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ABSTRACT

Recent studies show that vision models pre-trained in generic visual learning tasks
with large-scale data can provide useful feature representations for a wide range
of visual perception problems. However, few attempts have been made to ex-
ploit pre-trained foundation models in visual place recognition (VPR). Due to the
inherent difference in training objectives and data between the tasks of model
pre-training and VPR, how to bridge the gap and fully unleash the capability
of pre-trained models for VPR is still a key issue to address. To this end, we
propose a novel method to realize seamless adaptation of pre-trained models for
VPR. Specifically, to obtain both global and local features that focus on salient
landmarks for discriminating places, we design a hybrid adaptation method to
achieve both global and local adaptation efficiently, in which only lightweight
adapters are tuned without adjusting the pre-trained model. Besides, to guide
effective adaptation, we propose a mutual nearest neighbor local feature loss,
which ensures proper dense local features are produced for local matching and
avoids time-consuming spatial verification in re-ranking. Experimental results
show that our method outperforms the state-of-the-art methods with less train-
ing data and training time, and uses about only 3% retrieval runtime of the two-
stage VPR methods with RANSAC-based spatial verification. It ranks 1st on the
MSLS challenge leaderboard (at the time of submission). The code is released at
https://github.com/Lu-Feng/SelaVPR.

1 INTRODUCTION

Visual place recognition (VPR), also known as image localization (Liu et al., |2019) or visual geo-
localization (Berton et al., 2022b)), aims at coarsely estimating the location of a query place image
by searching for its best match from a database of geo-tagged images. VPR has long been studied in
robotics and computer vision communities, motivated by its wide applications in mobile robot local-
ization (Xu et al.} 2020) and augmented reality (Middelberg et al., 2014), etc. The main challenges
of the VPR task include condition (e.g., illumination and weather) changes, viewpoint changes, and
perceptual aliasing (Lowry et al.l [2015)) (hard to differentiate similar images from different places).

The VPR task is typically addressed by using image retrieval and matching approaches (Arand-
jelovic et al., [2016; |Cao et al., 2020) with global or/and local descriptors to represent images. The
aggregation algorithms like VLAD (Jégou et al., 2010; Lowry & Andreasson, 2018 [Khaliq et al.,
2019) are usually used to aggregate/pool local features into a vector as the global feature. Such
compact global features facilitate fast place retrieval and are robust against viewpoint variations.
However, these global features neglect spatial information, making VPR methods based on them
prone to perceptual aliasing. A promising solution (Cao et al., [2020; Hausler et al.| |2021; Wang
et al.| 2022a), i.e., two-stage VPR, is to retrieve top-k candidate results in the database using global
features, then re-rank these candidates by matching local features. Moreover, VPR model training
follows the “pre-training then finetuning” paradigm. Most VPR models are initialized using model
parameters pre-trained on ImageNet (Deng et al., |2009) and fine-tuned on the VPR datasets, such
as MSLS (Warburg et al., [2020). As models and training datasets continue to expand, the training
becomes more costly in both computation and memory footprint.
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Figure 1: Attention map visualizations of the pre-trained foundation model (DINOv2) and our
model. The pre-trained model pays attention to some regions (e.g. dynamic riders) that are use-
less to identify places. Our method focuses on discriminative regions (buildings and trees).

Recently, foundation models (Radford et al.,[2021} [Yuan et al.} 2021} [Oquab et al., 2023)) achieved re-
markable performance on many computer vision tasks given their ability to produce well-generalized
representations. However, the image representation produced by the pre-trained model is susceptible
to useless (even harmful) dynamic objects (e.g. pedestrians and vehicles), and tends to ignore some
static discriminative backgrounds (e.g. buildings and vegetation), as shown in Fig. [I] (b). A robust
VPR model should focus on the static discriminative landmarks (Chen et al.} 2017b)) rather than the
dynamic foreground. This results in a gap between pre-training and VPR tasks. Meanwhile, full
fine-tuning the foundation model on downstream datasets might forget previously learned knowl-
edge and damage the excellent transferability, i.e., catastrophic forgetting. An effective method to
address this issue is parameter-efficient transfer learning (Houlsby et all, 2019} [Lester et al.l [202T)),
which has not been studied in the VPR area. Besides, most foundation models do not directly pro-
duce (dense) local features, which is typically required in the re-ranking of two-stage VPR methods.

In this paper, we propose a novel method to realize Seamless adaptation of pre-trained founda-
tion models for the VPR task, named SelaVPR. By adding a few tunable lightweight adapters to
the frozen pre-trained model, we achieve an efficient hybrid global-local adaptation to get both
global features for retrieving candidate places and local features for re-ranking. Specifically, the
global adaptation is achieved by adding adapters after the multi-head attention layer and in paral-
lel to the MLP layer in each transformer block. The local adaptation is implemented by adding
up-convolutional layers after the entire transformer backbone to upsample the feature map. Addi-
tionally, we propose a mutual nearest neighbor local feature loss, which can be combined with the
commonly used triplet loss to optimize the network. The proposed SelaVPR feature representation
focuses on the discriminative landmarks, which is critical to identifying places. Furthermore, we
can directly match the local features without spatial verification, making the re-ranking much faster
than mainstream two-stage VPR methods. Our main contributions are highlighted as follows:

1) We propose a hybrid global-local adaptation method to seamlessly adapt pre-trained foundation
models to produce both global and local features for the VPR task. The proposed SelaVPR feature
representation can focus on discriminative landmarks and ignore the regions irrelevant to distin-
guishing places, thus closing the gap between the pre-training and VPR tasks.

2) We also propose a mutual nearest neighbor local feature loss to train the local adaptation module,
which is combined with global feature loss for fine-tuning. The obtained local features can be
directly used in cross-matching for re-ranking, without time-consuming geometric verification.

3) Our method outperforms state-of-the-art methods on several VPR benchmarks (ranks 1st on
MSLS challenge leaderboard) using less training data and training time. And it only consumes 3%
retrieval runtime of the mainstream two-stage methods with RANSAC-based geometric verification.

2 RELATED WORK

Visual Place Recognition: The traditional VPR approaches perform nearest neighbor search using
global features to find the most similar place. The global features are commonly produced using

aggregation algorithms, such as Bag of Words (Angeli et al., 2008 and VLAD (Jégou et al.,|2010),
to process the hand-crafted features like SURF 2008). With the advancement of deep

learning techniques, many works (Siinderhauf et al., 2015}, Jin Kim et al.| 2017;|Chen et al., 2017alb}
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Naseer et al., 2017} |Garg et al., 201752018} Xin et al.l | 2019; [Yin et al., 2019; Lu et al.| 2021} |Leyva-
Vallina et al., |[2021; 2023; |Ali-Bey et al., 2023) have employed a variety of deep features for the
VPR task. Some works integrated the aggregation methods into neural networks (Arandjelovic et al.,
2016; | Yu et al., 2019; [Peng et al.| 2021), and improved training strategies (Ge et al.l [2020; Berton
et al., 2022a}; |Ali-bey et al.| 2022), to achieve better performance. Nevertheless, most one-stage
(i.e. global retrieval) VPR approaches are prone to perceptual aliasing due to the use of aggregated
features while neglecting spatial information. One recent work (Keetha et al.,[2023) also used pre-
trained foundation models for the VPR task. However, this work did not perform any fine-tuning,
making it difficult to fully unleash the capability of these models for VPR.

Recently, the two-stage (i.e. hierarchical) VPR methods (Hausler & Milford, [2020;|Garg & Milford,
2021; Hausler et al., 2021} |Berton et al., 2021; Shen et al., 2022} Wang et al.,[2022a;|Lu et al., 2023;
Shen et al., 2023} |Zhu et al.l 2023) have become popular. These approaches typically retrieved
top-k candidate images over the whole database using compact global feature representation, such
as NetVLAD (Arandjelovic et al., [2016) or Generalized Mean (GeM) pooling (Radenovi¢ et al.,
2018)), then re-ranked candidates by performing local matching between the query image and each
candidate using local descriptors. However, most of these methods required geometric consistency
verification after local matching (Cao et al.,2020; Hausler et al.,|2021; Wang et al.,|2022a) or taking
into account spatial constraints during matching (Berton et al. 2021} |Lu et al., 2023} |Zhu et al.,
2023), which greatly increases the runtime burden. The recent visual foundation model (Oquab
et al., [2023) has shown an excellent ability to match similar semantic patch-level features across
domains. In this work, we attempt to match local features produced by the foundation model for re-
ranking without spatial verification, thereby significantly speeding up the retrieval process in VPR.

Parameter-efficient Transfer Learning: Recent work (Radford et al 2021} |Caron et al) 2021}
Wang et al., 2022b; (Oquab et al) [2023) demonstrated the visual foundation model can produce
powerful feature representation and achieve excellent performance on multiple tasks. These works
commonly trained the ViT (Dosovitskiy et al.,[2020) model or its variants with large quantities of pa-
rameters on huge amounts of data. The parameter-efficient transfer learning (PETL) (Houlsby et al.|
2019), first proposed in natural language processing, is an effective way to adapt foundation models
to various downstream tasks, which can reduce training computation costs and avoid catastrophic
forgetting. The main PETL methods fall broadly into three categories: adding task-specific adapters
(Houlsby et al., 2019), prompt tuning (Lester et al., 2021), and Low-Rank Adaptation (LoRA) (Hu
et al., |2021). We follow the first in this work. Although several adapter-based approaches (Jie &
Deng|, 2022} (Chen et al.| [2022; [Pan et al., 2022} Yang et al., 2023} Khan & Ful 2023} Xu et al.,[2023;
Park et al., 2023) have been proposed to perform various computer vision tasks, to the best of our
knowledge, this work is among the first to use the hybrid global-local adaptation to produce both
global features and local features, and apply them to address the challenges in VPR.

3  PROPOSED METHOD

This section describes the proposed SelaVPR for two-stage VPR. We first introduce ViT and its use
to produce place image representation. Then, we propose the global adaptation, local adaptation,
and local matching re-ranking to achieve two-stage VPR. Finally, we present the loss for fine-tuning.

3.1 PRELIMINARY

The Vision Transformer (ViT) and its variants have proven to be powerful for a variety of computer
vision tasks including VPR. In this work, we adapt the ViT-based pre-trained foundation model
DINOV2 (Oquab et al.} [2023) for VPR, so here we give a brief overview of ViT.

Given an input image, ViT first slices it into N patches and linearly projects them to D-dim patch
embeddings x, € RNXD then prepends a learnable [class] token to x, as £o = [Tciass; Tp| €
RWNHADXD = After adding positional embeddings to preserve the positional information, z is fed
into a series of transformer blocks to produce the feature representation. A standard transformer
block mainly includes multi-head attention (MHA), multi-layer perceptron ( MLP), and LayerNor-
malization (LN) layers, as shown in Fig. [2] (a). For the input token sequence, its change process
passing through a transformer block is: The MHA is first applied to compute attentional features,
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Figure 2: Illustration of the global adaptation. We add a serial adapter (b) after the MHA layer and
a parallel adapter (c) in parallel to the MLP layer in each standard transformer block (a) to achieve
global adaptation.

then MLP is utilized to realize the feature nonlinearization and dimension transformation. It is
formulated as:
x; = MHA(LN(z;-1)) + 211 (D

x; = MLP(LN(x))) + 2, ()
where ;1 and x; are the output of the (I — 1)-th and [-th transformer block.

For the feature map output by CNN models, a common practice of the two-stage VPR method is to
use NetVLAD or GeM to aggregate it into a global feature for candidate retrieval and also treat it as
dense local (patch) features for re-ranking. For the ViT model, the output consists of one class token
and N patch tokens, where the class token can be directly used as the global feature to represent
places. Meanwhile, N patch tokens can also be reshaped as a feature map (similar to CNN) to
restore spatial position. In this work, instead of using the class token as the global feature, we use
GeM to pool the feature map into the global feature. The reason is explained in Appendix [C]

3.2 GLOBAL ADAPTATION

Although pre-trained foundation models are capable of powerful feature representation, direct use
of them in VPR cannot fully unleash their capability due to the gap between the pre-training and
VPR tasks. To address it, we introduce the global adaptation to adapt the pre-trained model so that
the feature representation can focus on the static discriminative regions that are beneficial to VPR.

Inspired by previous adapter-based parameter-efficient fine-tuning works (Houlsby et al., 2019}
Chen et al., 2022; |Yang et al., 2023), we design our global adaptation as shown in Fig. [2[ (d).
Specifically, we add two adapters in each transformer block. Each adapter is a bottleneck module,
which first uses the fully connected layer to down-project the input to a smaller dimension, then
applies a ReLU activation and up-projects it back to the original dimension. The first adapter is a
serial adapter that is added after the MHA layer and has a skip-connection internally. The second
adapter is a parallel adapter that is connected in parallel to the MLP layer multiplied by a scaling
factor s. The computation of each global adapted transformer block can be denoted as

x; = Adapterl (MHA(LN(z;—1))) + ;-1 3)
x; = MLP(LN(x))) + s - Adapter2(LN(z})) + z;. 4)

The output of the last transformer block is fed into an LN layer as the final output of the entire global
adapted ViT backbone. We discard the class token and reshape patch tokens as the produced feature
map fm. The L2-normalized GeM global feature used to retrieve candidates can be written as

£7 = L2(GeM(fm)). )
The global adapted foundation model can produce feature representations that focus on discrimi-

native landmarks and ignore dynamic interference. This bridges the gap between the model pre-
training and VPR tasks, and greatly boosts the performance of foundation models in the VPR task.
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Figure 3: Illustration of the local adaptation and our two-stage VPR pipeline. The global adapted
ViT backbone is applied to extract the feature map. We first use GeM to pool the feature map into
the global feature for candidate retrieval. The local adaptation module after the backbone is achieved
using up-conv layers, which upsample the feature map to yield dense local features. Then we cross-
match the local features between the query image and each candidate for re-ranking.

3.3 LOCAL ADAPTATION

Two-stage VPR methods typically match dense local features to re-rank candidate places for boost-
ing performance. In the above introduction, we have obtained the feature map output by the global
adapted ViT backbone, which can also be regarded as coarse-grained patch-level features. How-
ever, in order to achieve promising performance improvements through (local matching) re-ranking,
more fine-grained dense local features are required. To achieve this, we propose the local adapta-
tion, which is achieved by an up-sampling module after the ViT backbone, as shown in Fig. [3] To
be specific, this module consists of two up-convolutional (up-conv) layers and a ReLU layer in the
middle. The height and width of the feature map will approximately double after passing through
each up-conv layer, while the channel dimension will be reduced. Finally, for the input image of
size 224 %224 pixels, this module adjusts the 16x16x1024-dim feature map output by ViT-L/14
backbone to 61x61x128-dim, and performs L2 normalization in the channel dimension (intral.2)
to yield dense local features, i.e., a dense 61x61 grid of 128-dim local features fl. Formally, it can
be represented as

f! = LocalAdaptation(fm) = intral2(up-conv2(ReLU (up-conv1(fm)))). (6)

3.4 LOCAL MATCHING FOR RE-RANKING

Our two-stage place retrieval pipeline is shown in Fig. [3] After obtaining the global features and lo-
cal features, we first compute L2 distance to perform the similarity search in the global feature space
over the database to get the top-k most similar candidate images. For the local features matching
between the query image ¢ and a candidate image c, we search for mutual nearest neighbor matches
by cross-matching. Since local features are L2 normalized, the inner product equivalent to cosine
similarity is used to measure local feature similarity. That is

Sqc(iy ) = Fu(i) - £1(G) 4,5 €{1,2,..,N'} (N’ =61x61), (7)

where fé(i) is the i-th local feature in query image ¢, f(j) is the j-th local feature in candidate
image ¢, and sq.(4, j) is the local feature similarity between them. The mutual nearest neighbor
matches set M is defined as

M = {(u,v) : u=argmax s, (i,v), v =argmax syc(u,j)}. (8)
i J

That is, the u-th feature in image ¢ and the v-th feature in image c are the best matches for each other.
The obtained nearest neighbor matches set in previous VPR work (Hausler et al., 2021; Wang et al.,
2022al)) exists a large number of false matches. So they apply geometric verification (e.g. RANSAC
(Fischler & Bolles,,[1981)) to remove outliers (i.e. false matches) and use the number of inliers as the
image similarity score, which is time-consuming. Due to the powerful representation ability of the
foundation model and the superiority of the ViT in capturing long-distance feature dependencies, the
number of false matches in this work is actually not enough to affect the performance of re-ranking.
So we directly use the number of matches (i.e., | M|) as the image similarity score for re-ranking.
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3.5 Loss

For the loss designed to optimize the model to produce global features (denoted as global loss L),
we follow the triplet loss used in the previous works (Arandjelovic et al., | 2016; Wang et al.l 2022a):

Le =Y _UIf = £ +m—£2 = 21, )
J

where [(z) = max(z, 0), i.e. hinge loss. m is the margin. f, f7, and f are the global features
of query, positive, and hard negative samples, respectively.

However, what we use to measure image similarity in local matching re-ranking is the number of
mutual matches, which is a discrete integer. It is intractable to directly optimize a loss function of
discrete integer variables within a deep learning model because of its non-differentiability. So we
compromise to optimize the network so that the resulting mutual matching local features are more
similar, and design a mutual nearest neighbor local feature loss L; as

S u,v ! 1 Sqn; u/uvl
L = Z l(_z(u,v)GM qp( ) Z(u W )EM! 24q ]( )) (10)
J

+
M| M|
This local loss maximizes the average local feature similarity in the mutual matches set M of the
query image and positive image, and minimizes that in the matches set M’ of the query and negative

images. It makes the produced local features more suitable for local matching. We obtain the final
loss L through combining the global loss L, and local loss L; by weight A as

L=L,+ A (11)

4 EXPERIMENTS

4.1 DATASETS AND PERFORMANCE EVALUATION

Several VPR benchmark datasets mainly including
Tokyo24/7, MSLS, and Pitts30k are used in our ex-
periments. Table |I| summarizes their main informa-

Table 1: Summary of the main evalua-
tion datasets.

tion. Tokyo24/7 (Torii et al., |2015) includes about 76k Dataset Description  ——_Number___
: : _ i i Database Queries
database images and 315 query images captured from ur ToRyoZATTarban day/ight 76k 315

ban scenes with drastic illumination changes. Mapillary MSLS-—val urban, suburban 19k 740
Street-Level Sequences (MSLS) (Warburg et al.| [2020)  MSLS-challenge _long-term 39k 27092
consists of more than 1.6 million images collected in ur- __"r20ktest urban panorama 10k 6816
ban, suburban and natural scenes over 7 years. We assess

models on both MSLS-val and MSLS-challenge (an online test set without released labels) sets.
Pittsburgh (Pitts30k) (Tori1 et al., 2013) contains 30k reference images and 24k query images in
the train, val and test sets, and exhibits severe viewpoint changes. More details are in Appendix

We evaluate the recognition performance using Recall@N (R@N), which is the percentage of
queries for which at least one of the N retrieved images is the right result. The threshold is set to
25 meters and 40° for MSLS, 25 meters for Tokyo24/7 and Pitts30k, following standard evaluation
procedure (Warburg et al., [ 2020; |Arandjelovic et al.,2016).

4.2 IMPLEMENTATION DETAILS

We use the DINOv2 based on ViT-L/14 as the foundation model and conduct all experiments on
an NVIDIA GeForce RTX 3090 GPU using PyTorch. Fed a 224x224 image, the model produces
a 1024-dim global feature and a dense grid of 128-dim local features. The bottleneck ratio of the
adapters in ViT blocks is 0.5 and the scaling factor s in Eq. []is set to 0.2. We use 3x3 up-conv
with stride=2 and padding=1 in the local adaptation module. The output channels of the first and
second up-conv layers are 256 and 128, respectively. Following other two-stage methods, we re-
rank the top-100 candidates to yield final results. We train our models using the Adam optimizer
with the learning rate set as 0.00001 and batch size set as 4. When the R@5 on the validation set
does not have improvement within 3 epochs, the training is terminated. For MSLS, we set an epoch
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Table 2: Comparison to state-of-the-art methods on benchmark datasets. The best is highlighted in
bold and the second is underlined.

Method Tokyo24/7 MSLS-val MSLS-challenge Pitts30k-test
R@] R@5 R@IO[|[R@] R@5 R@IO[|[R@] R@5 R@IO|[|[R@] R@5 R@I0
NetVLAD 60.6 689 746 || 53.1 66.5 7TI1.1 |[35.1 474 51.7 |[819 912 937
SFRS 81.0 883 924 || 692 803 83.1 ||41.6 52.0 563 |84 947 959
CosPlace 81.9 90.2 927 || 828 89.7 92.0 ||614 720 76.6 || 884 945 95.7
MixVPR 85.1 91.7 943 | 88.0 927 946 ||64.0 759 80.6 [|91.5 955 963
SelaVPR(global) 819 949 96.5 || 87.7 958 96.6 ||69.6 869 90.1 ||902 96.1 97.1
SP-SuperGlue 882 90.2 90.2 || 78.1 819 843 ||50.6 569 583 [[872 948 96.4

Patch-NetVLAD-s || 78.1 83.8 87.0 || 77.8 843 86.5 | 48.1 594 623 || 875 945 96.0
Patch-NetVLAD-p || 86.0 88.6 90.5 || 79.5 86.2 87.7 || 48.1 57.6 60.5 || 88.7 945 959

TransVPR 79.0 822 85.1 || 8.8 912 924 || 639 740 775 |[89.0 949 962
StructVPR - - - 884 943 950 | 694 815 856 [[903 960 973
R*Former 88.6 914 91.7 |[89.7 950 96.2 ||73.0 859 88.8 ||91.1 952 96.3

SelaVPR (ours) 94.0 968 975 |/908 964 972 |73.5 875 90.6 || 928 968 97.7

as passing 30k queries, whereas Pitts30k is passing Sk queries. In model training, we define the
potential positive images as the reference images that are within 10 meters from the query image,
while the definite negative images are those further than 25 meters. Two hard negative images from
1000 randomly chosen definite negatives are used in the triplet loss. We empirically set the margin
m = 0.1 in Eq. 9] the weight A = 1 in Eq. For the experiments in Section#.3|(i.e. comparisons
with other methods), we fine-tune our model on MSLS-train to test on MSLS-val/challenge, and
further fine-tune it on Pitts30k-train to test on Pitts30k-test and Tokyo24/7 (as in R*Former (Zhu
et al.,|2023))). For the ablation experiments in other sections, the models tested on Pitts30k-test and
Tokyo024/7 are directly fine-tuned on Pitts30k-train by default.

4.3 COMPARISONS WITH STATE-OF-THE-ART METHODS

In this section, we compare the proposed SelaVPR method with several state-of-the-art (SOTA) VPR
methods, including four one-stage methods using global feature retrieval: NetVLAD (Arandjelovic
et al., 2016), SFRS (Ge et al., [2020), CosPlace (Berton et al., [2022a) and MixVPR (Ali-Bey et al.,
2023)), as well as five two-stage methods with re-ranking: SP-SuperGlue (DeTone et al., [2018; |Sar-
lin et al.,|2020), Patch-NetVLAD (Hausler et al.| 2021), TransVPR (Wang et al.| [2022a), StructVPR
(Shen et al.l 2023) and R2Former (Zhu et al.;|2023). The details of these methods are in Appendix
Note that CosPlace and MixVPR are trained on individually constructed large-scale datasets.
TransVPR and R*Former are transformer-based methods. R?Former ranked first in the leaderboard
of the MSLS place recognition challenge before our method was proposed. We also show the global
retrieval result without re-ranking using the proposed SelaVPR, and denote it as SelaVPR(global).
The quantitative results are shown in Table [2] Since the code for StructVPR has not yet been re-
leased, we use the results reported in the paper (Shen et al., 2023). The proposed method achieves
the best R@1/R@5/R@10 on all datasets.

When using only global features for direct retrieval, SelaVPR(global) significantly outperforms
other one-stage methods on all datasets for R@5 and R@10, including SFRS using complex train-
ing strategies and CosPlace/Mix VPR trained on purpose-built large-scale datasets. SelaVPR(global)
also outperforms all other two-stage methods on Tokyo24/7, MSLS-val, and MSLS-challenge for
R@5 and R@10. This fully demonstrates that adapting the foundation model can provide pow-
erful feature representation, which is a novel way to achieve SOTA one-stage VPR. Although
SelaVPR(global) does not achieve very good R@1 on Tokyo24/7 where the lighting changes drasti-
cally, the complete SelaVPR method outperforms other methods by a large margin after local feature
re-ranking. This illustrates the necessity of using local matching (local adaptation) for VPR in ex-
treme environments. The complete SelaVPR method significantly outperforms SOTA methods on
Tokyo24/7 and Pitts30k with absolute R@1 improvement of 5.4% and 1.3% respectively. Mean-
while, it also ranks 1st on the leaderboard of MSLS place recognition challenge (see Appendix
[£). Comparisons to SOTA methods on more datasets are in Appendix [ (SelaVPR achieves near-
perfect results on St. Lucia). Fig. 4| qualitatively demonstrates that our approach is highly robust in
challenging scenes. Benefiting from the visual foundation model and sensible adaptation, SelaVPR
achieves absolute performance advantages on a variety of datasets without complex training strate-
gies or purpose-built large-scale training datasets.
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Figure 4: Qualitative results. In these challenging examples (containing condition changes, view-
point changes, dynamic objects, etc.), the proposed SelaVPR successfully returns the right database
images, while all other methods produce incorrect results.

Table 3: The single query runtime comparison of two- Sle

SP-SuperGlue
stage methods on Pitts30k-test.

Patch-NetVLAD-s
Patch-NetVLAD-p
TransVPR
SelaVPR (ours)

o
e

Extraction Matching Total
Time (s) Time (s) Time (s)

SP-SuperGlue 0.042 6.639 6.681

©
N
{ X 2 4 2

Method

Recall@1 (%)
©
o

o]
O

Patch-NetVLAD-s ~ 0.186  0.551  0.737 88
Patch-NetVLAD-p ~ 0412 10732 11.144 ol ¢ A
TransVPR 0.008 3.010 3.018 0 2 4 6 8 10

Total Runtime (s)

SelaVPR (ours) 0.027 0.085 0.112 Figure 5: R@ 1-runtime comparison.

Efficiency is another metric for evaluating the VPR methods. In Table [3] we compare the run-
time (feature extraction time and matching/retrieval time) of our method with other two-stage meth-
ods on Pitts30k-test. Patch-NetVLAD-p and TransVPR are representative two-stage methods using
RANSAC for spatial verification in re-ranking. SP-SuperGlue uses neural networks to match local
features. TransVPR is fast at extracting features, while SelaVPR is slower (but faster than other
methods) due to the use of the ViT/L backbone. However, for matching/retrieval, since our method
does not require time-consuming spatial verification in re-ranking, its runtime is less than 3% of
TransVPR and only about 1% of SP-SuperGlue and Patch-NetVLAD-p. The total runtime of our
method is less than 4% of TransVPR. Although Patch-NetVLAD-s uses a Rapid Spatial Scoring
method for fast verification, it is still significantly slower than ours. Fig. [5]simultaneously shows
the total runtime and R@1 on Pitts30k. Due to the absolute advantages in both performance and
efficiency, our SelaVPR method is able to pave the way for real-world large-scale VPR applications.

4.4 ABLATION STUDY

In this section, we perform a series of ablation experiments to demonstrate the necessity of fine-
tuning and verify the effectiveness of the proposed global adaptation and local adaptation:

* DINOvV2-GeM: Using the pre-trained DINOv2 backbone (freeze parameter) and GeM
pooling, i.e., baseline.

* Tuned-DINOv2-GeM: full fine-tuned DINOv2-GeM.

Global-Adaptation: Global adapted DINOv2-GeM with our global adapation.

* Local-Adaptation: Using the DINOv2-GeM (freeze parameter) to retrieve candidates, and

adding the local adaptation module after it to produce local features for re-ranking.

SelaVPR: The complete (hybrid global-local adaptation) method.

The results are shown in Table ] Note that we directly use the model fine-tuned on Pitts30k-train
to test on Pitts30k and Tokyo24/7 in this section. The results are slightly lower than that in Table 2]
(but still SOTA).
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Table 4: Comparison of different ablated versions.

Ablated version Pitts30k-test Tokyo24/7 MSLS-val
R@] R@5 R@I0||R@] R@5 R@IO||[R@I R@5 R@I0
DINOv2-GeM 813 91.0 938 | 67.3 851 89.8 || 447 559 593

Tuned-DINOv2-GeM || 85.3 92.7 94.7 | 65.7 78.1 83.8 || 79.7 903 922
Global-Adaptation 873 94.6 96.6 | 77.8 87.6 91.7 || 874 959 969
Local-Adaptation 872 939 96.1 | 87.6 946 959 || 672 750 76.6
SelaVPR 914 965 978 || 933 952 956 || 90.8 964 97.2

The pre-trained DINOv2-GeM achieves decent results on Pitts30k, which has few dynamic objects
on the place image. The performance is improved after full fine-tuning (i.e. Tuned-DINOv2-GeM),
indicating that fine-tuning is necessary to make the produced feature representation more suitable for
the VPR task even without dynamic interference. However, Tuned-DINOv2-GeM performs worse
than DINOv2-GeM on Tokyo24/7. It is because there is a generalization gap between Tokyo24/7 and
Pitts30k-train, and full fine-tuning damages the excellent transferability of the pre-trained founda-
tion model. Compared with Tuned-DINOv2-GeM, Global-Adaptation only tunes a few newly added
adapters (with backbone frozen), which reduces the training consumption and always improves per-
formance (retaining the generalization ability of the foundation model). Global-Adaptation achieves
absolute R@1 improvement of 10.5% on Tokyo24/7. Besides, Local-Adaptation only adds a local
adaptation module (with the proposed local loss for training) after the frozen DINOv2 to produce
local features for re-ranking. It can also obviously improve performance, especially on Tokyo24/7
(20.3% absolute R@1 improvement), which shows day-night changes. The complete SelaVPR
method combines the advantages of Glocal-Adaptation and Local-Adaptation, and achieves absolute
R@1 improvement of 10.1% on Pitts30k and 26.0% on Tokyo24/7.

MSLS is a dataset with many dynamic objects (e.g. vehicles and pedestrians), on which the pre-
trained DINOv2-GeM gets terrible results. By adding a local adaptation module after DINOv2
(Local-Adaptation) to get dense local features for re-ranking, we can get 22.5% absolute per-
formance improvement for R@1, which is still not ideal. Using full fine-tuning can even bring
significant performance improvement (35.0% for R@1), and the improvement yielded by Global-
Adaptation is more obvious (42.7% for R@1). More importantly, the complete SelaVPR method
achieves 2 x higher R@1.

Overall, full fine-tuning the pre-trained foundation model on these datasets usually results in better
performance (unless there is a domain gap between the training and test set), indicating that the
first problem should be solved when applying a foundation model to the VPR task is to make the
output feature representation suitable for VPR (focusing on regions that help differentiate places),
i.e. bridge the gap between pre-training and VPR tasks. The second is the catastrophic forgetting
that will be encountered in fine-tuning the pre-trained models, which can be addressed by parameter-
efficient fine-tuning instead of full fine-tuning. Additionally, the local matching for re-ranking is
also necessary, especially on datasets that show drastic condition variations (e.g. Tokyo24/7). The
proposed global adaptation and local adaptation can work together to solve these problems well.

More experiments and analyses are in the Appendix, e.g., the comparisons of tunable parameters,
data efficiency, and training time.

5 CONCLUSIONS

In this paper, we introduced a novel hybrid adaptation method to seamlessly adapt pre-trained foun-
dation models for the VPR task, which is composed of the global adaptation and local adaptation.
The feature representation produced by the adapted foundation model is more focused on discrim-
inative landmarks to differentiate places, thus bridging the gap between the pre-training and VPR
tasks. The local adaptation enables the model to output proper dense local features, which can be
used for local matching re-ranking in two-stage VPR to greatly boost performance. The experimen-
tal results demonstrated that the proposed SelaVPR method outperforms previous SOTA methods on
VPR benchmark datasets (with a large margin on Tokyo24/7 and Pitts30k). Meanwhile, since our
approach eliminates the reliance on time-consuming spatial validation in re-ranking, it costs only
3% retrieval time of RANSAC-based two-stage methods. We believe that the proposed SelaVPR
method provides a promising way to address the VPR task in real-world large-scale applications.
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Table 5: Tunable parameters, training epoch, and training time of different methods on Pitts30k.

Method Tunable Param (M) | epoch | time (h) | R@1 | R@5
ResNet50-GeM 7 9 1.63 82.3 | 91.9
Tuned-DINOv2-GeM 304 2 0.62 85.3 | 92.7
SelaVPR 53 1 0.30 914 | 96.5
SelaVPR* 53 04 0.12 91.0 | 96.2

Table 6: The results of using different adapters in the global adaptation.

Pitts30k-test MSLS-val
R@l R@5 R@I10||R@1 R@5 R@I10
only serial adapter 90.9 962 974 1909 958 96.9
only parallel adapter || 91.3 96.6 97.7 | 89.7 96.2 96.6
both adapters 914 965 978 || 90.8 964 972

Method

A COMPARISONS OF TUNABLE PARAMETERS, DATA EFFICIENCY, AND
TRAINING TIME

In this section, we evaluate the tunable parameters, data efficiency, and training time of our model.
We use the ResNet50 with a GeM pooling in the benchmark implementation (Berton et al., |2022b)
(ResNet50-GeM) and the full fine-tuning DINOv2-GeM (Tuned-DINOv2-GeM) as reference. This
experiment is conducted on Pitts30k and the results are shown in Table[5] The tunable parameters
of our SelaVPR are only about 1/6 of full fine-tuning DINOv2 (Tuned-DINOv2-GeM). Although
our model has more tunable parameters than the ResNet50-GeM (CNN backbone), we require sig-
nificantly less training data and time, and achieve a 9.1% higher R@1. Note that one epoch only
contains a part of the training set (5000 triples). To further study the data efficiency of our model,
we train it with only 2000 triples (i.e., 0.4 epoch) and denote it as SelaVPR*. It still achieves SOTA
performance.

B ADDITIONAL ABLATION EXPERIMENTS FOR THE GLOBAL ADAPTATION

In this section, we further conduct ablation experiments to study the effect of reducing the number
of tunable parameters in the global adaptation. Table[6]shows the results of using different adapters,
i.e. only serial adapter, only parallel adapter, or both adapters. Using both adapters achieves the
best results overall, but we can still get good performance with just either adapter. Table [/| shows
the results of setting different bottleneck ratios in each adapter. Setting the ratio to 0.5 gets the
best results overall, but we can still achieve good performance with a 0.25 bottleneck ratio. These
experimental findings show that promising results can be obtained even if the number of tunable
parameters in the global adaptation is reduced. We can choose appropriate settings in the global
adaptation according to our needs.

Table 7: The results of different bottleneck ratios of the adapters.

Pitts30k-test MSLS-val
R@]1 R@5 R@I10||R@]1 R@5 R@I10
r=0251 91.0 962 974 | 91.2 96.6 96.9
r=0.5 914 96.5 978 || 90.8 964 97.2
r=0.751 90.9 959 972 | 91.1 964 96.6

ratio r
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Table 8: Performance of different global features without or with re-ranking.

Pitts30k-test MSLS-val
R@1 R@5 R@I10||R@]1 R@5 R@I10
SelaVPR-cls(global) 89.2 962 97.6 || 89.3 962 97.2
SelaVPR-GeM(global) || 87.2 95.1 97.2 || 87.7 958 96.6
SelaVPR-cls(re-rank) 90.1 96.0 974 | 835 922 94.1
SelaVPR-GeM(re-rank) || 91.4 96.5 97.8 || 90.8 964 97.2

Method

Table 9: The results of using “local” features at different granularities for re-ranking.

Method

Pitts30k-test MSLS-val
R@l R@5 R@10||R@]1 R@5 R@I10
global adaptation for global retrieval ‘ 873 946 96.6 || 874 959 969
coarse patch tokens for re-ranking 89.8 954 969 | 82.8 92.0 949
dense local features for re-ranking 914 96,5 97.8 || 90.8 964 97.2

C PERFORMANCE OF DIFFERENT GLOBAL FEATURES

This section compares the performance of using class token or GeM as global features in our
SelaVPR method. As shown in Table [8] the performance of direct global retrieval (without re-
ranking) using class token as the global feature, i.e. SelaVPR-cls(global), is better than that of GeM.
However, SelaVPR-GeM(re-rank) is better than SelaVPR-cls(re-rank) after re-ranking using local
features. That is, the improvement of SelaVPR-cls after re-ranking is significantly lower than that of
SelaVPR-GeM, and the performance of SelaVPR-cls after re-ranking is even decreased on MSLS-
val. This shows that when we use local features in conjunction with global features, GeM is better
compatible with local features, whereas class token is not. Therefore we finally choose GeM as the
global feature in SelaVPR.

D PERFORMANCE OF “LOCAL” FEATURES AT DIFFERENT GRANULARITIES

To illustrate the necessity of using dense local features in reranking, we provide a comparison of
reranking using coarse 16x 16 patch tokens (directly produced by the global adapted backbone, and
treated as coarse-grained “local” features) and our dense local features. The results are shown in
Table[9] Although re-ranking with coarse patch features provides an improvement (but not as good
as ours) on Pitts30k compared to only global adaptation for global retrieval (without re-ranking),
it performs significantly worse than global retrieval on MSLS-val, where VPR methods are more
susceptible to perceptual aliasing. That is, it will bring negative effects and damage the results of
global retrieval. However, using dense local features (produced by local adaptation) for re-ranking
can always provide significant improvements compared to global retrieval.

E PERFORMANCE OF RE-RANKING DIFFERENT NUMBERS OF CANDIDATES

We show the results of our SelaVPR for re-ranking different numbers of candidates in Table
The performance roughly reaches saturation when re-ranking top-100 candidates, which is our rec-
ommended setting for optimal recognition performance. Our approach also achieves excellent per-
formance when only the top-20 candidates are re-ranked. This setting can reduce the re-ranking
runtime by approximately 80%.

F COMPARISONS ON MORE DATASETS

This section provides comparisons with other methods on more datasets. We compare the proposed
method with other two-stage methods on the Nordland and St. Lucia datasets. As shown in Table
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Table 10: The results of re-ranking different numbers of candidates. Note that the model tested on
Tokyo024/7 and Pitts30k-test is fine-tuned on MSLS-train and then further fine-tuned on Pitts30k-
train (same as compared with the SOTA methods, but different from the ablation experiments).

Tokyo24/7 Pitts30k-test MSLS-val
R@] R@5 R@10||R@]1 R@5 R@10||R@]l R@5 R@I10
Top-20 93.0 962 97.1 | 927 96.6 97.5 ||90.7 96.4 97.0
Top-50 93.7 96.5 96.8 | 928 96.8 97.6 || 90.8 96.4 97.0
Top-100 940 96.8 975 | 928 96.8 97.7 || 90.8 96.4 97.2
Top-200 940 96.8 975 | 928 969 97.8 || 90.7 965 973

Candidates

Table 11: Comparison to two-stage methods on Nordland-test and St. Lucia. The threshold is set to
42 frames for Nordland-test and 25 meters for St. Lucia. The model is the same as that used for
MSLS in Table

Nordland-test St. Lucia
Method
R@1 R@5 R@I0||R@] R@5 R@I10
SP-SuperGlue 258 354 382 || 865 921 934

Patch-NetVLAD-s || 442 575 627 | 90.2 936 95.0
Patch-NetVLAD-p | 51.6 60.1 62.8 || 939 955 96.2

TransVPR 613 717 75.6 || 98.7 99.0 99.2
SelaVPR(global) 723 894 944 || 994 999 100.0
SelaVPR 852 955 98.5 || 99.8 100.0 100.0

our method surpasses other methods even without re-ranking, i.e., SelaVPR(global). The SelaVPR
outperforms other methods by a wide margin and achieves near-perfect results on St. Lucia (99.8%
R@1 and 100% R@5). We also provide the results of our SelaVPR on Pitts250k in Table
MixVPR achieves the previous best results on Pitts250k, and SelaVPR outperforms it.

G QUALITATIVE RESULTS OF LOCAL MATCHING

We further illustrate that our method makes the produced features by foundation models more
suitable for local matching in this section, and show the qualitative local matching results of our
SelaVPR method and the pre-trained DINOV2 in Fig. [§] To make a fair comparison, the feature
maps output by the ViT backbone of the two models are used for local matching. Our SelaVPR
gets more correct matches (i.e. matching point pairs) than the pre-trained DINOv2 between two
images from the same place. For two images from different places, all local matches are wrong and
we expect as few matches as possible. SelaVPR produces fewer wrong matches than pre-trained
DINOvV2.

Table 12: The results of MixVPR and our method on Pitts250k. The model is the same as that used
for Pitts30k in Table @

Pitts250k-test
R@l R@5 R@10
MixVPR || 943 982 989

Method

SelaVPR || 95.7 98.8 99.2
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Produced by our SelaVPR (47 matches) Produced by DINOv2 (55 matches)
(b) Local matching between two images from different places

Figure 6: Comparison of local matching between our SelaVPR and pre-trained DINOvV2. (a) shows
the local matching between images from the same place. The more matches the better, and the
matches produced by ours are more than those of DINOv2. Note that some matches produced by
DINOV2 are clearly inappropriate. (b) shows the local matching between images from different
places. The fewer (wrong) matches the better, and our method has fewer (wrong) matches than pre-
trained DINOV2.

H ADDITIONAL ATTENTION VISUALIZATION

Fig. [I]in the main paper has shown that the feature representation of our method can precisely
focus on image regions that are helpful for place recognition. Here, Fig. [7] demonstrates more
challenging examples. Compared to the pre-trained model, which is disturbed by objects such as
dynamic foreground, our method always pays attention to all discriminative regions (buildings and
vegetation).

I ADDITIONAL QUALITATIVE RESULTS

Fig. @in the main paper has shown a small number of qualitative results. Here, Fig. [8] Fig. 0]and Fig.
10| show more qualitative results on Tokyo24/7, MSLS, and Pitts30k, respectively. These examples
show challenging cases such as severe condition changes, viewpoint changes, dynamic interference,
and only small regions of discriminative landmarks or almost no landmarks. Our method obtains
correct results, while other methods produce incorrect results.

J  DATASET DETAILS

Tokyo24/7 2015). The Tokyo24/7 dataset includes 75984 database images and 315
query images captured from urban scenes. The query images are selected from 1125 images taken
at 125 distinct places with 3 different viewpoints and at 3 different times of day. This dataset mainly
exhibits viewpoint changes and drastic condition changes (day-night changes).

Mapillary Street-Level Sequences (MSLS) (Warburg et al, 2020). The MSLS dataset is a large-
scale VPR dataset containing over 1.6 million images labeled with GPS coordinates and compass
angles, captured from 30 cities in urban, suburban, and natural scenes over seven years. It cov-
ers various challenging visual changes due to illumination, weather, season, viewpoint, as well as
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Input images Results of DINOv2 Results of ours

Figure 7: Additional attention map visualizations of the pre-trained model (DINOv2) and our model.
We compute the mean in the channel dimension of the output feature map and display it using the
heat map. In the last example, although our method is also affected by the bus, this is because it is
closer and takes up a larger region of the image, while the buildings and vegetation are far away and
occupy a smaller region. However, our method can still avoid missing any discriminative landmark
(building and vegetation) to help retrieve correct results, while the pre-trained model cannot.

dynamic objects, and includes subsets of training, public validation (MSLS-val), and withheld test
(MSLS-challenge). Following several related works (Hausler et al., 2021} [Wang et al., 20224}
2023)), the MSLS-val and MSLS-challenge sets are used to evaluate models.

19



Published as a conference paper at ICLR 2024

Query SelaVPR (Ours)

Figure 8: Qualitative results on Tokyo24/7. These challenging examples exhibit severe condition
(lighting) changes and viewpoint changes.

Query SelaVPR (Ours) NetVLAD SFRS CosPlace

Patch-NetVLAD  TransVPR

15

Figure 9: Qualitative results on MSLS. The first and second examples are dominated by vegetation
(which tends to change over time). Most methods are prone to perceptual aliasing in these examples.
The third example is extremely dark. All other methods return nighttime images but are wrong, only
our method gets the correct image (but during daytime).

Query SelaVPR (Ours) NetVLAD
g T w0
| - PN

Figure 10: Qualitative results on Pitts30k. In the first and second examples, most of the image area
is sky, and our method retrieves correct results using distinguishable landmarks that occupy only a

small portion of the image region. The third example shows large viewpoint changes. Our approach
is robust to these challenges.
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Pittsburgh (Tori1 et al.,2013). The Pittsburgh dataset is collected from Google Street View panora-
mas, and provides 24 images with different viewpoints at each place. The images in this dataset
exhibit large viewpoint variations and moderate condition variations. The Pitts30k dataset is a sub-
set of Pitts250k (but more difficult than Pitts250k) and contains 10k database images each in the
training, validation, and test sets.

Nordland (Olid et al.| |2018). The Nordland dataset primarily consists of suburban and natural place
images, captured from the same viewpoint in the front of a train across four seasons, which allows
the images to show severe condition (e.g., season and light) changes but no viewpoint variations.
Its ground truth is provided by the frame-level correspondence. Following the previous works (Olid
et al.| 2018} Wang et al., 2022a)), we use the dataset partition first presented in (Olid et al.,2018)) for
our experiments. The summer (reference) and winter (query) images of the down-sampled version
(224 x224) of the test set (3450 images per sequence) are adopted to evaluate models.

St. Lucia (Glover et al., 2010; Berton et al., [2022b). The St. Lucia dataset comprises ten video
sequences captured from the same suburban roadway in Brisbane. Following visual geo-localization
benchmark (Berton et al., [2022b)), the first and last sequences are used as the reference and query
data in our experiments, and only one image is selected every 5 meters. Thus, the reference and
query sequence include 1549 and 1464 images, respectively.

K DETAILS OF THE COMPARED METHODS

NetVLAD (Arandjelovic et al.,2016). NetVLAD is a classic one-stage VPR method with a differen-
tiable VLAD layer that can be integrated into neural networks. We use the pytorch implementatio
with the released VGG16 model trained on the Pitts30k dataset.

SFRS (Ge et al.| ZOZOﬁ To train a more robust NetVLAD-based model, this work utilizes self-
supervised image-to-region similarities to mine hard positive samples. The official model trained on
Pitts30k is used in our experiments.

CosPlace (Berton et al.| 2022aﬂ This work introduces an extra large-scale dataset SF-XL and
applies the training technique proposed in the classification task to train the VPR models. The
official VGG16 model is used for comparisons.

MixVPR (Ali-Bey et al., ZOZSﬂ This work presents a novel holistic feature aggregation method
that takes feature maps from pre-trained backbones as global features, and uses a stack of Feature-
Mixer to iteratively incorporate global relationships into each individual feature map. MixVPR is
a SOTA one-stage VPR method. We use the best configuration (ResNet50 with 4096-dim output
features) for comparisons.

SP-SuperGlue (DeTone et al., |2018; [Sarlin et al., ZOZOE Hausler et al.| (2021) first used this
pipeline for the VPR task in the PatchNetVLAD work. SP-SuperGlue first retrieves candidate im-
ages using NetVLAD. Then, the SuperGlue (Sarlin et al., [2020) (a feature matcher based on graph
neural network) is used to match SuperPoint (DeTone et al., 2018) features for re-ranking. The
official implementation with the model trained on MegaDepth (Li & Snavely, 2018)) is adopted.

Patch-NetVLAD (Hausler et al., 2021 ﬂ This approach also retrieves candidates with NetVLAD,
then re-ranks the candidates using the NetVLAD-based multi-scale patch-level features. We use the
speed-focused and performance-focused configurations for evaluation. The official model trained
on Pitts30k-train is tested on Pitts30k-test and Tokyo24/7, and the model trained on MSLS is tested
on other datasets.

TransVPR (Wang et al., 2022aﬂ This work first achieves candidate retrieval using the global
features produced by integrating multi-level attentions from vision transformer, then utilizes an at-

"https://github.com/Nanne/pytorch-NetVlad
2https://github.com/yxgeee/OpenIBL
3https://github.com/gmberton/CosPlace
*https://github.com/amaralibey/Mix VPR
Shttps://github.com/magicleap/SuperGluePretrainedNetwork
®https://github.com/QVPR/Patch-NetVLAD
"https://github.com/RuotongWANG/Trans VPR-model-implementation
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Results
P Lo PR
U anogyious02 1 09/17/23 0.89 (1)
a 1 03/14/23 0.88 (2)
9 5 06/25/23 0.84 (3)
4 1 07/27/22 0.82 (4)
5 9 05/18/23 0.80 (5)
6 2 04/21/22 0.80 (6)
7 1 09/26/23 0.80 (7)
8 10 03/01/22 0.7 (8)
9 3 10/16/22 0.77.9)
10 9 10/16/22 0.76 (10)
1 3 10/10/22 0.74 (11)
2 20 10/22/22 0.74 (12)
13 5 04/04/23 0.74 (13)
14 9 05/23/23 0.73 (14)
15 4 02/20/22 0.71(15)

Figure 11: The snapshot of MSLS place recognition challenge leaderboard. Our SelaVPR method
named “anonymous02” (for double-blind policy) ranks st at the time of submission.

tention mask to filter feature maps to get key-patch descriptors for re-ranking. The official model
trained on Pitts30k-train is evaluated on Pitts30k-test and Tokyo24/7, while that trained on MSLS is
tested on others.

StructVPR 2023). To improve feature stability in a changing environment, StructVPR
utilizes the segmentation images to enhance structural knowledge in global features and applies
knowledge distillation to avoid online segmentation in testing. This method is combined with SP-
SuperGlue to form a two-stage VPR method, and achieves great performance. Since the code is not
released, we use the results reported in the original paper.

R2Former (Zhu et al., [2023)°, This work addresses both the retrieval and re-ranking in two-stage
VPR using a novel transformer model. Its re-ranking module takes feature correlation, attention

value, and coordinates into account, and does not require RANSAC-based geometric verification.
R2Former is the SOTA two-stage VPR method. It ranked first in the MSLS challenge leaderboard
before our method was proposed.

L THE SNAPSHOT OF MSLS LEADERBOARD

MSLS place recognition challenge (Hausler et al.|, 2021|; Zhu et al.L 2023) is an authoritative com-
sh

petition for VPR with over 100 participants. Fig. ows the snapshot of the MSLS challenge
leaderboard at the time of submission. The proposed SelaVPR method (named “anonymous02” for
double-blind policy) ranks 1st.

8https://github.com/bytedance/R2Former
“https://codalab.lisn.upsaclay.fr/competitions/865
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