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ABSTRACT

Identifying high-quality feature subsets for decision-makers by wrapper-based
multi-objective feature selection (MOFS) has been attracting increasing atten-
tion. As a mainstream approach, evolutionary methods offer distinct advan-
tages but also struggle with increasingly complex application scenarios and high-
dimensional data, mainly in terms of time efficiency, exponentially expanding
search space, and adaptive determination of a suitable classifier. To overcome
these challenges, this paper proposes two simple yet effective methods: Fast Ini-
tialization (FI) and one-generation Adaptive K-Nearest Neighbor (AK). FI lever-
ages mutual information and tournament selection to locate high-quality initial
feature subsets computationally efficiently. AK verifies that, with theoretical
proof, using a single generation can determine the most suitable KNN for dif-
ferent data to improve feature selection performance with very little time over-
head and without any data analysis or assumption. Experiments on 20 real-world
high-dimensional datasets demonstrate the superior performance of FI and AK to
advanced initialization and KNN methods for MOFS. We also validated that the
obtained feature subsets generalize well to an LLM for tabular data, enabling it to
be seamlessly applied to high-dimensional data and achieve superior performance.

1 INTRODUCTION

In the era of increasing informatization and intelligence across various industries, classification tasks
in real-world often encounter great challenges Wu et al.|(2023)) such as high-dimensional data|Dong
& Kluger| (2023); |Cheng et al.| (2025)), complex sample distributions (e.g., imbalance and outliers),
and the lack of interpretability in deep learning models. Feature selection (FS), as a data prepro-
cessing technique, aims to identify small yet informative feature subsets. This not only enhances the
interpretability of classification but also reduces training and inference costs, lowers data collection
expenses, removes unimportant and noisy features, and mitigates overfitting to improve classifica-
tion performance Xue et al.| (2016).

In particular, multi-objective feature selection (MOFS) has attracted growing attention in recent
years Jiao et al.| (2024a)), as it enables the discovery of a set of Pareto-optimal feature subsets,
named Pareto front (PF), that represent trade-offs between classification performance and feature
subset size. These trade-off solutions offer valuable flexibility for different decision-makers and
application scenarios.

Wrapper-based FS using evolutionary computation (EC) methods has become a mainstream ap-
proach to MOFS due to the following reasons. First, real-world data often involve complex feature
interactions. EC-based wrapper methods can effectively capture and retain these interactions during
the search, leading to improved classification performance Van Der Maaten et al.| (2009). Second,
as a population-based search approach, EC is inherently well-suited for MOFS, offering both global
search ability free from problem’s analytical expression or gradient availability and the generation
of diverse Pareto-optimal solutions in a single run Mukhopadhyay et al.| (2014).

Despite the above advantages, it is still very challenging to handle high-dimensional data due to
the following issues. First, evolutionary iterations and classification performance evaluation results
in substantial time overhead Bian et al.| (2020); |[Lu et al.| (2024). Second, the limited number of
evaluations greatly increases the difficulty of identifying high-quality subsets in high-dimensional
feature spaces. Third, as a lazy model requiring no complex training process at each iteration and
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is easy to implement with high performance, k-nearest neighbour (KNN) |Cover & Hart| (1967) is
widely used as the classifier for wrapper-based feature selection in classification. However, real-
world high-dimensional data exhibit complex and diverse characteristics, such as class imbalance
and distributions of data points. Thus, using a fixed KNN with a deterministic k£ value and ad-
hoc neighbour voting mechanism is hard to handle complex data. Therefore, it is desired to address
these challenges, improve the performance, and reduce the time consumption of evolutionary MOFS
methods to better handle complex real-world high-dimensional data.

The initialization strategy plays a vital role in addressing the second issue since a proper initial pop-
ulation can facilitate the convergence in a high-dimensional search space and avoid getting trapped
in local optima. However, existing initialization techniques in MOFS methods either fail to iden-
tify high-quality features through training data analysis, thus resulting in excessive randomness|Han
et al.| (2023)), or features are selected based solely on their importance with poor population diversity
risking local optima [Xu et al.| (2021)); Saadatmand & Akbarzadeh-T| (2024), or the process is too
time-consuming Jiao et al.| (2024b); (Cai & Xue| (2024). For the third issue, considering the high
computational cost of wrapper-based methods and the coherence between feature subset quality
and the adopted classifier, it is desired yet challenging to automatically determine the most suitable
KNN settings (k value and neighbor voting mechanism) for the given dataset, but without intro-
ducing much overhead. Although adaptive KNN selection or learning for classification has been
well-studies [Zhao & Lai| (2021); Xie et al.| (2024), existing methods are not tailored for wrapper-
based MOFS and are thus inapplicable unless embedded into each iteration, which will inevitably
cause unacceptable time consumption.

This paper addresses these issues and improves the effectiveness and efficiency of MOFS from both
feature and classifier aspectﬂ The main contributions are as follows:

1). A Fast Initialization (FI) is proposed that measures the mutual information (MI) |Shannon
(1948)); |Gadgil et al.| (2024) between each feature and class label as feature importance, and uses a
parameter-adaptive tournament selection to balance feature importance and population diversity. FI
achieves competitive accuracy compared to existing methods and is much more efficient.

2). An Adaptive KNN (AK) is developed to automatically determine the most suitable KNN for the
given dataset with little overhead and without any assumption. Multiple independent populations
evolve in the first generation, each using a KNN to preserve the coherence between features’ quality
and the classifier. Then, the population and its KNN settings with the best classification performance
are selected to finish evolution.

3). The new method integrating FI and AK outperforms representative and advanced methods in ex-
periments on 20 real-world high-dimensional datasets. Moreover, the obtained feature subsets gen-
eralize well to an LLM tailored for tabular data, which cannot be directly applied on these datasets
due to high dimensionality. However, our feature selection method enables it to be directly applied
to high-dimensional data and rapidly achieve superior performance.

2 RELATED WORK

Initialization Methods in MOFS: Existing initialization methods, based on whether the informa-
tion of the data is used, can be divided into the following categories. A detailed review is presented
in the Supplementary file.

Some methods propose to use the information extracted from the data to locate important fea-
tures [Wang et al.| (2023b); Jiao et al.| (2024b)); |Cai & Xue| (2024); [Hancer et al.| (2024)); Wang et al.
(2023a). These methods use training data information to assist initialization, which might benefit
high-dimensional MOFS. However, most of them introduce unacceptable overhead. Assuming the
data contains d features and N samples, then the time consumption of calculating the correlation
measure between each pair of features can be O(d? N ). Therefore, a time-efficient method is desired.

Quite a few evolutionary MOFS methods randomly generate the initial population Han et al.|(2023));
Song et al.| (2024); Liang et al. (2024), which can significantly reduce time consumption but is
ineffective in handling high-dimensional data. Others use population information to guide initial-
ization [ Xu et al.| (2021); [Saadatmand & Akbarzadeh-T| (2024); (Cheng et al.| (2024). In summary,

'In this work, the KNN selection aims to select a KNN for the whole dataset, rather than for each sample.
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Figure 1: Limitations of using a fixed KNN on different data. (a). Using KNN with k set to
5, where the classification result is incorrect; (b). Under the same situation as (a), KNN2W can
correctly classify; (c). A situation where KNN2W obtains an incorrect classification result due to
the incomplete pattern reflected by the insufficient samples of the minority class; (d). Under the
same situation as (c), KNN can correctly classify. Such phenomena indicate that a fixed KNN in the
MOFS algorithm is hard to handle distinct datasets.

random initialization has much lower time cost (O(dN,) where N,, is the population size) and pop-
ulation information-based initialization can also be time-consuming (maximal O(d?N,,) but usually
after feature selection, d is significantly reduced); however, due to the exponentially growing search
space of high-dimensional problems, it is challenging to identify valuable features from a large num-
ber of features using limited individuals without utilizing the information from the training data.

KNNs in MOFS for Classification: Owing to the promising classification performance and easy-
to-implement nature, KNN is widely used as the classifier in classification [Xie et al.| (2024). The
common practice of using KNN in MOFS for classification includes two paths. One is using KNN
with a fixed k value |Cheng et al| (2024); Jiao et al.| (2024a)), and another is improving the origi-
nal KNN by a weighted approach such as the double-weighted KNN (named KNN2W) proposed
in Saadatmand & Akbarzadeh-T|(2024). However, as the dimensionality of the data increases and
the distribution becomes complex, using a pre-defined and fixed KNN is less effective for different
data. These limitations on complex data are illustrated by an artificial scene shown in Fig. [T] and
analyzed in the Supplementary file.

In summary, the above situations show that when the feature dimensionality increases and the sample
distribution becomes complex, using a single pre-defined KNN can be ineffective for different data.

3 PROPOSED METHODS

The MOFS problem in this work can be formulated as:
Minimize — F(x) = (fi(x), f2(x))"

(1
subject to x € Q¢
The balanced classification error f7 is
I TP,
=1-- —_— 2
fl(x) c pa Si ’ ( )

where c is the number of classes, T'P; is the true positive samples in the i-th class, and |.S;| is the
number of samples in the i-th class. The weight for each class is set to 1/c to avoid biases to the
majority classes for imbalanced data.

f2 is the selected feature ratio calculated by

d .
falx) = —Zij =

where x = (z1,... ,xd)T is the decision vector with d decision variables (i.e., features); x; = 1
means the i-th feature is selected, and z; = 0 means not; x € £ is the search space (decision
space), and F' € Q™ is the objective space.

3)
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Figure 2: Overall flowchart of the High-dimensional MOFS framework based on our proposed FI
and AK (HMOFS-FI-AK).

3.1 FRAMEWORK

The overall flowchart of our proposed high-dimensional MOFS framework based on FI and AK
(HMOFS-FI-AK) is presented in Fig.[2] For a dataset with N samples, each having d features and
one class label, we randomly split it into a training set (70%) and a test set (30%). Then, the MI
is calculated based on the training set, and the proposed FI is conducted. Afterward, the initialized
population is assigned to ¢ KNNs for evolution of one generation. Afterward, the KNN and popula-
tion with the best minimal classification error is selected to finish the evolution. We then obtain the
non-dominated solutions from the final population and evaluate them on the test set to select only
the non-dominated feature subsets as the final output. So, HMOFS-FI-AK can obtain Pareto feature
subsets for different practitioners and scenarios. For example, the LLM TabPFN Hollmann et al.
(2025) tailored for tabular data strictly requires no more than 500 features.

3.2 FAST INITIALIZATION

The pseudocode of FI is summarized in Algo-
rithm m The MI between the j-th feature X
and the class label Y is calculated by:

Algorithm 1 Fast Initialization
. i _ n Ngy - N
Input: D (Training Data), N (# Samples), d (# Features), N, (Pop I(Xj; Y) _ Z Z JI\}y log < T,y > ,

ulation Size), T' (Sparse Factor)

Output: P (Initialized Population) TEX; yEY Ny~ Ty

1: MT < Create an empty list with size d; (4)

2: for col = 1toddo . . .

3: MI(col) « Calculate MI of col-th feature to class label ~ Where X is the j-th feature column, for j =

4 dbfy Equation equationfd} 1,2,...,d; Y is the class label column; Xj is

. end for .
5: P < Initialize the population as an N,, X d all-zero matrix; Fhe set of umque val'ues taken by feature Xj 1Y
6: fori = 1to N, do is the set of all possible class labels; n,, ,, is the
P sY

7. Generate a random integer k, k € {1,2,--- ,T}; number of Samp]es where X] —zand Y = Y;

8: S < Initialize selected feature list as an empty list; is th b £ 1 h X — o

9 forj=1to[T/k]do n; is the number of samples where X; = x; n,

10: C « Randomly choose k distinct indices from is the number of samples where ¥ = y; N is

{12, .d}; the total number of samples

11: best < arg max;cc MI(1); pies.

gi eng popend best o S: The probabilities p(x), p(y), and p(x, y) are es-

14:  PG,S) « 1 timated empirically from the dataset using fre-

15: end for quency counts, i.e.,

16: P < Delete redundant feature subsets;

17: return P. N,y Ny Ny
pla.y) m =5 p) = 5r ply) = 5

)]

For continuous features, we simply discretize
them using the equal-frequency with 10 bins.

Since we don’t calculate the MI between features, the time consumption is much less than exist-
ing MI-based methods. Moreover, a parameter-adaptive mechanism is designed (lines 7-14), which
leverages the MI and tournament selection to balance feature importance and population diversity.
Specifically, a large k leads to a small feature subset ([7'/k]). Therefore, we select more important
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Algorithm 2 MOFS Framework based on Adaptive KNN

Input: M OF S (Adopted MOFS Algorithm for Evolution), { K NNy, - - - , K NN} (KNNs)

Output: P (Final Population, i.e., Feature Subsets)

. P < Initialize a population using FI by Algorithm

. Assign P to populations P1 to P¢ and correspondingly use each KNN: KN N; to K N N as classifier to evaluate;

P1 to Py evolve one generation independently by M O F'S algorithm and the corresponding KNN;

¢ P, KNN < Determine the population with the lowest minimal classification error among all individuals, and get its KNN;
P < Finish the evolution starting with P and using K NN by MOF'S;

. P < Evaluate on test data and select non-dominated solutions as the final PF;

. return P as PE.

features by a k-tournament that selects the feature with the largest MI among k randomly selected
features. On the contrary, a small k leads to a large feature subset. Then, we select more diverse
features by k-tournament from a few randomly selected features. Consequently, small feature sub-
sets contain important features to improve classification performance, while large feature subsets
provide diversity for exploring the search space.

3.3 ADAPTIVE KNN

The pseudocode of the proposed AK is summarized in Algorithm [2] While wrapper-based EC
methods are effective, their high computational cost renders the use of classifier ensembles often
infeasible in practical scenarios. However, in AK, all populations only evolve one generation using
their corresponding KNNs. Afterward, the most suitable KNN is determined according to the mini-
mal f7 value (classification error). Therefore, this simple mechanism introduces only little overhead,
requires no data analysis or assumption, and is easy to extend or implement.

The underlying principles and theoretical analysis of AK are as follows. Detailed proof is presented
in the Supplementary file.

Let P(®) denote the population of feature subsets in generation ¢; meanwhile, let p = 1 /d be the
per-bit mutation rate on a d-dimensional feature string. We model the population sequence {P(*)} as
a finite—state Markov chain [Norris| (1998). The mutation step flips a binomial number of bits whose
tail probability is exponentially small by the Chernoff bound |Chernoff| (1952); Hoetfding|(1963), so
offspring remain within an O(In d) Hamming ball of their parents with high probability. Moreover,
the expected progress of the best individual can be bounded using the locality of evolutionary op-
erators and drift analysis |He & Yao| (2001)); Shastri & Frachtenberg| (2020), which characterizes the
expected one—step decrease of a distance-to-optimum potential function and implies that the search
process concentrates around the local optimum at a rate governed by the mutation strength. With
classifier accuracy assumed L—Lipschitz in Hamming distance and the initial population covering a
d-radius neighborhood of the local optimum with fraction p (i.e., at least a p proportion of individ-
uals lie within Hamming distance § of the local maximizer), the empirical accuracy gap A between
the best configuration and all others cannot shrink by more than O(J) per generation. If the ini-
tial margin satisfies pA > 4pLd, a union bound over G generations (each generation violating the
locality or drift condition with probability at most 1, where 7 bounds the chance that mutation or
crossover escapes the d-ball) guarantees that the configuration achieving the largest initial accuracy
remains the unique maximizer with probability at least 1 — (G n+& ) . This establishes one—generation
identifiability and multi—generation stability of the selected KNN configuration.

4 EXPERIMENTAL SETTINGS

In this paper, we embed FI and AK into the DAEA [Xu et al.| (2021) algorithm. Then, we compare
FI with random initialization and the initialization methods of DAEA Xu et al.| (2021), SMII |Ca1
& Xue| (2024), JISEMO [Saadatmand & Akbarzadeh-T| (2024), and FPPFS [Jiao et al.| (2024b)), and
compare AK to KNN (k = 5) and KNN2W (denoted as JSCla). Experiments were conducted on
PIatEMO [Tian et al.| (2017) and TabPFN Hollmann et al.| (2025) using a local computer with Intel
Ultra9 285K CPU, 32 GB RAM, and RTX 5080 16G in Windows 11 operating system.

Datasets: We adopt 20 real-world high-dimensional datasets whose detailed information is pre-
sented in the Supplementary file. The datasets are all open-source data. Due to the large dimensions
of most data sets, the experiments were extremely time-consuming for|Cai & Xue|(2024)); Jiao et al.
(2024b)), so only several datasets are used in these two algorithms.
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Parameter Settings of the EA: Following most MOFS studies, the evolutionary parameters are set
as follows. The population size NV, is 200. The maximal number of individual evaluations E,;, . is
20000, and the maximal generations G.,qz 1S [ Emaz /N,J . In our methods, FI contains a parameter
T, which is set to 400. All parameters of other algorithms and methods are the same as in their
original literature.

Performance Indicators: The hypervolume (HV) Zitzler & Thiele|(1998)) is adopted to measure the
performance in the multi-objective optimization aspect. Since the true PFs are unknown, we save the
final results of all algorithms. Then, we extract the non-dominated solutions and use their objective
vectors to get the ideal and nadir points for normalization. After normalization, we use (1.1,...,1.1)
as the reference point for HV calculation. In addition, we also record the minimum classification
error (MCE) of the final population of each algorithm as the classification performance.

Statistical Analysis: Each algorithm independently executes 30 times on each dataset. The mean
and standard deviation values of HV and MCE are recorded. The Wilcoxon rank-sum test with a
significance level of 0.05 is employed. “+”, “—”, and “~” indicate the result of another algorithm
is significantly better than, significantly worse than, and statistically similar to our methods. The
Friedman test with a Holm correction at a significance level of 0.05 is also used to obtain rankings
and p-values of different algorithms.

5 RESULTS AND ANALYSES

5.1 FI AND EXISTING INITIALIZATION METHODS

The results of FI compared to existing methods in MOFS literature and random initialization are
summarized in Table|l] FI achieves better HV and MCE results than all other methods, showcasing
a significant advantage in HV. The HV advantage means HMOFS-FI finally obtains a Pareto feature
subset with significantly better convergence (minimization of both classification error and subset
size) and diversity (more Pareto solutions). This indicates that FI can provide a high-quality initial
population to facilitate the convergence and diversity of evolutionary search. Moreover, on CPU run
time, FI also achieves promising results. Although DAEA performs better on run time, it performs
significantly worse on HV and slightly worse on MCE.

| HV MCE Time
Ranking +/-/= Ranking +/-/= Ranking +/-/=
HMOFS-DAEA 2.225 0/12/8 2.35 0/1/19 1.05 19/1/0
HMOFS-JSEMO 2.5 0/10/10 2.175 0/4/16 3.15 1/19/0
HMOFS-Random 3.575 0/17/3 3.5 0/13/7 3.6 4/16/0
HMOFS-FI 1.8 1.925 2.2

Table 1: Results of FI and other methods, including the Friedman rankings and Wilcoxon test results.

Fig. [3] depicts the mean values of CPU

run time of each method on each dataset. 2.00+03

From the results, FI is much more time- i

efficient than other methods, especially eoeos

on datasets with very high dimensionality. 100E403
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results and analysis are presented in the
Supplementary file. It can be observed that
the time overhead of SMII and FPPFS increases sharply with the dimensionality, reaching an un-
acceptable level. In contrast, DAEA and FI are less sensitive to dimensionality changes. However,

Figure 3: CPU run time of using different initialization
methods on all datasets.
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the initialization strategy of DAEA does not consider information from the data, resulting in inferior
performance compared to FI in terms of HV and MCE.

In summary, FI can provide a high-quality initial population for evolutionary MOFS search in a
time-efficient way. Detailed results are presented in the Supplementary file.
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Figure 4: HV (a) and MCE (b) of using KNN (k = 5), KNN2W, and our proposed AK method.

5.2 AK AND SINGLE FIXED KNN

The HV and MCE results of using KNN (k£ = 5) or KNN2W and AK to adaptively select from them
are presented in Fig.[d Although HMOFS-FI-AK does not achieve the best performance on every
dataset, the HV comparisons on each dataset show that HMOFS-FI-AK consistently outperforms the
worse one between KNN (£ = 5) and KNN2W, indicating that AK is capable of selecting the more
suitable KNN. The slight performance degeneration is attributed to the fact that different KNNs
consume part of the very limited evaluation budget in the first generation.

The difference is more pronounced in terms of MCE: when the more suitable KNN is selected for a
given dataset, the final MCE can be significantly reduced. Similarly, AK consistently achieves better
results than the worst-performing KNN, indicating its ability to select the more appropriate KNN.
The slightly inferior results are due to the same reason mentioned above.

In summary, AK can adaptively determine the most suitable KNN based on the experimental results.
Detailed results are presented in the Supplementary file.

5.3 COMPARISONS ON PFs AND CONVERGENCE PROFILES

To intuitively compare the final PFs, we select eight representative datasets and plot the final PFs
using different initialization methods and KNNs in Fig.[3]

SRBCT is of relatively low dimensionality, so the performance of HMOFS-FI-AK is just slightly
better than HMOFS-FI. This reveals that FI performs better and KNN (£ = 5) is more suitable.
Moreover, it also verifies that AK selects the correct KNN, so it performs much better than HMOFS-
FI-JSCla. On lymphoma, it can be found that KNN2W is much more effective, AK can select
KNN2W, and FI can help improve the convergence. On TOX171, HMOFS-FI and HMOFS-JSEMO
perform well, and HMOFS-FI-AK can determine KNN (k = 5). On ProstateGE, HMOFS-FI and
HMOFS-FI-AK achieve the best performance, revealing that FI is effective and KNN (k = 5)
is determined by AK. On Carcinom and nci9, HMOFS-FI-AK obtains the best performance with
KNN2W selected. On Tumorl1, using KNN (k = 5) achieves better overall convergence but
KNN2W brings better classification performance. AK somehow achieves a trade-off between them.
On GLABRA180, HMOFS-FI-AK obtains the best PF, where FI performs similar to DAEA, but AK
significantly improves the final performanceﬂ

The convergence profiles of HV and MCE on five representative datasets are plotted in Fig.[§] On
Brainl, nci9, Tumorl1, and GLABRA180, KNN2W is more suitable, and AK can determine this at
the first generation and then quickly catch up with its performance and eventually achieve compara-

2Comparisons on convergence profiles are presented in the Supplementary file.
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Figure 5: PFs obtained by different methods on test sets of representative datasets with the median
HYV values among the 30 runs.
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Figure 6: Convergence profiles of HV and MCE indicators of different methods on five representa-
tive datasets with the median indicator values among the 30 runs. The final step shows the perfor-
mance changes from the training to the test set.

ble or even better results. On CLLSUB111, KNN (k = 5) is more suitable and AK can also detect.
On all datasets, the header start and better convergence performance verify the effectiveness of FI.

5.4 APPLYING TO LLM TABPFN

To verify that our MOFS results can generalize well to popular deep learning models, we obtain the
final feature subset of each algorithm with the best balanced accuracy, including the original DAEA
and JSEMO algorithms. Then, we use these features to form data subsets. Afterward, these data
subsets can be directly used in LLM TabPFN. It should be noted that LLM TabPFN cannot be
directly used on these datasets due to the high dimensionality. TabPFN provides different measures:
ROC AUC, balanced accuracy, and accuracy. The results are presented in Tableg On most datasets,
FI-AK achieves the best results as FI provides a better initial population and AK determines a suit-
able KNN; on Carcinom and SMK-CAN-187, FI or FI-JSCla obtains the best, while FI-AK ranks
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Dataset Measure JSEMO DAEA FI FI-JSCla FI-AK Dataset Measure JSEMO DAEA FI FI-JSCla FI-AK
ROC AUC 0.9 099 097 0.99 0.99 ROC AUC 0.99 096 099 1.00 0.9
o discr Balanced Acc 0.94 0.89 0.67 0.96 0.96 arci Balanced Acc 0.86 0.83 0.83 0.97 0.87
lung.discrete - uracy 092 092 072 09 0.96 Carcinom Accuracy 091 087 089 096 093
Balanced Acc  0.89 085 0.96 0.82 0.89 Balanced Acc 0,50 027 054 0.63 0.63
Colon Accuracy 0.90 085 095 0.85 0.90 nci9 Accuracy 0.50 025 055 0.60 0.60
ROC AUC 1.00 100 099 1.00 1.00 Balanced Acc 0.6 089 089 0.50 0.93
Balanced Acc 0.95 0.95 0.85 1.00 1.00 arcene Accuracy 0.56 0.89 0.89 0.56 0.93
SRBCT Accuracy 0.96 096 0.6 1.00 1.00 ROC AUC 1.00 1.00 1.00 1.00 1.00
ROC AUC 0.98 099 099 0.99 0.99 ) Balanced Acc 097 100 1.00 0.97 1.00
Balanced Acc 0.89 096  0.89 0.99 0.96 pixraw10P Accuracy 0.96 1.00 1.00 0.96 1.00
lung Accuracy 0.89 095 092 0.97 0.96 ROC AUC 0.89 086 087 083 0.90
ROC AUC 095 088 092 0.99 0.97 Balanced Acc 083 083 073 0.81 0.86
Balanced Acc 0.81 078 077 0.81 0.85 CLLSUB.111 Accuracy 0.79 078 064 0.75 0.81
lymphoma Accuracy 0.90 087 087 0.90 0.94 ROC AUC 0.98 095 0.99 0.9 0.9
ROC AUC 0.91 091 084 0.96 0.97 Balanced Acc  0.84 075 083 0.77 0.87
Balanced Acc 0.65 062 050 0.95 0.82 Tumorl1 Accuracy 0.86 079 087 0.82 0.89
GLIOMA Accuracy 0.76 0.64 058 0.94 0.88 ROC AUC 0.99 098 095 0.99 0.99
Balanced Acc 0.69 0.75 1.00 0.97 1.00 Balanced Acc 0.94 0.87 0.90 0.89 0.94
DLBCL Accuracy 0.70 075  1.00 0.96 1.00 Lung Cancer Accuracy 0.97 094 095 0.94 0.97
ROC AUC 095 094 098 0.95 0.99 Balanced Acc 0.3 0.70  0.80 0.72 0.77
Balanced Acc 0.77 0.82 0.82 0.75 0.88 SMK-CAN-187 Accuracy 0.74 0.70 0.80 0.72 0.77
TOX-171 Accuracy 0.77 082 082 0.75 0.88 Balanced Acc 0.86 080 081 0.86 0.94
ROC AUC 0.96 085 095 0.97 0.95 GLLSS Accuracy 0.89 086 082 0.89 0.97
) Balanced Acc  0.80 073 053 0.88 0.89 ROC AUC 0.88 086 0386 0.89 0.89
Brainl Accuracy 0.93 0.90 0.80 0.90 0.93 Balanced Acc 0.65 0.64 0.64 0.64 0.79
Balanced Acc 0.88 094 097 0.97 0.97 GLA_BRA_180 Accuracy 0.73 070 070 0.71 0.81

Prostate-GE Accuracy 0.88 0.94 0.97 0.97 0.97

Table 2: ROC AUC, Balanced Accuracy, and Accuracy results of important peer methods and our
proposed methods using their obtained feature subsets for TabPFN.
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Figure 7: Friedman test summary of: (a). parameter studies on 7" in FI and (b). the number of
generations for all KNNs used in AK.

second. These results demonstrate that FI is effective and AK can determine the most suitable KNN
to assist in searching for high-quality feature subsets that generalize well to other models. It is also
worth noting that after feature selection, TabPFN can finish its inference in a few seconds on all
these datasets. Therefore, it also demonstrates that feature selection is promising in significantly
reducing the time-consumption of LLMs in fine-tuning and inference.

5.5 SENSITIVITY ANALYSIS

In FI, T is used to control the sparsity, so its sensitivity is analyzed. In AK, we also conduct
parameter studies using zero or two generations. Friedman test is performed on the HV and MCE
results and summarized in Fig.[/| T" = 400 in FI performs significantly better, and one generation
in AK performs significantly better. Detailed results are presented in the Supplementary file.

6 CONCLUSIONS

This paper proposes two techniques, FI and AK, for evolutionary MOFS for high-dimensional data
classification. Based on experiments on 20 real-world datasets, our proposed HMOFS-FI-AK frame-
work can obtain Pareto feature subsets for different scenarios in a time-efficient way. The two tech-
niques are time efficient, simple yet effective, and easy to implement and extend. Experiments on
an LLM TabPFN for tabular data verify that HMOFS-FI-AK can obtain effective feature subsets,
enabling it to be seamlessly applied to high-dimensional data and achieve superior accuracy and
time efficiency.

In the future, it is promising to apply our methods to high-dimensional data in different areas Blum-
berg et al.[(2024);|Ong et al.| (2025) to facilitate the use of LLMs and other advanced techniques.
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ETHICS STATEMENT

This study primarily focuses on improving machine learning models and algorithmic methodologies,
without involving human subjects, personally identifiable data, or potential manipulation/monitoring
scenarios. We consider that this research poses no significant ethical risks and have therefore not
designed specific ethical intervention mechanisms. If this technology is applied to concrete ap-
plications in the future (such as automated decision-making systems or recommendation systems),
developers should carefully consider appropriate privacy, security, and fairness constraints.

REPRODUCIBILITY STATEMENT

We provide key details of the datasets used in this study in the supplementary material, and disclose
the training/testing split, experimental settings, and pseudocode in the main text. We also anony-
mously release the HMOFS-FIAK code and the data after feature selection used for TabPFN on an
anonymous GitHub link herel enabling direct reproduction of the experiments. The code and data
are submitted to ICLR2026 as well.
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This is the Supplementary file of ”Fast and Adaptive Multi-
Objective Feature Selection for Classification”.

A INITIALIZATION METHODS IN MOFS

A.1 TRAINING DATA INFORMATION-BASED INITIALIZATION

Some methods propose to use the information extracted from the training data to locate important
features. Wang et al. 'Wang et al.[(2023b) developed a heuristic information for ant colony optimiza-
tion for MOFS by integrating symmetric uncertainty between each feature and class label and MI
between each feature pair, then used this heuristic information in initializing an ant colony. Calculat-
ing the symmetric uncertainty between features and class labels is manageable, but the computation
cost of MI between every pair of features is very high. Jiao et al.|Jiao et al.|(2024b) suggested to use
multiple filter-based measures to construct performance predictor for preselecting feature subsets.
Only the promising feature subsets preselected go into function evaluation. However, the predictor
uses multiple filter measures including the calculation of information between feature and class la-
bel, as well as between features. Thereby, although function evaluation is saved, the overhead of
preselection in initialization and other parts is very high. Cai et al. (Cai & Xue| (2024) proposed an
initialization method based on Jaccard similarity between individuals to improve the diversity of the
initial population and MI between features to locate important features, and the MI calculation is
extremely time-consuming. Hancer et al. [Hancer et al.| (2024) devised a correlation-based feature
elimination strategy that eliminates features with low correlation to the class label and high corre-
lation with other features. Then, initialization is conducted in the reduced feature space. Since the
correlation between each feature pair needs to be calculated, this method could be time-consuming.
Wang ef al. Wang et al.|(2023a)) sorted the features using the maximal information coefficient (MIC)
between each feature and the class label that evaluates the importance of each feature. Subsequently,
in the first half of the population, the i-th individual selects the first 7 features; in each individual of
the second half of the population, each feature is considered. A random number is generated, and
if it is greater than the MIC value of that feature, the feature is selected. However, the calculation
of MIC requires complex grid separation and calculation of information entropy, which are also
time-consuming.

These methods use training data information to assist intialization, which might benefit high-
dimensional MOFS. However, most of them introduce unacceptable overhead. Assuming the data
contains d features and N samples, then the time consumption of calculating correlation measure
between each pair of features can be O(d?>N).

A.2 RANDOM-BASED OR POPULATION INFORMATION-BASED INITIALIZATION

Quite a few evolutionary MOFS methods randomly generate initial population |[Han et al.| (2023));
Song et al.| (2024); [Liang et al.|(2024), which can highly reduce time consumption but is ineffective
in handling high-dimensional data. Early in 2021, Xu et al. Xu et al.| (2021) improved the random
initialization method by adding sparsity control by sampling only a small group from the entire fea-
ture set. In this way, the sparsity of feature subsets is enhanced but it lacks utilization of training
data information. Very recently, they proposed another method Xu et al.| (2024) that simultaneously
generate multiple random populations to cover the objective space, and then select a well-distributed
set of non-dominated solutions from them as the initial population. This method also does not utilize
the information from the training data, and multiple populations will consume a significant number
of function evaluations, which are important in high-dimensional problems. Saadatmand et al. |Saa-
datmand & Akbarzadeh-T)|(2024) used the Jaccard similarity in initialization by reducing the dupli-
cation with the already generated individuals using Jaccard similarity when generating each initial
individual, Similarly, the training data information is not utilized and the performance might be
degenerated in high-dimensional search space. This method is also time-consuming due to the cal-
culation of Jaccard similarity in high-dimensional space. Cheng et al. |(Cheng et al.|(2024) presented
a reinitialization method that reinitializes the population when the minimum error obtained by the
population does not change over multiple iterations to escape local optima. However, randomly
restarting the entire population frequently may lead to unstable algorithm performance and waste
function evaluations, which is particularly detrimental for solving high-dimensional problems.
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Index  Dataset NO.of Fea  NO. of Instance ~ NO. of Class Imbalance Rate
1 lung_discrete 325 73 7 4.2

2 Colon 2000 62 2 1.82
3 SRBCT 2308 83 4 2.64
4 lung 3312 203 5 23.17
5 lymphoma 4026 96 9 23

6 GLIOMA 4434 50 4 2.14
7 DLBCL 5469 77 2 3.05
8 TOX-171 5748 171 4 1.15
9 Brainl 5920 90 5 15

10 Prostate-GE 5966 102 2 1.04
11 Carcinom 9182 174 11 4.5
12 nci9 9712 60 9 45
13 arcene 10000 200 2 1.27
14 pixraw 10P 10000 100 10 1

15 CLL_SUB_111 11340 111 3 4.64
16 11Tumor 12533 174 11 4.33
17 Lung_Cancer 12600 203 5 23.17
18 SMK-CAN-187 19993 187 2 1.08
19 GLI_85 22283 85 2 227
20 GLA_BRA_180 49151 180 4 352

Table 3: Detailed information of the adopted datasets.

In summary, random initialization has much lower time cost (O(dNp)) and population information-
based initialization can also be time-consuming (maximal O(d?> Np) but usually after feature selec-
tion, d is significantly reduced); however, due to the exponentially growing search space of high-
dimensional problems, it is challenging to identify valuable features from a large number of features
using limited population individuals without utilizing the information from the training data.

B KNNSs IN MOFS FOR CLASSIFICATION

The limitations of using fixed KNN on complex data are illustrated by an artificial scene shown
in Fig. [T} and detailed illustrations are supplemented below. This situation includes two classes
marked as class blue with fewer samples and class red with more samples, and the sample to be
classified is marked as green star, which belongs to the class blue. In (a), the sample density of
the blue class is lower than that of the red class. In (b), since the blue class is a minority class, it
only reflects part of the pattern, resulting in its distance to class red smaller than that to class blue.
From Fig. [1](a), a fixed & value can result in incorrect classification when the distribution of data
is complex. From Fig. [T}(b), the KNN with two weights (KNN2W) proposed for imbalanced data
classification in |Saadatmand & Akbarzadeh-T| (2024), where k is fixed to one, can also result in
incorrect classification due to the uneven distribution of samples. In this circumstance, using KNN
with k£ = 5 may be better even for such imbalanced data.

C DATASETS FOR EXPERIMENTS

Datasets: We adopt 20 real-world high-dimensional datasets whose detailed information is pre-
sented in the Supplementary file. The data sets are all open source data downloaded from
http://archive.ics.uci.edu and https://jundongl.github.io/scikitfeature/ data sets.html. Due to the large
dimensions of most data sets, the experiments were extremely time-consuming for |(Cai & Xue
(2024); J1ao et al.| (2024b), so only several datasets are used in these two algorithms. We ran-
domly split each data set into training a data set and a test data set with proportions of 70% and
30%, respectively.

D CPU RUN TIME COMPARISONS OF S1X INITIALIZATION METHODS ON
FIVE DATASETS

In the above experiments, SMII and FPPFS are not conducted on all datasets because they are
extremely time-consuming on high-dimensional datasets, which hinders their feasibility in many
real-world applications. In this part, we conduct comparisons including SMII and FPPFS on sev-
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Figure 8: CPU run time of using different initialization methods on the first five datasets.

eral relatively low-dimensional datasets. The CPU run time results are presented in Fig. [8] It can
be observed that the time overhead of SMII and FPPFS increases sharply with the dimensional-
ity, reaching an unacceptable level. In contrast, DAEA and FI are less sensitive to dimensionality
changes. However, the initialization strategy of DAEA does not consider information from the data,
resulting in inferior performance compared to FI in terms of HV and MCE.
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Following is the theoretical proof of AK.

It should be noted that, to improve the readability of the argument, we use notations in the following
proof that differ from those used in the proposed techniques.

A  PROBLEM STATEMENT

In wrapper-based evolutionary feature selection, K-Nearest Neighbors (KNN) is widely used as
classifier. The KNN configurations significantly affect the evaluation results of feature subsets. We
focus on different configurations of the KNN classifier, which is highly sensitive to feature selection
because distance-based classification deteriorates in high dimensions [Beyer et al.| (1999).

Given a shared initial population of feature subsets for several KNN classifiers, we aim to demon-
strate that:

It is theoretically justifiable to identify the most search-compatible KNN config-
uration for a given dataset after only one generation of evolutionary evaluation,
when the feature space is high-dimensional and the search budget is limited.

B SETTINGS AND NOTATIONS

Let FF = {f1,..., fn} be the full feature set (n large). Let X = {K1,...,K,,} be a finite set of
KNN configurations. For generation ¢ denote the population by

PO = (s 8wy PO =T

For a configuration K; and subset S write Accg, (S) € [0, 1] for validation accuracy and

M;t) = max Acck,(95).
Sep®)

Hamming distance is dg (.5, S"). Throughout we treat P9 a5 the shared initial population used to
compare configurations.

C ASSUMPTIONS

Assumption 1 (Configuration diversity). For any i # j there exists some S with Accg,(S) #
Accg, (9).

Assumption 2 (Local Lipschitz sensitivity (probabilistic)). There exists a constant L > 0 and a
failure rate § € (0,1) such that for every configuration K; and all S, 5" € {0,1}",

Pr “ACCK]. (S) — Ace, (S")] < Ldu(S, S’)} >1-¢

This probabilistic form is more realistic for high-dimensional KNN.

Assumption 3 (Operator locality). There exists § > 1 and n € (0, 1) such that for any parent S the
offspring S’ produced by mutation (with typical rate p) and crossover satisfies

Pr(du(S,5") <6) >1—n,

a property well-studied in evolutionary computation |Bdck et al.|(1997); \He & Yao|(2001); Rothlauf|
(2002)); \Shastri & Frachtenberg|(2020); /M uhlenbein| (1992).

Assumption 4 (Local coverage). For each configuration Kj let S € argmaxge po) Acck, (S).
Assume there exists p € (0, 1] such that the Hamming ball B(S},0) contains at least pT members

of PO,

D CONCENTRATION: CHERNOFF AND HOEFFDING BOUNDS

To bound mutation step sizes, we use the classical Chernoff bound [Chernoff| (1952); [Hoeffding
(1963)). Consider D ~ Binomial(n, p) with mean u = np.
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Proposition 1 (Chernoff bound—mgf derivation). For any § > 0,
Pr(D > (14 0)u) < exp(— p[(1+6)In(1+6)—4]).

Consequently,

« if0 <6 <1, then Pr(D > (1+8)p) < exp( — 425);

o if6>1,thenPr(D > (1+§)u) < exp( — %5)

Application to mutation with p = 1/n. Take p = 1/n, so u = 1. For k = c¢lnn the bound gives
Pr (D > clnn) <n~¢/3,

i.e. polynomially small tail probability. A Hoeffding union bound across G generations provides an
overall failure probability of order exp[—©(G Inn)], sharper than a linear union bound.

E LEMMAS

Lemma 1 (Bounded subspace transition). Let mutation have rate p = 1/n. Then there exist con-
stants c¢q, co > 0 such that for any parent S,

Pr (dH(S, S < lnn) >1—n"°.

Proof. Direct application of the Chernoff bound with y = 1 gives Pr(dg (S, S’) > k) < n=¢/3 for
k = clnn. Choosing c large enough yields the stated probability. Similar locality arguments also
hold for crossover M *uhlenbein| (1992)). O

Lemma 2 (Empirical maximum implies expected advantage). Let K,, K, € K and suppose in the
initial population

(0)
MO — MY > A >0
Under Assumptions 2—4,
1O — 1® > pA —2pL6
with probability at least 1 — &.

F MAIN THEOREM: FINITE-HORIZON STABILITY

Theorem 1 (Stability under local evolution). Assume Al-A4 with constants L, J, p. Let K* be the
maximizer of M ;0) and write
A= MI(?B ~max MY > 0.
i)
If
pA > 4pLd,
then with probability at least 1 — (Gr] +£& ) the configuration K* remains optimal for all generations
t=0,...,G.

Proof. Lemma 2 gives the initial margin. Operator locality ensures that in each generation offspring
remain in a Hamming ball of radius O(In n) [Droste et al.|(2002);/He & Yao|(2001)), so the population
mean for each configuration changes by at most L per generation. Iterating over G generations and
applying a Hoeffding-type joint bound yields

u — ) > pA —4pLs
with the stated probability. O

17
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G ASYMPTOTIC REFINEMENT: MARKOV CHAIN VIEW

The population process {P(t)} under evolutionary operators is a finite-state time-homogeneous
Markov chain Norris| (1998). Under standard mutation assumptions, the chain is irreducible and
aperiodic, so a unique stationary distribution 7 exists. Let II* be the total stationary probability of
the set of populations whose empirical mean satisfies ux+ > g for all K’. By classical drift
analysis|He & Yao|(2001)); Droste et al.[|(2002) and the locality bounds above, IT* is bounded below
by a constant independent of n once A > ¢L¢ for some constant c. Thus the finite-horizon stability
result extends to an asymptotic statement:
lim inf Pr [K™ is optimal at generation ¢| > IT*.

t—o0

This Markovian perspective complements the one-generation identification theorem and provides
guarantees on the long-run frequency of the optimal configuration.

18
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Following are detailed results in table form.

Table 4: HV results of using different initialization methods.

Problem HMOFS-DAEA HMOFS-ISEMO HMOFS-randIN HMOFS-FI
Lungdiscrete  9.3377e-1 (2.95e-3) —  9.3588e-1 3.02e-4) A 9.3544e-1 (64%e-4) &  9.3525e-1 (2.35¢-3)
Colon 9.7867¢-1 (4.60e-6) ~ _ 9.7867e-1 (6.78e-16) ~ _ 9.1290e-1 (9.14e-2) — _ 9.7867¢-1 (6.78¢-16)
SRBCT 9.7973¢-1 (2.13c-4) — __ 9.7986e-1 (1.39e-4) ~ __ 8.6855¢-1 (1.36e-1) — _ 9.7986e-1 (1.29¢-4)
Tung 9.8240c-1 (4.60c-4) —  9.7998e-1 (1.50¢-2) — _ 8.775%-1 (1.49%-1) — _ 9.8278e-1 (3.23¢-4)
lymphoma __ 8.7065¢-1 (3.07¢-3) — __ 8.7063¢-1 (3.18¢-3) — _ 7.8447e-1 (1.08e-1) — __ 8.7313e-1 (6.64¢-3)
GLIOMA 9.8546e-1 (9.73¢-5) — _ 9.854%¢-1 (2.98e-4) ~ _ 8.9597e-1 (1.3%-1) — _ 9.8553e-1 (4.11e-5)
DLBCL 9.8711e-1 (1.16e-6) — _ 9.8711e-1 O8le-)) ~ _ 9.1795e-1 9.45e-2) — _ 9.8711e-1 (9.27e-7)
TOX171 9.8500e-1 (4.49¢-3) — _ 9.8600e-1 (1.95e-4) — _ 9.5153e-1 (6.62e-2) — _ 9.8613¢-1 (5.43e-4)
Brainl 9.777%-1 (1.63e-2) ~ _ 9.7583e-1 (1.77e-2) ~ __ 9.8373e-1 (803e3) &~ _ 9.7727e-1 (1.65¢-2)
ProstateGE __ 9.875dc-1 (4.06e-4) — _ 9.8743¢-1 (1.08¢-3) — _ 9.096le-1 (1.29%-1) — _ D.8760e-1 (1.94c-4)
Carcinom 0.7887¢-1 (1.70e3) A~/ 9.7512¢-1 (4.20e-3) — __ 9.2032¢-1 (1.01e-1) — __ 9.7780e-1 (5.16¢-3)
nci9 870891 (3.26c-2) ~ _ B.7218¢-1(2.30e6:2) A/ 7.4583¢-1 (1.77c-1) — _ 8.7118e-1 (4.01¢-2)
Arcene 9.8949¢-1 (1.63e-3) ~ _ 9.8940c-1 (1.58¢-3) ~ _ 0.7883e-1 (2.60e-2) — _ 0.8987c-1 (2.88e-4)
pixrawlOP___ 9.9042e-1 (1.46e-5) — _ 9.8775e-1 (6.89¢-3) — _ 9.0044e-1 (1.63e-5) ~ __ 9.9045¢-1 (1.03e-3)
CLLSUBIIT _ 9.9081e-1 (1.04e-®) — _ 9.9081e-1 (2.21e-#) — _ 9.0760e-1 (1.24e-1) — _ 9.9087e-1 (7.36e-5)
Tumorl 1 9.7694e-1 (5.78e-3) =~ 9.7417e-1 (3.65e-3) — 9.3102e-1 (8.37e-2) — 9.7701e-1 (7.99¢-3)
LungCancer __ 9.9093¢-1 (5.55¢-4) — _ 9.8923¢-1 (1.62¢:3) ~ _ 9.9106e-1 (1.38¢-4) — _ 9.9116e-1 (1.37¢-4)
SMKCANI87 _ 9.8973e-1 (1.20e-2) ~ _ 0.9158e-1 (1.46e3) ~ _ 8.8782e-1 (1.39%-1) — _ 9.9007e-1 (7.88¢-3)
GLIg5 9.9358¢-1 (1.20e-4) —  9.8455¢-1 (2.87¢-2) — _ 9.4826¢-1 (8.49¢-2) — _ 0.9361e-1 (1.97¢-6)
GLABRAIS0  0.0539¢-1 (1.2662) A~/ 8.8633¢-1 (2.05¢-2) — __ 8.6784e-1 (5.08¢-2) — __ 8.9720e-1 (1.56¢-2)
T/ =/ = 0/12/8 0710710 071773
Table 5: MCE results of using different initialization methods.
Problem HMOFS-DAEA HMOFS-ISEMO HMOFS-randIN HMOFS-FI
Lungdiscrete 1.1905e-3 (6.52e-3) =~ 0.0000e+0 (0.00e+0) ~ 0.0000e+0 (0.00e+0) ~= 1.1905e-3 (6.52e-3)
Colon 0.0000e+0 (0.00e+0) =~ 0.0000e+0 (0.00e+0) = _ 1.0833¢-2 (4.24e-2) = 0.0000e+0 (0.00e+0)
SRBCT 0.0000¢+0 (0.00e+0) ~ __ 0.0000e+0 (0.00e+0) ~ __ 1.3690e-2 (2.63¢-2) — __ 0.0000e+0 (0.00¢+0)
Tung 2.1270e-3 0.07¢3) ~___ B.1746e4 (1.21e3) ~ _ 2.1300¢-2 (2.85¢-2) — _ 4.6881c-4 (1.88¢-3)
Tymphoma 3.6677e-1 (5.14e-3) —  3.673%-1(5.53¢-3) —  3.601de-1 (4.34e-3) — _ B3.6309e-1 (9-76e-3)
GLIOMA 0.0000e+0 (0.00e+0) ~ __ 0.0000e+0 (0.00e+0) ~ __ 3.1389¢-2 (5.31¢-2) — __0.0000e+0 (0.00¢+0)
DLBCL 0.0000e+0 (0.00e+0) ~ __ 0.0000e+0 (0.00e+0) ~ __ 1.5152¢-3 (5.77e-3) = _ 0.0000e+0 (0.00e+0)
TOX171 5.6481e3 (3.09¢-2) ~ _ 0.0000e+0 (0.:00e+0) ~  1.5336e-2 (3.12e-2) — __ 1.5625¢-3 (8.56¢-3)
Brainl 6.5826e-2 (1.96e-2) ~ __ 7.5408¢-2 (8.80e-2) =~  3.1678e2 (442e2)~ _ 6.7259-2 (8.36¢-2)
ProstateGE 1.7544¢3 (9.61c-3) ~ __ 0.0000e+0 (0.00e+0) ~ _ 1.3693¢-2 (2.62¢-2) — __ 1.1905¢-3 (6.52¢-3)
Carcinom 9.9604e2 (9.67e:3) A~/ 1.2018¢-1 (1.85¢-2) —  1.3423¢-1 (3.87e2) — __ 1.0709-1 (2.08¢-2)
nci9 372891 (5.10e2) ~  3.7243¢-1 (4.10e2) =~ 4.6654e-1 (1.25e-1) — _ B.7151e-1 (5.94¢-2)
Arcene 19768e2 (193e2) ~  1.9652e-2 (9.76e-3) ~ __ 1.8768e-1 (3.70e-1) — _ 1.6863e-2 (9.96e-3)
pixrawl0P___ 0.0000e+0 (0.00e+0) =~ _ 0.0000e+0 (0.00e+0) ~ _ 0.0000e+0 (0.00e+0) =~ __ 0.0000e+0 (0.00e+0)
CLLSUBIIT __ 2.4691e-3 (6.40e3) ~ __ 3.0214e-3 (8.28¢-3) ~ __ 4.4682¢-2 (4.98¢2) —  [1.2346e-3 (4.70e-3)
Tumorl [ [.1586e-1 237e2)~ 131791 (1.83¢-2) — _ 1.4694c-1 (3.08¢:2) — _ L.1715e-1 (2.74e-2)
LungCancer _ 3.3680¢-3 (1.06e-2) = 2.0345¢-3 (3.37e-3) ~ _ [1.7386e-3 (2.63¢3) = 1.7460¢-3 (2.33¢-3)
SMKCANI87 _ 4.1519¢2 (4.77c2) ~ _ BASTle2 207e2)~ _ L.1813¢-1 (9.20e-2) —  4.6750e-2 (3.17¢-2)
GLIS5 8.7710¢-4 (4.80e-3) ~  8.7719¢-4 (4.80e-3) =~ 2.6316¢-3 (8.03¢-3) ~ __ 0.0000e+0 (0.00e+0)
GLABRAIS0  B3.2664c-1 (237¢2)~ _ 3.5886c-1 (2.79¢-2) — __ 3.8984e-1 (1.24e-1) — _ 3.4194e-1 (2.52¢-2)
T/ =/ = 0/1/19 074716 071377
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Table 6: CPU run time of using different initialization methods.

Problem HMOFS-DAEA HMOFS-JSEMO HMOFS-randIN HMOFS-FI
Lungdiscrete  312357640(L77640)F  5.2508e+0 (2.77e-1) +  7.5450e+0 (1.39e+0) +  9.7434e+0 (3.39¢+0)
Colon 5.1531e+0 (4.636-2) =  2.4668e+1 (6.29¢+0) —  4.1990e+1 (1.87e+1) —  L[.5127e+1 (1.25¢+0)
SRBCT 1.2328c+1 (2.86e+1) £  4.5640e+1 (8.02¢+0) —  6.5918e+1 (3.18¢+1) —  1.7837c+1 (9.92¢+0)
lung 2.1334e+1 (3.42e+1) +  7.0759e+1 (9.15e¢+0) —  1.1798e+2 (4.8%e+1) —  4.524de+1 (2.24e+1)
Tymphoma 1.2338c+1 (L44e+1) +  8.2118e+l (14let]) —  1.4459¢+2 (5.77e+1) —  4.6472¢+1 (1.68¢+1)
GLIOMA 1.50166+1 (2.25e+1) +  1.1899e+2 (1.67e+1) —  1.7495¢+2 (7.67e+1) —  5.6672e+1 (7.45¢+0)
DLBCL 23107e+1 (240e-1) £  1.4997e+2 (1.62e+1) —  2.2753e+2 (1.25¢+2) —  6.6793¢+1 (3.99¢+0)
TOX171 1.633%e+1 (3.05e+1) £  1473le+2 (2.50e+1) —  1.8727e+2 (4.02e+1) —  5.9116e+l (1.91e+1)
Brainl L.1101e+1 (1.12e+1) £ 1.0503e+2 (1.68e+1) —  2.6405e+1 (6.80e+0) +  3.2690¢+1 (2.01e+0)
ProstatleGE  1.2715e+1 (1.66e+1) +  8.0359¢+1 (1.09¢+1) —  1.0845¢+2 (5.09e+1) —  3.4476e+1 (1.53e+1)
Carcinom 1.3807c+2 (6.02e+1) —  8.6737e+2 (1.98¢+2) —  9.2055¢+2 (2.79¢+2) —  6.0085¢+1 (4.19¢+1)
nci9 2.18006+1 (227e+1) +  2.5440e+2 (4.77e+1) —  2.9126e+2 (L.1le+2) —  1.0137e+2 (2.43e+1)
Arcene 2.0958¢+1 (4.10e+1) +  1.0247e+2 (3.06e+1) —  1.3349¢+2 (9.2de+1) —  6.2374e+1 (7.10e+0)
pixraw10P 1.72%c+1 (2.52e+1) £  1.1302e+2 (2.25¢+1) —  2.4497e+1 (1.27e+0) +  4.0011c+1 (2.04e+0)
CLLSUBIII  5.8628e+l (1.26e+0) =  5.6361e+2 (1.82e+2) —  7.300de+2 (2.76e+2) —  2.0161e+2 (2.37e+1)
Tumorl [ 3.3306e+1 (6.79¢+1) +  3.7286¢+2 (6.79¢+1) —  4.2173e+2 (1.43e+2) —  1.1722e+2 (4.38e+1)
LungCancer  2.1273¢+2 (8.37e+1) +  9.3403e+2 (1.04e+2) —  3.3837¢+2 (7.10e+1) +  4.5974e+2 (6.06e+1)
SMKCANI87  4.7650c+1 (1.06e+2) +  3.0402e+2 (5.88¢+1) —  4.1214e+2 (1.29e+2) —  1.2714e+2 (9.12e+1)
GLI85 3.9200e+1 (4.19e+1) +  3.1916e+2 (6.79e+1) —  4.2248e+2 (1.1le+2) —  8.7956e+1 (4.72¢+0)
GLABRAIS0  3.5418e+2 (8.18e+0) =  1.9666e+3 (3.98¢+2) —  1.6082e+3 (5.82e+2) —  9.2408e+2 (2.63e+2)
Y/ -/~ 19/1/0 1/19/0 4/16/0

Table 7: HV of using KNN, KNN2W, and our proposed AK method.

Problem

HMOFS-FI

HMOFS-FI-JSCla

HMOFS-FI-AC

Lungdiscrete

9.3525¢-1 (2.35¢-3) =~

9.3089%-1 (2.24e-2) ~

9.3517e-1 (1.93e-3)

Colon

9.7867¢-1 (6.78¢-16)

9.7630e-1 (1.50e-3) —

9.7851e-1 (6.34e-4)

SRBCT

9.7903¢-1 (1.88¢-4) —

9.7987¢-1 (1.30e-4)

lung

9.7986¢-1 (1.29¢-4) ~
9.8278¢-1 (3.23e-4) ~

9.8283¢-1 (7.80e-5)

0.8284¢-1 (1.15¢-4)

lymphoma

8.7313¢-1 (6.64¢-3) —

9.8304c-1 (2.18¢-4) ~

9.8301e-1 (1.91e-4)

GLIOMA

9.8553e-1 (4.11e-5) =~

9.8429¢-1 (9.00e-4) —

9.8494e-1 (3.21e-3)

DLBCL

9.8711e-1 (9.27e-7) ~

9.8700e-1 (5.11e-5) —

9.8707e-1 (1.53e-4)

TOX171

9.8613¢-1 (5.43e-4) +

9.8366¢-1 (1.20e-3)

9.8366e-1 (1.38e-3)

Brainl

9.7727¢-1 (1.65¢-2) ~

9.8425¢-1 (1.78¢-3)

9.8502¢-1 (9.26e-4)

ProstateGE

9.8760e-1 (1.94e-4) ~

9.8735¢-1 (1.91e-4) —

9.8760e-1 (1.88¢-4)

Carcinom

9.7780e-1 (5.16e-3) —

9.8637e-1 (4.11e-4) =~

9.8637e-1 (4.28e-4)

nci9

8.7118e-1 (4.01e-2) —

9.5028e-1 (1.57¢e-2)

9.5324e-1 (1.07e-2)

Arcene

9.8987¢-1 (2.88e-4) +

NaN (NaN)

9.8966e-1 (3.74¢-4)

pixraw 10P

9.9045¢-1 (1.03e-5) +

9.9041e-1 (2.03¢-5) —

9.9044e-1 (1.22e-5)

CLLSUBI11

9.9087e-1 (7.36e-5) ~

9.7704¢-1 (5.59¢-3) —

9.9063¢-1 (1.17¢-3)

Tumorl 1

9.7701e-1 (7.99e-3) —

9.8214e-1 (2.57e-3) ~

9.8231e-1 (1.23e-3)

LungCancer

9.9116e-1 (1.37e-4) ~

9.9097e-1 (1.69¢-4) —

9.9111e-1 (1.76e-4)

SMKCAN187

9.9007¢-1 (7.88¢-3) ~

9.7238e-1 (4.73e-3) —

9.8987e-1 (1.00e-2)

GLI8S

9.9361e-1 (1.97¢-6) ~

9.9307¢-1 (5.00e-4) —

9.935%-1 (1.13e-4)

GLABRA180

8.9720e-1 (1.56e-2) —

9.5681c-1 (7.64e-3) ~

9.5822¢-1 (9.26¢-3)

-/~

3/5/12

0/10/10
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Table 8: MCE of using KNN, KNN2W, and our proposed AK method.

Problem HMOFS-FI HMOFS-FI-JSCla HMOFS-FI-AC
Lungdiscrete 1.1905e-3 (6.52e-3) + 3.4730e-2 (1.80e-2) = 3.3937e-2 (1.85e-2)
Colon 0.0000e+0 (0.00e+0) ~= 4.5556e-2 (1.99¢-2) — 3.4992¢-3 (1.34e-2)
SRBCT 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) ~  0.0000e+0 (0.00e+0)
lung 4.6881e-4 (1.88e-3) + 9.1870e-3 (4.24¢-3) ~ 8.5081e-3 (5.29¢-3)
lymphoma 3.6309e-1 (9.76e-3) — 1.7368e-3 (6.21e-3) = 2.7544e-3 (5.37e-3)
GLIOMA 0.0000e+0 (0.00e+0) ~ 2.2667e-2 (1.72e-2) — 4.8611e-3 (2.66e-2)
DLBCL 0.0000e+0 (0.00e+0) ~ 1.2500e-3 (3.81e-3) =~ 0.0000e+0 (0.00e+0)
TOX171 1.5625¢-3 (8.56¢-3) + 3.0190e-2 (1.84¢-2) ~ 3.0415¢-2 (1.88e-2)
Brainl 6.7259¢-2 (8.36¢-2) — 5.4074e-2 (1.64e-2) — 4.5185e-2 (1.20e-2)
ProstateGE 1.1905e-3 (6.52¢-3) ~ 1.1794e-2 (9.42¢-3) — 1.1905e-3 (6.52e-3)
Carcinom 1.0709e-1 (2.08e-2) — 2.3748e-2 (8.00e-3) =~ 2.2381e-2 (8.73e-3)
nci9 3.7151e-1 (5.94e-2) — 2.0611e-1 (4.54e-2) = 1.9944¢-1 (3.32¢-2)
Arcene 1.6863e-2 (9.96¢-3) + 1.0000e+0 (0.00e+0) — 2.3334¢-2 (9.04¢-3)
pixraw 10P 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) ~  0.0000e+0 (0.00e+0)
CLLSUBI11 1.2346¢-3 (4.70e-3) =~ 1.2522¢-1 (2.61e-2) — 5.3677e-3 (1.67e-2)
Tumorl 1 1.1715e-1 (2.74e-2) — 8.1866e-2 (1.87e-2) =~ 7.9333e-2 (1.07e-2)
LungCancer 1.7460e-3 (2.33e-3) + 1.4260e-2 (6.08e-3) — 6.5298e-3 (7.24e-3)
SMKCAN187 4.6750e-2 (3.77e-2) =~ 1.5633e-1 (1.90e-2) — 4.2565¢-2 (4.55¢-2)
GLIgS 0.0000e+0 (0.00e+0) ~= 2.0392¢-2 (1.27e-2) — 8.7719¢e-4 (4.80e-3)
GLABRAI180 3.4194e-1 (2.52¢-2) — 2.1463e-1 (2.19¢-2) ~ 2.0981e-1 (2.78e-2)

+/ -/ = 5/6/9 0/9/11

Table 9: HV of parameter studies of FIL.

HMOFS-FI-T' = 300

HMOFS-FI-T' = 500

HMOFS-FI-T' = 600

HMOFS-FI

9.3515e-1 (3.15¢-3)

9.3470e-1 (2.68e-3)

9.334%¢-1 (7.01e-3)

9.3525e-1 (2.35¢e-3)

9.7867e-1 (7.50e-6)

9.7867e-1 (1.95e-5)

9.7867¢-1 (1.95¢-5)

9.7867e-1 (6.78e-16)

9.7988e-1 (1.32e-4)

9.7985¢-1 (2.27¢-4)

9.7988¢-1 (1.56e-4)

9.7986e-1 (1.29¢-4)

9.8271e-1 (3.67¢-4)

9.8269¢-1 (5.64e-4)

9.8260e-1 (7.33¢-4)

9.8278¢-1 (3.23¢-4)

8.7141e-1 (3.58e-3)

8.7196e-1 (6.34e-3)

8.7210e-1 (4.04¢-3)

8.7313e-1 (6.64e-3)

9.8412e-1 (7.79¢-3)

9.8545e-1 (4.52e-4)

9.8515e-1 (2.14e-3)

9.8553e-1 (4.11e-5)

9.8710e-1 (6.07¢-5)

9.8710e-1 (6.07¢-5)

9.8710e-1 (6.07¢-5)

9.8711e-1 (9.27e-7)

9.8596e-1 (1.00e-3)

9.8601e-1 (8.30e-4)

9.8609¢-1 (6.26e-4)

0.8613¢-1 (5.43e-4)

9.8299¢-1 (1.01e-2)

9.7694¢-1 (1.65¢-2)

9.7887e-1 (1.57e-2)

9.7727e-1 (1.65¢-2)

9.8759%-1 (2.29¢-4)

9.8760e-1 (1.88e-4)

9.875%¢-1 (2.01e-4)

9.8760e-1 (1.94e-4)

9.7892e-1 (2.98e-3)

9.7820e-1 (3.18e-3)

9.7820e-1 (3.18e-3)

9.7780e-1 (5.16e-3)

8.686%¢-1 (3.31e-2)

8.675%-1 (3.33e-2)

8.6760e-1 (5.12e-2)

8.7118e-1 (4.01e-2)

9.8980e-1 (3.21e-4)

9.8978¢-1 (3.45¢-4)

9.8969¢-1 (3.14e-4)

0.8987¢-1 (2.88¢-4)

9.9044e-1 (1.14e-5)

9.9044e-1 (1.11e-5)

9.9044¢-1 (1.22¢-5)

9.9045e-1 (1.03e-5)

9.9069¢-1 (8.85¢-4)

9.9049¢-1 (1.80e-3)

9.9049¢-1 (1.80e-3)

9.9087e-1 (7.36e-5)

9.7688e-1 (7.80e-3)

9.7716e-1 (4.63e-3)

9.7822¢-1 (5.89%-3)

9.7701e-1 (7.99¢-3)

9.9115e-1 (1.51e-4)

9.9012e-1 (5.57e-3)

9.9116e-1 (1.41e-4)

9.9116e-1 (1.37e-4)

9.8832e-1 (1.20e-2)

9.9035¢-1 (5.80e-3)

9.8960¢-1 (9.30e-3)

9.9007e-1 (7.88e-3)

9.9354¢-1 (3.80¢-4)

9.9357¢-1 (1.53¢-4)

9.9359¢-1 (1.10e-4)

9.9361e-1 (1.97¢-6)

Problem HMOFS-FI-T' = 200
Lungdiscrete 9.3513e-1 (3.58e-3)
Colon 9.7865¢e-1 (1.43e-4)
SRBCT 9.7985¢e-1 (1.44e-4)
lung 9.8268e-1 (3.43e-4)
lymphoma 8.7225e-1 (3.78e-3)
GLIOMA 9.8488e-1 (3.57¢-3)
DLBCL 9.8711e-1 (1.39¢-6)
TOX171 9.8586e-1 (1.53e-3)
Brainl 9.7777e-1 (1.59¢-2)
ProstateGE 9.8760e-1 (2.03e-4)
Carcinom 9.7832¢-1 (3.25¢-3)
nci9 8.6616e-1 (3.97e-2)
Arcene 9.8985e-1 (2.86e-4)
pixraw 10P 9.9044e-1 (1.26e-5)
CLLSUBI111 9.9064e-1 (1.08e-3)
Tumorl 1 9.7569¢-1 (1.12e-2)
LungCancer 9.9098e-1 (9.72e-4)
SMKCANI187 9.9024e-1 (8.55¢-3)
GLI85 9.9359¢-1 (1.14e-4)
SMKCAN187 9.9024e-1 (8.55¢e-3)
GLABRA180 8.9604e-1 (2.12¢-2)

9.8832¢-1 (1.20e-2)
8.9370e-1 (1.84¢-2)

9.9035e-1 (5.80e-3)
8.9584e-1 (1.13e-2)

9.8960¢-1 (9.30e-3)
8.9584e-1 (1.13¢-2)

9.9007¢-1 (7.88¢-3)
8.9720e-1 (1.56¢-2)
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Table 10: MCE of parameter studies of FI.

HMOFS-FI-T' = 300

HMOFS-FI-T' = 500

HMOFS-FI-T' = 600

HMOFS-FI

3.3333e-3 (1.83e-2)

0.0000e+0 (0.00e+0)

6.8027¢-4 (3.73¢-3)

1.1905¢-3 (6.52¢-3)

0.0000¢+0 (0.00e+0)

0.0000e+0 (0.00e+0)

0.0000e+0 (0.00¢+0)

0.0000e+0 (0.00¢+0)

0.0000e-+0 (0.00e+0)

0.0000e-+0 (0.00e+0)

0.0000e+0 (0.00e+0)

0.0000e+0 (0.00e+0)

8.8337e-4 (4.03e-3)

1.8095e-3 (9.05e-3)

2.2905e-3 (1.17e-2)

4.6881e-4 (1.88e-3)

3.6633e-1 (5.89-3)

3.6500e-1 (9.34¢-3)

3.6511e-1 (6.81e-3)

3.6309¢-1 (9.76e-3)

7.6389%-3 (4.18e-2)

1.6667¢-3 (9.13e-3)

3.7037¢-3 (2.03¢-2)

0.0000e+0 (0.00e+0)

0.0000¢+0 (0.00¢+0)

0.0000e+0 (0.00e+0)

0.0000¢+0 (0.00¢+0)

0.0000e+0 (0.00¢+0)

2.5560e-3 (1.40e-2)

2.1181e-3 (1.16e-2)

1.2897e-3 (7.06e-3)

1.5625¢-3 (8.56e-3)

3.9386e-2 (5.40e-2)

7.0372¢-2 (8.42¢-2)

5.8208e-2 (7.90e-2)

6.7259¢-2 (8.36¢-2)

1.1905e-3 (6.52e-3)

1.1905e-3 (6.52e-3)

1.1905e-3 (6.52e-3)

1.1905e-3 (6.52e-3)

1.0211e-1 (1.43e-2)

1.0613e-1 (1.42e-2)

1.0613e-1 (1.42¢e-2)

1.0709¢-1 (2.08e-2)

3.7713e-1 (5.19¢-2)

3.7863¢-1 (5.46e-2)

3.7621e-1 (6.79%-2)

3.7151e-1 (5.94e-2)

1.9360¢-2 (9.87¢-3)

2.0022¢-2 (9.96¢-3)

2.2697¢-2 (8.50e-3)

1.6863e-2 (9.96e-3)

0.0000e+0 (0.00e+0)

0.0000e+0 (0.00e+0)

0.0000e+0 (0.00e+0)

0.0000e+0 (0.00e+0)

4.3771e-3 (1.46e-2)

8.4938e-3 (2.03e-2)

8.4938e-3 (2.03e-2)

1.2346e-3 (4.70e-3)

1.1767e-1 (2.74e-2)

1.1823e-1 (1.83e-2)

1.1208e-1 (2.36¢-2)

1.1715e-1 (2.74e-2)

1.7460e-3 (2.33e-3)

8.4095¢-3 (3.38¢-2)

1.5873¢-3 (2.28¢-3)

1.7460¢-3 (2.33¢-3)

5.1172¢-2 (5.64¢-2)

4.5707e-2 (3.39¢-2)

4.9432¢-2 (4.19¢-2)

4.6750e-2 (3.77¢-2)

1.6667e-3 (9.13e-3)

1.7544e-3 (6.68e-3)

8.7719¢-4 (4.80¢-3)

0.0000e+0 (0.00e+0)

5.1172e-2 (5.64e-2)

4.5707e-2 (3.39-2)

4.9432¢-2 (4.19e-2)

4.6750e-2 (3.77e-2)

Problem HMOFS-FI-T' = 200
Lungdiscrete 3.5714e-3 (1.96e-2)
Colon 1.0417e-3 (5.71e-3)
SRBCT 0.0000e+0 (0.00e+0)
lung 1.1685¢e-3 (4.76e-3)
lymphoma 3.6470e-1 (5.72e-3)
GLIOMA 5.0000e-3 (2.74e-2)
DLBCL 0.0000e+0 (0.00e+0)
TOX171 2.9911e-3 (1.64e-2)
Brainl 6.7641e-2 (7.96e-2)
ProstateGE 1.1905e-3 (6.52¢-3)
Carcinom 1.0571e-1 (1.46e-2)
nci9 3.8011e-1 (5.96e-2)
Arcene 1.8376e-2 (8.54e-3)
pixraw 10P 0.0000e+0 (0.00e+0)
CLLSUBI11 5.8751e-3 (1.63e-2)
Tumorl 1 1.2247e-1 (3.46€-2)
LungCancer 2.8836e-3 (1.32e-2)
SMKCAN187 4.0564¢-2 (4.18¢-2)
GLI85 8.7719e-4 (4.80e-3)
SMKCAN187 4.0564¢-2 (4.18¢-2)
GLABRA180 3.4317e-1 (3.25¢e-2)

3.4785e-1 (2.77e-2)

3.6688e-1 (1.21e-1)

3.6688e-1 (1.21e-1)

34194¢-1 (2.52¢-2)

Table 11: HV of parameter studies of AK.

Problem HMOFS-FI-AK-zero HMOFS-FI-AK-two HMOFS-FI-AK
Lungdiscrete 9.3392e-1 (9.30e-3) =~ 9.3174e-1 (1.92e-2) =~ 9.3517e-1 (1.93e-3)
Colon 9.7779%-1 (1.40e-3) —  9.7858e-1 (5.10e-4) =  9.7851e-1 (6.34e-4)
SRBCT 9.7988e-1 (1.21e-4) ~  9.7990e-1 (1.05e-4) =  9.7987e-1 (1.30e-4)
lung 9.8281e-1(7.92e-5) ~  9.828le-1 (9.51e-5)~  9.8284e-1 (1.15e-4)
lymphoma 9.8300e-1 (2.43e-4) ~ 9.8299%¢-1 (2.20e-4) =~ 9.8301e-1 (1.91e-4)
GLIOMA 9.8403¢-1 (8.10e-3) ~  9.8335e-1 (1.16e-2) ~  9.8494e-1 (3.21e-3)
DLBCL 9.8710e-1 (6.09¢-5) ~  9.8710e-1 (6.12e-5) =~  9.8707¢-1 (1.53¢-4)
TOX171 9.8403e-1 (8.60e-4) &~  9.8395e-1 (8.51e-4) =~  9.8366e-1 (1.38e-3)
Brainl 9.8456e-1 (1.62e-3) ~  9.8422e-1 (1.70e-3) =~  9.8502e-1 (9.26e-4)
ProstateGE 9.8760e-1 (1.91e-4) =~  9.8752e-1 (6.75e-4) ~  9.8760e-1 (1.88e-4)
Carcinom 9.8656e-1 (2.99¢-4) ~ 9.8638e-1 (6.09¢-4) =~ 9.8637e-1 (4.28¢-4)
nci9 9.5049¢-1 (1.04e-2) ~  9.5481e-1 (1.24e-2) &  9.5324e-1 (1.07e-2)
Arcene 9.8975e-1 (3.14e-4) ~  9.8977e-1 3.15e-4) =  9.8966e-1 (3.74e-4)
pixraw 10P 9.9044e-1 (1.00e-5) ~  9.9041e-1 (1.31e-5) — 9.9044e-1 (1.22¢-5)
CLLSUBI11 9.9043e-1 (2.31e-3) &~  9.9061e-1 (1.43e-3) ~  9.9063e-1 (1.17e-3)
Tumorl 1 9.8141e-1 (3.68e-3) ~  9.8242e-1 (2.09%-3) =~  9.8231e-1 (1.23e-3)
LungCancer 9.9105e-1 (1.55e-4) ~ 9.9100e-1 (1.14e-4) — 9.9111e-1 (1.76e-4)
SMKCAN187  9.9008e-1 (7.63¢-3) ~  9.9062e-1 (5.91e-3) &~  9.8987¢-1 (1.00e-2)
GLI8S 9.9359%-1 (1.08e-4) ~  9.9361e-1 (4.06e-6) =  9.935%-1 (1.13e-4)
GLABRAI180 9.5851e-1 (7.06e-3) &~  9.5657e-1(7.07e-3) =~  9.5822e-1 (9.26e-3)

+/ -/ = 0/1/19 0/2/18
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Table 12: MCE of parameter studies of AK.

Problem HMOFS-FI-AK-zero HMOFS-FI-AK-two HMOFS-FI-AK

Lungdiscrete  3012066:2/(1'8862)a  3.3714e-2 (2.16e-2) 3.3937¢-2 (1.85¢-2)

pixraw 10P 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0)

CLLSUBI11 5.9004e-3 (2.25¢e-2) 3.8580e-3 (1.80e-2) 5.3677e-3 (1.67e-2)

g le)e |

Tumorl 1 8.5557e-2 (2.13e-2) 8.0426e-2 (1.63e-2) 7.9333e-2 (1.07e-2)

LungCancer 9.3382e-3 (7.5%-3) 1.2492e-2 (4.99e-3) — 6.5298e-3 (7.24e-3)

Colon 1.7735e-2 (2.45e-2) — 1.9608e-3 (1.07e-2) = 3.4992¢-3 (1.34e-2)
SRBCT 0.0000e+0 (0.00e+0) = 0.0000e+0 (0.00e+0) ~  0.0000e+0 (0.00e+0)
lung 8.8537¢-3 (4.15¢-3) ~ 8.8618¢-3 (4.56¢-3) ~ 8.5081e-3 (5.29¢-3)
lymphoma 4.1228e-3 (7.40e-3) = 3.1228e-3 (7.25¢-3) ~ 2.7544e-3 (5.37e-3)
GLIOMA 7.7381e-3 (4.24e-2) = 1.0460e-2 (5.03e-2) =~ 4.8611e-3 (2.66e-2)
DLBCL 0.0000e+0 (0.00e+0) =  0.0000e+0 (0.00e+0) =~  0.0000e+0 (0.00e+0)
TOX171 2.5361e-2 (1.53e-2) =~ 2.6633¢e-2 (1.62¢-2) ~ 3.0415¢-2 (1.88¢-2)
Brainl 4.8889¢-2 (1.77e-2) =~ 5.3704e-2 (1.78e-2) — 4.5185e-2 (1.20e-2)
ProstateGE 1.1905¢-3 (6.52¢-3) =~ 2.2222¢-3 (1.22¢-2) 1.1905e-3 (6.52¢-3)
Carcinom 2.0499¢-2 (7.46e-3) ~ 2.2213e-2 (1.02e-2) 2.2381e-2 (8.73e-3)
nci9 2.0833e-1 (3.09¢-2) =~ 1.9389¢-1 (3.80e-2) 1.9944e-1 (3.32¢-2)
Arcene 2.1160e-2 (8.64e-3) =~ 2.0720e-2 (8.59¢-3) 2.3334e-2 (9.04e-3)

SMKCANI87  4.7575¢-2 (3.67¢-2) 4066062 (3.55¢-2) &~  4.2565¢-2 (4.55¢-2)

GLIS5 8.7719¢-4 (4.80c-3) 0.0000e+0 (0.00e+0) ~  8.7719¢-4 (4.80e-3)

GLABRAIS0  2.0981c-1 (2.07¢-2) 2.1537¢-1 (1.96¢-2) =  2.0981e-1 (2.78¢-2)
T/ -/~ 0/1/19 0/2/18
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