t=1

exp(ht(x))

The first order derivative follows as,
∂F (h)

∂hi

∣∣∣∣
h=h(x)

=
exp(hi(x))∑T
t=1 exp(ht(x))

= σi(h(x))

As such, the second order derivatives also follow,
∂2F (h)

∂hi∂hj

∣∣∣∣
h=h(x)

=
exp(hi(x))δij ·

∑T
t=1 exp(ht(x))− exp(hi(x)) exp(hj(x))(∑T

t=1 exp(ht(x))
)2

= σi(h(x)) · δij − σi(h(x))σj(h(x)).

As such, we have that
I(h |x) = Diag(σ(x))− σ(x)σ(x)⊤.

22



F Empirical Results Continued

In the following section we present additional details and results for the experimental verification we
conduct in Section 5.

F.I Additional Details

We note that to calculate the diagonal Hessians required for the bounds and empirical FIM cal-
culations, we utilize the BackPACK [6] for PyTorch. Additionally, to calculate the sufficient
statistics moment’s spectrum, we explicitly solve the minimum and maximum eigenvalues via their
optimization problems. For 2D tensors / matrices, we utilize numpy.linalg.eig. For 4D tensors,
we utilize PyTorch Minimize [9], a wrapper for SciPy’s optimize function.

F.II Additional Plots

We present Figs. V to VIII which are the exact same experiment run in Section 5, but with different
initial NN weights and random inputs.

Figures IX to XIII show the experimental results on a 5-layer MLP and log-sigmoid activation
function. In most of the cases, the FIM and its associated variances quickly go to zero in the first few
epochs.
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Figure V: The Fisher information, its variances and bounds of the variances w.r.t. a MLP trained with
different initialization and a different input x (a)
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Figure VI: The Fisher information, its variances and bounds of the variances w.r.t. a MLP trained
with different initialization and a different input x (b)

G “Empirical Fisher” Continued

Noting Lemma 6.1’s characterization of the covariance, we are able to characterize the variance of
the diagonal elements of Î(θ |x), denoted as V(θi |x) .

= Var(̂I(θi |x)).
Corollary G.1. For any x ∈ ℜI ,

V(θi |x) =
1

N
∂ih

a(x)∂ih
b(x)∂ih

c(x)∂ih
d(x) (Kabcd(t |x)− Iab(h |x)⊗ Icd(h |x))

=
1

N
∂ih

a(x)∂ih
b(x)∂ih

c(x)∂ih
d(x)Kabcd(t |x)−

1

N

(
∂ih

⊤(x) (Covq(t |x) + ∆H(x)) ∂ih(x)
)2

,
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Figure VII: The Fisher information, its variances and bounds of the variances w.r.t. a MLP trained
with different initialization and a different input x (c)
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Figure VIII: The Fisher information, its variances and bounds of the variances w.r.t. a MLP trained
with different initialization and a different input x (d)

where K(h |x) the 4th (non-central) moment of (t(ŷ)− η(x)) w.r.t. q(ŷ |x).

As a result of the similarity of the functional forms of the empirical Fisher Î(θ) and the FIM
estimator Î1(θ), it is not surprising that Corollary G.1 is similar to the variance of Î1(θi |x). Indeed,
applying Lemma 6.1 will give the exact same functional form with the 2nd central moments of t(y)
w.r.t. p(y |x) exchanged with 2nd non-central moments of (t(ŷ)− η(x)) w.r.t. q(ŷ |x). V(θi |x)
is therefore determined by the 2nd and the 4th moment of (t(ŷ) − η(x)) up to the parameter
transformation θ → h. Subsequently, the bounds presented for V1(θi |x) (Eq. (8) and Corollary 4.6)
can be similarly adapted for V(θi |x).
The extension of V(θi |x) to V(θi) can also be proven in a similar manner to Theorem 4.7.

Corollary G.2. Given Nx samples of x ∼ q(x) and N samples of y |x ∼ q(y |x) for each x
sampled,

V(θi) =
1

Nx
·Var (I(θi |x)) +

1

Nx
· E
q(x)

[V(θi |x)] . (25)

where Var (I(θi |x)) is the variance of I(θi |x) w.r.t. q(x).

If q(x,y) = 1
N

∑N
k=1 δ(x− xk) · δ(y − ŷk) for a set of observations {(xk, ŷk)}Nk=1, then one can

directly evaluate the DFIM without sampling and achieve zero variance, i.e., Î(θ) = I(θ). In this
scenario, there is a clear trade-off between the estimators of the FIM in Eq. (3) and the DFIM. The
estimators of the FIM are unbiased, but have a variance; while the DFIM has zero variance, but is a
biased approximation of the FIM.

24



−50

−25

0

lo
g√

̂

i

PGroup 1 (Linear 784 → 256) PGroup 2 (Linear 256 → 128) PGroup 3 (Linear 128 → 128) PGroup 4 (Linear 128 → 64) PGroup 5 (Linear 64 → 10)

012345 10 15 20
Training Epoch

0

1

2
Av

g 
lo

g(
UB

/
̂


i)

012345 10 15 20 012345 10 15 20 012345 10 15 20 012345 10 15 20
̂1 √ ̂1 UB of √ ̂1 √ ̂2 UB of √ ̂2

Figure IX: The Fisher information, its variances and bounds of the variances w.r.t. a 5-layer MLP
with log-sigmoid activation.
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Figure X: The Fisher information, its variances and bounds of the variances w.r.t. a 5-layer MLP with
log-sigmoid activation.
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Figure XI: The Fisher information, its variances and bounds of the variances w.r.t. a 5-layer MLP
with log-sigmoid activation.

H Derivation of Eq. (3) Using Log-Partition Function Derivatives

In what follows, we derive the alternative equations for Î1(θi) and Î2(θi) presented in Section 3.
That is, we seek to derive the following equations:

Î1(θi) =
1

N

N∑
k=1

(
∂F (h(xk))

∂θi
− ∂ha(xk)

∂θi
· ta(yk)

)2

; (26)

Î2(θi) =
1

N

N∑
k=1

(
∂2F (h(xk))

∂2θi
− ∂2ha(xk)

∂2θi
· ta(yk)

)
. (27)

We calculate the equations separately.

25



−50

−25

0

lo
g√

̂

i

PGroup 1 (Linear 784 → 256) PGroup 2 (Linear 256 → 128) PGroup 3 (Linear 128 → 128) PGroup 4 (Linear 128 → 64) PGroup 5 (Linear 64 → 10)

012345 10 15 20
Training Epoch

0.0

2.5

5.0

Av
g 

lo
g(

UB
/

̂

i)

012345 10 15 20 012345 10 15 20 012345 10 15 20 012345 10 15 20
̂1 √ ̂1 UB of √ ̂1 √ ̂2 UB of √ ̂2

Figure XII: The Fisher information, its variances and bounds of the variances w.r.t. a 5-layer MLP
with log-sigmoid activation.
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Figure XIII: The Fisher information, its variances and bounds of the variances w.r.t. a 5-layer MLP
with log-sigmoid activation.

H.I Eq. (26)

Proof. For Eq. (26), we note that
∂ log p(yk |xk)

∂θi
=

∂

∂θi

(
t⊤(yk)h(xk)− F (h(xk))

)
= ta(yk)

∂ha(xk)

∂θi
− F ′

a(h(xk))
∂ha(xk)

∂θi

= ta(yk)
∂ha(xk)

∂θi
− ηa(xk)

∂ha(xk)

∂θi

= (ta(yk)− ηa(xk)) ·
∂ha(xk)

∂θi
,

where we note that F ′
a(h(xk)) = ηa(xk) which follows from the connection to expected parameters

and partition functions of exponential families, see e.g. [37].

Then Eq. (26) follows immediately.

H.II Eq. (27)

Proof. For Eq. (27), we also calculate the derivative:
∂ log p(yk |xk)

∂θi
=

∂

∂θi

(
t⊤(yk)h(xk)− F (h(xk))

)
= ta(yk) ·

∂ha(xk)

∂θi
− ∂F (h(xk))

∂θi
.

Then
∂2 log p(yk |xk)

∂2θi
=

∂

∂θi

(
ta(yk) ·

∂ha(xk)

∂θi
− ∂F (h(xk))

∂θi

)
= ta(yk) ·

∂2ha(xk)

∂2θi
− ∂2F (h(xk))

∂2θi
.
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Then Eq. (27) follows immediately.

Remark H.1. Although Eq. (27) is useful in practice, i.e., it states an equation which can be calculated
via automatic differentiation, in the appendix and proofs we use an alternative equation. In particular,
we use

Î2(θi) =
1

N

N∑
k=1

(
(ηa(xk)− ta(yk)) ·

∂2ha(xk)

∂2θi

+
∂ha(xk)

∂θi
· Iab(h |xk) ·

∂hb(xk)

∂θi

)
,

which follows from taking the derivative of ∂i log p(yk |xk) in the proof of Eq. (26) (above).

I Proof of Eq. (7)

We first begin by proving the follow lemma to bound an ℜn×n matrix.
Lemma I.1. Let A ∈ ℜn×n and v ∈ ℜn, then

∥v∥22 · λmin(A) ≤ vavbAab ≤ ∥v∥22 · λmax(A).

Proof. The proof follows immediately from the Courant-Fischer min-max theorem [42]. That is,
λmin(A) = inf

u:∥u∥=1
uaubAab;

λmax(A) = sup
u:∥u∥=1

uaubAab.

Thus it follows that:
vavbAab = ∥v∥22 · (v/∥v∥2)a(v/∥v∥2)bAab

≤ ∥v∥22 · λmax(A).

The lower bound follows identically.

We note that this can be similarly proven via trace bounds, e.g., [43].

Now we can prove Eq. (7).

Proof. The proof follows from Lemma 3.1, Eq. (4), and directly applying Lemma I.1.

J Proof of Eq. (8)

Let us first define the maximum and minimum Z-eigenvalues of a 4-dimensional tensor K.

λ̃min(K) = inf
u:∥u∥2=1

uaubucudKabcd; (28)

λ̃max(K) = sup
u:∥u∥2=1

uaubucudKabcd. (29)

Now We first prove the following lemma regarding the Z-eigenvalues.
Lemma J.1. Suppose K is 4-dimensional tensor. Then we have

∥v∥42 · λ̃min(K) ≤ vavbvcvdKabcd ≤ ∥v∥42 · λ̃max(K) (30)

Proof. The proof follows similarly to Lemma I.1. We simple use the following calculation:
vavbvcvdKabcd

= ∥v∥42 · (v/∥v∥2)a(v/∥v∥2)b(v/∥v∥2)c(v/∥v∥2)dKabcd

≤ ∥v∥42 · sup
u:∥u∥2=1

uaubucudKabcd

= ∥v∥42 · λ̃max(K).

The minimum case is proven identically (with the opposite inequality).
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Now we can prove the bounds of Eq. (8)

Proof. From Lemma 3.1, we have that

V1(θi |x) =
1

N
∂ih

a(x)∂ih
b(x)∂ih

c(x)∂ih
d(x) [Kabcd − Iab(h |x) · Icd(h |x)] ,

where we shorthand Kabcd = Kp
abcd(t |x)

We bound two terms.

∥∂ih(x)∥42 · λ̃min(K) ≤ ∂ih
a(x)∂ih

b(x)∂ih
c(x)∂ih

d(x)Kabcd

≤ ∥∂ih(x)∥42 · λ̃max(K),

which follows directly from Lemma J.1

We now bound the second term in a similar way, taking va
.
= ∂ih

a(x) and noting that

vavbvcvdIab(h |x)Icd(h |x) = (vavbIab(h |x))2

which directly gives us,(
∥v∥22 · λmin(I(h |x))

)2 ≤ vavbvcvdIab(h |x)Icd(h |x)
≤
(
∥v∥22 · λmax(I(h |x))

)2
.

which follows from Lemma I.1.

Thus, together these bounds prove Eq. (8).

K Proof of Eq. (9)

From Lemma 3.1 we have that,

Vi
2 =

1

N
∂2
i h

a(x)∂2
i h

b(x)Iab(hL).

Thus we get

∥∂2
i h(x)∥22 · λmin (I(h)) ≤ ∂2

i h
b(x) · ∂2

i h
b(x) · Iab(h) ≤ ∥∂2

i h(x)∥22 · λmax (I(h)) ,
which follows from Lemma I.1. This immediately gives the bound as required.

L Proof of Corollary 4.2

Proof. The corollary holds from distributing the inf or sup and examining how the variational
definition of the generalized ‘eigenvalue‘ simplifies under tensor products.

Indeed, for the minimum case,

λ̃min (Kp(t |x)− I(h |x)⊗ I(h |x))
= inf

u:∥u∥2=1
uaubucud (Kp

abcd(t |x)− Iab(h |x) · Icd(h |x))

≥
(

inf
u:∥u∥2=1

uaubucudKp
abcd(t |x)

)
+

(
inf

u:∥u∥2=1
uaubucud(−Iab(h |x) · Icd(h |x))

)
=

(
inf

u:∥u∥2=1
uaubucudKp

abcd(t |x)
)
−
(

sup
u:∥u∥2=1

uaubucud(Iab(h |x) · Icd(h |x))
)

=

(
inf

u:∥u∥2=1
uaubucudKp

abcd(t |x)
)
−
(

sup
u:∥u∥2=1

(
uaubIab(h |x)

)2)

≥
(

inf
u:∥u∥2=1

uaubucudKp
abcd(t |x)

)
−
(

sup
u:∥u∥2=1

uaubIab(h |x)
)2

,
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where the last line holds from the fact that Iab(h |x) is PSD (thus the inner Einstein summation is
always positive).

Taking definitions of the types of eigenvalues, gives the statement.

We note that the ‘max’ case follows identically.

Additionally, for the lower bound, we can show the non-triviallity of the non-negativity of the
minimum eigenvalue.

We note that Kp
abcd(t |x) = Ep[vavbvcvd], where v = t(y)− η(x).

Thus we have that

λ̃min (Kp(t |x)− I(h |x)⊗ I(h |x))
= inf

u:∥u∥2=1
uaubucud (Kp

abcd(t |x)− Iab(h |x) · Icd(h |x))

= inf
u:∥u∥2=1

E
p

[
uaubucud (vavbvcvd − Iab(h |x) · Icd(h |x))

]
= inf

u:∥u∥2=1
E
p

[(
uaub (vavb − Iab(h |x))

)2] ≥ 0.

Equality holds from simply looking at the definition of Kp(t |x) and I(h |x) (as moments).

M Proof of Proposition 4.3

Proof. Letting v = t(y)− η(y), we note that the maximum eigenvalue is given by,

λ̃max (Kp(t |x)) = sup
u:∥u∥2=1

uaubucudKp
abcd(t |x)

= sup
u:∥u∥2=1

E
p

[
uaubucudvavbvcvd

]
= sup

u:∥u∥2=1
E
p

[
(u⊤v)4

]
= sup

u:∥u∥2=1
E
p

[
(u⊤v)2(u⊤v)2

]
≤ sup

u:∥u∥2=1
E
p

[
(∥u∥2 · ∥v∥2)2(u⊤v)2

]
≤ B · sup

u:∥u∥2=1
E
p

[
(u⊤v)2

]
= B · λmax (I(h |x)) .

N Proof of Corollary 4.6

Proof. We split up the proof into the two arguments of the various min-function.

For the right term:

Suppose that we have a bound such that Vj(θi |x) ≤ αβi. Then,

∥Vj(θ |x)∥22 =

dim(θ)∑
i=1

(Vj(θi |x))2

≤
dim(θ)∑
i=1

(αβi)
2

= α2

dim(θ)∑
i=1

β2
i .

29



Thus we have,

∥Vj(θ |x)∥2 ≤ α

√√√√dim(θ)∑
i=1

β2
i .

Taking the appropriate α and β from Eqs. (8) and (9) proves the case for Eqs. (13) and (15).

For Eq. (14), that is taking

α =
1

N
·
(
λ̃max(Kp(t |x))− λ2

min (I(h |x))
)
;

βi = ∥∂ih(x)∥42.

Where we note that√√√√dim(θ)∑
i=1

(∥∂ih(x)∥42)
2
=

√√√√√dim(θ)∑
i=1

( T∑
t=1

[∂iht(x)]
2

)2
2

=

√√√√dim(θ)∑
i=1

(
T∑

t=1

[∂iht(x)]
2

)4

≤

√√√√√dim(θ)∑
i=1

T∑
t=1

[∂iht(x)]
2

4

=

dim(θ)∑
i=1

T∑
t=1

[∂iht(x)]
2

2

= ∥∂h(x)∥4F .

For Eq. (15), that is taking

α =
1

N
· λmax(I(h |x));

βi = ∥∂2
i h(x)∥22.

Where we note that √√√√dim(θ)∑
i=1

(∥∂2
i h(x)∥22)

2
=

√√√√dim(θ)∑
i=1

(
T∑

t=1

[∂2
i ht(x)]

2

)2

≤

√√√√√dim(θ)∑
i=1

T∑
t=1

[∂2
i ht(x)]

2

2

=

dim(θ)∑
i=1

T∑
t=1

[
∂2
i ht(x)

]2
= ∥dHes(h |x)∥2F .

For the left term:

We take the largest singular value of the network derivative term. We then further notice that
smax(A) ≤ ∥A∥F from norm ordering (of the matrix 2-norm).
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To further elaborate on the Eq. (14) case, we further need to simplify the following:

smax(vJac) ≤ ∥vJac(h |x)∥F

=

√√√√dim(θ)∑
i=1

∥∂ih(x)∂ih⊤(x)∥2F

=

√√√√ T∑
a,b=1

dim(θ)∑
i=1

(∂iha(x))2(∂ihb(x))2

≤

√√√√ T∑
a,b=1

∥(∂ha(x))2∥2 · ∥(∂hb(x))2∥2

=

√√√√( T∑
a=1

∥(∂ha(x))2∥2
)2

=
T∑

a=1

∥(∂ha(x))2∥2

=

T∑
a=1

√√√√dim(θ)∑
i=1

(∂iha(x))4

≤
T∑

a=1

dim(θ)∑
i=1

|(∂iha(x))2|

= ∥∂h(x)∥2F ,

where the last inequality follows from the norm ordering ∥ · ∥2 ≤ ∥ · ∥1.

O Proof of Theorem 4.7

To prove the Theorem, we will utilize the law of total variances. We note, that by the premise of the
Theorem, we are sampling Nx many samples from q(x) and N many samples from q(y |y) for each
y initially sampled. To make this clear, the samples and sampling will be notated by:

xk ∼ q(x)

yl |xk
∼ p(y |xk)

Note that using these samples, our empirical estimators for the FIM (for either estimator) will be of
the form:

Î1(θi) =
1

Nx

∑
xk

 1

N

∑
yl |xk

f(xk,yl |xk
)

 ,

for an appropriately chosen f .

This also gives:

Îj(θi |x) =
1

N

∑
yl |x

f(x,yl |x).
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Now, we simplify the variance as follows:

Var

 1

Nx

∑
xk

 1

N

∑
yl |xk

f(xk,yl |xk
)


=

1

N2
x

∑
xk

Var

 1

N

∑
yl |xk

f(xk,yl |xk
)


=

1

N2
x

∑
xk

Var
[
Îj(θi |xk)

]
=

1

N2
x

∑
xk

(
Varxk

[
E

y1 |xk
,...,yN |xk

[
Îj(θi |xk)

]]
+ E

xk

[
Vary1 |xk

,...,yN |xk

[
Îj(θi |xk)

]])

=
1

N2
x

∑
xk

(
Varxk

[I(θi |xk)] + E
xk

[Vj(θi |xk)]

)
=

1

Nx

(
Varx [I(θi |x)] + E

x
[Vj(θi |x)]

)
.

As required.

For V1(θ)

Proof.

V1(θi) =
1

N

(
E

p(x,y)

[(
∂ log p(y |x)

∂θi

)2
]
− E

p(x,y)

[
∂ log p(y |x)

∂θi

]2)
.

Let δa(x,y)
.
= (t(y)− η(x)).

E
p(x,y)

[(
∂ log p(y |x)

∂θi

)2
]

= E
p(x,y)

[
∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
δa(x,y)δb(x,y)δc(x,y)δd(x,y)

]
= E

q(x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
E

p(y |x)
[δa(x,y)δb(x,y)δc(x,y)δd(x,y)]

]
= E

q(x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
Kp

abcd(t |x)
]
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And:

E
p(x,y)

[
∂ log p(y |x)

∂θi

]2
= E

p(x,y)

[
∂ha(x)

∂θi

∂hb(x)

∂θi
δa(x,y)δb(x,y)

]2
= E

q(x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi
E

p(y |x)
[δa(x,y)δb(x,y)]

]2
= E

q(x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi
Iab(h |x)

]2
= E

q(x)

[(
∂ha(x)

∂θi

∂hb(x)

∂θi
Iab(h |x)

)2
]
−VarX

((
∂h(x)

∂θi

)⊤

I(h |x)∂h(x)
∂θi

)

= E
q(x)

[(
∂ha(x)

∂θi

∂hb(x)

∂θi
Iab(h |x)

)2
]
−VarX (I(θi |x)) .

Together:

V1(θi) =
1

N
VarX (I(θi |x))

+
1

N
E

q(x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
[Kp

abcd(t |x)− Iab(h |x) · Icd(h |x)]
]

For V2(θ)

Proof.

V2(θi) =
1

N
Var

(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi
+ I(θi |x)

)

=
1

N

Var
(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

)
︸ ︷︷ ︸

(a)

+Var (I(θi |x))

+2Cov

(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi
, I(θi |x)

)
︸ ︷︷ ︸

(b)

 .
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(a) = Var

(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

)
= E

p(x,y)

[(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

)2
]

− E
p(x,y)

[
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

]2
= E

p(x,y)

[(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

)2
]

− E
q(x)

[
∂2ha(x)

∂θi∂θi
E

p(y |x)
[(ηa(x)− ta(y))]

]2
= E

p(x,y)

[(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

)2
]
− 0

= E
q(x)

[(
∂2h(x)

∂θi∂θi

)⊤

E
p(y |x)

[
(η(x)− t(y)) (η(x)− t(y))

⊤
](∂2h(x)

∂θi∂θi

)]

= E
q(x)

[(
∂2h(x)

∂θi∂θi

)⊤

I(h |x)
(
∂2h(x)

∂θi∂θi

)]
.

(b) = Cov

(
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi
, I(θi |x)

)
= E

p(x,y)

[
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi
I(θi |x)

]
− E

p(x,y)

[
(ηa(x)− ta(y))

∂2ha(x)

∂θi∂θi

]
E

p(x,y)
[I(θi |x)]

= 0,

which follows by taking the ‘partial’ expectation (y |x) for both terms.

Thus together,

V2(θi) =
1

N
Var (I(θi |x)) +

1

N
E

q(x)

[(
∂2h(x)

∂θi∂θi

)⊤

I(h |x)
(
∂2h(x)

∂θi∂θi

)]
.

P Proof of Lemma 4.8

Proof. The lower bound holds from just considering the non-negativity of variance. For the upper
bound, we utilize the bound directly consider the bounds of Eq. (7),

Var (I(θi |x)) = E
q(x)

[
I(θi |x)2

]
− E

q(x)
[I(θi |x)]2

≤ E
q(x)

[
I(θi |x)2

]
≤ E

q(x)

[
∥∂ih(x)∥42 · λ2

max(I(h |x))
]
.
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Q Proof of Proposition 5.1

We first derive the statistics I(h |x) and Kp(t |x) presented in “Regression: Isotropic Gaussian
Distribution” Section 5. It follows that from the regression setting, we have that,

F (h(x)) = log

∫
π(y) · exp(t⊤(y)h(x))

= log

∫
π(y) · exp(y⊤h(x)),

where notably, by definition, π(y) is independent of learned parameter h(x).

As such, we have that:

∂

∂hi
F (h)

∣∣∣∣
h=h(x)

=
1∫

π(y) · exp(t⊤(y)h(x)) ·
∫

π(y) · exp(t⊤(y)h(x)) · hi(x) = E
p(y |x)

[yi].

Now we note that Ep(y |x)[yi] is exactly hi(x) as the parameter h(x) specifies the mean of the
(isotropic) multivariate normal distribution. As such we have that,

∂

∂hi
F (h)

∣∣∣∣
h=h(x)

= h(x)

I(h |x) = ∂2

∂h∂h⊤F (h)

∣∣∣∣
h=h(x)

= I.

Furthermore, by [37, Lemma 5], we have that,

Kp
abcd(t |x) =

∂4F (h)

∂ha∂hb∂hc∂hd

∣∣∣∣
h=h(x)

+ Iab(h |x) · Icd(h |x) + Iac(h |x) · Ibd(h |x) + Iad(h |x) · Ibc(h |x)
= 0 + Iab(h |x) · Icd(h |x) + Iac(h |x) · Ibd(h |x) + Iad(h |x) · Ibc(h |x)
= Iab(h |x) · Icd(h |x) + Iac(h |x) · Ibd(h |x) + Iad(h |x) · Ibc(h |x).

In summary, we have,

Kp
abcd(t |x) = Iab(h |x) · Icd(h |x) + Iac(h |x) · Ibd(h |x)

+ Iad(h |x) · Ibc(h |x)
(Kp(t |x)− I(h |x)⊗ I(h |x))abcd = Iac(h |x) · Ibd(h |x) + Iad(h |x) · Ibc(h |x).

Proof. The minimum and maximum eigenvalues of I(h |x) follows directly noting that the trace
of a matrix is the sum of eigenvalues. As such, from the statistics presented above we have that the
minimum and eigenvalue must be 1.

The tensor eigenvalues of Kp(t |x)− I(h |x)⊗ I(h |x) = Iac(h |x) · Ibd(h |x) + Iad(h |x) ·
Ibc(h |x) follows from the variational definition Eq. (10). For instance, for the minimum eigenvalue,

inf
u:∥u∥2=1

uaubucud (Iac(h |x) · Ibd(h |x) + Iad(h |x) · Ibc(h |x))

= 2 · inf
u:∥u∥2=1

∥u∥22
= 2.

The maximum eigenvalue is proven identically.

R Proof of Theorem 5.2

We first prove the following corollary which connects the maximum eigenvalues of K(t |x) to the
maximum eigenvalues of I(h |x).
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Corollary R.1. Suppose that the exponential family in Eq. (1) is specified by a categorical distribution.
Then,

λ̃max (K(t |x)) ≤ 2 · λmax(I(h |x)). (31)

Proof. As we are consider a categorical distribution we have that

vi =

{
1− σi(h) if y = i

0− σi(h) if y ̸= i
.

Thus we have that |vi| ≤ 1. Furthermore, note that the maximum ℓ2-norm that we can have is
∥v∥2 ≤

√
2. Note that this is tight when the positive and negative mass are placed only two distinct

coordinates, i.e., (−1, 1, . . .).

Thus using Proposition 4.3, the result follows.

Now by using Corollaries 4.2 and R.1, the remainder of the proof, all we require is the bounding of
λmax(I(h |x)).

Proof. The first term in the maximum eigenvalue follows from,

λmax(I(h |x)) = λmax

(
Diag(σ(x))− σ(x)σ(x)⊤

)
≤ λmax (Diag(σ(x)))− λmin

(
σ(x)σ(x)⊤

)
= max

k
σk(x).

The second term in the maximum follows from the trace of I(h |x) being the sum of total eigenvalues.

S Proof of Lemma 6.1

Proof. The proof follows from the standard definition of covariance. Denoting η̂(x)
.
=

Eq(y |x) [t(y)], we have:

Covq(t |x) = E
q(y |x)

[
t(y)t⊤(y)

]
− η̂(x)η̂⊤(x).

Also expanding I(h |x):

I(h |x) = E
q(y |x)

[
(t(y)− η(x))(t(y)− η(x))⊤

]
= E

q(y |x)

[
t(y)t⊤(y)

]
− η(x)η̂⊤(x)− η̂⊤(x)η⊤(x) + η(x)η⊤(x).

Thus we have

Covq(t |x) = I(h |x) + η(x)η̂⊤(x) + η̂⊤(x)η⊤(x)− η(x)η⊤(x)− η̂(x)η̂⊤(x)

= I(h |x)− (η(x)− η̂(x))(η(x)− η̂(x))⊤.

As required.

T Proof of Corollary G.1

Proof. We calculate the variance:

V(θi) =
1

N

(
E

q(y |x)

[(
∂ log p(y |x)

∂θi

)2
]
− E

q(x,y)

[
∂ log q(y |x)

∂θi

]2)
.
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Each of the terms can be calculated: Let δa(x,y)
.
= (t(y)− η(x)).

E
p(x,y)

[(
∂ log p(y |x)

∂θi

)2
]

= E
q(y |x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
δa(x,y)δb(x,y)δc(x,y)δd(x,y)

]
=

∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
E

q(y |x)
[δa(x,y)δb(x,y)δc(x,y)δd(x,y)]

=
∂ha(x)

∂θi

∂hb(x)

∂θi

∂hc(x)

∂θi

∂hd(x)

∂θi
Kabcd(t |x).

And:

E
p(y |x)

[
∂ log p(y |x)

∂θi

]2
= E

p(y |x)

[
∂ha(x)

∂θi

∂hb(x)

∂θi
δa(x,y)δb(x,y)

]2
=

[
∂ha(x)

∂θi

∂hb(x)

∂θi
E

p(y |x)
[δa(x,y)δb(x,y)]

]2
=

[
∂ha(x)

∂θi

∂hb(x)

∂θi
Iab(h |x)

]2
.

Together with Lemma 6.1 proves the theorem.

U Proof of Corollary G.2

Proof. The proof follows identically to that of Theorem 4.7 with densities changed.
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• The paper should point out any strong assumptions and how robust the results are to
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should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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appropriate to the research performed.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Guidelines:
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• The method for calculating the error bars should be explained (closed form formula,
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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• If the authors answer No, they should explain the special circumstances that require a
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or model release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: License and credit are given for MNIST.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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