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ABSTRACT

Although GRPO substantially enhances flow matching models in human prefer-
ence alignment of image generation, methods such as DanceGRPO still exhibit
inefficiency due to the necessity of sampling and optimizing over all denoising
steps specified by the Markov Decision Process (MDP). In this paper, we propose
MixGRPO, a novel framework that leverages the flexibility of mixed sampling
strategies through the integration of stochastic differential equations (SDE) and
ordinary differential equations (ODE). This streamlines the optimization process
within the MDP to improve efficiency and boost performance. Specifically, Mix-
GRPO introduces a sliding window mechanism, using SDE sampling and GRPO-
guided optimization only within the window, while applying ODE sampling out-
side. This design confines sampling randomness to the time-steps within the win-
dow, thereby reducing the optimization overhead, and allowing for more focused
gradient updates to accelerate convergence. Additionally, as time-steps beyond
the sliding window are not involved in optimization, higher-order solvers are sup-
ported for sampling. So we present a faster variant, termed MixGRPO-Flash,
which further improves training efficiency while achieving comparable perfor-
mance. MixGRPO exhibits substantial gains across multiple dimensions of hu-
man preference alignment, outperforming DanceGRPO in both effectiveness and
efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further
reduces training time by 71%.1

1 INTRODUCTION

Recent advances (Liu et al., 2025a; Xue et al., 2025; Liu et al., 2025b; Li et al., 2025; Xu et al., 2023)
in Text-to-Image (T2I) tasks have demonstrated that probability flow models can achieve improved
performance by incorporating Reinforcement Learning from Human Feedback (RLHF) (Ouyang
et al., 2022) strategies during the post-training stage to maximize rewards. Specifically, methods (Liu
et al., 2025a; Xue et al., 2025) based on Group Relative Policy Optimization (GRPO) (Shao et al.,
2024), have recently been studied, achieving optimal alignment with human preferences.

Current GRPO methods in probability flow models, e.g., Flow-GRPO (Liu et al., 2025a), Dance-
GRPO (Xue et al., 2025), leverage Stochastic Differential Equations (SDE) sampling at every de-
noising step to introduce randomness, addressing reliance on stochastic exploration in RLHF. They
model the entire denoising process as a Markov Decision Process (MDP) in a stochastic environ-
ment, using GRPO to optimize the state-action sequence. However, the need to optimize all denois-
ing steps not only increases overhead but also leads to inconsistent gradient descent, resulting in
inefficient training. Specifically, to compute the policy ratio, it is essential to perform full-step sam-
pling independently with the old policy model πθold and new one πθ. While DanceGRPO proposes
to randomly select a subset of steps at a fixed ratio to optimize, our empirical analysis in Figure 1
demonstrates a substantial performance degradation as the subset size is reduced.

To address these issues, we propose MixGRPO, which achieves more efficient stochastic exploration
while enabling optimization over fewer denoising steps. Specifically, we employ a mixed ODE-SDE
strategy, applying SDE sampling to a denoising sub-interval and Ordinary Differential Equations
(ODE) sampling to the rest, confining randomness to the SDE interval. In this way, fewer time-steps

1Code is available in the supplementary materials.
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Prompt: Three cows eating in a field with sea in background.

DanceGRPO DanceGRPO DanceGRPO MixGRPO (Ours)DanceGRPO

Figure 1: Performance comparison for different numbers of denoising steps optimized. The perfor-
mance improvement of DanceGRPO relies on more steps optimized. MixGRPO achieves optimal
performance while requiring only 4 steps.

are needed for GRPO optimization, without compromising image quality for reward computation.
Besides, we introduce a sliding window strategy for the SDE interval that moves along the denoising
steps as the training process progresses. Unlike random selection, this scheduling strategy orders
optimization from high to low denoising levels, which aligns with the intuition of applying temporal
discount factors to rewards in Reinforcement Learning (RL) (Pitis, 2019; Amit et al., 2020; Hu et al.,
2022b). MixGRPO prioritizes optimizing the initial timesteps, which involve the most significant
noise removal and entail a larger exploration space (see Figure 2). As training progresses, MixGRPO
continuously moves the SDE window to narrow the exploration space and achieve global optimiza-
tion. Finally, we find that higher-order ODE solvers, e.g., DPMSolver++ (Lu et al., 2022b), can
significantly accelerate training-time sampling, with negligible performance degradation, as there is
no need for the posterior probability distribution after the sliding window.

We trained and evaluated MixGRPO by using HPS-v2.1 (Wu et al., 2023), Pick Score (Kirstain
et al., 2023), ImageReward (Xu et al., 2023), and Unified Reward (Wang et al., 2025) as reward
models (RMs) and metrics. We also quantified the overhead in terms of the number of function
evaluations (NFE) and time consumption during training. During the training process, we fine-
tuned based on FLUX.1-dev (Labs, 2024) and compared performance using either a single RM
or multiple RMs as guidance, assessing the results for both in-domain and out-of-domain metrics.
Specifically, trained and evaluated on the HPDv2 dataset (Wu et al., 2023), MixGRPO outperforms
DanceGRPO across all metrics, particularly improving the ImageReward (Xu et al., 2023) from
1.088 to 1.629, surpassing DanceGRPO’s score of 1.436, while generating images with enhanced
semantic quality, aesthetics, and reduced distortion. Furthermore, MixGRPO reduces the training
time of DanceGRPO by nearly 50%. In addition, MixGRPO-Flash utilizes DPMSolver++ (Lu et al.,
2022b) to accelerate the sampling of πθold , reducing training time by 71%.

To summarize, the key contributions of our work are outlined below:

• We propose a mixed ODE-SDE GRPO training framework for flow-based models, which allevi-
ates the overhead bottleneck by streamlining the optimization process within the MDP.

• We introduce a sliding window strategy to sample the denoising timesteps for model optimization,
aligning with the RL intuition of transitioning from harder to easier search spaces, significantly
enhancing performance.

• Our method enables the use of higher-order ODE solvers to accelerate πθold sampling during GRPO
training, achieving more significant speed improvements with comparable performance.

• Comprehensive experiments were carried out on multiple rewards and the results demonstrate that
MixGRPO achieves substantial gains on various evaluation metrics, while significantly reducing
training overhead.

2 RELATED WORK

2.1 RL FOR IMAGE GENERATION

Inspired by Proximal Policy Optimization (PPO) (Schulman et al., 2017), early works (Fan & Lee,
2023; Black et al., 2023; Fan et al., 2023; Lee et al., 2023) integrated reinforcement learning (RL)
into diffusion models by optimizing the score function (Song et al., 2020b) through policy gradient
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tr(Σ) = 5.05 tr(Σ) = 1.06tr(Σ) = 1.51Feature
Variance

larger exploration space

Sampling
Strategy SDE ODE SDE ODEODE SDEODEODE ODE

0 T 0 0T T

Latent
Distribution

Sampled
Images

Denoising Denoising Denoising

Figure 2: Visualization of t-SNE (Van der Maaten & Hinton, 2008) for images sampled with dif-
ferent strategies. Employing SDE sampling in the early stages of the denoising process results in a
more discrete data distribution.

methods, thereby enabling the generation of images that better align with human preferences. Sub-
sequently, Wallace et al. (2024) introduced offline-Direct Preference Optimization (DPO) to T2I
tasks for the first time. This allows diffusion models to directly learn from human feedback and
validates its effectiveness on large-scale models. Due to the tendency of offline win-lose pair data to
shift the model away from its original distribution, some works (Yuan et al., 2024; Liang et al., 2025)
have adopted online methods, continuously adjusting sampling trajectories through step-aware pref-
erence models during training to achieve improved performance. Recently, GRPO-based works e.g.,
Tong et al. (2025), Flow-GRPO (Liu et al., 2025a) and DanceGRPO (Xue et al., 2025), have ele-
vated RL-enhanced image generation to new heights. Specifically, Flow-GRPO (Liu et al., 2025a)
and DanceGRPO (Xue et al., 2025) introduced GRPO to flow matching models, allowing diver-
gent sampling by transforming the ODE into an equivalent SDE. They also identified the overhead
caused by full-step sampling within a group as a bottleneck and sought to address it by reducing
or randomly selecting denoising steps. However, these approaches do not fundamentally address
the issue. We hope to delve into the essence of GRPO on the probability flow and provide deeper
insights through mixed sampling techniques and optimization scheduling.

2.2 SAMPLING METHODS FOR PROBABILITY FLOW

DDPM (Ho et al., 2020) first proposed training a probabilistic model to reverse each step of noise
corruption and utilized probability flow SDE for sampling, enabling the generation of realistic im-
ages. However, this often requires thousands of steps, resulting in significant overhead. DDIM (Song
et al., 2020a) introduced deterministic sampling and proposed a probability ODE sampling ap-
proach, reducing the number of sampling steps to around 100. Subsequently, inspired by the Fokker-
Planck equation (Risken & Risken, 1996), Song et al. (2020b) established a unification of SDE and
ODE sampling methods from the perspective of the score function. Then, more higher-order ODE
solvers were proposed e.g., DPM-Solver (Lu et al., 2022a) and DPM-Solver++ (Lu et al., 2022b),
which utilize multistep methods for differential discretization. These approaches significantly re-
duce the number of sampling steps to around 10 while preserving accuracy. Higher-performance
solvers (Zheng et al., 2023; Zhao et al., 2023) continue to be proposed; however, the gains are rela-
tively marginal and have ultimately been replaced by the distillation method (Salimans & Ho, 2022;
Yin et al., 2024). During the same period, flow matching models (Lipman et al., 2022; Esser et al.,
2024) simplified and stabilized training by predicting the vector field velocity, enabling determinis-
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tic sampling with ODEs under 50 steps. Recent theoretical works (Gao et al., 2024; Albergo et al.,
2023) has proven that the sampling method of flow matching is equivalent to DDIM, and demon-
strated that flow matching models share the same equivalent SDE and ODE formulations as diffusion
models. This provides important theoretical support and insights for our work, and we may explore
interleaved sampling of SDE and ODE in probability flow models as a potential approach.

3 METHOD

3.1 MIXED ODE-SDE SAMPLING IN GRPO

According to Flow-GRPO (Liu et al., 2025a), the SDE sampling in flow matching can be framed as a
Markov Decision Process (MDP) (S,A, ρ0, P,R) in a stochastic environment. The agent produces
a trajectory during the discrete sampling process defined as Γ = (s0,a0, s1,a1, . . . , sT ,aT ), where

the reward is provided only at the final step by the reward model, specificallyR(si,ai)
△
= R(xT , c)

if i = T , and 0 otherwise.

In MixGRPO, we propose a hybrid sampling method that combines SDE and ODE. MixGRPO de-
fines a time interval S = [tl, tr) ∈ [0, 1), which corresponds to a subinterval of denoising timesteps,
such that 0 ≤ l < r ≤ T and ti = i

T . We use SDE sampling within the interval S and ODE
sampling outside, while S shifts along the denoising direction throughout the training process (See
Figure 2). MixGRPO restricts the agent’s stochastic exploration space to the interval S, shortening
the sequence length of the MDP to a subset ΓMixGRPO = (sl,al, sl+1,al+1, . . . , sr,ar) and requires
reinforcement learning (RL) optimization only on this subset:

max
θ

EΓMixGRPO∼πθ

[∑
t∈S

(
R (st,at)− βDKL (π (·|st) ||πref (·|st))

)]
, (1)

where R(si,ai)
△
= R(xT , c) if i = r, and 0 otherwise. MixGRPO reduces computational overhead

while also lowering the difficulty of optimization. Next, we derive the specific sampling form and
optimization objective of MixGRPO.

For a deterministic reverse probability flow ODE (Song et al., 2020b), it takes the following form:

dxt

dt
= f(xt, t)−

1

2
g2(t)∇xt

log qt(xt), x0 ∼ q0(x0), (2)

where qt(xt) represents the evolution process of the reverse probability distribution from 0 to T .
∇xt log qt(xt) is the score function at time t. According to the Fokker-Planck equation (Risken &
Risken, 1996; Øksendal, 2003), Song et al. (2020b) has demonstrated that Eq. (2) has the following
equivalent probability flow SDE, which maintains the same marginal distribution at each time t:

dxt

dt
= f(xt, t)− g2(t)∇xt

log qt(xt) + g(t)
dw

dt
, x0 ∼ q0(x0). (3)

In MixGRPO, we mix ODE and SDE for sampling, which has the same convergence as using only
ODE sampling (a detailed proof in Appendix A). The specific form is as follows:

dxt =

{[
f(xt, t)− g2(t)∇xt

log qt(xt)
]
dt+ g(t)dw, if t ∈ S,[

f(xt, t)− 1
2g

2(t)∇xt log qt(xt)
]
dt, otherwise.

(4)

In particular, for Flow Matching (FM) (Lipman et al., 2022), especially the Rectified Flow (RF) (Liu
et al., 2022), the sampling process can be viewed as a deterministic ODE:

dxt

dt
= vt. (5)

Eq. (5) is actually a special case of the Eq. (2) with vt = f(xt, t) − 1
2g

2(t)∇xt
log qt(xt). So we

can derive the ODE-SDE hybrid sampling form for RF as follows:

dxt =

{(
vt − 1

2g
2(t)∇xt

log qt(xt)
)
dt+ g(t)dw, if t ∈ S,

vtdt, otherwise.
(6)
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FLUX

DanceGRPO

MixGRPO

A raccoon riding an 
oversized fox 

through a forest 
in a furry art 

anime still.

A lot of building on
 each side of the road,

 with a very curvy
 road in the middle.

A close-up of a 
young man with a rugged 
beard and intense eyes, 
wearing a leather jacket 

and standing in 
front of a motorcycle.

A photo of a vase
 right of a horse

A photo of 
four sinks

A still of Doraemon 
from "Shaun the 

Sheep" by Aardman 
Animation.

Figure 3: Qualitative comparison. MixGRPO achieve superior performance in semantics, aesthetics
and text-image alignment.

In the RF framework, the model is used to predict the velocity field of the deterministic ODE,
represented as vθ(xt, t) = dxt

dt . Following Liu et al. (2025a), the score function is represented as
∇xt log qt(xt) = −xt

t −
1−t
t vθ(xt, t). The g(t) is represented as the standard deviation of the noise

g(t) = σt. According to the definition of the standard Wiener process, we use dw =
√
dtϵ, where

ϵ ∼ N (0, I). Applying Euler-Maruyama discretization for SDE and Euler discretization for ODE,
we build the final denoising process in MixGRPO:

xt+∆t =

{
xt +

[
vθ(xt, t) +

σ2
t (xt+(1−t)vθ(xt,t))

2t

]
∆t+ σt

√
∆tϵ, if t ∈ S

xt + vθ(xt, t)∆t, otherwise
(7)

According to Eq. (1), we only need to optimize GRPO (Shao et al., 2024) at the time within the
interval S for N samples in the group. The final training objective is represented as follows:

JMixGRPO(θ) = Ec∼C, {xi
T }N

i=0∼πθold (·|c)[
1

N

N∑
i=1

1

|S|
∑
t∈S

min
(
rit(θ)A

i, clip
(
rit(θ), 1− ε, 1 + ε

)
Ai

)]
,

(8)

where rit(θ) is referred to as the policy ratio and Ai is the advantage score. We set ε = 0.0001,

rit(θ) =
qθ(xt+∆t|xt, c)

qθold(xt+∆t|xt, c)
and Ai =

R
(
xi
T , c

)
−mean

(
{R

(
xi
T , c

)
}Ni=1

)
std

(
{R

(
xi
T , c

)
}Ni=1

) , (9)

It is important to note that, we have dropped the KL Loss. Although KL Loss can mitigate reward
hacking to some extent (Liu et al., 2025a), inspired by yifan123 (2025), we use hybrid inference at
test time, which can significantly address the reward hacking issue (See Appendix B).

MixGRPO reduces NFE of πθ compared to all-timesteps optimization. However, the NFE of πθold

is not reduced, as complete inference is required to obtain the final image for reward calculation. In
Section 3.3, we will introduce the use of higher-order ODE solvers, which also reduce the NFE of
πθold leading to further speedup. In summary, the mixed ODE-SDE sampling significantly reduces
overhead while ensuring the introduction of randomness, allowing for optimization by GRPO.

3.2 SLIDING WINDOW AS OPTIMIZATION SCHEDULER

In fact, the interval S can be non-fixed during the training process. In this section, we will introduce
the sliding window to describe the movement of S, which leads to a significant improvement in

5
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the quality of the generated images. Along the denosing time-steps {0, 1, . . . , T − 1}, MixGRPO
defines a SDE sliding window W (l) and optimization is only employed at the steps within W (l).

W (l) = {tl, tl+1, . . . , tl+w−1}, l ≤ T − w, (10)

where l is the left boundary of the sliding window, and w is a hyperparameter that represents the
window size.

The left boundary l of the sliding window moves as the training progresses. In the experiments, we
found that the window size w, shift interval τ , and window stride s are all crucial hyperparameters.
Through ablation studies (See Experiment 4.4.1), we identified the optimal settings. When the total
sampling steps T = 25, the best performance is achieved with w = 4, τ = 25 and s = 1. The
detailed sliding window strategy and MixGRPO algorithm can be found in Algorithm 1.

Restricting the use of SDE sampling within the sliding window not only ensures the diversity of
the generated images but also allows the model to concentrate on optimizing the flow within that
window. Moving along the denoising direction represents the stochasticity of the probability flow
from strong to weak, as illustrated in Figure 2. This is essentially a greedy strategy and is similar
to the RL that assigns discount factors to process rewards (Pitis, 2019; Amit et al., 2020; Hu et al.,
2022b), which gives greater importance to rewards derived from a larger search space in the earlier
process.

The experimental results of different movement strategies in Table 4 demonstrate the validity of
this intuition. Not only does the progressive strategy outperform random selection, but we also
found that even when the sliding window is not moved (frozen), meaning only the earlier timesteps
are optimized, MixGRPO can still yield good results, particularly in terms of ImageReward (Xu
et al., 2023) and UnifiedReward (Wang et al., 2025). Based on this intuition, we also proposed an
exponential decay strategy as follows, allowing τ to decrease as the window moves, enabling the
model to avoid excessive optimization in smaller search spaces.

τ(l) = τ0 · exp (−k · ReLU (l − λthr)) , (11)

where τ0 is the initial shift interval, k is the decay factor, and λthr is the threshold that controls
when the decay starts. The exponential function exp(x) calculates ex, while the Rectified Linear
Unit ReLU(x) is defined as max(0, x). Table 4 shows that the exponential decay strategy can
achieve better results in terms of Pick Score (Kirstain et al., 2023) and ImageReward (Xu et al.,
2023). This may be because the model focuses on the earlier stages of denoising, which can lead to
more significant high-level changes, precisely what the human preference alignment reward model
emphasizes.

3.3 TRADE-OFF BETWEEN OVERHEAD AND PERFORMANCE

MixGRPO employs SDE sampling within the sliding window and ODE sampling outside of it,
allowing the use of higher-order ODE solvers to accelerate GRPO training-time sampling. The
timesteps that utilize ODE sampling are divided into those before and after the sliding window. The
timesteps after the sliding window solely influence the reward calculation, whereas the timesteps
before the window affect both the reward and contribute to cumulative errors in the policy ratio
computing. Therefore, we focus exclusively on the acceleration of the timesteps after the window.

Gao et al. (2024) has demonstrated the equivalence between the ODE sampling of flow matching
models (FM) and DDIM, and Section 3.1 has also shown that diffusion probabilistic models (DPM)
and FM share the same ODE form during the denoising process. Therefore, the higher-order ODE
solvers e.g., DPM-Solver Series (Lu et al., 2022a;b; Zheng et al., 2023), UniPC (Zhao et al., 2023)
designed for DPM sampling acceleration are also applicable to FM. We have reformulated DPM-
Solver++ (Lu et al., 2022b) to apply it in the FM framework for ODE sampling acceleration and
released detailed derivations in Appendix C.

By applying higher-order solvers, we achieve acceleration in the sampling of πθold during GRPO
training, which is essentially a balance between overhead and performance. Excessive acceleration
leads to fewer timesteps, which inevitably results in a decline in image generation quality, thereby
accumulating errors in the computation of rewards. We have found in practice that the 2nd-order
DPM-Solver++ is sufficient to provide significant acceleration while ensuring that the generated
images align well with human preferences in Table 8. Ultimately, we introduced DPM-Solver++

6
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Table 1: Comparison results for overhead and performance. MixGRPO achieves the best perfor-
mance across multiple metrics. MixGRPO-Flash significantly reduces training time while outper-
forming DanceGRPO. Bold: rank 1. Underline: rank 2. ∗The Frozen strategy means that optimiza-
tion is only employed at the initial denoising steps.

Method NFEπθold
NFEπθ

Iteration Time (s)↓ Human Preference Alignment
HPS-v2.1↑ Pick Score↑ ImageReward↑ Unified Reward↑

FLUX / / / 0.313 0.227 1.088 3.370

DanceGRPO
25 14 291.284 0.356 0.233 1.436 3.397
25 4 149.978 0.334 0.225 1.335 3.374
25 4∗ 150.059 0.333 0.229 1.235 3.325

MixGRPO 25 4 150.839 0.367 0.237 1.629 3.418

MixGRPO-Flash 16 (Avg) 4 112.372 0.358 0.236 1.528 3.407
8 4∗ 83.278 0.357 0.232 1.624 3.402

and adopted both progressive and frozen sliding window strategies, proposing MixGRPO-Flash and
MixGRPO-Flash*. A detailed description of the algorithm can be found in Appendix E. These ap-
proaches achieve a greater degree of acceleration compared to MixGRPO, while also outperforming
DanceGRPO in terms of human preference alignment performance.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset We conduct experiments using the prompts provided by the HPDv22 dataset, which is
the official dataset for the HPS-v2 benchmark (Wu et al., 2023). The training set contains 103,700
prompts; in fact, MixGRPO achieved good human preference alignment results after training one
epoch with only 9,600 prompts. The test set consists of 400 prompts. The prompts are diverse,
encompassing four styles: “Animation”, “Concept Art”, “Painting”, and “Photo”.

Model Following DanceGRPO (Xue et al., 2025), we use FLUX.1 Dev (Labs, 2024) as the base
model, which is an advanced text-to-image model based on flow matching.

Overhead Evaluation For the evaluation of overhead, we use two metrics: the number of function
evaluations (NFE) (Lu et al., 2022a) and the time consumption per iteration during training. The
NFE is divided into NFEπθold

and NFEπθ
. NFEπθold

represents the number of forward propagation
of the reference model for computing the policy ratio and generating images. NFEπθ

is the number
of forward propagation of the policy model solely for the policy ratio. Additionally, the average
training time per GRPO iteration provides a more accurate reflection of the acceleration effect.

Performance Evaluation We used four multiple reward models in conjunction for GRPO, namely
HPS-v2.1 (Wu et al., 2023), Pick Score (Kirstain et al., 2023), ImageReward (Xu et al., 2023) and
Unified Reward Wang et al. (2025), both as reward guidance during training and as evaluation met-
rics. These metrics are all based on human preferences but emphasize different aspects. For ex-
ample, ImageReward (Xu et al., 2023) highlights image-text alignment and fidelity, while Unified
Reward (Wang et al., 2025) concentrates on semantics. DanceGRPO Xue et al. (2025) also demon-
strates that using multiple reward models can achieve better results. To validate the robustness of
MixGRPO, we also followed DanceGRPO and conducted additional comparisons using HPS-v2.1
as a single reward, and combining HPS-v2.1 (Wu et al., 2023) and CLIP Score (Radford et al., 2021)
as multi-rewards.

4.2 IMPLEMENTATION DETAILS

For training-time sampling, we first perform a shift t̃ = t
1−(s̃−1)t on the uniformly distributed

ti = i
T where i = [0, . . . , T − 1], and then define σt = η

√
t̃

1−t̃
. We set s̃ = 3 and η = 0.7

as scale. We set T = 25 as the total sampling steps. For GRPO, the model generates 12 images
for each prompt and clips the advantage to the range [−5, 5]. It is important to note that we use
gradient accumulation over 3 steps, which means that during a single training iteration, there are

2https://huggingface.co/datasets/ymhao/HPDv2
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12
3 = 4 gradient updates. For the exponential decay strategy of the sliding window in Eq. ( 11), we

empirically set τ0 = 20, k = 0.1, and λthr = 13. Furthermore, when multiple reward models are
jointly trained with, each reward is assigned equal weight.

For training, all experiments are conducted on 32 Nvidia GPUs with a batch size of 1 and a maximum
of 300 iterations. We use AdamW (Loshchilov & Hutter, 2017) as the optimizer with a learning rate
of 1e-5 and a weight decay coefficient of 0.0001. Mixed precision training is used with the bfloat16
(bf16) format, while the master weights are maintained at full precision (fp32).

4.3 MAIN EXPERIMENTS

In the main experiment, the four human-preference-based rewards were aggregated according to
advantages, as shown in Algorithm 1. We evaluated the overhead and performance of MixGRPO in
comparison with DanceGRPO, with the results presented in Table 1. The official DanceGRPO uses
NFEπθ

= 14; however, for fairness, we also tested DanceGRPO with NFEπθ
= 4. For MixGRPO-

Flash, we evaluated both the progressive and frozen strategies, and to ensure fairness, we also applied
the frozen strategy to DanceGRPO.

We selected multiple scene prompts to visualize the results for FLUX.1 Dev, the officially configured
DanceGRPO, and MixGRPO, as shown in Figure 3. It can be observed that MixGRPO achieved
the best results in terms of semantics, aesthetics, and text-image alignment. Figure 5 shows the
comparison results of DanceGRPO, MixGRPO, and MixGRPO-Flash with NFEπθ

= 4. It can
be observed that under the same overhead conditions, MixGRPO achieved better results compared
to DanceGRPO. Additionally, MixGRPO-Flash enables accelerated sampling of πθold , and as the
overhead decreases, the quality of the generated images still maintains a strong alignment with
human preferences.

Following DanceGRPO (Xue et al., 2025), we also trained and evaluated the model using a single
reward model, e.g., HPSv2.1 and two reward models, e.g., HPSv2.1 and CLIP Score on the HPDv2
dataset (Wu et al., 2023). The results (See Table 2) demonstrate that MixGRPO achieves the best
performance on both in-domain and out-of-domain rewards, whether using a single or multiple
reward models. The visualized results are displayed in Figure 6 and Figure 7 of Appendix F.

To demonstrate the robustness of the MixGRPO, we followed Flow-GRPO (Liu et al., 2025a) and
applied the Low-Rank Adaptation (LoRA) (Hu et al., 2022a) method on the Stable Diffusion 3.5
(SD3.5) (Esser et al., 2024). We used HPS-v2.1 (Wu et al., 2023), Pick Score (Kirstain et al., 2023),
and ImageReward (Xu et al., 2023) as multi-rewards, comparing Flow-DPO (offline/online) (Liu
et al., 2025b), and Flow-GRPO (Liu et al., 2025a). The results in Table 3 showed that MixGRPO is
well-suited for the LoRA, significantly reducing training overhead while outperforming both Flow-
DPO and Flow-GRPO in terms of speed and performance. The visualization results can be found in
Figure 8 of Appendix F.

Table 2: Comparison results demonstrate that
MixGRPO achieves the best performance on
both in-domain and out-of-domain rewards.

Reward Model Method In Domain Out-of-Domain
HPS-v2.1 CLIP Score Pick Score ImageReward Unified Reward

/ FLUX 0.313 0.388 0.227 1.088 3.370

HPS-v2.1 DanceGRPO 0.367 0.349 0.227 1.141 3.270
MixGRPO 0.373 0.372 0.228 1.396 3.370

HPS-v2.1 & CLIP Score DanceGRPO 0.346 0.400 0.228 1.314 3.377
MixGRPO 0.349 0.415 0.229 1.416 3.430

Table 3: Comparison results demonstrate that
MixGRPO outperforms Flow-DPO and Flow-
GRPO in training efficiency and performance.

Model RL Method NFEπθold
NFEπθ

HPSv2.1 Pick Score ImageReward

SD3.5-M / / / 0.3066 0.2266 1.1630

SD3.5-M+DPO LoRA Offline DPO 40 40 0.3043 0.2220 1.4524
Online DPO 40 40 0.3132 0.2210 1.5001

SD3.5-M+GRPO LoRA Flow-GRPO 10 10 0.3312 0.2318 1.4572
MixGRPO 10 4 0.3416 0.2360 1.4854

4.4 ABLATION EXPERIMENTS

4.4.1 SLIDING WINDOW HYPERPARAMTERS

As introduced in Section 3.2, the moving strategy, shift interval τ , window size w and window stride
s are all important parameters of the sliding window. We conducted ablation experiments on each of
them. For the moving strategy, we compared three approaches: frozen, where the window remains
stationary; random, where a random window position is selected at each iteration; and progressive,
where the sliding window moves incrementally with the denoising steps. For the progressive strat-
egy, we tested different scheduling strategies where the interval τ initially starts at 25 but changes

8
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with training iterations. As shown in Table 4, the results indicate that under the progressive strategy,
either exponential decay or constant scheduling strategies are optimal. For the shift interval τ , 25 is
the optimal setting (See Table 5).

The number of inferences for πθ increases with the growth of the window size w, leading to greater
time overhead. We compared different settings of w, and the results are shown in Table 6. Ultimately,
we selected w = 4 as a balanced setting between overhead and performance. For the window stride
s, we found through experimentation that s = 1 is the optimal choice, as shown in Table 7.

Table 4: Comparison for moving strategies.
Strategy Interval

Schedule HPS-v2.1 Pick Score ImageReward Unified Reward

Frozen / 0.354 0.234 1.580 3.403

Random Constant 0.365 0.237 1.513 3.388

Progressive
Decay (Linear) 0.365 0.235 1.566 3.382
Decay (Exp) 0.360 0.239 1.632 3.416

Constant 0.367 0.237 1.629 3.418

Table 5: Comparison for shift interval τ .
τ HPS-v2.1 Pick Score ImageReward Unified Reward
15 0.366 0.237 1.509 3.403
20 0.366 0.238 1.610 3.411
25 0.367 0.237 1.629 3.418
30 0.350 0.229 1.589 3.385

Table 6: Comparison for window size w

w NFEπθ
HPS-v2.1 Pick Score ImageReward Unified Reward

2 2 0.362 0.235 1.588 3.419
4 4 0.367 0.237 1.629 3.418
6 6 0.370 0.238 1.547 3.398

Table 7: Comparison for window stride s

s HPS-v2.1 Pick Score ImageReward Unified Reward
1 0.367 0.237 1.629 3.418
2 0.357 0.236 1.575 3.391
3 0.370 0.236 1.578 3.404
4 0.368 0.238 1.575 3.407

4.4.2 HIGH ORDER ODE SOLVER

MixGRPO enables the possibility of accelerating ODE sampling with high-order ODE solvers by
combining SDE and ODE sampling methods. We first conducted ablation experiments on the order
of the solver, using DPM-Solver++ (Lu et al., 2022b) as the high-order solver with the progressive
strategy. The results, as shown in Table 8, indicate that the second-order mid-point method is the op-
timal setting. Then, as described in Section 3.3, we compared two acceleration approaches. One is
MixGRPO-Flash, which utilizes the progressive window moving strategy. The other is MixGRPO-
Flash*, which employs the frozen moving strategy. They all achieve a balance between overhead
and performance by reducing the number of ODE sampling steps after the sliding window. How-
ever, in practice, MixGRPO-Flash requires the window to move throughout the training process,
which results in a shorter ODE portion being accelerated. Consequently, the acceleration effect of
MixGRPO-Flash, on average, is not as pronounced as that of MixGRPO-Flash*.

Table 8: Comparison of performance across
different-order solvers. The second-order Mid-
point method achieves the best performance.

Order Solver Type HPS-v2.1 Pick Score ImageReward Unified Reward
1 / 0.367 0.236 1.570 3.403

2 Midpoint 0.358 0.237 1.578 3.407
Heun 0.362 0.233 1.488 3.399

3 / 0.359 0.234 1.512 3.387

Table 9: Comparison of different sampling steps
for πθold . MixGRPO-Flash* achieves good per-
formance even with few steps.

Method Sampling Overhead Human Preference Alignment
NFEπθold

Time per Image (s) HPS-v2.1 Pick Score ImageReward Unified Reward

DanceGRPO 25 9.301 0.334 0.225 1.335 3.374

MixGRPO-Flash
19 (Avg) 7.343 0.357 0.236 1.564 3.394
16 (Avg) 6.426 0.362 0.237 1.578 3.407
13 (Avg) 5.453 0.344 0.229 1.447 3.363

MixGRPO-Flash*
12 4.859 0.353 0.230 1.588 3.396
10 4.214 0.359 0.234 1.548 3.430
8 3.789 0.357 0.232 1.624 3.402

5 CONCLUSION

Although GRPO (Shao et al., 2024) has seen significant success in the language modality, it is still in
the early stages of progress in vision (Tong et al., 2025; Xue et al., 2025; Liu et al., 2025a). Existing
flow-based GRPO faces challenges such as low sampling efficiency and slow training. To address
these issues, we proposed MixGRPO, a novel training framework that combines SDE and ODE
sampling. This hybrid approach allows for focused optimization on the SDE sampling flow compo-
nent, reducing complexity while ensuring accurate reward computation. Inspired by the decay factor
in reinforcement learning (Hu et al., 2022b), we introduce a sliding window strategy for schedul-
ing the optimized denoising steps. Experimental results confirm the effectiveness of our approach
in both single-reward and multi-reward settings. Additionally, MixGRPO decouples the denoising
stages for optimization and reward computation, enabling acceleration of the latter with high-order
solvers. We further propose MixGRPO-Flash, which balances overhead and performance. We hope
MixGRPO will inspire deeper research into post-training for image generation, contributing to the
advancement of Artificial General Intelligence (AGI).
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6 ETHICS STATEMENT

I read all respects with the ICLR Code of Ethics https://iclr.cc/public/
CodeOfEthics and the research conducted in the paper complies in all respects.

7 REPRODUCIBILITY STATEMENT

This paper fully discloses all the source code needed to reproduce the main experimental results
in the supplementary material. Besides, we also provide a detailed description of the MixGRPO
algorithm (See algo. 1) and MixGRPO-Flash algorithm (See algo. 2). Finally, we also provide clear
explanations of our proofs and derivations in sec. 3.1, app. A and app. C.
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A PROOF OF CONVERGENCE FOR MIXED ODE-SDE SAMPLING

To prove that the mixed ODE-SDE sampling method in Eq. (4) has the same convergence as Eq. (2),
which uses only ODE sampling, referencing Song et al. (2020b), we approach this from the perspec-
tive of distribution evolution, where the distribution at each time step, e.g., ∂qt(x)

∂t must be the same.
Let the interval for SDE be defined as S = [tl, tr) ∈ [0, 1). Along the denoising direction, when the
same initial Gaussian noise distribution q0(x0) is given, the probability distribution evolution in the
ODE interval preceding the SDE is completely identical. The key point is whether the distribution
evolution of the SDE within the interval S is completely equivalent to that of the ODE. If they are
equivalent, then the ODE interval following the SDE will naturally be equivalent to using only ODE
sampling. Next, we will provide a detailed proof for this key point.

Consider the SDE Eq. (3) in the interval S, which possesses the following form:

dx = [f(x, t)− g2(t)∇x log qt(x)]dt+ g(t)dw, t ∈ S. (12)

The marginal probability density qt(xt) evolves according to Kolmogorov’s equation (Fokker-
Planck equation) (Øksendal, 2003)

∂qt(x)

∂t
= −∇x ·

[(
f(x, t)− g2(t)∇x log qt(x)

)
qt(x)

]
+

1

2
g2(t)∇2

xqt(x) (13)

According to the definition of the Laplace operator∇2h ≡ ∇·∇(h) and∇x log qt(x) =
∇qt(x)
qt(x)

, we
can obtain:

∂qt(x)

∂t
= −∇x ·

[
f(x, t)qt(x)− g2(t)∇xqt(x)

]
+

1

2
g2(t)∇2

xqt(x)

= −∇x · [f(x, t)qt(x)−
1

2
g2(t)∇xqt(x)]

= −∇x ·
[ (

f(x, t)− 1

2
g2(t)∇x log qt(x)

)
︸ ︷︷ ︸

fODE(x,t)

qt(x)
]
. (14)

The Eq. (14) is indeed the Fokker-Planck equation of the ODE Eq. (2). Therefore, within the
interval S, the distribution evolution of SDE and ODE sampling is consistent.

B HYBRID INFERENCE FOR SOLVING REWARD HACKING

To address the reward hacking issue, we employ hybrid inference to sample with both the raw
and post-trained models, and introduce the hybrid percent pmix. This means that the initial pmixT
denoising steps are sampled by the model trained with GRPO, while the remaining denoising process
is finished by the original FLUX model (Black et al., 2023). Table 10 and Figure 4 respectively
illustrate the changes in performance and images as pmix increases under the multi-rewards training
scenario. The experimental results demonstrate that pmix = 80% is an optimal empirical value that
effectively mitigates hacking while maximizing alignment with human preferences.

0% 100%80%60%40%20%

Prompt: A painting depicting a snowy winter scene featuring a river, a small house on a hill, and a dreamy cloudy sky.
HACKING !

Figure 4: Qualitative comparison with different hybrid inference percentages
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Table 10: Comparison with different hybrid inference percentages

pmix HPS-v2.1 Pick Score ImageReward Unified Reward
0% 0.313 0.226 1.089 3.369
20% 0.342 0.233 1.372 3.386
40% 0.356 0.235 1.539 3.395
60% 0.362 0.236 1.598 3.407
80% 0.366 0.238 1.610 3.411
100% 0.369 0.238 1.607 3.378

C DPM-SOLVER++ FOR RECITIFIED FLOW

For clarity and to avoid ambiguity between continuous time and discrete steps, we adopt the follow-
ing notation in this section. We denote the discrete time steps by an index i ∈ {0, 1, . . . , T − 1},
where T is the total number of sampling steps. The continuous time corresponding to step i is
denoted by ti =

i
T ∈ [0, 1).

The DPM-Solver++ algorithm (Lu et al., 2022b) is originally designed for the x0-prediction dif-
fusion model (Rombach et al., 2022), where the model outputs the denoised feature x0 based on
the noisy feature xti , the time condition ti and the text condition c. According to the definition of
Rectified Flow (RF) (Liu et al., 2022), there is the following transfer equation:

xti = tix1 + (1− ti)x0. (15)

According to the theory of stochastic interpolation (Albergo et al., 2023), RF effectively approxi-
mates x1 − x0 by modeling vti :

vti = x1 − x0. (16)

Based on Eq. (15) and Eq. (16), we obtain the following relationship:

x0 = xti − vtiti. (17)

By using a neural network for approximation, we establish the relationship between RF and the
x0-prediction model:

xθ(xi, ti, c) = xi − vθ(xi, ti, c) · ti. (18)

Taking the multistep second-order DPMSolver++ as an example (see Algorithm 2 in (Lu et al.,
2022b)), we derive the corrected xθ for the RF sampling process as Di:

Di ←
(
1 +

hi

2hi−1

)
(xi−1 − vθ(xi−1, ti−1, c) · ti−1)

− hi

2hi−1
(xi−2 − vθ(xi−2, ti−2, c) · ti−2) ,

(19)

where hi = λti − λti−1
. The continuous time ti corresponds to the discrete step i over a total of T

sampling steps. The term λti is the log-signal-to-noise-ratio (log-SNR) and is defined in RF as:

λti := log

(
1− ti
ti

)
. (20)

Based on the exact discretization formula for the probability flow ODE proposed in DPM-Solver++
(Eq. (9) in (Lu et al., 2022b)), we can derive the final transfer equation:

xi ←
ti

ti−1
xi−1 − (1− ti)

(
e−hi − 1

)
Di, 1 ≤ i < T. (21)
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D MIXGRPO ALGORITHM

Taking the progressive movement strategy of the sliding window as an example, the MixGRPO
Algorithm 1 is as follows. MixGRPO first sets the left boundary l of the sliding window W (l) at
t = 0 of the reverse process, which corresponds to the first sampling time-step. A GRPO iteration
consists of two phases: sampling and optimization.

In the sampling phase, mixed ODE-SDE sampling is performed for the N samples within the group,
using SDE within the window and ODE outside. Then, the reward and advantage for the N samples
are calculated. For the multi-reward strategy, the advantage for each reward model is computed
separately and then aggregated to obtain the final advantage. In the optimization phase, the GRPO
loss (Shao et al., 2024) is computed and optimized only at the sampling timesteps within the SDE
window W (l).

After each GRPO iteration, the current training steps are checked against the conditions for moving
the window, determining whether to shift the window by the window stride s.

Algorithm 1 MixGRPO Training Process

Require: initial policy model πθ; reward models {Rk}Kk=1; prompt dataset C; total sampling steps T ; number
of samples per prompt N ;

Require: sliding window W (l), window size w, shift interval τ , window stride s
1: Init left boundary of W (l): l← 0
2: for training iteration m = 1 to M do
3: Sample batch prompts Cb ∼ C
4: Update old policy model: πθold ← πθ

5: for each prompt c ∈ Cb do
6: Init the same noise x0 ∼ N (0, I)
7: for generate i-th image from i = 1 to N do
8: for sampling timestep t = 0 to T − 1 do ▷ πθold mixed sampling loop
9: if t ∈W (l) then

10: Use SDE Sampling to get xi
t+1

11: else
12: Use ODE Sampling to get xi

t+1

13: end if
14: end for
15: end for
16: for i-th image from i = 1 to N do
17: Calculate multi-reward advantage: Ai ←

∑K
k=1

R(xi
T ,c)ik−µk

σk

18: end for
19: for optimization timestep t ∈W (l) do ▷ optimize policy model πθ

20: Update policy model via gradient ascent: θ ← θ + η∇θJ
21: end for
22: end for
23: if m mod τ is 0 then ▷ move sliding window
24: l← min(l + s, T − w)
25: end if
26: end for

E MIXGRPO-FLASH ALGORITHM

MixGRPO-Flash Algorithm 2 accelerates the ODE sampling that does not contribute to the calcula-
tion of the policy ratio after the sliding window by using DPM-Solver++ in the Eq. (21). We intro-
duce a compression rate r̃ such that the ODE sampling after the window only requires (T − l−w)r̃

time steps. And the total time-steps is T̃ = l+w + (T − l−w)r̃ The final algorithm is as follows:

Note that when using MixGRPO-Flash*, the frozen strategy is applied, with the left boundary of the
sliding window l ≡ 0. The theoretical speedup of the training-time sampling can be described as
follows:

S =
T

w + (T − w)r̃
. (22)
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For MixGRPO-Flash, since the sliding window moves according to the progressive strategy during
training, the average speedup can be expressed in the following form:

S =
T

El (w + l + ⌈(T − w − l)r̃⌉)
<

T

w + (T − w)r̃
. (23)

Algorithm 2 MixGRPO-Flash Training Process

Require: initial policy model πθ; reward models {Rk}Kk=1; prompt dataset C; total sampling steps T̃ ; number
of samples per prompt N ; ODE compression rate r̃

Require: sliding window W (l), window size w, shift interval τ , window stride s
1: Init left boundary of W (l): l← 0
2: for training iteration m = 1 to M do
3: Sample batch prompts Cb ∼ C
4: Update old policy model: πθold ← πθ

5: for each prompt c ∈ Cb do
6: Init the same noise x0 ∼ N (0, I)
7: for generate i-th image from i = 1 to N do
8: for sampling timestep t = 0 to T̃ − 1 do
9: if t < l then

10: Use first-order ODE sampling to get xi
t+1

11: else if l ≤ t < l + w then
12: Use SDE sampling to get xi

t+1

13: else ▷ DPM-Solver++
14: Use higher-order ODE sampling to get xi

t+1

15: end if
16: end for
17: end for
18: for i-th image from i = 1 to N do

19: Calculate multi-reward advantage: Ai ←
∑K

k=1

R(xi
T̃
,c)ik−µk

σk

20: end for
21: for optimization timestep t ∈W (l) do ▷ optimize policy model πθ

22: Update policy model via gradient ascent: θ ← θ + η∇θJ
23: end for
24: end for
25: if use MixGRPO-Flash* then ▷ move sliding window
26: l← 0
27: else
28: if m mod τ is 0 then
29: l← min(l + s, T − w)
30: end if
31: end if
32: end for

F MORE VISUALIZED RESULTS
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DanceGRPO MixGRPO MixGRPO-Flash MixGRPO-Flash*

A photo of a 
horse and a train

Freshly baked 
donuts priced to 

sell at 60cents each

A tall giraffe in a 
zoo eating branches 

    

DanceGRPO*

Figure 5: Qualitative comparison with different training-time sampling steps. The performance of
MixGRPO does not significantly decrease with the reduction in overhead. ∗The Frozen strategy
means that optimization is only employed at the initial denoising steps.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

FLUX DanceGRPO MixGRPO

PROMPT: An image of an aircraft carrier made of cheese.

PROMPT: 16-year-old teenager wearing a white bear-ear hat with a smirk on their face.

PROMPT: A lemon with a McDonald's hat.

FLUX DanceGRPO MixGRPO

FLUX DanceGRPO MixGRPO

Figure 6: Comparison of the visualization results of FLUX, DanceGRPO, and MixGRPO under
HPS-v2.1 as the reward model.
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PROMPT: A photorealistic image from a furry fandom convention set 
in a biopunk era after the genetic revolution and quantum singularity.

PROMPT: a castle is in the middle of a eurpean city 

PROMPT: A detailed soft painting of a bat with golden 
rose flowers and amethyst stained glass in the background.

FLUX DanceGRPO MixGRPO

FLUX DanceGRPO MixGRPO

FLUX DanceGRPO MixGRPO

Figure 7: Comparison of the visualization results of FLUX, DanceGRPO, and MixGRPO under
HPS-v2.1 and CLIP Score as multi-reward models.
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Flow-GRPO MixGRPO

Flow-GRPO MixGRPO

SD3.5 Flow-GRPO MixGRPO

PROMPT: a cute polar bear baby, digital oil painting by paul nicklen and by van gogh and monet

PROMPT: A chocolate cake with the word "SD" written on it, professional photography, food photography

PROMPT: a photo of a yellow sports ball and a green boat
SD3.5

SD3.5

Flow-DPO(online)Flow-DPO(offline)

Flow-DPO(offline)

Flow-DPO(offline)

Flow-DPO(online)

Flow-DPO(online)

Figure 8: Comparison of the visualization results of SD3.5-M, offline DPO, online DPO, Flow-
GRPO and MixGRPO under HPS-v2.1, Pick Score and ImageReward as multi-reward models.
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G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used solely to aid in writing and polishing the text (e.g., improving clarity and grammar),
with all outputs verified by the authors.
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