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ABSTRACT

Quantile estimation and inference play essential roles in diverse scientific and in-
dustrial applications, and their accuracy can often be enhanced by integrating aux-
iliary data from multiple sites. However, developing efficient aggregation meth-
ods for quantile inference under potential privacy constraints, particularly with
heterogeneous datasets, remains challenging. To address these issues, we propose
a systematic framework for quantile estimation and inference under potential lo-
cal differential privacy (LDP). The key idea is to construct weighted estimators by
adaptively aggregating quantile estimates from target and source sites. The adap-
tive weights are determined by minimizing the asymptotic variance, incorporating
an additional /5 penalty to account for parameter shift. A parallel stochastic gra-
dient descent algorithm under LDP constraints is developed for weight estimation
and valid inference. Additionally, we introduce a conservative weighted estima-
tor to ensure robust inference across diverse heterogeneous scenarios. Rigorous
theoretical analysis establishes the consistency, normality, and effectiveness of the
proposed methods. Extensive numerical studies and real data application corrob-
orate our theoretical findings.

1 INTRODUCTION

Motivation. Quantile estimation and inference are critically important in many scientific and indus-
trial applications (Chernozhukov & Fernandez-Val, 2011; [Huang et al.l 2017; |Kallus et al., 2024;
Deuber et al.| 2024; [Yadlowsky et al.l 2025). They offer robust summaries of data distributions,
particularly for heavy-tailed or extreme outcomes. For instance, financial institutions often rely on
quantile-based measures like value-at-risk to evaluate investment risks (Chen, [2008} Barbaglia et al.}
2023). Given their substantial impact on risk management and decision-making, enhancing the accu-
racy and efficiency of quantile inference has drawn considerable attention. One promising direction
for improvement is to leverage information through data integration from auxiliary datasets collected
by multiple organizations (or sites) (Wang et al.,|2019;|Cai et al.|[2024a}; Han et al., |2025). However,
integrating data from different sites may encounter privacy concerns, as many datasets contain sensi-
tive personal or proprietary information protected by ethical standards and legal regulations (Dwork:
et al., 2006} Cai et al.,2024c)). In practice, privacy requirements vary across sites: hospital consortia,
financial networks, and federated platforms (e.g., smartphones or autonomous vehicles) often op-
erate under different jurisdictional and organizational rules. Consequently, some sites may release
data under record-level local differential privacy, whereas others may share unperturbed summaries
or aggregates (Konecny et al., 2016} [Hard et al., 2018 L1 et al., | 2020; Nguyen et al., |2022). Con-
sequently, how to effectively integrate auxiliary data sources to enhance the quantile estimation and
inference, while satisfying potential privacy constraints through privacy-preserving techniques such
as differential privacy, has become an important research problem.

Challenge. Various data integration methods have been proposed in recent literature; see Section
for a detailed discussion. However, these approaches still have several limitations when applied to
privacy-aware quantile inference. First, existing integration methods typically construct weighted
estimators by combining estimators from the target and additional datasets. They determine weights
by minimizing criteria related to asymptotic variance (Li et al.,[2022a} |Cai et al.| 2024a). Neverthe-
less, commonly used variance estimation techniques, such as the classical sample variance or plug-in
methods (Zhu et al., 2021} |Li et al., 2023} [Huang et al.| [2022; |Gu & Chenl 2023} [Han et al.| 2025;
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Guo et al., 2025), are no longer feasible under local differential privacy constraints. In addition,
even without considering privacy constraints, most existing methods mainly focus on estimating
mean parameters or optimizing smooth loss functions (Li et al.| 2013} |Lee et al.,[2017; /Chen & Xie}
2014; L1 et al.| 2022a; 2023). These methods rely on smoothness assumptions that are typically
violated in quantile problems. Second, current data integration methods generally impose restrictive
assumptions on auxiliary data sources. They often require that the source and target parameters are
either identical (Lee et al.| 2017} [Duan et al.| 2020} |[Zhu et al., 2021} [Wang & Shenl 2024)), or their
differences are distinctly separated by a margin bounded away from zero (Huang et al., [2022; |L1
et al., [2022a; |Cai et al., |2024bic). Such assumptions cannot guarantee valid inference across the
diverse heterogeneous scenarios encountered in practice.

Contributions. To address the above challenges, we propose a systematic framework to enhance
quantile estimation and inference when both target and auxiliary source datasets may require LDP.
The key idea is to construct weighted estimators by adaptively combining quantile estimates derived
from the target and source sites. We determine the adaptive weights by minimizing the asymptotic
variance of the weighted estimator, incorporating an additional {5 penalty to regularize the param-
eter shift. To implement this approach, we develop a parallel stochastic gradient descent (PSGD)
algorithm under LDP constraints to estimate these weights and facilitate valid statistical inference.
In addition, we propose a conservative weighted estimator to ensure robust inference across a wide
range of potential heterogeneous scenarios. Methodologically, we develop a general and systematic
framework for privacy-aware quantile estimation and inference via data integration. Our frame-
work introduces multiple weighted estimators that can effectively improve estimation accuracy and
inference reliability for the target quantile parameter under appropriate conditions. Moreover, the
framework is broadly applicable across diverse heterogeneous scenarios. Theoretically, we provide
rigorous guarantees for the proposed methods. Specifically, we: (i) establish consistency of the
variance estimator obtained from the proposed PSGD algorithm, providing solid theoretical support
for the weighted estimators and subsequent inference; (ii) establish consistency and asymptotic nor-
mality of the resulting weighted quantile estimators under diverse heterogeneous scenarios; and (iii)
demonstrate that our approach consistently improves estimation and inference compared to using
the target site alone under mild conditions, as long as the source sites contain useful information.

2 RELATED WORK

Data integration. Recently, statistical data integration methods have attracted growing interest.
Under the assumption of parameter homogeneity, existing studies primarily develop aggregation
strategies that minimize appropriately defined asymptotic variance criteria of parameter estimators
(L1 et al.l 2013} |Chen & Xie, 2014; Wang et al., [2019} [Zhu et al., [2021}; |Gu & Chen, [2023)). When
potential parameter shift exists, aggregation strategies in the existing literature typically also con-
sider biases between parameters from auxiliary sources and the target parameter to mitigate adverse
effects (L1 et al.,|2022a;2023;; |(Cai et al., |2024ajcib; Han et al., 2025). To mitigate privacy concerns,
classical methods aggregate summarized statistics (e.g., parameter estimates) rather than raw data
(Chen et al.l [2006; [Lee et al.l [2017; [Duan et al., [2020; |Guo et al.| [2025; [Bai et al.| [2024), while
recent approaches incorporate differential privacy constraints to achieve stronger privacy guarantees
(Cai et al., 2024acib). In particular, statistical data integration methods have also been extensively
developed for quantile problems. The existing literature mainly focuses on estimation (Hu et al.,
20215 Jiang & Yul [2021;|Tan et al.,2022; Pillutla et al.,2024; 'Wang & Shen) 2024;|Shi et al.| [2025)).
Recently, a few studies have also addressed inference problems (Huang et al.,[2022; Bai et al.,[2024)).

Local differential privacy (LDP). Differential privacy (DP) bounds how much a statistic can
change if one record is modified, formalizing “plausible deniability”’ |Dwork et al.| (2006). Variants
such as Rényi DP, zCDP, and concentrated DP sharpen composition and enabled releases like the
2020 U.S. Census. DP’s Achilles’ heel is its reliance on a trusted curator; breaches, subpoenas, or
misconfigurations can expose raw data Narayanan & Shmatikov| (2008). Local DP (LDP) removes
that trust by randomizing data at the source, generalizing randomized response |Kasiviswanathan
et al.| (2011); [Duchi et al,| (2013). Pan-DP further shows only locally perturbed data withstand re-
peated intrusions, aligning pan-DP with LDP|Amin et al.|(2020). LDP is now deployed in Chrome
telemetry, Safari domain statistics, and Windows Defender reporting. These applications demon-
strate that curator-free privacy can coexist with high-utility analytics, spurring research on utility-
optimal protocols, adaptive privacy budgeting, and federated inference.
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3 METHODOLOGY

3.1 PROBLEM DESCRIPTION

We begin by introducing the model setup and notation. Due to page limitations, a complete list
of notation is provided in Appendix [B] Consider a total of N observations stored across a fixed
set of K + 1 sites, indexed by {0, 1, ..., K}. Denote the sample size at the k-th site by ny, with

Zfzo ng = N, and assume that n, < N/K. At each site k, observations {X} . };*; C R are
independently generated from an unknown distribution Pj,. The parameter of interest at each site is
the quantile at a specified level 7 € (0, 1). Specifically, define the check loss function as: ¢(z, ) =
(x — 0)(7 — 1(x < 0)). Then, the quantile parameter at the k-th site is expressed as:

0, = argminE,p, {£(z,0)}. 3.1
o

To estimate the parameter 6, in practice one typically minimizes the empirical counterpart of the
objective function, which is given by b, = argming > "%, (X}, 6). Under regular conditions, it
is assumed that Hk admits the following asymptotic rule:

Vi (B =8) < a7 (0. 7555, G2

where fj, denotes the probability density function associated with the distribution Py. Various algo-
rithms are available for solving this empirical optimization problem, facilitating both estimation and
statistical inference for 6. The classical and simplest method is based on order statistics (Van der
Vaart, [2000). Specifically, the quantile parameter ;, at site k can be directly estimated by taking
the corresponding empirical quantile. Inference is typically conducted by plugging in a density es-
timator, such as a kernel density estimator, for the unknown probability density function evaluated
at 7. While this method is straightforward and efficient, it directly utilizes raw data, limiting its ap-
plicability in sensitive scenarios. An alternative classical approach is Averaged Stochastic Gradient
Pescent (ASGD) (Polyak & Juditsky, (1992} (Chen et al., |2023)). Starting from an initial estimator

01,0, ASGD iteratively updates the estimator at each site £ as follows:

Ok,t+1 = Okt — Mkt {T -1 (Xk t+1 < Ok t)} ; (3.3)
where 0 < 7, < 1 denotes the learmng rate. The final estimator is computed as the average

of all iterates as Ok = ng o Z?" Hk ¢. Statistical inference can be conveniently implemented us-
ing self-normalized methods (Li et al 2022b; Lee et al., 2022)). Compared to the order-statistics-
based method, the iterative nature of ASGD makes it naturally amenable to incorporating privacy-
preserving mechanisms. Specifically, we consider here the ASGD algorithm under LDP constraints
(Liu et al., [2023)). Before introducing the detailed algorithm, we first provide formal definitions for
DP and LDP.

Definition 1 (DP, see (Dwork et al., [2006)). A randomized algorithm A, taking a dataset con-

sisting of individuals as its input, is (¢, )-differentially private if, for any pair of datasets S and

S’ that differ in the record of a single individual and any event E, satisfies P[A(S) € E] <
P[A(S") € E] 4 0. When 6 = 0, A is called e-differentially private (e-DP).

Definition 2 (LDP, see Joseph et al[(2019)). An (e, §)-randomizer R : X — Y satisfies (€, §)-LDP

if, for any event E and any input data point X # X', P[R(X) € E] < e‘P[R(X’) € E] + 0.

Next, we modify the classical ASGD procedure in (3.3) by incorporating a local randomization step

into the binary indicator function 1(Xj 441 < é\k,t). To be more precise, at the ¢-th iteration, we
issue a query to the private data point X, ;4. In response, with probability 7, we receive the true
binary indicator, and with probability 1 —r, we receive an random variable v ~ Bernoulli(0.5); see
detailed Algorithm[A.T|in Appendix. Here, the response rate 1, controls the level of privacy protec-
tion, with smaller values corresponding to stronger privacy guarantees. When r; = 1, the method
reduces to the standard non-private case. Since the observed binary variable is now a randomized
version of the original indicator, it is necessary to execute bias-correction to ensure an unbiased gra-

dient estimate. Let Z %,+ denote the perturbed binary variable observed at iteration ¢ and site k. Under
this LDP mechanism, the iterative updating formula in (3:3) becomes:

5 > 1+7rp —2rp7~ 1 =71k +2r,7 ~
O = By — i { T (1= t)} (34

2 kit ™ 2
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Similarly as in the classical ASGD method, the final estimator is obtained by averaging the iter-
ates over ny, steps. Statistical inference can then be performed using self-normalization techniques

adapted to this LDP setting, see (Liu et al.,[2023).

The methods described above provide feasible algorithms for solving the optimization problem (3.1))
at each site k, with possible LDP constraints. Specifically, the classical order-statistics approach can
be applied directly if privacy protection is unnecessary, whereas the ASGD-based method should
be employed in an LDP setting. However, the parameter estimation and inference at each site can
potentially be improved further by appropriately aggregating data across multiple sites, especially
if other sites contain useful and relevant information, such as sharing the same underlying quantile
parameter. Without loss of generality, we treat site O as the target site and the remaining K sites as
source sites. An important and natural question thus arises.

Under possible LDP constraints, how can information from these K source sites be effi-
ciently leveraged to enhance estimation and inference of the target’s quantile parameter 6,?

Figure[Tillustrates the challenges of data integration under LDP through a simple example.
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Figure 1: Consider improving the estimation of household median annual income at a target state
in the United States by leveraging information from surrounding states. Two main challenges arise:
(1) median incomes at different source states may differ from that of the target state; and (2) source
states may face privacy-preserving requirements, which can vary across states.

Remark 1. Beyond the proposed LDP mechanism in (3.4), one can also achieve LDP by directly

adding noise to the local stochastic gradients 2013). We compare this variant (refer to
DP-SGD) with our proposed method in Appendix|A.1| The results show that DP-SGD yields larger
mean squared errors and wider confidence intervals than our approach.

3.2 ADAPTIVE WEIGHTED ESTIMATOR

A natural way to utilize information from multiple sites is to combine the estimators from the target

and source sites into a weighted estimator. Specifically, for each site k, let é\k denote the estimator
of ), derived by one of the previously discussed methods, and let wy, be the corresponding weight

satisfying wi, > O forall 0 < k < K and Zszo wg = 1. We then define the weighted estimator

O(w) = Zf:o w0, where w = {wy, }_ . Our goal is to determine weights {wy} that maximize
the efficiency of the weighted estimator while controlling for the negative impact arising from het-
erogeneity in data distributions and parameters between the target and source sites. To this end, we
introduce the following loss function with respect to the weights w:

K K
L(w) = Zwiai/nk + )\Zw,%bi,
k=0 k=0

where o7 /ny, is the asymptotic variance of the estimator é\k We will rigorously prove that 07 =
{4r%f,f(0k)}_l{1 — r2(27 — 1)?} in subsequent theoretical analysis. The bias term by, = 6, — 6
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represents the parameter shift of the k-th source site relative to the target site 0. The tuning parameter
A > 0 controls the trade-off between variance and bias. In particular, setting A = 0 yields classical
inverse-variance weighting (Zhu et al.| 2021} |Shi et al, [2023)), while setting A = 1 approximately
corresponds to minimizing the mean squared error of the estimator (Li et al.l [2023). Minimizing
L(w) with respect to w yields the oracle weights w* = arg min,, £(w), which has the following
explicit closed-form solution:

K 2 -1 9 -1
wi =43 (ZJ n Abf) (ZZ n Abﬁ) . 0<k<K. (3.5)

j=0 \'J

Here oracle weights refer to the ideal weights that theoretically minimize the asymptotic variance of
the estimator and assume the true site-specific asymptotic variances are known. The weights defined
in (3.5) are adaptive in the sense that they automatically adjust according to the characteristics of
each source site. Specifically, sites with higher noise levels (e.g., lower response rates ry) or larger
parameter shifts (i.e., larger biases by) are assigned smaller weights. Conversely, sites with lower
noise levels and smaller parameter shifts receive relatively larger weights. This enables the weighted
estimator to efficiently prioritize sources that are more informative and relevant to the target site.

In practice, the oracle weights defined in involve unknown parameters and thus must be esti-
mated from data. A natural estimator for the bias term is given by: by = 6 — 6y. For estimating
the variance term O’k, the classical plug-in method is commonly employed in the literature when
an explicit form of Uk is available (Han et al., [2025). However, in the scenario considered here,
some sites may require LDP protection. In Such cases, as indicated by the asymptotic result (3.2)),
the plug-in approach is infeasible because the raw data necessary to estimate f; is unavailable. To
address this challenge, we propose a PSGD under LDP constraints to automatically estimate the
variance o7 when raw data are not directly accessible. The key idea of PSGD is to partition the
local data at each site into multiple subsets and then run independent SGD procedures, referred to
as chains, in parallel on these subsets, enabling automatic estimation of the variance term.

Specifically, at each local site k, the original data { X, , };'*, is randomly partitioned into M}, subsets.

Each subset corresponds to an i.i.d. SGD chain. We denote the data within the m-th chain by
{X kot }L”’“/ MiJ for 1 < m < M. For each chain m, the PSGD algorithm initializes an estimator
1’9\,83) = 9;670 for 0 < k < K and updates it iteratively as follows:

é\(m) o é\(m)

k1l = Yt — Tkt

147k = 2rgT ~m) 1 —rp+ 2rg7 2(m)
{ 2 kit 9 (1 T Skt > ) (3.6)

where E](CT'Z) denotes the locally randomized version of the indicator 1(X ,g’l)rl < 5;6”2)) After
completing the iterations within each chain, we compute the chain-specific estimator by éém) =
(Lme/My])~ ZL""/ M) A(m) . The final estimator at site k is then obtained by averaging across
the M}, chain-specific estlmators Hk =M, ZM’“ A(m) . Note that these chain-specific estimators

{A,(f )} are independent of each other. This inspires the following variance estimator:

My,

67 = (M — 1) > [ni /My (* - 9k)
m=1
Next, we estimate the oracle weights deﬁned in equation (3.3) by replacing the unknown parameters

o7 and by with their estimators 5 and bk, respectively. We denote these estimated weights as
{wk} Subsequently, the resulting weighted estimator for the target parameter 6, and corresponding
variance estimator are obtained as

K

K
é\ o ~ é‘ ~2 E,\ ~92
est — WrVUk, Oggt — WO},
k=0 "k

k=0

We will theoretically show that 52, /N is a consistent estimator of Var(é\est). Thus, statisti-
cal inference for fs; can be readily conducted by constructing a (1 — «)-confidence interval:
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[é\est — Z4/20est/ VN, §est + Z4/20est/ V/N], where Z,, /2 is the upper (cr/2)-quantile of the stan-
dard normal distribution. The complete pseudo code for the data integration algorithm is described
below in Algorithm[A.2]

Remark 2. It should be noted that inference based on PSGD has recently been studied in the
literature (Zhu et al.| |2024)), but existing work primarily focuses on smooth loss functions and does
not provide consistent variance estimation. Extending these results to non-smooth quantile loss with
consistent variance estimation is itself an important and challenging problem.

3.3 CONSERVATIVE WEIGHTED ESTIMATOR

Algorithm[A.2|provides an adaptive weighted method capable of automatic inference under possible
LDP constraints. However, as demonstrated in the subsequent theoretical analysis, the validity of
this inference depends on certain conditions regarding the parameter shift between the target and
source sites. Specifically, we require the bias by, to be either vanishing or clearly distinguishable (i.e.,
significantly smaller or larger than N —1/2). Although this requirement is weaker than most existing
assumptions in the literature (Shi et al., 2023 \Gu & Chenl 2023 |[Han et al., 2025), it neglects an
important intermediate scenario in which the bias by, is exactly of order N —!/2. Unfortunately, even
the oracle weights fail to yield valid statistical inference in such intermediate cases. The intuition
is as follows. Consider the simple scenario where there is only one source site (K = 1). If b; is
significantly smaller than N ~!/2, the bias of the weighted estimator can be safely ignored relative
to its variance. If by is significantly larger than N—1/2 the oracle weights naturally assign minimal
weight to site 1, thereby reducing its negative 1mpact However, if b is exactly of order N—1/2j

becomes comparable to the standard errors of 00 and 91 In this situation, the oracle weights fall to
sufficiently down-weight site 1. Consequently, the final weighted estimator retains a bias of the same
order as its variance, invalidating statistical inference. Our proposed weighted estimator inevitably
faces the same issue. Figure |2|illustrates the inference performance when the estimator’s bias is
either negligible or comparable to its variance.

by =0.05/VN by =0.5VN by =1/Vn
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Figure 2: Illustration of confidence intervals under varying levels of bias. Each panel shows an
estimator (black line) with bias b; and known variance 1/n. The corresponding confidence interval
with 95% significance level is represented by the blue lines. The red dashed line represents the
true parameter value. The bias increases gradually from left to right. In the rightmost panel, the
confidence interval no longer covers the true parameter, indicating that inference becomes invalid.

To address this issue, we propose a conservative approach based on the adaptive weighting method
in Section The key idea is to construct a conservative estimate of by, which tends to further
down-weight biased source sites. Specifically, we replace the direct bias estimates with conservative

upper bounds as
Ek = ‘/I;k| +C\/8z/nk +8§/n0, C>0,

where o7}, / ng + 0§ / ng is the asymptotlc variance of bk, and C controls the conservativeness level.
We then derive the conservative weights w Wy for 0 < k < K by replacing o7 and by, in equation (3.3)

with 57 and b, respectively, and setting bo = 0. Accordingly, the conservative weighted estimator

for the target parameter g is defined as: O.opns = Z,[fzo wi0k. The corresponding variance estimator
K JOG

for econb 18 glven by UCOIlb Zk::O NU}kO’i/nk.
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4 'THEORETICAL PROPERTIES

The objective of this section is two-fold. First, we establish theoretical guarantees for the proposed
PSGD algorithm. Second, we investigate the statistical properties of the proposed weighted estima-
tors. To this end, the following standard technical conditions are needed.

Assumption 1 (Property of f;). For every 0 < k < K, fi(-) is continuous and f,(0;) > 0. In
addition, | f;.(-)| is uniformly bounded by C for some constant C > 0.

Assumption 2 (Decaying learning rate). The learning rate 1y, ; in equation (3.6)) satisfies ny ¢ < t ="
for some constant 5 € (1/2,1).

Assumption 3 (Number of chains). Assume that M,SﬁH/Q)A(Q*m < NB=1/29A0=0),

Remark 3. Assumption[l|imposes standard regularity conditions on the probability density function.
Assumption |2| requires decay learning rate, commonly assumed in the SGD literature (Polyak &
Juditsky| (1992} [Lee et al.| 2022} |Li et al| [2022b)). Assumption [3] restricts the growth rate of the
number of PSGD chains M, relative to the sample size, ensuring accuracy of the final averaged
estimator.

Let {@c} and {5} } be the estimators produced by the PSGD in Algorithm It is worth noting that
the entire algorithm to solve for 6y, 8,% relies on iterations involving g,(:z), which is a linear function
of the perturbed gradient. Consequently, following the arguments presented in (Liu et al.| [2023)),
PSGD Algorithm satisfies the definition of LDP, as summarized in Proposition @.I] Subsequently,

the asymptotic properties of these estimators are established in Theorem .1]

Proposition 4.1 (Differential privacy). The PSGD algorithm for the k-th site satisfies (ey,,0)-LDP
with €, = log{(1 + r},)/(1 — ri)}. Therefore, the Algorithm[A.2]integrating K + 1 sites LDP data
is (maXOSkSK €k, 0)- LDP.

Theorem 4.1 (Asymptotic normality). Under Assumptions[I|-[3] for each k = 0, ..., K, we have
E[b? —b7| < 1/N+bg|/VN, 62 — 0} = 0,(1),and 0y, satisfies the following asymptotic normality:
\/N (é\k — Gk) i)N(O,NCT,%/nk) .

Theorem establishes the consistency and asymptotic normality of the estimator at the k-th site.
We find that larger values of r; lead to smaller asymptotic variance. In particular, when r; = 1,
the asymptotic variance coincides with the classical non-private quantile estimation result (3.2).
Therefore, we generally employ the PSGD estimator across the K source sites.

Next, we provide theoretical guarantees for the weighted estimators. It is worth noting that our
theory is not restricted to estimators obtained from the PSGD algorithm. In fact, it applies broadly
as long as consistent variance estimators are available. To accommodate this general setting, we
introduce the following assumptions.

Assumption 4 (Regularity of estimators). For each 0 < k < K, the estimators 3,3 and §k satisfies
that 3 — o} = 0,(1), and \/N(é\k —0) N N(0,No /ny).

Assumption 5 (Bias scale). Assume the bias by, for each 1 < k < K satisfies at least one of the
following conditions: (1) Vanishing bias: by, < N~/ or (2) Distinguishable bias: b, > N~1/2.

Assumption 6 (The choice of \). Assume that \ = o(1) and b, > N~/ for every by, > N~1/2.

Remark 4. AssumptionH|is a general regularity condition that accommodates various estimators,
including for example, the proposed PSGD method and the classical order statistics-based esti-
mator in the non-private case (Van der Vaart, 2000). Assumption |5| allows the parameter shift to
either vanish faster than N~Y/2 or be significantly larger than N~'/2, covering a wide range of
heterogeneous scenarios. This condition relaxes existing assumptions in the literature, which typi-
cally require either zero parameter shift (Zhu et al.| 2021} |\Gu & Chen| |2023) or a parameter shift
bounded away from zero (Li et al.| 2022a} \Han et al., 2025). Assumption[6] specifies conditions on
the tuning parameter .

In our theoretical analysis, we investigate the properties of the proposed estimators under various
choices of A. Specifically, we establish the following theorem to facilitate valid statistical inference.
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Theorem 4.2 (Consistency and asymptotic normality). Under Assumption} consider the following
three scenarios: (a) A = 0, the bias scale satisfies Assumption|5|(1); (b) X is bounded away from
0, the bias scale satisfies Assumption E] (2); (c) A\ satisfies Assumption @ the bias scale satisfies

Assumptlon Then we have (1) @y, —wj = 0,(1) for1 < k < K and (2) \/ N2 ( est—@g) —
N(0,1).

It should be noted that our inference is constructed using normal quantiles, which yields narrower
confidence intervals compared to self-normalization methods (Liu et al. 2023) at the same confi-
dence level, even without data integration. We next present the following theorem to demonstrate
the efficiency of data integration:

Theorem 4.3 (Improved efficiency). Under Assumptwm M -6 further assume there exists b <
—1/2 for some 1 < k < K, the asymptotic variance of Gebt is strictly smaller than that of 90

Theorem [4.3]shows that as long as at least one auxiliary source site has a bias significantly smaller

than N~'/2, the weighted estimator achieves a strictly smaller asymptotic variance compared to 90
Consequently, our method enhances estimation efficiency and yields narrower confidence intervals at
the same confidence level compared to relying solely on the target site’s data. Finally, we summarize
the asymptotic behaviour of the proposed conservative estimator as follows.

Theorem 4.4 (Asymptotic normality of é\com) Under Assumption I further assume that \ is
bounded away from 0, C — 00 and C\/0; — o7 = (1) for 0 < k < K, then we have

N/O'conb( cons 90) —> N(O, 1)

Unlike Theorem [4.2] Theorem [4.4] adds no extra bias-scale constraints, so the conservative method
remains robust across more heterogeneous settings.

5 EXPERIMENTS

In this section, we examine the finite-sample performance of the proposed data integration method
on both synthetic and real data. In synthetic data, we fix quantile levels at 7 = 0.25,0.5,0.75. Data
at each site are generated from either the Normal distribution A (p%, 1) or the Cauchy distribution
C(ug, 1) with the target site fixed at ;19 = 0. We set the number of sites as K = 3 and the response
rate to 7, = 0.5 for 0 < k < K. The target sample size ny ranges from 20, 000 to 200, 000, and the
source sample sizes are three times larger. The number of local chains M, varies between 8 and 20.
The learning rate for chain m at site k in the ¢-th iteration is set as 7y, ;,, = 1/t%:5. Each experiment
is replicated 1, 000 times. We consider the following estimators for comparison:

* ADP(0): The proposed adaptive weighted estimator with A = 0, which ignores parameter shift.

ADP(1): The proposed adaptive weighted estimator with A = 1.

ADP(cv): The proposed adaptive weighted estimator with A selected via cross-validation.

ADP(cons): The proposed conservative weighted estimator with A = 1 and C = 1.96.

* Target (Liu et al., [2023): An ASGD-based estimator using only the target site’s data under po-
tential LDP constraints. Inference is conducted via self-normalization.

We evaluate these estimators using three metrics: mean squared error on the log scale (log MSE),
empirical coverage probability (ECP), and average confidence interval (CI) length. Complete im-
plementation details and definitions of these metrics can be found in Appendix Due to space
constraints, we present selected results in the main text and defer additional results to Appendix[A.2]

First, we evaluate finite-sample performance under scenarios of either vanishing or distinguishable
bias, in order to verify Theorems and Specifically, for each 1 < k < 3, we set uy to be
either 0, 0.1//ng, or 100/,/ng. This setup creates 10 distinct bias levels ranging from complete
homogeneity (level 1) to strong heterogeneity (level 10); see Table[A.T]in Appendix[A.2]for detailed
descriptions. Results are presented in Figure 3] We find that (1) ADP(0) achieves the lowest log
MSE and shortest confidence interval length at relatively small bias levels. ADP(cv) outperforms
ADP(1) at smaller bias levels and performs comparably at larger bias levels. (2) At relatively large
bias levels, ADP(0) becomes severely biased, causing its ECP to fall significantly below 95%. In
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contrast, ADP(cv) and ADP(1) consistently outperform Target except under extreme heterogeneity
(level 10). These results validate our theoretical results very well. Next, we examine finite-sample
performance under more general bias scenarios by varying py, from exp(—5) to 1 for 1 < k < 3,
presented on a logarithmic scale for clearer illustration. The results are shown in Figure 3] and the
results highlight the robustness of the conservative estimator across diverse heterogeneity scenarios.

In the experiments above, we fixed the response rate at 0.5 for all sites to clearly evaluate the impact
of bias and validate our theoretical results. We also conducted experiments with varying response
rates to further enrich our analysis. To further strengthen our simulation study, we conducted addi-
tional experiments, including (i) sensitivity analysis of learning rates and (ii) evaluations of finite-
sample performance under smaller chains M, and varying numbers of sites /. Detailed results
are provided in Appendices[A.2] Finally, we also evaluate our method on a real-world dataset: the
Government Salary Dataset (Plecko et al| 2024) in Appendix [A.3]
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Figure 3: Simulation results under different heterogeneity scenarios. The left panel considers sce-
narios of either vanishing or distinguishable bias. Bias levels range from complete homogeneity to
strong heterogeneity. The quantile level is fixed at 7 = 0.25. The right panel considers a broader
range of bias values from exp(—5) to 1. The target sample size is fixed at ng = 20,000. Results
are shown for various quantile levels. Data for both panels are generated from normal distributions,
with the response rate fixed at r;, = 0.5 for all sites.

6 CONCLUDING REMARK

In summary, we propose a unified, privacy-aware framework leveraging auxiliary data to enhance
quantile estimation and inference under local differential privacy. By optimally weighting estimators
via a PSGD algorithm and penalizing parameter shift, our approach systematically reduces variance
and ensures robustness through a conservative alternative. Theoretical results establish consistency
and asymptotic normality across diverse heterogeneity settings, demonstrating improved efficiency
and reliability over target-only methods, thus offering a principled and practical solution for privacy-
preserving quantile inference. However, there also exist some limitations in our framework. First,
our asymptotic theory requires the number of chains M}, to diverge; thus, additional investigation
into fixed-chain scenarios or non-asymptotic results is necessary. Second, the current framework
assumes a fixed number of sites (K); extending the methodology to accommodate diverging K
remains open.
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REPRODUCIBILITY STATEMENT

All numerical experiments and real-data analyses are fully reproducible via the code included in the
submitted anonymized supplementary materials.
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A ADDITIONAL DISCUSSION AND RESULTS

Algorithm A.1 Locally Randomized Compare (Liu et al.,[2023)

Require: Inquiry 6, response rate r, private data x
Ensure: A randomized binary response
: Sample u ~ Bernoulli(r)
Sample v ~ Bernoulli(0.5)
if u = 1 then
return 1y,
else
return v
end if

\'O\U‘hw'\’*‘

Algorithm A.2 Privacy-Aware Quantile Inference via Data Integration

Input: Learning rates {ny .}, sample sizes {ny }, number of chains { )}, }, target quantile 7,
truthful response rates {rk}, tuning parameter A, and significance level a.

OutPUt eest and [eebt a/ZUeet/f aebt + Za/ZUest/\/»}
Initialization: set 6, m) + O forall k, m.

forOSkSKdo
for 1 <m < M, do
forl1 <t< Lnk/MkJ do

Obtain the locally randomizer ¢ km) LRC < kot Ty X, 157-2—1) using Algorithm

Compute 0?,(”) according to equation (3.6).
end for
Compute the chain-specific estimator by é\;m) = (lnw/My)) =2 SoLm /Ml ég":)
end for

Compute the final estimator and corresponding variance estimator at site k by
M, m ~ m "
9k - M ka 1 A( L) 02 - ]\/[k 1 Z Lnk/MkJ (é\](g ) - ak)Q
end for . R
Compute the weighted estimator and its variance estimator by Oest = ZkK o W0y and
est - Zk 0 N'lUkO'k/'I’Lk, where @ WE = { Z] =0 (n] + >\b2) 1} (Z: + )\b2) ' and
N =324 .

A.1 ADDITIONAL DISCUSSION

Lasso penalty. In this paper, we utlize an {5 penalty to regularize parameter shifts between the
target and auxiliary sites, resulting in an algorithm that is easy to implement and has well-established
theoretical properties. However, alternative penalties, such as the ¢; penalty, can also be employed
within our framework. Specifically, under an ¢; penalty, the corresponding loss function with respect
to the weights w can be expressed as:

K ~2 K
g
»Classo(w) - g w}%;: + A E |wk |/b\l2€
k=0 k=0

This optimization problem can be efficiently solved using standard algorithms, such as the alternat-

ing direction method of multipliers (ADMM). Let w}fsso denote the resulting adaptive weights. The

13
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final Lasso-weighted estimator is then given by: 0,550 = ZkK AlaSSOGk The variance estimator is

given by 62, = Z peo N@}55°52 /ny,. Under certain regularity conditions, we expect the Lasso-
based estimator to exhibit analogous theoretical properties. However, similar to the adaptive weights
derived from the /5 penalty, the Lasso method also cannot handle scenarios where the bias by, is ex-
actly of order N~1/2. Our numerical experiments indicate that the performance of the Lasso method
is similar to that of the non-conservative adaptive approach. We investigate its finite-sample perfor-
mance under general bias scenarios and varying response rates with \ selected via cross-validation.
the corresponding results are illustrated in Figures[A.5]—[A.T0}

DP-SGD. As noted in Remark|[T] beyond the proposed LDP mechanism in (3.4), one can also achieve
LDP by directly adding noise to the local stochastic gradients (Song et al.| 2013). Specifically,
modify the update in (3.3) to

ak,t+1 = é\k,t — Mkt {T -1 (Xk,t+1 < lék.,t) + Zk,t+1} )

where ZF ~ Laplace(0,b) with scale b = 1/log {(1+74)/(1 —r1)}. We compare our method
with DP-SGD. We evaluate DP-SGD under the same settings as in the left panel of Figure 2 in
Section 5. The results in Figure[A.T|show that DP-SGD yields larger log MSE and wider confidence
intervals than our proposed methods.

Conservative variance estimator. Note that o2 = 472 f2(6;,)” {1 — 72(27 — 1)2} can be large
when 7y, is relatively small. Thus, the variance estimation might become unstable when the number
of chains is limited. This inspires us to adopt a conservative variance estimator as well. Specifically,
a conservative upper bound for o7, at significance level « is given by: 63 = (My — 1)63 /X2 ar, 1>
where Xa M, —1 denotes the a-quantile of the chi-squared distribution with My, — 1 degrees of
freedom. We study its performance under varying response rates, the results are summarized in
Figures Results are summarized in Figures [A.7]-—[A10]
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Figure A.1: Simulation results for DP-SGD method under a broader range of bias values, from
exp(—>5) to 1. The left, middle, and right panels present log MSE, ECP, and CI length, respectively.
The target sample size is fixed at ng = 20,000, with the target quantile set to 7 = 0.25. Data are
generated from Normal distributions with a fixed response rate of r;, = 0.5 across all sites.

A.2 COMPLETE EXPERIMENTAL DETAILS AND RESULTS

We provide here additional experimental details not described in the main text. For all experi-
ments, we use 36 Intel(R) Xeon(R) Gold 6271 CPUs, equipped with a total of 128GB of RAM and
500GB of storage. The experiments are implemented using Python 3.12, and the computational
time required to generate each figure is approximately 3 to 8 hours. The details of the LDP-based
algorithm are provided in Algorithm[A.I] The complete Algorithm of the proposed method is given
in Algorithm[A2]

The three performance measures considered in our numerical studies are defined explicitly as fol-
lows. Let 0(") denote the estimated quantile obtained in the r-th replication, and let cr) represent
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the corresponding 95% confidence interval (CI). We evaluate the estimators using the following
metrics:

» Mean Squared Error on the Log Scale (log MSE): log MSE = log (R‘l Zle o) — 90|2) ,

« Empirical Coverage Probability (ECP): ECP = R~ "% 1{¢, € CI"}.
« Average Confidence Interval Length (CI length): CI length = R~* Zle |c1™) |

Level Description of source sites Biases by, k=1,...,3

1 All source sites unbiased by =by=03=0

2 One weakly biased source by =by =0, b3 =0.1/\/no

3 Two weakly biased sources b1 =0, by =b3 =0.1/\/ng

4 Three weakly biased sources by =by =b3 =0.1/ NG

5 One strongly biased source by =by =0, b3 = 100/\/170

6 One weak + one strong b1 =0, by = 0.1/\/%, by = 100/\/%
7 Two weak + one strong by = by =0.1/\/ng, bs = 100//ng
8 Two strongly biased sources by =0, by = b3 =100//ng

9 One weak + two strong by = 0.1/\/ng, by = b3 = 100//ng
10 All source sites strongly biased b = by = b3 = 100/\/ng

Table A.1: Bias levels for source sites. Target site has by = 0.

Next, we present additional experimental results not shown in the main text. First, for scenarios
where the bias is either vanishing or distinguishable, further results are shown in Figures
Second, for the general bias scenario, additional results are in Figures @] - ‘We observe
that these additional results are qualitatively consistent with those presented in the main text. Fur-
thermore, we investigate the effect of different response rates on estimation performance. For this
analysis, we set ux = 0 for 0 < k < 3. For the target data, we consider both a scenario with no
privacy protection (ro = 1) and scenarios with strong privacy protection (r¢o = 0.25 for normal data
and ro = 0.4 for Cauchy data). Here, we also evaluate the performance of the conservative variance
estimation (ADP(consvar)) introduced in AppendE( The corresponding weights w§"*" are com-
puted by replacing o7 and by, in (3.3) with 57 and by, respectively. The resulting point estimator and
variance estimator are then given by: fevar = > 1o W5 Oy, and 52,,, = vy NGS™52/ny,. In
our experiments, we set & = 10~%. For the source sites, we vary the response rates (r) from 7
to 0.9, while all other settings remain identical to previous experiments. Results are summarized in
Figures —[A.10] For the scenario without privacy protection for the target data (Figures and
[A.8), we find that all estimators enhance estimation and inference performance compared to the Tar-
get when the source sites have relatively high response rates. However, these estimators demonstrate
limited improvement over Target when 7y, is relatively low, primarily because the limited number
of chains results in imprecise variance estimation under inherently large variance conditions. In
contrast, the conservative variance estimator consistently outperforms Target across all considered
response rates, highlighting its robustness, especially at lower response rates. In addition, for scenar-
i0s where the target data has strong privacy protection (Figures and[A.T0), almost all estimators
improve performance over Target when r;, > 7.

Finally, we report (i) sensitivity analysis of the learning rate parameter 3, and (ii) evaluations of
finite-sample performance under smaller number of chains (M, = 6) and varying numbers of sites
K. Detailed results are presented in Figure [A.T1] and Table [A.2] In these simulations, the target
sample size is fixed at ng = 20,000, and the data are generated from Normal distributions with a
fixed response rate of 7, = 0.5 for all sites. The results demonstrate the robustness of our proposed
method.
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Figure A.2: Simulation results under scenarios of either vanishing or distinguishable bias. Bias
levels range from complete homogeneity to strong heterogeneity. Results are reported for various
target sample sizes (ng). Data are generated from Normal distributions, with the response rate fixed
at r, = 0.5 for all sites.

Jé] Method 0.007 0.011 0.018 0.030 0.135 0.223 0.368 0.607 1.000

ADP(0) 99.5 987 873 390 0.0 0.0 0.0 0.0 0.0
065 ADP(1) 969 962 936 8.8 8.2 910 920 921 923
' ADP(cons) 940 942 938 932 912 91.7 920 922 924
ADP(cv) 971 958 901 777 90.6 91.1 90.8 908 913
ADP(0) 99.6 988 909 519 0.0 0.0 0.0 0.0 0.0
0.70 ADP(1) 9.1 956 940 875 874 9.6 918 918 917
’ ADP(cons) 940 939 936 929 909 918 91.7 91.7 917
ADP(cv) 97.1 95.8  90.1 7777 906  91.1 90.8 90.8 913
ADP(0) 996 991 957 715 0.0 0.0 0.0 0.0 0.0
075 ADP(1) 95.6 956 945 899 8.3 8.1 905 913 915

ADP(cons) 938 936 936 930 900 902 906 913 914
ADP(cv) 97.1 958 90.1 777 906 91.1 908 90.8 913

Table A.2: Empirical coverage probability across a broader range of bias values, from exp(—5) to 1,
under varying learning-rate parameters 3. The target sample size is fixed at ng = 20,000, with the
target quantile set to 7 = 0.5. Data are generated from Normal distributions with a fixed response
rate of r, = 0.5 across all sites.
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Figure A.3: Simulation results under scenarios of either vanishing or distinguishable bias. Bias
levels range from complete homogeneity to strong heterogeneity. Results are reported for various
target sample sizes (ng). Data are generated from Cauchy distributions, with the response rate fixed
at r, = 0.5 for all sites.
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Figure A.4: Simulation results under different heterogeneity scenarios are presented. The left panel
considers scenarios of either vanishing or distinguishable bias. Bias levels range from complete
homogeneity to strong heterogeneity. Results are reported for various target sample sizes (ng). Data
are generated from Cauchy distributions. The quantile level is fixed at 7 = 0.75. The right panel
considers a broader range of bias values from exp(—5) to 1. The target sample size is fixed at
no = 20,000. Results are shown for various quantile levels. Data are generated from Normal
distributions. Both panels use a fixed response rate of r; = 0.5 for all sites.
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Figure A.5: Simulation results under a broader range of bias values from exp(—>5)/4 to 0.25. The
target sample size is fixed at ng = 200, 000. Results are shown for various quantile levels. Data are
generated from Normal distributions with a fixed response rate of r;, = 0.5 for all sites.

—e—Target  -m=— ADP(0) —&— ADP(1) -#:- ADP(cv) ~ —+— ADP(cons) —-®- Lasso
0 7=0.25 7=0.5 =0.75

w
)
=
o
°
o
O
i
0.7
96 “ \ i)
02 . LSy \
0.0 D ) —————a - LEE e e B
0000 L peTRlns IS0 .
— 2 Y
o] /j»"/‘/ 3
s Ko é,"
< 0.045 :;{" - %
s s ¥ A =
<) [l aba B oS
< o b fao-abaH
g
0.030
I I I A VA S A © O o> oGO P
S RFLIDFTL ST PP PFLI PN
@Q c-““ °9° Q.QQ ¥ Vo o7 Qs Q.@ NN S
Bias Bias Bias

Figure A.6: Simulation results under a broader range of bias values from exp(—5)/4 to 0.25. The
target sample size is fixed at ng = 200, 000. Results are shown for various quantile levels. Data are
generated from Cauchy distributions with a fixed response rate of r;, = 0.5 for all sites.
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Figure A.7: Simulation results are presented across varying response rates and different quantile

levels. Results are reported under the Normal distribution with o = 1, ng = 20,000, and fixed
b, = 0 for all sites.
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Figure A.8: Simulation results are presented across varying response rates and different quantile

levels. Results are reported under the Cauchy distribution with rg = 1, ng = 20,000, and fixed
br. = 0 for all sites.
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Figure A.9: Simulation results are presented across varying response rates and different quantile
levels. Results are reported under the normal distribution with ry = 0.25, ng = 20,000, and fixed
br. = 0 for all sites.
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Figure A.10: Simulation results are presented across varying response rates and different quantile

levels. Results are reported under the Cauchy distribution with 9 = 0.4, ny = 20, 000, and fixed
br. = 0 for all sites.
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Figure A.11: Simulation results across a broader range of bias values from exp(—>5) to 1, under
varying K (left panel) and smaller M (right panel). The target sample size is fixed at ny = 20,000,
with the target quantile set to 7 = 0.25. Data are generated from Normal distributions with a fixed
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A.3 REAL DATA

We evaluate our method on a real-world dataset widely employed in privacy research: the Govern-
ment Salary Dataset (Plecko et al.,[2024). This dataset is derived from the 2018 American Commu-
nity Survey conducted by the U.S. Census Bureau and contains over 200,000 records with annual
income (USD) as the response. Because income is sensitive personal financial information (Gillen-
water et al.|[2021)), we treat it as privacy-protected data. To reflect the dataset’s geographic structure,
we partitioned the data by “economic region”, treating each region as a site. The original data in-
clude nine regions: we select one region (sample size 27,387) as the target site and use three larger
regions (Southeast, Far West, and Mideast) as source sites. For all sites, we fix the number of
chains at M}, = 10, all other hyperparameters follow Section 5. We log-transform the response for
estimation and back-transform all reported quantities.

We target quantile levels 7 € {0.25,0.5} and consider two privacy settings: (1) a homogeneous
truthful response rate r for all sites, and (2) heterogeneous rates uniformly distributed on [0.7,1.0].
We report point estimates (Est) and confidence-interval lengths (CI Len) for our two main ap-
proaches, ADP(cv) and ADP(cons), and include the target-only estimator for reference. The results
are summarized in Table As expected, the target-only intervals are the longest, while ADP(cv)
yields the shortest. When privacy constraints are relaxed, intervals for both ADP(cv) and ADP(cons)
become shorter, consistent with our simulations. In most cases, the target quantiles fall within our
proposed intervals, indicating strong practical performance on real data.

7=0.25 7=0.5

Metric ADP(cv) ADP(cons) Target ADP(cv) ADP(cons) Target
Ty = 0.7

Est 26815 23721 27442 46358 43403 45374

CI Len 1815 1910 3014 1435 1459 1950
hetero 7y,

Est 28495 23724 27442 48089 44620 45374

CI Len 1302 1896 3014 1140 1410 1950

Table A.3: Real-data analysis under different target quantile and truthful response rates. The number
of chains per site is fixed at M} = 10. r, = 0.7 denotes a common truthful-response rate across
sites, while “hetero 7" denotes site-specific rates range from 0.7 to 1.0.

B TECHNICAL LEMMAS

We first introduce some notation used throughout the paper. For two positive sequences a,, and b,,,
write a,, < b, or a,, = o(b,) if a,, /b, — 0 as n — oo. Similarly, write a,, < b, or a,, = O(by,)
if there exists a constant C' < oo such that a,, /b,, < C for all sufficiently large n. Moreover, write
an < by if both a,, < b, and b,, < a,, hold simultaneously. For two random sequences { X, } and

~

{Y,.}, write X,, = 0,(Y,,) if P(|X,,/Y,| > ¢) — Oforany e > 0. Write X,, = O,(Y,,) if for
every € > 0, there exists a constant M > 0 such that limsup,,_, . P(|X,|/|Ys| > M) < . Write

X, 4, X if the random sequence X, converges in distribution to a random variable X . Finally, |z |
denotes the largest integer less than or equal to x.

Lemma B.1. Denote Z\™ = \/(ny /M) (0™ — 6,). We have

E(Z™)? — o2 = O(1/(nk/Mk)(ﬂ—l/2)/\(1_,3)).
E(Z") = O(1/(nk/Mk)(5/2‘1/4>A<1/2—B/2>>.

Proof. The proof is shown in Corollary 6 in|Gadat & Panloup|(2023)). O

Lemma B.2. For each 0 < k < K, define the weighted estimator as g(w) = Z,If:o wké\k, let
0*(w) = ZkK:o wify and o*(w) = i(:o %wiai represent its corresponding true parameter
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and variance, respectively. Then under assumption[d} we have:

VN (é(w) _ 9*(w)) L N (0,02 (w)) .

Proof. Lemma B.2]follows naturally as a corollary of Theorem O
Lemma B.3. Forevery 0 < k < K, we have
~ 1
Elbr, —bx| < N (B.1)
1 1
Eb — 02| S =+ |bk]—= B.2
bk — bkl < N |0 | N (B.2)

Proof. Denote Z,im) = (nk/Mk)(H —0), Zy, = M, Z Z( ™ for every 0 < k < K.

(i): Proof of equation (BI). Recall that by, = 0 — 0y and by, = 6, —fo, with 6, = - S0 ™).

m=1
First, note that
Elby, — bi| < \/E|br — b2

It then suffices to analysize E|3k — by |?. It could be proved that under Assumption
Efbr —bil” S E(éo —60)" +E(x — 01)" = %{EQ(ZO) +var(Zo) }
{E2 (Zi) +var(Zy)} S — ( /(nO/MO)w—l/z)A(l—ﬁ))
+% (1/(nk/Mk) (B-1/2)A(1- ﬁ))

This yields E[b, — by < 1/V/N.
(ii): Proof of equation (B.2). It could be verified that

E[b2 — 02| < E[by — bil® + 261E[bx — bi| < Elby — bi|? + bk \/Elbr — bi|?

< L, Il
~ N \/N *
This finishes the whole Lemma proof. O

Lemma B.4 (Consistency). Under Assumption{d] consider the following three scenarios: (a) A = 0,
and the bias scale satisfies Assumption E] (1); (b) X\ is bounded away from 0, and the bias scale
satisfies Assumption 3 (2); (c) X satisfies Assumption [6] and the bias scale satisfies Assumption
Then, for each 0 < k < K, with probability 1 — o(1), we have

2

Iwkwk|<{ZH( +Ab2)} {ZZ(”’ (1))};[1_(‘;“173)}@(1).

k=0 j#k k=0 i#k

C PROOF OF THE MAIN THEORETICAL RESULTS
Without loss of generality, we simply assume that |ny /My | = ng /My =: T.

C.1 PROOF OF THEOREM [4.1]

First, we have E[b2 — b2| < 1/N + |by|/V/N in Lemma Next, for any fixed k = 0, ..., K, one
rewrites
Ty My,

b= > SO ) = o > T,

" m=1
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where

T =0 <= S - o0

Let U li”:) and Vk(ftn) be i.i.d. Bernoulli variables, mutually independent and also independent of
X\, with

PO =1)=r, PO =0)=1- PV =1) =PV =0) =1

( k.t ) = Tk, ( Kt ) Tk, ( k.t ) ( kit ) 3
Then it could be found that equation (3.6) could be rewritten as
01;,7;-){-1 - é\( R Mk, tGk( k.t 7(}272_1%
T

where (]g’:) = (X,ETZ), Ulg?), V,yp) , and

m 1+7r, —2r,7 m m m m
Gk(&C}i,t)) =5 {1(X1§,t) < H)Ulg,t) +01- Uli,t))<1 - Vk(,t ))}

1— 2 m m
_M{W(( > U™ + (1 U;it))kat)}-
2 ) ’
Define

et = ge @) — Gu@ 1 (), B = gr(0k) — GO, ¢).

Elementary calculation shows that

2
1+7‘k—27"ka(al(ct)1) B <1+rk—2rka(§l(€t)1)>

m2 m)

2
102 {207 ) -1}
4
2 1- T2 (21 — 1)27
4
where the convergence in probability holds by the consistency of the quantile estimation and the

continuous mapping theorem. Denote A,(c"z = §(m) — Ok, H = r.f1(0k), Ber = 1 — nit Hy,
A};j = Z’;:j (Hf:jH Bk,i) Mk,q for any j < t. We decompose that

Tk

m) _ 1 ~(m) 1 (m)
T = ?Z(Gk,j —0k) = T ZAk,j
k i=1 k 1
J J
1 Tp—1 1 Tr—1
A B Y A LS (- ) e,
T T 3 Ty 4
Jj=0 j=0
] Tel ) o) = o
- m m —1~(m
T Z i (Ek”l 6’”“) T Hy "85
k j=0 k =0

= JEka +77c(,2 T(m)+77c(m) 7;(?)7

" = Hi (0 — 01) — gu(07)).

For 7;(’71"): According to Lemma C.4 of [Xie et al.[(2024), one has ‘ AZ,_ol‘ < C uniformly for all
t > 1. Further observe that A,(:é) = é\k,o — 0, for all 1 < m < Mj, thus one obtains

My,

1 (m)
g 2= T

m=1

O (My./ny) -
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For 77@(,7;)‘ Theorem 5 of |Gadat & Panloup|(2023)) shows that
2
KglggwkE "7/5‘,3 - 9k‘ S Mkt
According to the uniform boundedness of ‘AZZI‘ and the fact that \r,inz)\ S |§l(€nz) — 012,
1 M - My, T —1
W 2| SEa L X
1 kg Te!
p(m) 2
< M, Z T El0y: — Ol
m=1 t=0
= O ((My/ny)"
Hence,
1 &
T 2 T = 0 (M /mi))
m=1

For 7;(3) For any fixed p > 0, note that maxi <m< s, E|E(m) | = E\&%yg) |27 is bounded. Follow-

= O ((nk/My)~*%/2). Then, using the
Lemma A in Chapter 9.2.6 of Serfling| (2009) and the independence over m, one has that

ing the arguments in Xie et al.| (2024)), one has H’E’( A m) ,
p

1
M

My,
Z 7;(,?;)
k m=1

which implies that

_ O( M2 (nge/ M)~ 1+a/2> :

2p

=0y (Ml;l/2(nk/Mk)_l+a/2) :

1 A )
i 2 Tl
m=1

For 7;(771): Observe thatsl(cn;) — E(k";) = gk(gl(c”;ll) — GO e 1,( N+ Gk(Hk,Cli?), and
2
E (51(:;) *5%)) <SEgG O ) +E{Gk(§,§ Z15Chyg) — Gk(ﬁk,ék,j)}

9y 1/2
1/2
_ _ek’ } Snk’/t7

where the last inequality holds by Theorem 5 of (Gadat & Panloup|(2023)), and the constant does not

depend on m.
Observe that 3%, H; * (5,(:;)
My},), Burkholder’s inequality entails that

et

— é(k";)) is a martingale for each m (independent over 1 < m <

T
{Sl -2l

1/2
< (Z 771/2> < (nk/Mk){ka/z}/g

Ek t - 52?)

Hence,

7], = )

—&r -0 ((nk/Mk)—l/z—a/zx) ’

2

TkZH‘ (<4
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which further implies that
1 A
m —-1/2 — —a
T 2 T = 0p (M /i) M)

For 776(’75”): Elementary calculation shows that
=—2"r = = 5.
1 2

Applying Theorem 2.6.7 of (Csorgo & Révész (1981) with H(z) = 2% and z,, = nk , there exist

i.i.d. standard normal Z, k,; s and some ay, Cy > 0 (depending on the distribution of H,~ 1?:(,;”)) such
that

my2  1—rp(2r —1)?
Egk’j)z rp(2r = 1)

My T —1~(m)

ng
Hy e, = 8 —2p 1-2pB
P Ziil >0l | < Cra, “Pn;, PP,
2D e D T > | S G
m=1 t=1 SkH i=1
Thus,
My Ty 1~(m) Nk
1 Hy g4 1 > —1+8 1-2
Pll— >N -t =N Zia| > | S
N, —1 1 ng 4 ’ k ~ "k
m=1 t=1 Hk Ska i=1

For p > 2, one selects 3y € (1/p, 1/2), the Borel-Cantelli lemma leads to

Z ko _722191 = ab < _1+ﬂ0);

where Zj, ;’s are i.i.d. normal r.v.’s with mean zero and covariance Hk_lSka_l.

Therefore, we obtain that

ng

~ 1
0—0——EZi
k k ng 4 k,

= (’)p (n;l/Z) 5

which completes the proof of the weak convergence result.

As for the consistency of 77, we rewrite

M, M, 2

Nk 1 (m) 2 ng 1 (m)
J%’Mk—1ﬁkz=:(0km _9’“) _Mk—l{]\@;@k’ _9’“)}
2
% (m)2 Mk i%T(m)
Mk—le My =1 My =% '

Recall the definitions of T(”,‘) for1 < j <5.

For ’T(m) According to Lemma C.4 of Xie et al.| (2024), one has ‘A}; 01‘ < Cy uniformly for all

t > 1. Further observe that A,i 0) = Qk 0 — 0 forall 1 < m < My, thus one obtains HT(M)
2

O (T;"), where the constant does not depend on m.

For 77@(,7;)‘ Consider that

Tr—1

S o OTE| PR ETPES S a,
k,j k] NTij k|l -
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Then,
Tk—l Tk—l
1 Ti—1,.(m) 1 4(m) 2
T > AT s T, Ha’w - 9’““4'
7=0 9 3=0
Applying Theorem 5 of|Gadat & Panloup| (2023)), we have
4
E ‘é\l(c,j) - gk’ < nﬁ,j.
Since 7y, ; < j~* with a > 1/2, it follows that Hﬁ(m)H = ( 1/2)
For 7j, 3: As shown in the previous arguments, one has HT;?) =0 ( 1+"/2) =0 (T,;l/z),
oy
since a < 1.
For 7T 4: Observe that ZJT; ( (m) E(k ])) is a martingale for each m (independent over
1 < m < My), Burkholder’s inequallty entalls that
< (m) _ ~(m) < (m) _ ~m) |
m m -1 m m
> H! (51” ~h ) S{ HHk (%a ~k )H2
j=1 ) j=1
T 1/2
1/2 {1—a/2}/2
< Z M. 5 < T .
j=1

Hence, for any 1 < m < Mj,

Tk
m 1 — m m —1/2—a/4
|70, = |7 o (5 - 2) | o (m ).
=1

2

For 7. 5: Applying Theorem 2.6.7 of Csdrgo & Révész (1981) with H (x) = z?F and z,, = vT,f",

there exist 1.i.d. standard normal Z 7m )

H 147:(,;”)) such that

’s and some ag, Cy, > 0 (depending on the distribution of

Ty H- 1~<m> Ty
Py S S STZIN ST | < Cray oI
j=1 1/Hl;15kH,:1 j=1
Thus,
T klg{km) 1 Tr _
(o =R o ) B

/ 1SkH 1
Since EX? = [ pvP~'P(|X| > v)dv, we also have
Ty

(m) Z (m) -0 (T];1+ﬁ0) )

Acoording to the above results, we show that

(m) ZZk] -0 (Tk_l/2> 7

2
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which implies

Ty
1
|7 Zis|l +o0(1) < 0.
‘ ' || Tk; J 2

The SLLN (i.i.d.) and the continuous mapping theorem further yields that

M,
]\4L Zk (\/jjk,];(m))Q &5y (j‘i, ( Z \/77—(m)> s, 0,
k m=1

ml

which completes the proof of consistency of 7;.

C.2 PROOF OF LEMMA[B 4]

Under Assumption[d] it is easy to obtain that for every 0 < k < K,
- 1 ~ 1 1
b=l = Op( )i B =821 = O ) + 1O ().
Next, define the notation <, as follows: a <, b indicates that a < b holds with probability 1 —o(1).
Recall the definitions of w} and @y,. Define Ay = Z& + Ab2, and Aj, = % + Ab2. Then, we have

ng

(C.1)

— k )
YV YA

We first consider the case K = 2 and scenario (¢). i.e., \ satisfies Assumptlon@ and the bias scale
satisfies Assumption [5} In this case, wj, and Wy, can be rewritten as

. Apy Ay Apy Agy . Ay, Ay,
_ _ B = — forky # ko, k1 # K ks % k.
Wy Ao + AoAg + A Ay Ei:o H#k Aj Wk Zi On#k v or k1 # ka, k1 # 2 F

It can then be verified that
A, A, Ak, A,
Zi:o Hj;ék Aj - Zi:o Hj;élg AJ
|(Aky By = Ay Ak (o T A5) + Ay Ay { 5o (T A5 = T A) Y|
(Zi:o Hj;tk ﬁj)(Zi:o Hj;tk 37)
1Ak Ak, = Ay Ay | + | 0o (T A5 = T 89)| Shoo [T A
Ei:o Hj;ék A; Zi:o Hj;tk 31

The inequality holds because Ay, Ag, < Z k=0 L L2 A;- Under assumption H we know that A
is a consistent estimator of A ;. Therefore, we obtain

@ —wi| =

‘AklAk2 - AlﬂAkz’ + } Zi:o(nj;ﬁk Aj - Hj;ék 3])} Zk 0 ‘ H];&k A Hﬁsk A ‘

|@k*wlt| S

Zi:o Hj;ék A : Zk 0 H]#k A;
(C2)
We now analyze the numerator in equation (C.2). Under assumption 4| and equation (C.I), we have
A 5% — ot o(l) | Albxl
Ap — Ap| S B L A2 — b2 —_—. C3
| k k| ~ N + | k | ~Pp N \/N ( )

It can thus be shown that
‘Aklzkz - AklAM’ < |A7€1 (Akz - Ekz)‘ + |Ak2 (Akl Akl)‘ + |( AkQ)(A/h ﬁlﬁ)’

A,
S (T oup ) { Al 2} 4 (g ) (Al 2D (2l oY,
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Albr,| | o(1)y
{\/N +=5 }_51+52+53.

If by, | < N~1/2, we have

Albg,| | 0(1) _ o,
N TN SN

which implies £ < &;. Similarly, if |b,| < N~'/2, we have £3 < &. If both A|by, | > N~1/2
and A|by,| > N~1/2, then
& :O(Az‘lbkl\lbml VN )=of 1
& N bR, Alby, | VNlbr, |
Thus, we simplify to obtain
|£k1£k2 - AklAkfz’ SP |Ak‘1 (ﬁkz - Ak‘r2)| + |Ak‘2 (ﬁkl - A/i?1)|
op Mog,|  o(1) op Mog,|  o(1)
< k1 2 ko k2 2 k1
~P (N +Ab’f1){ VN M }+(N +Abk2){ VN M }

Next, we analyze the denominator in equation (C.2). By definition, it could be shown that

ZHAJAZH( +>\b2)

k=0 j#£k k=0 j#£k

+/\bk1,

) =o(1).

Substituting this result back into equation (C.Z)), we obtain

a5 (ST ) (ST O+ T (F )}

k=0 j#k

We now consider different cases. First, note that we have by = 0. For k = 1,2, we discuss the
following scenarios: (1) When b, < N~1/2 for k = 1,2, the denominator is of order 1/N?,
while the numerator is of order o(1)/N2. (2) When Ab, > N~1/2 for one particular k and b; <

~1/2 for j # k, the denominator has order f\’, , while the numerator has order (\b?)o(1)/N +
()\|bk|)/(N3/2). (3) When by > N~1/2 for both k = 1, 2, the denominator has order (A\b?)(A\b3),

while the numerator is of order (Ab?)(A|b2|/v/N) 4 (Ab3)(A|b1|/v/N). In each scenario above, we
can verify that |0y, — wj| = 0p(1

For the general case with arbitrary K, the proof follows analogously. The detailed argument is
omitted here, but it similarly leads to the result:

o TSN (Al oW (7L
e ,C|Np{kzwnk( +)\b2)} {};};(m+ N)E(N+Abg)}.

Under Assumption [5} we therefore conclude that |, — wj| = 0, (1). Finally, noting that scenarios
(a) and (b) are in fact special cases of scenario (c), we complete the proof of the theorem.

C.3 PROOF OF THEOREM[4.2]

The proof of the consistency of Wy, is provided in Appendix Next, we establish the asymptotic

properties of the proposed estimator 6.s;. The proof is divided into three parts. In the first part, we
prove that:

VN(@O(W*) — ) —a N(0,02(w")).
In the second part, we establish that:
VNO(W*) = Oet) = 0p(1).
Combining the results from the first two parts immediately yields:

\/N(alst —6o) =4 N(O,U2(W*)).
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In the third part, we prove:
2 2 *
est _>P g (W )

By combining these three parts, we directly obtain Theorem .2}

0

~

PART 1. Recall that the estimator §(w) can be written as:
K K
O(w) = wily = b0+ wibs,
k=0 k=1

where gk = @k - 50. Define the true weighted parameter 6*(w) = ZkK=0 wiO, = Og+ Zszl wby.
We first show that v/ N (8*(w*) — 6y) = o(1). To see this, consider two cases based on Assumption

Frist, for b, < N~1/2 it follows immediately that: /Nb;, = o(1). In addition, for by, > N~1/2,
recall the oracle weight definition:

or _
(P 4+ Ab3) !
o2\ _ K (7,2- _ ’
(Z)1 + S ()t
Under Assumption@ we obtain: w; = O(1/(AbiN)) = o(1), which implies:

wy, =

. 1 B I
VNwiby, = O(‘/NT)ﬁNb’“) - O(7A|bk|\/ﬁ) =o(1). (C4)

Therefore, under Assumption[5] we have:
VN(0*(w) — 0) = o(1).
Combining this with Lemma[B.2] we conclude that:
VN(O(W*) = bg) —a N(0,0%(w*)).
This finishes PART 1.
PART 2. Next, we analyze: \/N{@\(W*) - @\est}. By definition, we have
R R K L K L K L
O(W*) = Oesy = 00 + Y _ wi (O — 0o) — {90 + k(O — 90)} = (wj — k) (O — bo).
k=1 k=1 k=1
Again, we consider two scenarios: When by, < N~'/2 it can be verified from equation that:
VN — 60) = VN (b, — bi) + VNby, = 0,(1).
Using Lemma[B.4]and Assumption[3] we thus have:
VN (wf — @) (0 — o) = 0p(1).
For the case b, > N~'/2 we similarly decompose:
VN (w}, — @) (0 — 00) = VN (w},— @) (O — ) — VN (w}s — @) (0o — 00) + VN (wf, — @ )by

By Lemmasand Lemma the first two terms are 0, (1). Thus, it suffices to study v/ N (w} —
Wy, )by, . Note that

\/N(’LU;; — ’L/U\k)bk = \/ﬁw,’;bk — \/N@k(bk —?7\;9) — \/ﬁﬁ}\k/gk.

First, from the analysis in PART 1, we already have v/ Nwjb, = 0,(1) by equation (C4). Next,
recall:

~2 -~
(P& 4+ Ab3) !
52 K ,5? Sov 1
2+ ijl(n—i + Ab3) !
Using equation again, it can be shown that when by, > N~1/2,1/(bVN) = 0,(1) when
by > N —1/2 A aresult, it could be shown that

o~

WE =
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since 07 — o7 = 0,(1). This yields

VN = 0, ( ) = on(D).

1
b VN
Hence, under Assumption [5] we obtain:
VN (0(w*) = Best) = (1),
which completes PART 2.

PART 3. Finally, from Assumptiond] we have: 57 — o7 = 0,(1). Combining this with Lemma|[B.4]

we have: 02, —, o%(w*), which completes PART 3. This finished the whole theorem proof.

C.4 PROOF OF THEOREM [4.3]

Recall that the loss function is defined as: £(w) = Y1, w? Z—‘z FAYF w2b2. The corresponding
optimization problem is given by:

w

K
w* = argmin £(w), subjectto wy > 0 forall k, Zwk =1. (C.5)
k=0

Clearly, (1,0,...,0) is a feasible solution to problem (C.5), with the corresponding loss equal to
o2 /ng. As a consequence, to prove Theorem it suffices to show that there exists a feasible
solution w’ satisfying £(w’) < o2 /no.

Suppose that the bias scale of the kth site satisfies b, < N /2. We define w’ = (w’) as follows:

ol /ng
o3/no + o2 /ni’

i/

—_ w’ = 0forall j # 0, k.
ag/no + op /nu / i#

! !
Wy = Wy, =

Clearly, w’ is feasible, and it could be computed that:

no_ (02/n0)(02/”k) w2h? = o
L(w') = ‘ago/no - o%i/nk + Mwy by = ——— (1 +0(1)).

O’S/TLO O'i/’ﬂk

This yields:
L(w') o2 /ny
og/mo o /no +0£/nk( )

This finishes the whole theorem proof.

C.5 PROOF OF THEOREM [4.4]

Note that the conservative weight w;, does not necessarily converge to the oracle weight wj,. Denote
Up =0, Ui = Cy/0o}/ny + 08 /ng for 1 < k < K, we introduce the auxiliary weights

{% + A(|bk] + Uk)Q}_l
(2) "+ S {Z Al + )

Using these weights, we define the auxiliary estimator 6 (VTI) = Zf:o Wy, §k, The proof has two
steps. in the first step, We show that |@k — ”[E;} = 0,(1). In the second step, we establish Theorem

H with the help of @} and 8 (w*).

— for0 <k < K.

STEP 1. Recall the definition of Wy, denote U’O =0, (7;9 =Cy\/03/nk + 05 /no for1 <k < K, we
have

(o2 A+ 00}

() e {T a0,

W = — for0 <k < K.
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Then we have

ﬁ?% — (|bw| + U)?|

’(‘/b\k| + Ur)? = (|bg + Ui)?| (C.6)
< {(lbe] + Tr) = (bl + Ui} + (bs] + U { (B + Tx) — (x| + U}
It could be proved that

i <l (@ o B) - (B cor( - 2| 5 - )

Nk No Nk no ng ng no no
This yields
~2 2 ~2 20\ 1/2
ES g (2 g ag
- (|- ] F- 2"
Nk Nk no no

Because we assume C — oo and Cy/0; — 07 = O,(1) forevery k = 0, ..., K, then we have

(el + o) = (il + UR)| < |IBel = [0l + [T = U] < o = bl + 10 = U] = 0;4%)-
Substituting the bound above into equation (C.6) yields
(el + ) = (el + UR)?| = op(%) + { bl +CQP(L)}OP(L).
VN VN

Next, by repeating the key steps in the proof of Lemma we can readily show that wy, — wj, =
0,(1). The detailed proof is therefore omitted.

STEP 2. Note that |by,| + Uy > N~1/2, then it could be verified that
-1
)\71{(|bk| + Uk)2}

N+ 3 Al + Uj)z}_1

1
- O(A(\bk| + Uk)2N> = o),

~x

W S

and

L by B
VNG, = O(A(w " Uk)%/N) =o(1).

Similarly, we can prove that

1
"= o)

and

~

o~ b .
Vb= O”(wm n wm) —ot

Next, by repating the key steps in the proof of Theorem[.2] it could be verifeid that
VN@OF*) = 0) =g N(0,0%(%*)), VNBF) = Beons) = 0p(1).
Finally, note that

~2

Ocons %P 02 (‘A’/V* )

by Theorem {.1| and using the fact that Wy, — Wy = o0,(1). By combining these three results, we
finished the whole proof.
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