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Abstract

Text semantic matching is a fundamental task001
that has been widely used in various scenarios,002
such as community question answering, infor-003
mation retrieval, and recommendation. Most004
state-of-the-art matching models, e.g., BERT,005
directly perform text comparison by processing006
each word uniformly. However, a query sen-007
tence generally comprises content that calls for008
different levels of matching granularity. Specif-009
ically, keywords represent factual information010
such as action, entity, and event that should be011
strictly matched, while intents convey abstract012
concepts and ideas that can be paraphrased into013
various expressions. In this work, we propose a014
simple yet effective training strategy for text se-015
mantic matching in a divide-and-conquer man-016
ner by disentangling keywords from intents.017
Our approach can be easily combined with pre-018
trained language models (PLM) without influ-019
encing their inference efficiency, achieving sta-020
ble performance improvements against a wide021
range of PLMs on three benchmarks.022

1 Introduction023

Text semantic matching aims to predict a matching024

category or a matching score reflecting the seman-025

tic similarity given a pair of text sequences, which026

is a fundamental task employed in a wide range of027

applications (Huang et al., 2013; Hu et al., 2014;028

Palangi et al., 2016; Cer et al., 2017; Rücklé et al.,029

2020; Pang et al., 2021). Recently, pre-trained lan-030

guage models (PLM) show remarkable capability031

of representation learning and have accelerated the032

research of text semantic matching (Devlin et al.,033

2019; Liu et al., 2019; Lan et al., 2019). They typi-034

cally exploit large-scale corpora and well-designed035

self-supervised learning objectives to better learn036

semantic representations, achieving state-of-the-037

art performances or even surpassing the level of038

non-expert humans on general semantic matching039

benchmarks (Wang et al., 2019b,a).040

Y   A: What does a civil engineer do?  B: How does civil engineering work?

N   A: What is the best game engine?  B: What is game engine?

N   A: How do I repair my gas boiler?  B: How do I repair boiler?

Y   A: Why does my nose bleed?  B: What causes nose bleeds?

Figure 1: Examples of sentence pairs sampled from the
QQP dataset. The keywords are highlighted, while the
other words constitute abstract intents. Y and N repre-
sent whether the pair is matched or not. The original
matching problem can be decomposed into two sub-
problems: keyword matching and intent matching. A
semantically equivalent pair generally means the key-
word and intent are matched simultaneously.

Most existing PLMs aim to establish a foun- 041

dation for various downstream tasks (Bommasani 042

et al., 2021) and focus on finding a generic way to 043

encode text sequences. When applied to the task of 044

text semantic matching, it is a common practice to 045

add a simple classification objective for fine-tuning 046

and directly perform text comparison by process- 047

ing each word uniformly. Nevertheless, each sen- 048

tence can be typically decomposed into content 049

with different levels of matching granularity (Su 050

et al., 2021). Exemplar sentence pairs can be found 051

in Figure 1. The primary content refers to keywords 052

that reflect the factual information about entities 053

or actions, which should be strictly matched. The 054

other content constitute abstract intents, which can 055

be generally paraphrased into various expressions 056

to convey the same concepts or ideas. 057

Considering the situation where sentence con- 058

tent has different levels of matching granularity, we 059

propose DC-Match, a simple but effective training 060

regime for text semantic matching in a divide-and- 061

conquer manner. Specifically, we break down the 062

matching problem into two sub-problems: keyword 063

matching and intent matching. Given a pair of in- 064

put text sequences, the model learns to disentangle 065

keywords from intents by utilizing the method of 066

distant supervision. In addition to the standard se- 067
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quence matching that has a global receptive field,068

we further match keywords and intents separately069

to learn the way of content matching under different070

levels of granularity. Finally, we design a special071

training objective that combines the solutions to the072

sub-problems, which minimizes the KL-divergence073

between the global matching distribution (original074

problem) and the joint keyword-intent matching075

distribution (sub-problems). At inference time, we076

expect that the global matching model automat-077

ically distinguishes keywords from intents, then078

makes final predictions conditioned on the disen-079

tangled content in different matching levels.080

We adopted DC-Match to a wide range of PLMs.081

Comprehensive experiments were conducted on082

two English text matching benchmarks MRPC083

(Dolan and Brockett, 2005) and QQP (Iyer et al.,084

2017), and a Chinese benchmark Medical-SM. Our085

approach can be easily combined with PLMs plus086

few additional parameters, but still achieves stable087

performance improvements against most baseline088

PLMs. Notably, all the auxiliary procedures and089

parameters are only involved in the training stage.090

The inference efficiency of our approach is exactly091

the same as that of PLM baselines, without addi-092

tional parameters and computations. Our codes and093

datasets are publicly available1.094

Our contributions are three-fold: 1) We intro-095

duce a novel training regime for text matching,096

which disentangles keywords from intents based097

on different levels of matching granularity in a098

divide-and-conquer manner. 2) The proposed ap-099

proach is simple yet effective, which can be easily100

combined with PLMs plus few auxiliary training101

parameters while not changing their original infer-102

ence efficiency. 3) Experimental results on three103

benchmarks across two languages demonstrate the104

effectiveness of our approach in different aspects.105

2 Related Work106

Text semantic matching plays an important role in107

many applications, such as Information Retrieval108

(IR) and Natural Language Inference (NLI). Tra-109

ditional technologies exploit neural networks with110

different inductive biases, e.g., CNN (Tan et al.,111

2016), RNN (Tai et al., 2015; Cheng et al., 2016),112

GNN (Wu et al., 2020), and attention mechanism113

(Parikh et al., 2016; Chen et al., 2017). To en-114

hance the matching performance, dozens of works115

use richer syntactic or hand-crafted features (Chen116

1The link is omitted due to the review version.

et al., 2017; Tay et al., 2018b; Gong et al., 2018; 117

Kim et al., 2019), add complex alignment compu- 118

tations (Wang et al., 2017; Tan et al., 2018; Gong 119

et al., 2018; Yang et al., 2019), and perform multi- 120

pass matching procedures (Tay et al., 2018a; Kim 121

et al., 2019), which shows the effectiveness of 122

representation-oriented approaches and model de- 123

signing strategies based on information interaction. 124

Recently, large-scale pre-trained language mod- 125

els (PLM) have boosted the performance of text 126

semantic matching by making full use of massive 127

text resources. Most of them are composed of 128

multiple transformer layers (Vaswani et al., 2017) 129

with multi-head attentions and are pre-trained with 130

well-designed self-supervised learning objectives. 131

Representative models like BERT (Devlin et al., 132

2019), RoBERTa (Liu et al., 2019), and ALBERT 133

(Lan et al., 2019) aim to establish a powerful en- 134

coder that has a comprehensive understanding of 135

input texts. For the task of text semantic matching, 136

PLMs can be fine-tuned under a paradigm of se- 137

quence classification with only an additional clas- 138

sification layer, achieving state-of-the-art perfor- 139

mances on general semantic matching benchmarks 140

(Wang et al., 2019b,a). PLMs can be regarded as 141

foundation models (Bommasani et al., 2021) and 142

they mainly focus on finding a generic way to en- 143

code text sequences. Instead of processing each 144

word uniformly, in this work, we devise a novel 145

training regime that processes sentence pairs by 146

disentangling keywords from intents, which can 147

be easily combined with PLMs to stack additional 148

improvements to text semantic matching. 149

3 Methodology 150

In this section, we detail the proposed training 151

regime DC-Match. It consists of three training ob- 152

jectives: a classification loss for the global match- 153

ing model; a distantly supervised classification loss 154

that learns to distinguish keywords from intents; a 155

special training objective following the idea of di- 156

vide and conquer, which uses the KL-divergence to 157

ensure that the global matching distribution (origi- 158

nal problem) is similar to the distribution of com- 159

bined solutions to disentangled keywords and in- 160

tents (sub-problems). The overall framework is 161

illustrated in Figure 2. 162

3.1 Text Semantic Matching using PLMs 163

First, we formally define the task of text semantic 164

matching and describe a generic way for this task 165

2



......

Sentence A: How does a solenoid valve work?
Sentence B: What is a solenoid valve? 

Sentence A  <sep>  Sentence B

Classifier Keyword Discriminator
Keyword A: _ solenoid valve _
Keyword B: _ solenoid valve _ 

Intent A: How does a _ work?
Intent B: What is a _? 

<cls>

Distant
Supervision

Loss

<cls>
......

What
......

solenoid valve

Classification
Loss

Global
Matching

Probability

PLM
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<cls> Keyword A  <sep>  Keyword B

<cls> Intent A  <sep>  Intent B
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Matching
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Joint
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Sub-problem 1: Keyword Matching

Sub-problem 2: Intent Matching
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Keyword Intent

?

PLM
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Figure 2: Overview of DC-Match. The training regime has three objectives: (1) a standard matching classification
loss; (2) a distant supervision loss for keyword and intent discrimination; (3) a KL-divergence loss that makes
the global matching probability (main problem) consistent with the probability of combined solutions to keyword
matching and intent matching (sub-problems).

by using PLMs. Given two text sequences Sa =166

{wa
1 , w

a
2 , ..., w

a
la
} and Sb = {wb

1, w
b
2, ..., w

b
lb
}, the167

goal of text semantic matching is to learn a clas-168

sifier y = ξ(Sa, Sb) to predict whether Sa and169

Sb is semantically equivalent. Here, wa
i and wb

j170

represent the i-th and j-th word in the sequences,171

respectively, and la, lb denote the sequence length.172

y can be either a binary classification target indicat-173

ing whether or not the two sequences are matched,174

or a multi-class classification target that reflects175

different matching degrees.176

Recently, pre-trained language models (PLM)177

have achieved remarkable success in text under-178

standing and representation learning (Devlin et al.,179

2019; Liu et al., 2019; Lan et al., 2019). They are180

pre-trained on large-scale text corpora with heuris-181

tic self-supervised learning objectives, and can be182

served as a powerful sequence classifier by fine-183

tuning on the downstream classification task. For184

text semantic matching, it is a common practice185

that we directly concatenate Sa and Sb as a consec-186

utive sequence Sa,b = [Sa;wsep;Sb] by a separator187

token wsep and feed it into the PLM encoder:188

[hcls;Ha,b] = PLM([wcls;Sa,b]), (1)189

P (y|Sa, Sb) = Softmax(hcls ·W⊤). (2)190

Here, wcls is a special token in front of each se-191

quence, and the final hidden state corresponding to192

this token hcls is used as the aggregate sequence193

representation. During fine-tuning, only a single194

classification layer is introduced to make the final195

prediction, where W ∈ RK×H represents train-196

able weights and K is the number of labels. Fi- 197

nally, we compute a standard classification loss for 198

fine-tuning as follows: 199

Lsm = −logP (y|Sa, Sb). (3) 200

3.2 Disentangling Keyword from Intent with 201

Distant Supervision 202

Most existing PLMs aim to find a generic way to 203

encode text sequences and establish a foundation 204

for language understanding. For different classifi- 205

cation tasks, e.g., sentiment analysis, text semantic 206

matching, and natural language inference, the PLM 207

typically exploits the same fine-tuning paradigm, 208

and processes text sequences in a straightforward 209

and uniform way. In this work, inspired by previ- 210

ous works of decomposable paraphrase generation 211

(Li et al., 2019; Su et al., 2021), we introduce a task- 212

specific assumption to the text semantic matching, 213

and postulate that each sentence could be decom- 214

posed into keywords and intents. Intuitively, key- 215

words represent factual information such as actions 216

and entities that should be strictly matched, while 217

intents convey abstract concepts or ideas that can 218

be expressed in different ways. By disentangling 219

keywords from intents, the matching procedure can 220

be divided into two easier sub-problems that call 221

for different levels of matching granularity. 222

However, automatic disentanglement of key- 223

words and intents is not easy due to the lack of 224

manually annotated data. To address this problem, 225

following recent research on distant supervision 226

(Liang et al., 2020; Meng et al., 2021), we use a 227
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rule-based method to automatically generate key-228

word labels by extracting entity mentions in the raw229

text based on the entities in external knowledge230

bases (see details in Section 4.2). All extracted231

entities are labeled as keywords and the remainder232

of the sentence words are labeled as intents. Af-233

ter obtaining the weakly labeled information, we234

add an auxiliary training objective that forces the235

model to learn disentangled keyword and intent236

representations. Formally, given the output states237

Ha,b from PLM in Eq.1, we split the states into238

two groups Ha,b
k ∈ RNk×H and Ha,b

i ∈ RNi×H239

that correspond to the tokens of keywords and in-240

tents, respectively, where Nk, Ni denote the token241

number. Then, the keyword-intent classification242

loss is defined as follows:243

Lds = −[logσ(ĥa,b
k W⊤

ds) + logσ(−ĥa,b
i W⊤

ds)],
(4)244

where Wds ∈ R1×H is trainable parameters, and245

ĥa,b
k , ĥa,b

i are transformed by Ha,b
k ,Ha,b

i using av-246

erage pooling. The objective in Eq.4 aims to push247

the encoder to learn representations of keywords248

and intents such that they are far apart from each249

other, modeling disentangled sentence content in250

different matching levels.251

3.3 Divide-and-Conquer Matching Strategy252

The auxiliary training objective in Eq.4, neverthe-253

less, cannot be directly associated with the origi-254

nal text matching problem. To facilitate the true255

contributions of keywords and intents to the final256

prediction, we introduce a novel matching strategy257

following the idea of divide and conquer. Specif-258

ically, we divide the original matching problem259

into two easier sub-problems: keyword matching260

and intent matching, and assume that they are in-261

dependent to each other. The solutions to the sub-262

problems are then combined to give a solution to263

the original problem. Recall that the goal of text264

semantic matching is to learn y = ξ(Sa, Sb) where265

y can be either a binary classification target or a266

multi-class classification target. We assume that267

each sub-problem follows the same type of target,268

and the probability distribution of combined solu-269

tions Q(y) can be derived from the joint probability270

distribution of the two sub-problems P (yk, yi) as:271

Q(y = cn) = P (yk = cn, yi = cn)272

+
∑

cm>cn
P (yk = cn, yi = cm)273

+
∑

cm>cn
P (yk = cm, yi = cn). (5)274

Here, cn, cm denote the target classes which reflect 275

the matching degrees, and cm > cn means cm has 276

a higher matching score than cn. For example, in 277

a three-class scenario, y ∈ {2, 1, 0} means exact 278

match, partial match, and mismatch, respectively, 279

and Q(y = 0) is the probability that at least one of 280

the sub-problems is inferred as mismatched. 281

To model the sub-problems, we reuse the match- 282

ing model in Eq.1 and Eq.2 to separately compare 283

keywords and intents and get conditional proba- 284

bilities P (yk|Sa
k , S

b
k) and P (yi|Sa

i , S
b
i ). Sk and Si 285

represent text sequences where tokens of intents or 286

keywords are masked, respectively. Then, under 287

the assumption of independent sub-problems, the 288

conditional joint distribution of yk and yi is: 289

P (yk, yi|Sa, Sb) = P (yk|Sa
k , S

b
k)P (yi|Sa

i , S
b
i ).
(6) 290

Finally, we can combine the solutions to the sub- 291

problems and compute the conditional distribution 292

Q(y|Sa, Sb) using Eq.5. To ensure that the global 293

matching distribution (original problem) is similar 294

to the distribution of combined solutions to sub- 295

problems, we use the bidirectional KL-divergence 296

loss to minimize the distance between P (y|Sa, Sb) 297

and Q(y|Sa, Sb) as follows: 298

Ldc = 1/2 · (DKL[P (y|Sa, Sb)||Q(y|Sa, Sb)] 299

+DKL[Q(y|Sa, Sb)||P (y|Sa, Sb)]). (7) 300

By this means, we expect that the global matching 301

model learns to make final predictions with better 302

interpretability, which are conditioned on the disen- 303

tangled keywords and intents that require different 304

levels of matching granularity. 305

3.4 Training and Inference 306

At the training stage, we combine the three loss 307

functions Lsm,Lds,Ldc to jointly train the model: 308

L = Lsm + Lds + Ldc. (8) 309

At the inference time, we directly infer the match- 310

ing category for a sentence pair based on the condi- 311

tional probability of the original problem, namely 312

y∗ = argmaxyP (y|Sa, Sb). It means our infer- 313

ence procedure is exactly the same as that of PLM 314

baselines without additional computations. Here, 315

we do not infer matching results from the prob- 316

ability of combined solutions Q(y|Sa, Sb), since 317

annotation information of keywords and intents 318

is generally not available at the inference time, 319
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Split # of Avg. # of pairs in categories
pairs length EM(2) PM(1) MM(0)

Train 38,406 12.25 7,754 18,617 12,035
Dev. 4,801 12.25 975 2,329 1,497
Test 4,801 12.19 938 2,315 1,548

Table 1: Statistics of the Medical-SM dataset. Each
query pair can be categorized into exact match (EM),
partial match (PM), or mismatch (MM).

and Q(y|Sa, Sb) cannot be directly computed. Al-320

though we use external corpora to automatically321

obtain distant labels, it might induce incomplete322

and noisy signals (Meng et al., 2021), introduc-323

ing biases to Q(y|Sa, Sb) approximation. Hence,324

we only use distant labels at the training stage as325

auxiliary information augmentation to the global326

matching model. Nevertheless, we observe that327

after model training, P (y|Sa, Sb) is highly consis-328

tent with Q(y|Sa, Sb) (see details in Section 5.4).329

As a result, a high-quality set of keyword labels330

might bring additional performance enhancement331

by better approximating Q(y|Sa, Sb).332

4 Experimental Settings333

4.1 Datasets334

We evaluate our approach and all baselines on three335

benchmarks for text semantic matching: two En-336

glish datasets MRPC (Dolan and Brockett, 2005)337

and QQP (Iyer et al., 2017), and one Chinese338

dataset Medical-SM. Both MRPC and QQP are339

corpora of sentence pairs automatically extracted340

from online websites, with annotated binary clas-341

sification labels indicating whether the sentences342

in the pair are semantically equivalent. We use the343

official dataset collections on Glue (Wang et al.,344

2019b) released by the community2, where MRPC345

contains 5,801 sentence pairs and QQP consists of346

404,276 annotated sentence pairs3.347

Furthermore, we evaluate our approach on a348

Chinese text matching dataset Medical-SM, which349

consists of user-generated query pairs collected350

from a Chinese search engine. The dataset con-351

tains 48,008 query pairs in the domain of medical352

consulting. Each query pair can be categorized353

into three classes: exact match, partial match, or354

mismatch. The annotation is completed by five in-355

dependent experts and we keep the labeling choices356

2https://huggingface.co/datasets/glue
3Since the labels for the official QQP test set are not re-

leased, we report evaluation results on the validation set.

QQP MRPC Medical

# keywords in each pair 2.38 6.53 2.51
# tokens in each keyword 1.98 1.68 4.51
BLEU (match) .1451 .3088 .2754
BLEU (mismatch) .0961 .2155 .1284

Table 2: Statistics of distantly labeled keywords on train-
ing sets. BLEU (match/mismatch) denotes the keyword
BLEU score in matched/mismatched pairs, respectively.

that most annotators accept. Statistics of our con- 357

structed dataset are shown in Table 1. To facilitate 358

the research, we will release the dataset publicly. 359

4.2 Automatic Keyword Labeling 360

In this work, we generate distant supervision labels 361

for identification of keywords and intents using a 362

heuristic approach. Inspired by previous works 363

for distantly supervised NER (Liang et al., 2020; 364

Meng et al., 2021), we first extract potential key- 365

words with part-of-speech tags of nouns, verbs, 366

and adjectives obtained from NLTK (Bird, 2006). 367

We then match these potential keywords by using 368

external knowledge bases: wikipedia entity graph 369

(Bhatia and Vishwakarma, 2018) for English cor- 370

pora, and Sogou knowledge graph (Wang et al., 371

2019c) for Chinese Medical-SM. Finally, we use 372

the binary IO format to label whether a token be- 373

longs to keywords or intents (Peng et al., 2019). 374

Table 2 shows the statistics of distantly labeled key- 375

words on the training sets of three benchmarks. We 376

use BLEU score (Papineni et al., 2002) to measure 377

the relevance of keywords between two compared 378

sentences for both matched pairs and mismatched 379

pairs. We observe that matched sentence pairs gen- 380

erally contain keywords with higher relevance. As 381

a result, generic models might wrongly output high 382

matching scores just conditioned on matched key- 383

words regardless of their context, because models 384

tend to learn statistical biases in the data (Manju- 385

natha et al., 2019; Lin et al., 2021). 386

4.3 Implementation Details 387

For a fair comparison, we fine-tune each PLM of 388

the original version and its DC-Match variant with 389

the same set of hyper-parameters. The fine-tuning 390

process of the QQP and MRPC datasets follows 391

Wang et al. (2021). Specifically, we apply AdamW 392

(Loshchilov and Hutter, 2018) (β1=0.9, β2=0.999) 393

with a weight decay rate of 0.01 and set the learn- 394

ing rate to 2e-5. The batch size is set to 64 for 395

QQP and 16 for MRPC. All experiments are con- 396

5
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Model QQP MRPC
CENN (Zhang et al., 2017) 80.7 76.4
L.D.C (Wang et al., 2016) 85.6 78.4
BiMPM (Wang et al., 2017) 88.2 -
DIIN (Gong et al., 2018) 89.1 -
DRCN (Kim et al., 2019) 90.2 82.5
DRr-Net (Zhang et al., 2019) 89.8 82.9
R2-Net (Zhang et al., 2021) 91.6 84.3
BERT (Devlin et al., 2019) 90.9 82.7

-large version 91.0 85.9
RoBERTa (Liu et al., 2019) 91.4 87.2

-large version 92.0 87.6
ALBERT (Lan et al., 2019) 90.4 86.0

-large version 90.9 86.5
DeBERTa (He et al., 2020) 91.7 88.4

-large version 92.1 88.6
FunnelTF (Dai et al., 2020) 91.9 87.1
DC-Match (RoBERTa-base) 91.7 88.1
DC-Match (RoBERTa-large) 92.2 88.9

Table 3: Experimental results (Accuracy) on the QQP
and MRPC text semantic matching datasets.

ducted on a single RTX 3090 GPU. For QQP, we397

fine-tune the model for 50,000 steps and model398

checkpoints are evaluated every 2,000 steps. For399

MRPC, we fine-tune the model for 20 epochs and400

evaluate the model after each epoch. Checkpoints401

with top-3 performance on the development set are402

evaluated on the test set to report average results.403

For Medical-SM, we use the same fine-tuning strat-404

egy as for QQP, and use the chinese version of405

PLM checkpoints released by Cui et al. (2021)4.406

5 Results and Analysis407

5.1 Main Results408

Table 3 shows the main results of comparison mod-409

els on the QQP and MRPC dataset. Following410

previous works (Zhang et al., 2021; Wang et al.,411

2021), we evaluate matching performance using412

Accuracy and some results are from their reported413

scores. In Table 3, all baselines are categorized414

into two groups. The first group includes tradi-415

tional methods that exploit neural networks with416

different inductive biases, and the second group417

includes PLMs that benefit from large-scale ex-418

ternal pre-training data. Unsurprisingly, PLMs419

show a superior performance against traditional420

neural matching models, especially on the small-421

scale dataset MRPC. When equipped with the DC-422

Match training strategy, PLMs can achieve further423

performance enhancement. In Table 3, we report424

the results of DC-Match that uses RoBERTa as the425

4Since the large version of Chinese BERT is not available,
we use Chinese MacBERT (Cui et al., 2020) instead of BERT.

Model QQP MRPC
Ori. → DC (change) Ori. → DC (change)

BERT 90.91 → 91.16 (0.25) 82.66 → 83.82 (1.16)
-large 90.98 → 91.45 (0.47) 85.85 → 86.08 (0.23)

RoBERTa 91.41 → 91.69 (0.28) 87.24 → 88.05 (0.81)
-large 92.03 → 92.20 (0.17) 87.59 → 88.92 (1.33)

ALBERT 90.37 → 90.62 (0.25) 86.02 → 86.26 (0.24)
-large 90.91 → 90.94 (0.03) 86.49 → 87.01 (0.52)

DeBERTa 91.68 → 91.78 (0.10) 88.40 → 88.81 (0.41)
-large 92.13 → 92.22 (0.09) 88.57 → 89.21 (0.64)

FunnelTF 91.92 → 92.09 (0.17) 87.07 → 87.53 (0.46)

Table 4: Experimental results of Accuracy on the QQP
and MRPC datasets. We compare the results of original
PLMs with those using our DC-Match training strategy
(Ori.→DC), and calculate the improvement of accuracy.
Numbers in bold indicate whether the change is signifi-
cant (using a Wilcoxon signed-rank test; p < 0.05).

backbone PLM, which outperforms all baselines 426

on both datasets. However, the improvement on a 427

single PLM does not necessarily mean the effect 428

of DC-Match has generalizability. Hence, to probe 429

the effectiveness of our proposed training regime, 430

we apply DC-Match to all the PLMs in the second 431

group and report the results of performance change 432

in Table 4. Notably, the listed PLMs generally have 433

different architectures and parameter scales, and we 434

fine-tune each PLM of the original version and its 435

DC-Match variant using the same set of configura- 436

tions without additional tuning of hyper-parameters. 437

We are surprised to find that the matching accuracy 438

of all PLMs increases stably on both datasets. It 439

indicates that the divide-and-conquer strategy by 440

breaking down the matching problem into easier 441

sub-problems can effectively give a better solution 442

to the original problem. Besides, from Table 4 we 443

observe that DC-Match brings more significant per- 444

formance boost to the small dataset MRPC, which 445

probes that the information of keywords and intents 446

is an important feature for text semantic matching, 447

especially when the training data is too limited to 448

find useful latent patterns. 449

Furthermore, we evaluate DC-Match on the Chi- 450

nese Medical-SM. Different from QQP and MRPC, 451

Medical-SM is a three-class classification dataset. 452

In addition to accuracy, we further employ Macro- 453

F1 to assess the quality of problems with multiple 454

classes. From Table 5 we observe that DC-Match 455

still boosts the matching performance of PLMs, in- 456

dicating that our strategy works fine in a multi-class 457

classification scenario and in different languages. 458
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Model Accuracy Macro-F1
Ori. → DC (change) Ori. → DC (change)

BERT 73.55 → 73.83 (0.28) 72.91 → 73.15 (0.24)
-large 74.55 → 74.69 (0.14) 74.01 → 74.13 (0.12)

RoBERTa 73.19 → 73.73 (0.54) 72.43 → 72.96 (0.53)
-large 73.51 → 74.22 (0.71) 72.83 → 73.67 (0.84)

Table 5: Accuracy and Macro-F1 on the Medical-SM
corpus. Numbers in bold indicate the result change is
significant (Wilcoxon signed-rank test; p < 0.05).
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Figure 3: Robustness evaluation on the QQP and MRPC
datasets. The x-axis denotes different text transforma-
tions that aim to test whether models are vulnerable to
attacks. The y-axis denotes model accuracy on the trans-
formed test set. Red dots represent the original PLMs
while Blue dots represent those using the DC-Match
strategy. Bar plots denote the gap of mean accuracy
between two groups of models.

5.2 Ablation Experiments459

We also perform ablation studies to validate the460

effectiveness of each part in DC-Match. Table461

6 demonstrates the results of different settings462

for the proposed training strategy equipped with463

RoBERTa. After only adding the distantly super-464

vised loss for keyword and intent identification465

(+Lds), we find that the results are not significantly466

different from the original PLMs. It reflects that467

this auxiliary training objective cannot be directly468

associated with the original text matching problem,469

so Lds itself might not be helpful for the final target.470

However, if we remove Lds from DC-Match and471

only keep the divide-and-conquer training objec-472

tive (+Ldc), we observe a performance degradation473

compared with the full version of DC-Match. It474

indicates that the distant supervision target helps475

the model learn to disentangle keywords from in-476

tents and obtain distinguished content represen-477

tations that call for different levels of matching478

granularity, which might contribute to the solutions479

to sub-problems. Besides, the incorporation of480

the divide-and-conquer objective (both +Ldc and481

+Lds,Ldc) improves the performance of PLMs to482

varying degrees, which manifests the effectiveness483

of the matching strategy in a decomposed manner.484

Models QQP MRPC Medical-SM

RoBERTa-base 91.41 87.24 73.19
+ Lds 91.48 87.36 73.30
+ Ldc 91.61 87.88 73.65
+ Lds,Ldc (ours) 91.69 88.05 73.73

RoBERTa-large 92.03 87.59 73.51
+ Lds 91.96 87.86 73.85
+ Ldc 92.15 88.82 74.13
+ Lds,Ldc (ours) 92.20 88.92 74.22

Table 6: Ablation study of DC-Match on three text
semantic matching datasets. We report results of Accu-
racy and use RoBERTa as the backbone model.

5.3 Robustness Evaluation 485

The divide-and-conquer strategy disentangles key- 486

words from intents, which provides additional in- 487

terpretability for final matching judgements. Fol- 488

lowing Wang et al. (2021), we conduct robustness 489

evaluation to probe whether DC-Match is robust to 490

text transformations by breaking down the match- 491

ing problem into easier sub-problems. Specifically, 492

we use a public toolkit5 and test the following trans- 493

formations: (1) BackTrans transforms each sen- 494

tence into a semantically equal sentence using back 495

translation. (2) SwapSyn-WN replaces words with 496

synonyms provided by WordNet (Miller, 1995). 497

(3) SwapSyn-EM replaces common words with 498

synonyms using Glove Embeddings (Pennington 499

et al., 2014). We test 6 PLMs (BERT, ALBERT, 500

RoBERTa with base and large version) in their orig- 501

inal and DC-Match enhanced version, and report 502

the results in Figure 36. We observe that both origi- 503

nal PLMs and their DC-Match variants suffer per- 504

formance degradation. However, the DC-Match en- 505

hanced PLMs can keep a more stable performance 506

compared to original ones, which manifests that 507

DC-Match can improve the robustness of PLMs to 508

a certain extent for the text semantic matching task. 509

5.4 Analysis of Divide-and-Conquer Strategy 510

Recall that the model cannot access the labeled key- 511

words at test time, so the probability of combined 512

solutions to the sub-problems Q(y) cannot be di- 513

rectly computed. Hence, the KL-divergence loss in 514

Eq.7 is designed to minimize the distance between 515

Q(y) and the global matching probability P (y), 516

aiming to simulate the divide-and-conquer process 517

5https://www.textflint.io
6All transformations are conducted on the subset of the

original evaluation set where both the original PLMs and the
DC-Match enhanced variants give accurate predictions.
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Sentence Pair Label PLM DC Kw. In.

A: What is the difference between an animal cell and a plant cell? 0 1 0 0 1B: What is the difference between plant cell vacuoles and animal cell vacuoles?

A: Benchmark Treasury 10-year notes gained 17/32, yielding 4.015 percent. 0 1 0 1 0B: The benchmark 10-year note was recently down 17/32, to yield 4.067 percent.

A: Is there any culture difference between US and UK? 1 0 1 1 1B: What is the biggest difference in British culture and American culture?

A: But the cancer society said its study had been misused. 0 1 0 0 0B: The American Cancer Society said the study was flawed in several ways.

Table 7: Test cases on the QQP and MRPC datasets. We use BERT-base as the backbone model. Words in Red
represent distantly labeled keywords. PLM, DC, Kw., and In. represent predictions from the original PLMs, the
DC-Match enhanced PLMs, and the DC-Match sub-problems (keyword matching and intent matching), respectively.
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Figure 4: KL-divergence between P (y) and Q(y). Each
point denotes the KL-divergence score of a test sample
(1725 samples for MRPC and 4801 samples for Medical-
SM). Red dots are scores from the original PLMs, while
Blue dots are those from DC-Match. BERT-base is used
as the backbone model. We observe that DC-Match
significantly narrows the gap between P (y) and Q(y)
compared to the original PLMs.

at inference time. To probe that P (y) can truly518

approximate Q(y), we further label the keywords519

in test sets as described in Section 4.2, so that we520

can calculate Q(y) directly7. We compute the KL-521

divergence score between P (y) and Q(y) for each522

test example and illustrate the results in Figure 4.523

Red dots denote scores from the original PLMs,524

while blue dots are scores from DC-Match. We525

can observe that P (y) and Q(y) show much higher526

consistency (lower KL-Div. scores) when using527

the DC-Match strategy compared to the original528

PLMs, which again manifests the effectiveness of529

our devised divide-and-conquer training objective530

that narrows the gap between P (y) and Q(y).531

5.5 Case Study532

To intuitively understand how the DC-Match strat-533

egy works, we show several test cases of the QQP534

and MRPC datasets with predicted labels from dif-535

7Here, we exploit the keyword labels in test sets only for
analysis, and they do not influence model predictions.

ferent systems in Table 7. In order to analyze how 536

the DC-Match enhanced PLMs make accurate pre- 537

dictions, we also show the solutions to the two sub- 538

problems, namely P (yk|Sa
k , S

b
k) and P (yi|Sa

i , S
b
i ), 539

by directly introducing distant keyword labels as 540

in Section 5.4. From the cases we observe that 541

the final predictions of DC-Match are highly con- 542

sistent with those of sub-problems. The model 543

tends to output a low matching score as long as at 544

least one of the sub-problems is inferred as mis- 545

matched. We also find that the original PLMs tend 546

to make wrong predictions when two mismatched 547

sentences share long common sub-sequences. For 548

example, in the first case, the main difference be- 549

tween two sentences is the concept of ’cell’ and 550

’cell vacuoles’, but the remainder of the sequences 551

is almost the same, which might confuse the model. 552

By contrast, DC-Match is capable of identifying 553

keywords from text sequences, and can make accu- 554

rate judgements by dividing the matching problem 555

into easier sub-problems. 556

6 Conclusion 557

In this work, we devise a divide-and-conquer train- 558

ing strategy DC-Match for text semantic matching. 559

It breaks down the matching problem into two sub- 560

problems: keyword matching and intent matching. 561

The model learns to disentangle keywords from 562

intents that require different levels of matching 563

granularity. The proposed DC-Match is simple 564

and effective, which can be easily combined with 565

PLMs plus few additional parameters. We conduct 566

experiments on three text matching datasets across 567

different languages. Experimental results show 568

that our approach can not only achieve stable per- 569

formance improvement, but also shows robustness 570

to semantically invariant text transformations. 571
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